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1 Introduction

In recent years there has been considerable interest in entanglement entropy and its holo-

graphic implementation, following the proposal of [1] that entanglement entropy can be

computed from the area of a bulk minimal surface homologous to a boundary entangling

region. This proposal was proved for spherical entangling regions in conformal field theo-

ries in [2] and arguments supporting the Ryu-Takayanagi prescription based on generalised

entropy were given in [3]. Entanglement entropy has by now been computed in a wide

range of holographic systems, see the review [4]. General properties of the holographic

entanglement entropy are reviewed in [5].

The focus of this paper is on the computation of holographic entanglement entropy

in top down systems. By “top-down” we mean solutions of ten and eleven dimensional
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supergravity which are asymptotic to AdS cross a compact space. In the context of phe-

nomenological applications of holography, it is considered important to use top-down mod-

els wherever possible, to ensure that the quantities calculated are consistent. Entanglement

entropy is a novel computable for top down models and, following the pioneering works

of [6, 7], it can be used as an order parameter to characterise confinement and other phase

transitions.

The original Ryu-Takayanagi proposal [1] is applicable to (asymptotically locally) anti-

de Sitter spacetimes which are static. Given an entangling region on a spatial hypersur-

face of constant time in the boundary field theory, the entanglement entropy is computed

holographically from the area A of a bulk minimal surface of codimension two which is

homologous to the boundary entangling region:

SRT =
A

4GN
(1.1)

where GN is the Newton constant. Note that the area of the minimal surface is computed

in the Einstein frame metric. In the subsequent work [8] a covariant generalization of the

Ryu-Takayanagi formula to non-static situations was proposed.

In this paper we will focus on entanglement entropy in top-down models, assuming

that the solutions are globally static. (The latter is a reasonable assumption in many

phenomenological models, in which holographic duals of Poincaré invariant field theories are

being constructed, but the static assumption does exclude finite temperature and density

models.)

Consider a bulk solution which is asymptotic to AdSd+1 × X where X is a compact

space. Given an entangling region on a spatial hypersurface of the non-compact part of the

boundary, then it has been suggested by [1, 9] that the holographic entanglement entropy

can be computed from the area of a codimension two minimal surface which asymptotically

wraps the compact space X and is homologous to the entangling region. Hence

Stop−down =
A

4GN
(1.2)

where A is the area of the minimal surface (in the Einstein frame metric) and GN is

the higher dimensional Newton constant. This prescription for the top-down entanglement

entropy was used in [6] to explore phase transitions in top-down models. Other applications

of the top-down prescription can be found in [10–21].

The purpose of this paper is to explore the relationship between (1.1) and (1.2). In

particular, we will give strong evidence that the two formulae agree whenever we can uplift

an asymptotically anti-de Sitter spacetime to a top-down solution. We will also give a proof

that (1.2) indeed correctly calculates the holographic entanglement entropy in situations

where consistent truncations of the top-down model do not exist, i.e. one does not know how

to calculate the lower-dimensional Einstein metric. Our explicit examples focus primarily

on asymptotically AdS5 × S5 geometries, although the arguments and methodology could

be straightforwardly generalized to other holographic dualities.

As we review in section 2, the agreement between (1.1) and (1.2) is manifest for top-

down solutions which are globally direct products between an asymptotically locally AdS
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geometry and a compact space X. The agreement between (1.1) and (1.2) is far less obvious

even in the context of consistent truncations of top down models to gauged supergravity.

The map between the top-down Einstein metric and the lower-dimensional Einstein metric

is quite complicated for consistent truncations, with warp factors depending non-trivially

on both the lower-dimensional coordinates and on the position in the compact space, see

for example (3.6).

In sections 3 and 4 we show that the top-down entanglement entropy computed via (1.2)

indeed agrees with that computed using (1.1) in consistent truncations to gauged super-

gravities and in consistent truncations involving massive vectors. The agreement involves

non-trivial cancellations of warp factors depending on compact space coordinates.

A generic asymptotically AdS5 × S5 solution of ten-dimensional supergravity cannot

be expressed as a solution of a five-dimensional theory which is a consistent truncation. For

example, only special Coulomb branch solutions can be reduced to give gauged supergravity

solutions (see examples in [22, 23]) and only a subgroup of LLM solutions [24] can be

reduced to gauged supergravity solutions. However, in a finite region near the conformal

boundary, one can always systematically reduce the ten-dimensional solutions over the

sphere to obtain the five-dimensional Einstein metric as a Fefferman-Graham expansion;

the reduction uses the methods of Kaluza-Klein holography developed in [25, 26].

In section 5 we use Kaluza-Klein holography to compare the top-down entanglement

entropy (1.2) with that obtained from the five-dimensional Einstein metric using (1.1),

working up to quadratic order in the near boundary expansion. Even though the rela-

tionship between the five-dimensional and ten-dimensional Einstein metrics is extremely

complicated (involving derivative field redefinitions), the expressions (1.1) and (1.2) in-

deed agree.

Entanglement entropy has also been computed for flavor brane solutions (used to de-

scribe flavors in the dual field theory), using both probe branes and backreacted (smeared)

solutions. For probe branes, one can calculate the backreaction of the probe branes onto

the lower-dimensional Einstein metric using Kaluza-Klein holography, see [27], and show

that this gives an equivalent answer to that obtained using (1.2). Entanglement entropy

for backreacted smeared solutions has previously been computed using (1.2). In section 6

we show that the same answer is obtained by extracting the lower-dimensional Einstein

metric using Kaluza-Klein holography and applying (1.1), again confirming the matching

between (1.1) and (1.2).

Having established the agreement between (1.1) and (1.2) in a number of examples, we

give general arguments for why the formulae agree in section 7, building on the approach

of [3]. In particular, assuming that the replica trick may be used, we can express entan-

glement in terms of partition functions for replica spaces. The latter can be computed

holographically to leading order using the onshell action and therefore the equality of (1.1)

and (1.2) is essentially inherited from the equality of ten-dimensional and five-dimensional

onshell actions.

In section 7 we also give an alternative argument for the origin of (1.1) and (1.2),

using the replica trick approach of [3] in combination with old results of Gibbons and

Hawking on gravitational instanton symmetries [28]. The latter suggests that for generic
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entangling regions there may be additional contributions to the holographic entanglement

entropy (even at leading order) if the circle direction used in the replica trick is non-

trivially fibered over the boundary of the entangling region. In practice one does not

usually consider entangling regions such that the circle direction is non-trivially fibered

but it would nonetheless be interesting to explore this situation further.

We conclude in section 8 by discussing the implications of our results for top-down

holography and spacetime reconstruction. Extracting field theory data from a top-down

solution is in general very subtle and computationally involved: one has to expand the

ten-dimensional equations of motion perturbatively, and then use non-linear field redef-

initions to obtain the effective five-dimensional equations of motion. Given the effective

five-dimensional equations of motion and the asymptotic expansions of the five-dimensional

fields, one can then read off field theory data using holographic renormalization [25, 26].

We should note that these steps are required even to calculate quantities in the con-

formal vacuum: indeed non-linear field redefinitions between ten-dimensional and five-

dimensional fields were first introduced in [29] for the computation of three point functions

in N = 4 SYM.

The lower-dimensional metric is a particularly important quantity for holography, as it

relates to the dual energy momentum tensor. One needs to identify the lower-dimensional

metric to compute one point functions and higher correlation functions of the stress en-

ergy tensor in the dual theory. The latter are in turn used in many contexts, including

discussions of a theorems and also of energy correlations, following [30]. Yet, as we review

in section 5, the relation between the lower-dimensional metric and the ten-dimensional

metric is very complicated. The matching of (1.1) and (1.2) implies simple constraints

relating the two metrics which can be used to check Kaluza-Klein holography calculations

and perhaps even to deduce the lower-dimensional metric (see section 6 for an example).

There has been a great deal of interest in relating entanglement to the reconstruction

of the holographic spacetime. Since (1.2) relates the entanglement entropy to minimal

surfaces in the top-down geometry, entanglement implicitly knows about the compact part

of the geometry. It would be interesting to explore further how entanglement can be used

to understand the global structure of the ten-dimensional geometry.

2 Entanglement entropy for AdS5 × S5

We begin by reviewing the computation of entanglement entropy for a strip on the boundary

of AdS5 × S5 from both ten-dimensional and five-dimensional perspectives.

Consider a strip A defined by x ∈ [0, l] on the boundary of AdS5:

ds2
5 =

1

ρ2

(
dxµdx

µ + dρ2
)

(2.1)

where xµ = (t, x, y, z), the conformal boundary is at ρ→ 0, and we set the AdS radius to

one throughout for convenience.
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To compute the entanglement entropy one calculates the area of a bulk codimension-2

minimal surface Σ with boundary ∂Σ = ∂A:

S5 =
1

4G5

∫
{Σ|∂Σ=∂A}

d3ξ
√

detγ3 (2.2)

where γ3 is the induced metric on the minimal surface and ξi (i = 1, 2, 3) are the world-

volume coordinates. Since the metric is static we work on a fixed-time slice t = t0, and

the surface is thus given by Σ = (t0, x(ξi), y(ξi), z(ξi), ρ(ξi)). By symmetry of the metric

and boundary conditions it is clear that the surface cannot have non-trivial dependence on

the y, z-directions, and (choosing static gauge to identify the ξi with a subset of the space-

time coordinates) we can thus describe the minimal surface by an embedding of the form

x = x(ρ) or ρ = ρ(x), where it is implicit that the surface extends in the y, z-directions.

Taking x = x(ρ) for concreteness the induced metric on Σ is:

ds2
ind =

1

ρ2

[
dy2 + dz2 +

(
x′2 + 1

)
dρ2
]

(2.3)

and one can thus easily compute the entanglement entropy as:

S5 =
V2

2G5

∫ ρ0

δ

dρ

ρ3

√
x′2 + 1 (2.4)

where V2 is the regularised area of ∂A, ρ0 is the turning point of the surface, and δ is the

UV cutoff.

Now consider the calculation of the entanglement entropy from the ten-dimensional

perspective, using the ten-dimensional (Einstein) metric for AdS5 × S5:

ds2
10 =

1

ρ2

(
dxνdx

ν + dρ2
)

+ dθ2 + cos2θdΩ2
3 + sin2θdφ2 (2.5)

The proposed generalisation of the Ryu-Takayanagi prescription in this case is to calculate

the area of a codimension two minimal surface Σ, now in the full ten-dimensional spacetime:

S10 =
1

4G10

∫
{Σ|∂Σ=∂A}

d8ξ
√

detγ8 (2.6)

where γ8 is the induced metric on the minimal surface and ξi (i = 1, . . . , 8) are the world-

volume coordinates.

Consider again the case of a strip on the boundary of the AdS5 factor. In a similar

fashion to before we can describe the corresponding minimal surface by an embedding of the

form x = x(ρ, θ,Ω3, φ), or ρ = ρ(x, θ,Ω3, φ), or θ = θ(x, ρ,Ω3, φ) etc., where we again have

chosen static gauge, have assumed no dependence on the y, z-directions, and are working

on a fixed-time slice t = t0. However, due to the S5 factor one must refine the boundary

conditions to include the internal space. As before we take the boundary condition that

the surface Σ is anchored on ∂A, and consider further the condition that Σ wraps the S5

asymptotically. Alternative boundary conditions would describe different quantities in the

dual field theory — see discussions on generalised entanglement entropy [31, 32].

– 5 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
8

ρ

ρ = 0

x(ρ)

∆x

Figure 1. The entangling surface for a slab boundary region — the conformal boundary is at

ρ → 0 and the minimal surface is described by x(ρ). The minimal surface is a direct product of a

codimension two surface in anti-de Sitter with the five sphere (the latter being indicated in red).

Since the S5 is a maximally symmetric space and, importantly, the boundary conditions

respect this symmetry, together with the fact that AdS5 × S5 is a direct product, one can

argue by symmetry as before that the minimal surface cannot depend non-trivially on the

S5 coordinates. Thus the embedding is of the form x = x(ρ) or ρ = ρ(x) as in the five-

dimensional case, where it is now implicit that it both extends in the y, z-directions and

wraps the S5, see figure 1. Taking x = x(ρ) for concreteness as before the induced metric

on Σ is just:

ds2
ind =

1

ρ2

[
dy2 + dz2 +

(
x′2 + 1

)
dρ2
]

+ dθ2 + cos2θdΩ2
3 + sin2θdφ2 (2.7)

The entanglement entropy is thus easily calculated to be:

S10 =
V2VS5

2G10

∫ ρ0

δ

dρ

ρ3

√
x′2 + 1 (2.8)

which is identical to the 5-dimensional result since the Newton constants are related as

G5 = G10/VS5 .

In the above example one hence obtains the same result for the entanglement entropy

when computed from both the ten and five dimensional perspectives. This example had a

particularly high level of symmetry, however, and it is not clear that the above equivalence

should carry over to less trivial cases.

The general problem one would like to study is the relationship between the entan-

glement entropy as calculated in a given downstairs metric and the entanglement entropy

calculated in the uplifted solution, in cases where this uplift map is known or can be com-

puted. Certain Coulomb branch geometries, which we study first in the following section,

provide a good example of such a scenario, admitting a known ten-dimensional uplift which

is not a simple product space, instead containing warp factors that depend on both the

holographic radial coordinate and a sphere coordinate.
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3 Consistent truncations of the Coulomb branch

In this section we will consider particular Coulomb Branch solutions discussed in [22, 23]

that admit consistent truncations to solutions of five-dimensional gauged supergravity, and

compare the entanglement entropy computed from five and ten dimensions.

3.1 Solutions with SO(4)× SO(2) symmetry

Let us discuss first Coulomb branch solutions which, from the ten-dimensional point of view,

correspond to D3-branes being uniformly distributed on a disc of radius σ in the transverse

space. These supergravity solutions hence preserve SO(4)× SO(2) of the SO(6) symmetry

in the AdS5×S5 solution. These Coulomb branch geometries admit consistent truncations

to (a particular sector of) 5-dimensional gauged supergravity, with action given by:

I =
1

16πG5

∫
d5x

(
−1

4
R+

1

2
(∂α)2 −

(
g2

8

(
∂W

∂α

)2

− g2

3
W 2

))
(3.1)

where α is a scalar field, W is the superpotential and g is the coupling constant. The

five-dimensional Einstein frame metric for the solutions can be written as:

ds2 = λ2w2

(
dxνdx

ν +
dw2

w4λ6

)
λ6 =

(
1 +

σ2

w2

)
, (3.2)

which clearly reduces to an AdS5 metric for σ = 0. (In the latter case the conformal

boundary is at w →∞.)

Consider again a strip on the boundary defined by x ∈ [0, l]. As above we can describe

the minimal surface by an embedding of the form x = x(w) or w = w(x). Taking x = x(w)

the induced metric on the surface is easily calculated to be:

ds2
ind = λ2w2

[
dy2 + dz2 +

(
x′2 +

1

w4λ6

)
dw2

]
(3.3)

where x′ ≡ dx/dw, and thus one finds:

√
detγ = λ3ρ3

√
x′2 +

1

w4λ6
(3.4)

The entanglement entropy for the slab is thus:

S =
V2

2G5

∫ Λ

w0

dwλ3w3

√
x′2 +

1

w4λ6
(3.5)

where w0 is the turning point of the minimal surface and Λ is the UV cutoff.

The five-dimensional metric in (3.2) can be uplifted to the following ten-dimensional

Einstein frame metric [22, 23]:

ds2
10 = ∆−2/3ds2 + ds2

K , (3.6)
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where the warp factor ∆ depends both on the holographic radial coordinate and on one of

the sphere coordinates, while ds2
K is a metric on a warped sphere. Explicit expressions for

these quantities are:

∆−2/3 =
ζ

λ2
ζ =

(
1 +

σ2

w2
cos2 θ

)
(3.7)

ds2
K =

1

ζ

(
ζ2dθ2 + cos2 θdΩ2

3 + λ6 sin2 θdφ2
)
. (3.8)

Note that ζ, λ → 1 as w → ∞ and thus the solution is indeed asymptotically AdS5 × S5.

To compute the entanglement entropy for the strip we now proceed as before, with the

additional boundary condition that the minimal surface wraps the S5 asymptotically.

However, in the present case there are non-trivial warp factors that mix the holographic

radial coordinate w and the sphere coordinate θ. Thus, although we can continue to assume

the minimal surface has trivial dependence on Ω3 and φ, we can no longer a priori assume

that the minimal surface has trivial dependence on θ. We thus may assume an embedding of

the form x = x(w, θ), or w = w(x, θ) or θ = θ(x,w). Choosing x = x(w, θ) (as the boundary

conditions will be clearest in this choice) one calculates the induced metric to be:

ds2
ind = ζw2

[
dy2+dz2+

(
x′2+

1

w4λ6

)
dρ2

]
+2ζw2x′ẋdρdθ + ζ(1+ẋ2w2)dθ2 (3.9)

+
cos2θ

ζ
dΩ3 +

λ6

ζ
sin6θdφ

where ẋ ≡ dx/dθ. One thus finds that the ten-dimensional entanglement functional is

S =
1

4G10

∫
d8x
√

detγ (3.10)

where√
detγ =

√
detgΩ3cos3θsinθλ3w2

[(
ρ2x′2 +

1

w2λ6

)
(1 + ẋ2w2)− ẋ2x′2w4

]1/2

(3.11)

Notice that all factors of ζ, which depend on the sphere coordinate θ, cancel out and the

spherical prefactors combine to become
√

detgΩ5 . The only additional dependence on the

spherical coordinates thus comes through the fact that x(w, θ) depends on θ:

√
detγ =

√
detgΩ3cos3θsinθλ3w2

√
w2x′2 +

ẋ2

λ6
+

1

w2λ6
(3.12)

One can immediately make an interesting observation. The equations of motion admit the

solution ẋ = 0, since the action is quadratic in ẋ and θ does not appear explicitly in the

non-trivial square root part of the action functional. For solutions in which ẋ = 0, the

entanglement entropy is thus:

S =
V2VS5

4G10

∫ Λ

w0

dwλ3w3

√
x′2 +

1

w4λ6
(3.13)

i.e. identical to (3.5) since G5 = G10/VS5 .
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Although one can thus consistently set ẋ = 0 to obtain a solution to the ten-dimensional

equation of motion, it remains to show that this is indeed the minimal solution. This can

be done using the radial Hamiltonian formalism as follows. One first assumes a given

θ-independent solution of the equations of motion and then considers θ-dependent pertur-

bations to this background. By computing the Hamiltonian one then shows that these

perturbations lead to a larger Hamiltonian and thus the minimal solution (at least per-

turbatively) is indeed the one that is independent of θ. The independence of the minimal

surface on the compact coordinates is a point we will return to in section 5.2.

3.2 Other Coulomb branch solutions

Similar conclusions can be reached for other consistent truncations of Coulomb branch

solutions with different symmetries. In [22, 23] they also consider solutions with SO(3) ×
SO(3) and SO(5) symmetry in addition to the SO(4) × SO(2) solution considered above,

corresponding to various symmetric distributions of D3-branes. The SO(3) × SO(3) case

has the following 10d metric:

ds2
10 = ζw2λ

(
dx2

µ +
dw2

w4λ6

)
+

1

λζ

(
ζ2dθ2 + cos2θdΩ2

2 + λ4sin2θdΩ̃2
2

)
(3.14)

∆−2/3 =
ζ

λ
(3.15)

while the SO(5) case has the following 10d metric:

ds2
10 =

ζw2

λ3

(
dx2

µ +
dw2

w4λ6

)
+
λ3

ζ

(
ζ2dθ2 + cos2θdΩ2

4

)
(3.16)

∆−2/3 =
ζ

λ
(3.17)

In both cases the definitions of λ and ζ are as before, and the expression for ∆ shows

the relationship between the ten-dimensional and five-dimensional metrics cf. (3.6). Given

what has been deduced from the SO(4) × SO(2) case previously, it is immediate that the

same equivalence will occur in these cases, since the factors of ζ cancel in the determinant

and indeed one can explicitly check that the powers of λ come out the same in the two cases.

4 Consistent truncations with massive vector fields

In this section we consider the entanglement entropy for particular backgrounds which

admit consistent truncations with massive vector fields, as discussed in [33]. Consider

again type IIB supergravity but now with the metric, the dilaton Φ, the 5-form F5, and

the 3-form H = dB switched on. Our conventions for the action in Einstein frame are

I =
1

16πG10

∫
d10x
√
−g10

[
R− 1

2
∂AΦ∂AΦ− 1

2 · 3!
e−ΦHABCH

ABC − 1

2 · 5!
F 2

(5)

]
(4.1)

where as usual we need to impose in addition the self-duality constraint on F5.

– 9 –
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Now consider the following ansatz for the ten-dimensional fields:

ds2
10 = e−

2
3

(4U+V )ds2
M + e2Uds2

BKE
+ e2V η2 (4.2)

B = A ∧ η + θω (4.3)

F5 = 4e−4U−V (1 + ?)volM (4.4)

where M is the 5-dimensional spacetime with metric ds2
M and volume form volM . Further-

more, ds2
BKE

+η2 is a Sasaki-Einstein metric cf. the representation of S5 as a U(1) fibration

over CP2. The scalars U , V and Φ are taken to be functions on M , as is the one-form A.

Expressions for the quantities θ and ω will not be important in what follows but may be

found in [33].

Reducing the field equations over the internal space, one obtains equations of motion

which may be derived from the following 5-dimensional action for the fields (g5, U, V,Φ, A):

I =
1

16πG5

∫
d5x
√
−g5

[
R+ 24e−u−4v − 4e−6u−4v − 8e−10v − 5(∂u)2 − 15

2
(∂v)2

− 1

2
(∂Φ)2 − 1

4
e−Φ+4u+vFmnF

mn − 4e−Φ−2u−3vAmA
m
] (4.5)

where F = dA, u = 2
5(U−V ) and v = 4

15(4U+V ). It was shown in [33] that this reduction

is consistent i.e. any solution of the resulting five-dimensional equations of motion can be

uplifted to a solution of type IIB supergravity using the map (4.2)–(4.4).

Note that from the reduced action (4.5) one finds that the mass of the vector field

A around the AdS5 background is m2 = 8, showing these solutions are indeed associated

with massive vector fields. As is clear from (4.2)–(4.3) however, this vector field does not

appear in the ten-dimensional metric but instead appears in the ten-dimensional two-form

field and thus it does not directly contribute to the ten-dimensional entanglement entropy.

We can immediately compute the ten-dimensional entanglement entropy, which as

before is given by:

S10 =
1

4G10

∫
{Σ|∂Σ=∂A}

d8ξ
√

detγ8 (4.6)

where implicitly we work with the metric in Einstein frame. One can now immediately

obtain the ten-dimensional entanglement entropy for an arbitrary entangling region, only

assuming that we again work on a fixed time slice and that the entangling surface wraps

the internal space asymptotically. Since the warp factors in the metric do not depend at

all on the internal directions the entangling surface will therefore also wrap the internal

space deep in the bulk. Since the entangling surface is consequently codimension two with

respect to the five-dimensional spacetime M one trivially obtains:

√
γ8 =

(
e−

2
3

(4U+V )
) 3

2 (
e2U
) 4

2
(
e2V
) 1

2
√
γ5 volSE =

√
γ5 volSE (4.7)

where volSE is the volume form on the internal space, and thus it is immediate that the

entanglement entropy as computed from ten dimensions will be equivalent to the five-

dimensional entanglement entropy.
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A particular example of interest in this solution class is given by backgrounds with

non-relativistic scaling symmetries, in particular the Schrödinger backgrounds discussed

in [33]. These are deformations of AdS that have a metric that can be written in the

following form:

ds2
Mz

= −b2r2z(dx+)2 +
dr2

r2
+ r2

(
−dx−dx+ + dx2 + dy2

)
(4.8)

where x± are lightcone coordinates, z is the dynamical exponent and b is a parameter that

characterizes the deformation from AdS5. This metric is a solution to the equations of

motion one obtains from the following action:

S =
1

16πGD+3

∫
dD+2xdr

√
−g
(
R− 2Λ− 1

4
FmnF

mn − m2

2
AmA

m

)
(4.9)

where the vector field solution is A+ ∝ rz, provided that Λ = −(D + 1)(D + 2)/2 and

m2 = z(z +D).

One can check that the metric (4.8) for z = 2 (and D = 2) together with U = V =

Φ = 0 and A+ = br2 is a solution to the equations of motion one derives from (4.5) —

indeed, (4.5) reduces to (4.9) under these conditions, where in the present case m2 = 8 as

expected. Checking explicitly the equivalence of the ten-dimensional and five-dimensional

entanglement entropies is trivial in this case since all the warp factors in (4.2) evaluate to

one and thus the metric is a simple product space. Note that an identical analysis can

be performed for consistent truncations that have vector fields with mass m2 = 24 found

in [33], and the equivalence between the ten-dimensional and five-dimensional entanglement

entropy carries over in the same way in such cases.

5 Kaluza-Klein holography

A generic ten dimensional supergravity solution which is asymptotic to AdS5 × S5 cannot

be expressed as the uplift of a five dimensional supergravity solution. However, in the

vicinity of the conformal boundary the ten-dimensional solution can always be expressed

as a perturbation of AdS5 × S5. Dual field theory data can be expressed in terms of these

perturbations using the method of Kaluza-Klein holography [25, 26], as we now review.

Let us express the AdS5 × S5 metric as

ds2 = goABdx
AdxB ≡ 1

ρ2

(
dρ2 + dxµdxµ

)
+ dΩ2

5 (5.1)

with the five form flux being

F = F o ≡ ηAdS5 + ηS5 (5.2)

where η denotes the volume form. The Einstein metric of a solution of the type IIB

equations which is a deformation of AdS5 × S5 can therefore be expressed as

gAB = goAB + hAB. (5.3)
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The metric fluctuation can always be decomposed in terms of spherical harmonics on the

sphere. The metric fluctuations are decomposed as

hmn =
∑

hImnY
I ; (5.4)

hma =
∑(

BIv
mY

Iv
a + bImDaY

I
)

;

h(ab) =
∑(

φItY It
(ab) + ψIvD(aY

Iv
b) + χID(aDb)Y

I
)

;

haa =
∑

πIY I

where Y I are scalar harmonics, Y Iv
a are vector harmonics and Y It

(ab) are symmetric traceless

tensor harmonics; Da denotes the covariant derivative. We will not need explicit forms for

the spherical harmonics in what follows but note that the defining equations are:

�Y I = ΛIY I ΛI = −k(k + 4) k = 0, 1, 2, · · · (5.5)

�Y Iv
a = ΛI5Y Iv

a ΛIv = −
(
k2 + 4k − 1

)
k = 1, 2, · · ·

�Y It
(ab) = ΛItY It

(ab) ΛIt = −
(
k2 + 4k − 2

)
k = 2, 3, · · ·

where � is the D’Alambertian and DaY Iv
a = DaY It

(ab) = 0. The spherical harmonic labels

denote both the degree of the harmonic and additional quantum numbers, i.e. charges

under the Cartan of SO(6).

The fluctuations are not all independent, as some of the modes are diffeomorphic to

each other or to the background. To derive the spectrum around AdS it is usual to impose

a gauge fixing condition such as the de Donder-Lorentz gauge

Dah(ab) = Daham = 0 (5.6)

which sets to zero bIm, ψIv and χI . The remaining modes hImn, BIv
m , φIt and πI are then

related to tensor, vector and scalar fields in five dimensions. Although this gauge choice is

very convenient for deriving the spectrum, it can be less useful when analysing a generic

solution, as typically such solutions will not naturally be expressed in this gauge. Instead

of gauge fixing the symmetry, one can instead derive gauge invariant combinations of the

fluctuations; the latter are the five-dimensional fields [25, 26].

Working to linear order in the perturbations the five-dimensional Einstein metric g5
mn =

gomn +Hmn is related to the ten-dimensional metric perturbations given above as

Hmn = h0
mn +

1

3
π0gomn, (5.7)

i.e. it depends only on the zero mode of the tensor perturbation and the breathing mode

on the sphere. The origin of the second term is the Weyl rescaling needed to bring the five

dimensional metric into Einstein frame.

Working to quadratic order in the perturbations, the expression for the five-dimensional

metric in terms of the ten-dimensional metric perturbations is considerably more compli-

cated and indeed it has not been worked out in generality. At quadratic order the schematic

form of the appropriately gauge-invariant metric perturbation is

hmn = h0
mn +

1

3
π0gomn + h(2)mn (5.8)

where h(2)mn is quadratic in perturbations.
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For example, for modes associated with the scalar spherical harmonics the quadratic

contributions are [25]

h(2)mn = −
∑
I

z(k)

(
1

2
ΛI
(
χI ĥImn +

1

2
Dmχ

IDnχ
I

)
(5.9)

+ Dmb̂
pI ĥInp +Dnb̂

pI ĥImp + b̂pIDpĥ
I
mn +Dmb̂

pIDnb̂
I
p + b̂pI b̂Ipg

o
mn − b̂Imb̂In

)
where

b̂Im = bIm −
1

2
Dmχ

I (5.10)

ĥImn = hImn −Dmb
I
n −Dnb

I
m

are gauge invariant combinations at linear order in the fluctuations. Note that if we work

in de Donder-Lorentz gauge h(2)mn = 0.

It is important however to note that hmn, while appropriately gauge invariant with

respect to the ten-dimensional symmetries and transforming as a five-dimensional metric,

is still not the five-dimensional Einstein metric fluctuation. The combination hmn satisfies

an Einstein equation

(LE + 4)hmn = T(2)mn (5.11)

where LE is the usual linearized Einstein operator and the effective stress energy tensor

is T(2)mn. This effective stress energy tensor is quadratic in the fluctuations but involves

derivative interactions. For example, terms quadratic in the fields πI have the general

structure

T(2)mn =
∑
I

(
aIDmDpDrπ

IDnD
pDrπI + bIDmDpπ

IDnD
pπI + · · ·

)
(5.12)

with certain coefficients (aI , bI , · · · ). The effective five-dimensional action does not contain

derivative interactions, and therefore the five-dimensional fields must be related to ten-

dimensional fields by non-linear field redefinitions, as first noted in [29]. In particular

the five-dimensional Einstein metric perturbation Hmn is related to the metric fluctuation

hmn as

Hmm = hmn +
∑
I

(
AIDmDpπ

IDnD
pπI +BIDmπ

IDnπ
I + · · ·

)
(5.13)

where again the coefficients (AI , BI , · · · ) are computable. Thus the explicit form of the five-

dimensional Einstein metric is extremely complicated at quadratic order since it involves

infinite sums with coefficients (AI , BI , · · · ) which are very arduous to compute; see [25] for

explicit expressions.

5.1 General Coulomb branch solutions

As an example of solutions which can be understood using Kaluza-Klein holography, we

consider general Coulomb branch solutions i.e. solutions that do not necessarily admit a

consistent truncation. The metric for such solutions takes the following form:

ds2 = H(y)−1/2dxµdx
µ +H(y)1/2dyidy

i (5.14)
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where xµ are the brane directions and yi are transverse directions, and H(y) is a harmonic

function on R6. Near the conformal boundary the harmonic function takes the form

H =
L4

r4

1 +
∑
k≥2

aIkY
I
k

rk

 (5.15)

where we have written

dyidy
i = dr2 + r2dΩ2

5 (5.16)

while Y I
k are scalar harmonics of degree k on S5 and aIk are coefficients defining the brane

distribution. Implicitly we have taken the decoupling limit of the brane solution, i.e.

dropped the constant term in the harmonic function.

We can now express the Coulomb branch metric asymptotically as a perturbation of

AdS5 × S5. The background asymptotes to

ds2 = goABdx
AdxB =

r2

L2
dxµdx

µ +
L2

r2
dr2 + L2dΩ2

5 (5.17)

To match with earlier conventions we set L2 = 1 (the curvature radius can be reinstated

in final formulae if required). Near the conformal boundary

gAB = goAB + hAB (5.18)

where working to linear order in the coefficients aIn we can read off:

hµν = −
∑
k≥2

aIkY
I
k

2rk−2
ηµν ; (5.19)

hrr =
∑
k≥2

aIkY
I
k

2rk+2
;

hab =
∑
k≥2

aIkY
I
k

2rk
goab.

Hence the non-zero perturbations are

πI =
5aIk
2rk

(5.20)

and

hIµν = −
aIk

2rk−2
hIrr =

aIk
2rk+2

, (5.21)

for harmonics of degree k ≥ 2.

These perturbations are consistent with the diagonalised equations of motion at linear

order found in [34]. Let

πI = 10kεsI (5.22)

where ε is a small parameter and k is the degree of the associated spherical harmonic with

k ≥ 2. The equation of motion for sI is

�sI = k(k − 4)sI (5.23)

where � is the d’Alambertian in AdS5.
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The supergravity field equations at linear order then imply that such perturbations

are necessarily accompanied by

hImn = εhI(1)mn = ε

(
4

(k + 1)
D(mDn)s

I − 6k

5
sIgomn

)
(5.24)

= ε

(
4

(k + 1)
DmDns

I − 2k

k + 1
(k − 1)sIgomn

)
If one switches on only these modes at linear order, as in the Coulomb branch solutions,

other metric perturbations are induced at order ε2 or higher. In other words, other ten-

dimensional perturbations can be induced by expanding the field equations to quadratic

order in ε but these perturbations are not present at linear order. Comparing with (5.20)

we find that

εsI =
aIk

4krk
(5.25)

which indeed satisfies (5.23).

For later use, let us note that if sI depends only on the radial coordinate, ρ, then

DρDρs
I =

(
∂2
ρs
I +

1

ρ
∂ρs

I

)
DµDνs

I = −1

ρ
ηµν∂ρs

I (5.26)

are the only non-vanishing components of DmDns
I . Moreover, one can show that

ρ2
(
DρDρs

I + ηµνDµDνs
I
)

= ρ2∂2
ρs
I − 3ρ∂ρs

I = k(k − 4)sI (5.27)

for onshell sI depending only on the radial coordinate.

The general map between five-dimensional fields (and equations of motion) and ten-

dimensional fluctuations was worked out to quadratic order in ε in [25]. In particular,

working in de Donder-Lorentz gauge, the map between the five-dimensional Einstein metric

perturbation Hmn and ten-dimensional fields to quadratic order is

Hmn = h0
mn +

1

3
π0gomn + ε2σ(2)mn (5.28)

where h0
mn is the ten-dimensional metric perturbation associated with the trivial harmonic

(to order ε2), π0 is the trace of the metric perturbation on the S5 associated with the trivial

harmonic (to order ε2)1 and

σ(2)mn =
∑
I

z(k)
(
AIDpDms

IDpDns
I +BIs

IDmDns
I (5.29)

+DI

(
Dps

I
)(
DpsI

)
gomn + EI

(
sI
)2
gomn

)
where the coefficients (AI , BI , DI , EI) depend on the degree of the harmonic. Explicit

values for the coefficients in the case of k = 2 were given in [25]:

A2 = −4

9
; B2 =

20

3
; D2 = −20

9
; E2 =

64

9
. (5.30)

1Note that π0 vanishes at linear order in the Coulomb branch solutions.
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Restricting to the fields depending only on the radial coordinate and working onshell we

find that

σ(2)ρρ =
∑
I

z(k)

[
(16AI +DI)

(
∂ρs

I
)2

+ (8k(k − 4)AI + 4BI)
sI

ρ
∂ρs

I

+(EI + k(k − 4)(k(k − 4)AI +BI))
(sI)2

ρ2

]
(5.31)

σ(2)µν = δµν
∑
I

z(k)

[
(AI +DI)

(
∂ρs

I
)2 −BI sI

ρ
∂ρs

I + EI
(sI)2

ρ2

]
We should note however that the field redefinition (5.29) gives the reduced metric in a

specific gauge: we can always make a diffeomorphism ξn which is quadratic in sI such that

δHmn = Dmξn +Dnξm. (5.32)

In the case of interest, such a diffeomorphism must respect the Poincaré invariance and hence

ξm = Dm

(∑
I

z(k)FI(s
I)2

)
(5.33)

with FI being arbitrary. The effect of such a diffeomorphism is to shift the coefficients

arising in (5.31), but the form of the expression remains unchanged. (A natural way to fix

the gauge would be to impose a Fefferman-Graham gauge on the resulting five-dimensional

metric but this condition was not imposed in [25]).

We also know from [25] that we can express the terms to quadratic order in π0, which

we denote as π0
(2) as

π0
(2) = ε2

∑
I

z(k)
(
JI
(
sI
)2

+ LI
(
Dms

I
)(
DmsI

))
(5.34)

where the coefficients (JI , LI) can be determined explicitly from the ten-dimensional field

equations at quadratic order. For k = 2 these coefficients are

J2 = −72 L2 = 8. (5.35)

Note that the coefficients (AI , BI , DI , EI , JI , LI) were not calculated for general values of

k in [25].

5.2 Entanglement entropy

Consider a solution which can be expressed as a perturbation of AdS5 × S5 and which

preserves full Poincaré invariance of the dual field theory. Then the metric can be written as

ds2 = (gomn + hmn)dxmdxm + (goab + hab)dy
adyb (5.36)

where the metric perturbations depend only on the radial coordinate ρ and on the sphere

coordinates ya. Now consider the entanglement entropy for a slab region in the dual field
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theory, with the slab being defined as the region −l < x < l; the slab is assumed to be

longitudinal to the the y and z directions.

We can compute the entanglement entropy from the ten-dimensional metric by finding

an eight-dimensional minimal surface on a fixed time slice for which the boundary con-

ditions are x → ±l as ρ → 0, with the surface wrapping the whole five sphere. From

symmetry the minimal surface is specified by the function

x(ρ, ya). (5.37)

We can equivalently express the minimal surface as ρ(x, ya). Moreover, working with the

leading order metric (which depends only on ρ) this function is clearly independent of the

spherical coordinates. Thus the entangling surface in the perturbed background can be

expressed as

x(ρ, ya) = x0(ρ) + x1(ρ, ya) + · · · (5.38)

where implicitly x1(ρ, ya) is linear in the metric perturbations and the ellipses denote higher

order corrections.

The induced metric on the entangling surface is

γαβ = gAB∂αx
A∂βx

B (5.39)

With the static gauge fixing used above the induced metric is therefore

γij = gij + gxx∂ix∂jx (5.40)

γia = gxx∂ix∂ax

γab = gab + ∂ax∂bx

where xi = (ρ, y, z) are the non-compact coordinates of the entangling surface. Imposing

the further condition that x is independent of y and z we find that

γyy = gyy γxx = gxx γρρ = gρρ + gxx(∂ρx)2 γρa = gxx∂ρx∂ax (5.41)

and therefore the determinant of the induced metric is given by

√
γ =
√
gyygzzgρρ

√
det

(
gab

(
1 +

gxx
gρρ

(∂ρx)2

)
+ gxx∂ax∂bx

)
. (5.42)

The entanglement entropy functional is then

S =
1

4G10

∫
d3xd5y

√
γ. (5.43)

5.2.1 Linear order

For an entangling surface lying near the conformal boundary, so that the metric can be

expressed as a perturbation of AdS5 × S5, the leading contribution to the entanglement

entropy is that of a surface in AdS5×S5. Now consider the contribution to the entanglement

entropy to linear order in the metric perturbations. Since x is independent of the spherical
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coordinates ya to leading order, the term ∂ax∂bx appearing in (5.42) is at least quadratic

in the metric perturbation and can be neglected at this order, so the entanglement entropy

is simply:

S =
1

4G10

∫
d3xd5y

√
gyygzz(gρρ + gxx(∂ρx)2)

√
det(gab), (5.44)

where implicitly we work only to linear order in the metric perturbations. However, since

we integrate over the five sphere only zero mode spherical harmonics can contribute at

linear order and therefore we can substitute

gmn = gomn + h0
mn; gab = goab

(
1 +

1

5
π0

)
. (5.45)

Moreover, we can also express the embedding function in terms of scalar spherical harmonics:

x(ρ, ya) = x0(ρ) +
∑
I

xI1(ρ)Y I(ya) + · · · (5.46)

and again only the zero mode can contribute at this order. Let us denote

x̄(ρ) = x0(ρ) + x0
1(ρ), (5.47)

i.e. the embedding function is to this order only dependent on the radial coordinate ρ.

The entanglement entropy integral then factorises as

S =
1

4G10

∫
d5y
√

detgoab

∫
d3x
√
gyygzz(gρρ + gxx(∂ρx̄)2)

(
1 +

1

2
π0

)
(5.48)

=
1

4G5

∫
d3x
√
gyygzz (gρρ + gxx(∂ρx̄)2)

(
1 +

1

2
π0

)
,

where we use
1

G10
=
VS5

G5
(5.49)

and VS5 is the volume of the five sphere.

Now let us compare to the entanglement entropy computed directly from the five-

dimensional Einstein metric g5
mn. This is very similar to the expression above:

S =
1

4G5

∫
d3x
√
g5
yyg

5
zz(g

5
ρρ + g5

xx(∂ρx̄)2). (5.50)

If we now recall that (up to linear order)

g5
mn = gomn + h0

mn +
π0

3
gomn (5.51)

we find that the ten-dimensional and five-dimensional expressions precisely agree.

An alternative derivation of this result can be given using the fact that the change in

the entanglement entropy is

δS =
1

8G10

∫
d3xd5y

√
γoTABhAB (5.52)
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where TAB is the energy momentum tensor of the original minimal surface (with induced

metric γo) and hAB is the change in the background metric. Using the explicit form of the

energy momentum tensor we then find that

δS =
1

8G10

∫
d3xd5y

√
γo
(
goabhab + goyyhyy + gozzhzz + γoρρ

(
hρρ + hxx (∂ρx̄)2

))
.

(5.53)

As above the integration over the five sphere picks out the zero modes in the harmonic

expansions of the metric perturbations, resulting in

δS =
1

8G5

∫
d3x
√
γo
(
π0 + goyyh0

yy + gozzh0
zz + γoρρ

(
h0
ρρ + h0

xx (∂ρx̄)2
))

(5.54)

=
1

8G5

∫
d3x
√
γo
(
goyyHyy + gozzHzz + γoρρ

(
Hρρ +Hxx (∂ρx̄)2

))
where Hmn is the five-dimensional Einstein metric perturbation to linear order, see (5.7).

The latter expression is exactly equivalent to

δS =
1

8G5

∫
d3x
√
γoTmnHmn (5.55)

where Tmn is the energy momentum tensor of the minimal surface in five-dimensional

anti-de Sitter, thus demonstrating the equivalence between the five-dimensional and ten-

dimensional computations.

5.2.2 Quadratic order

Now let us consider the entanglement entropy to quadratic order in the metric perturba-

tions. Since the embedding function is independent of the sphere coordinates to at least

quadratic order (cf. (5.47)), the expression (5.44) is still valid. Moreover, if we expand the

embedding as

x(ρ, ya) = x0(ρ) + εx0
1(ρ) + ε2

∑
I

xI2(ρ)Y I(y) + · · · (5.56)

we can see that again only the zero mode of the second order term can contribute after

integration over the five sphere. Thus x is also independent of the sphere coordinates to

this order, and using recursion we see that x depends only on the radial coordinates to all

orders in the expansion.

Thus the entanglement entropy computed from ten dimensions is

S =
1

4G10

∫
d3xd5y

√
gyygzz(gρρ + gxx(∂ρx)2)

√
det(gab), (5.57)

≡ 1

4G10

∫
d3xd5y

√
detγij

√
det(gab),

where γij is the non-compact part of the induced metric and implicitly x is now taken to

depend only on ρ.

To show the equivalence between (5.57) and (5.50) we need to know the explicit map

between the five-dimensional Einstein metric and the ten-dimensional metric fluctuations
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to quadratic order. Since this map is not known in full generality, we will focus on the

case of general Coulomb branch solutions, using the expressions for perturbations given in

section 5.1.

We can use the standard identities for expanding determinants to write

√
det(gab) =

√
det(goab)

(
1 +

1

2
haa +

1

8
(haa)

2 − 1

4
habhab + · · ·

)
(5.58)

where

hab = goacgobdhbd. (5.59)

Now using the expressions given in section 5.1

haa = ε
∑
I

(10ksI)Y I + ε2
∑
I

πI(2)Y
I + · · · , (5.60)

where we will need only the constant harmonic term at quadratic order, π0
(2), which is given

in (5.34). Similarly

habhab = 20ε2
∑
I,J

(
kIs

IY I
)(
kJs

JY J
)

+O(ε3) (5.61)

and thus to order ε2

√
det(gab) =

√
det(goab)

1 + 5ε
∑
I

ksIY I +
1

2
ε2π0

(2) +
15

2
ε2
∑
I,J

kIs
IkJs

JY IY J + · · ·

 .

(5.62)

Here the ellipses denote terms of ε3 and higher, as well as terms at order ε2 which are linear

in spherical harmonics (and hence integrate to zero over the five sphere).

The non-compact components of the metric can be expressed as

gmn = gomn + ε
∑
I

hI(1)mnY
I + ε2

∑
I

hI(2)mnY
I + · · · (5.63)

where hI(2)mn is quadratic in s. The explicit form can be determined by the ten-dimensional

supergravity equations at quadratic order in ε, see [25], but will not be needed here. The

non-compact part of the induced metric inherits an analogous expansion in powers of ε:

γij = γoij + εγ(1)ij + ε2γ(2)ij + · · · (5.64)
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where

γoij = goij + goxx∂ix
o∂jx

o; (5.65)

γ(1)ij =

(∑
I

(
hI(1)ij + hI(1)xx (∂ix

o) (∂jx
o)
)
Y I

)
+ goxx

(
∂ix

o∂jx(1) + ∂ix(1)∂jx
o
)

;

≡
∑
I

γI(1)ijY
I ;

γ(2)ij =

(∑
I

(
hI(2)ij + hI(2)xx (∂ix

o) (∂jx
o)
)
Y I

)
+ goxx

(
∂ix

o∂jx(2) + ∂ix(2)∂jx
o
)

+goxx∂ix(1)∂jx(1);

≡
∑
I

γI(2)ijY
I . (5.66)

(In the case of interest we have already shown that the embedding function depends only

on the ρ coordinate but we write the above expressions more generally.)

Expanding out the induced metric determinant then gives√
det(γij) =

√
det(γoij)

(
1 +

1

2

(
εγi(1)i + ε2γi(2)i

)
+
ε2

8

(
γi(1)i

)2
− ε2

4
γij(1)γ(1)ij + · · ·

)
(5.67)

where

γij(1) = γoikγojlγ(1)kl γij(2) = γoikγojlγ(2)kl. (5.68)

Substituting (5.62) and (5.67) into (5.57) and integrating over the five-sphere we then

obtain to linear order in ε

S =
1

4G5

∫
d3x
√

det(γoij)
(
1 + εγoij∂ix

o∂jx(1)

)
, (5.69)

i.e. all terms linear in metric perturbations vanish since they are associated with degree k ≥
2 spherical harmonics which integrate to zero over the sphere. Since the five-dimensional

Einstein metric is unchanged to this order, the entangling surface is also unchanged i.e.

x(1) = 0.

Dropping terms involving x(1), the contributions to the entanglement entropy func-

tional at order ε2 are

δS =
ε2

4G5

∫
d3x
√

det(γo)

(
5

2

∑
I

kz(k)sI
(
γIi(1)i + 3ksI

)
+

1

8

∑
I

z(k)
(
γIi(1)i

)2
(5.70)

−1

4

∑
I

z(k)γIij(1)γ
I
(1)ij +

1

2
γ0i

(2)i +
1

2
π0

(2)

)

where we define z(k) as the spherical harmonic normalisation∫
d5y
√

detgoabY
IY J = z(k)δIJVS5 . (5.71)

– 21 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
8

The corresponding expression for the contribution to the five-dimensional entanglement

entropy at quadratic order is:

δS =
ε2

4G5

∫
d3x
√

det(γo)

(
1

2
H i

(2)i +
1

2
H(2)xx

(
∂ixo

)
(∂ix

o) + ∂ixo∂ix(2)

)
(5.72)

where H(2)mn is the quadratic correction to the five-dimensional Einstein metric and im-

plicitly indices are raised with γoij . Let us split H(2)mn as

H(2)mn = h0
(2)mn +

1

3
π0

(2)g
o
mn + σ(2)mn (5.73)

where σ(2)mn defines the field redefinition and is quadratic in s, while π0
(2) is also quadratic

in s.

To match (5.70) and (5.72) one requires that

σi(2)i + σ(2)xx

(
∂ixo

)
(∂ix

o) (5.74)

= 5
∑
I

kz(k)sI
(
γIi(1)i + 3ksI

)
+

1

4

∑
I

z(k)
(
γIi(1)i

)2
− 1

2

∑
I

z(k)γIij(1)γ
I
(1)ij

To interpret this relationship, it is useful to consider first the case of an infinite strip. For

an infinite strip, the entangling surface in AdS is described by constant xo and extends

throughout the bulk. In this case the entangling surface extends beyond the asymptotic re-

gion in which the geometry can be expressed as a perturbation of AdS5×S5, but nonetheless

one can match the integrands for the five-dimensional and ten-dimensional entanglement

entropy in the asymptotic region by setting xo to be constant in (5.74).

In the case of an infinite strip xo is constant and dropping these terms gives

σi(2)i =
∑
I

z(k)

(
5ksI

(
hIi(1)i + 3ksI

)
+

1

4

(
hIi(1)i

)2
− 1

2
hIij(1)h

I
(1)ij

)
, (5.75)

where now indices are raised by γoij ≡ goij , i.e. the hyperbolic metric. This expression

reduces to

σi(2)i =
∑
I

16z(k)

(k + 1)2

(
−8ρ2

(
∂ρs

I
)2

+ k(15− k)ρsI∂ρs
I + k2(k − 7)

(
sI
)2)

(5.76)

However, using (5.31) in section 5.1, one can show that for perturbations sI which depend

only on the radial coordinate

σi(2)i =
∑
I

z(k)
[
(18AI + 3DI)ρ

2(∂ρs
I)2 + (8k(k − 4)AI + 2BI)ρs

I∂ρs
I

+(3EI + k(k − 4)(k(k − 4)AI +BI))
(
sI
)2 ]

, (5.77)

where the coefficients (AI , BI , DI , EI) for k = 2 are given in (5.30). Taking into account

an appropriate choice of diffeomorphism FI , defined in (5.33), this indeed matches (5.76).

For general k the coefficients (AI , BI , DI , EI) were not computed in [25]. Nonetheless,

it is apparent that (5.77) has the same structure as (5.76) and we can argue as follows that
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these expressions agree, mode by mode, even without knowing the explicit expressions for

the coefficients. We have already shown that the ten-dimensional and five-dimensional

entanglement entropies agree for Coulomb branch solutions which admit consistent trun-

cations. For such solutions (5.76) agrees with the result that one gets from direction reduc-

tion (5.77). Moreover, the matching between (5.76) and (5.77) arises mode by mode, as the

fields sI associated with spherical harmonics of different rank k have different functional

dependence on the radial coordinate, see (5.25), and cannot cancel each other.

Since the agreement between (5.76) and (5.77) holds for all consistent truncations with

different symmetry groups and different profiles for the scalar fields, this implies that the

coefficients of the terms (∂ρs
I)2, sI∂ρs

I and (sI)
2 must match between the left and right

hand sides of (5.76). However, since these coefficients match for all solutions with consis-

tent truncations, they also match for solutions which do not admit consistent truncations

and therefore the matching of five-dimensional and ten-dimensional entanglement entropy

holds for entangling surfaces in all Coulomb branch solutions, up to quadratic order in

the expansion parameter. The same argument can be used for strip entangling regions,

i.e. (5.74), and indeed for generic shape entangling regions.

5.3 Summary and interpretation

Let us summarise what has been proven in this section. We considered solutions of ten-

dimensional type IIB supergravity which respect the Poincaré invariance of the dual field

theory; the Einstein frame metric in ten dimensions is therefore of the form

ds2 = gρρ(ρ, y
a)dρ2 + gµν(ρ, ya)dxµdxν + gab(ρ, y

a)dyadyb, (5.78)

where we choose a gauge in which gρa = 0. We also assumed that the geometry is asymp-

totic to AdS5 × S5 so that as ρ→ 0

gρρ →
1

ρ2
gµν →

1

ρ2
ηµν gab → goab (5.79)

where goab is the metric on the unit S5.

We then computed the entanglement entropy for a strip region in the dual field the-

ory by finding a codimension two minimal surface on a surface of constant time which

asymptotically wraps the five sphere. Working in the region near the conformal boundary

in which all metric coefficients can be expanded perturbatively in a Fefferman-Graham

expansion in the basis of spherical harmonics, we showed that such an entangling surface

depends only on the radial coordinate ρ to all perturbative orders, i.e. it is described by

x(ρ) with the width of the strip being l on the conformal boundary ρ→ 0.

As an immediate consequence of the minimal surface being described by x(ρ), the

induced metric γαβ on the minimal surface factorises:

γρρ = gρρ + gxx(x′)2 γyy = gyy γzz = gzz γab = gab. (5.80)

The eight-dimensional minimal surface is therefore topologically a product of a three-

dimensional surface and a five-sphere, see figure 2. It is nonetheless non-trivial to show
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l

x(ρ)

ρ

x

Near boundary region

Interior region

ρ = 0

Figure 2. We consider entangling surfaces which are contained within the near boundary region

where the Fefferman-Graham expansion of the metric may be used. At each point on the three-

dimensional Ryu-Takayanagi minimal surface (shown in blue), there is a five-dimensional compact

space (shown in red) which is topologically a five sphere.

that the area of this minimal surface gives the entanglement entropy computed from the

five-dimensional perspective.

The induced metric depends explicitly on both the radial coordinate and the spherical

coordinates, so one cannot trivially integrate over the spherical coordinates. In addition,

the relationship between the five-dimensional Einstein metric g5
mn occurring in the Ryu-

Takayanagi formula and the ten-dimensional Einstein metric is extremely complicated,

involving derivative field redefinitions.

The induced metric on the co-dimensional two Ryu-Takayanagi surface is

γ5
ρρ = g5

ρρ + g5
xx(x′)2 γ5

yy = g5
yy γ5

zz = g5
zz. (5.81)

Working up to quadratic order in the perturbation relative to AdS×S5, i.e. to order (hAB)2

in gAB = goAB + hAB, we showed that the ten-dimensional entanglement entropy

S =
1

4G10

∫
d3xd5y

√
γ (5.82)

indeed agrees with the five-dimensional Ryu-Takayanagi computation

S =
1

4G5

∫
d3x
√
γ5 (5.83)

when we take into account the reduction map. More precisely, the Ryu-Takayanagi inte-

grand matches the top-down integrand once the latter is integrated over the five-sphere:

the volume form of the Ryu-Takayanagi minimal surface matches the volume form of the

top-down minimal surface, once the latter is integrated over the spherical coordinates.

Before leaving this section, we should mention another related test of the top-down

entanglement entropy formula using Kaluza-Klein holography. Entanglement entropy for
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asymptotically AdS3 × S3 geometries corresponding to 1/4 and 1/8 BPS geometries asso-

ciated with black hole microstates was computed in [21]. The entanglement entropy was

computed using both the top down prescription, i.e. codimension two minimal surfaces

in six dimensions, and by applying the Ryu-Takayanagi formula to the three-dimensional

Einstein metric extracted using Kaluza-Klein holography. The results were in agreement,

working up to quadratic order in perturbations around AdS3×S3, as in the asymptotically

AdS5 × S5 case analysed above.

6 Unquenched flavor solutions

Another example for studying top down entanglement entropy is provided by unquenched

flavor solutions, i.e. systems of flavor branes in which the backreaction of the branes onto

the metric has been computed, working perturbatively in the ratio of flavors to colors.

The computation of the backreaction is most tractable when the branes are smeared

over transverse directions. In particular, [35, 36] discuss the case of the massless D3/D7

system in which probe D7 branes are smeared over the transverse S2 space. The system is

type IIB supergravity coupled to D7-brane sources, and [35, 36] takes the following ansatz

for the Einstein frame metric in the supersymmetric (zero temperature) case:

ds2
10 = h−

1
2dxµdx

µ + h
1
2

[
F 2d%2 + S2ds2

KE + F 2 (dτ +AKE)2
]

(6.1)

where the functions h(%), S(%), F (ρ) only depend on the radial coordinate %, and the five-

dimensional Sasaki-Einstein manifold X5 is written as a U(1) fibration over a 4d Kähler-

Einstein base. For X = S5 the KE base is CP 2.

To compute the entanglement entropy for a strip in the x-direction from 10d we follow

the usual procedure. By symmetry the embedding is given by x = x(%) and the induced

metric on the embedding surface is:

ds2
8 = h−

1
2
[
dy2 + dz2 + x′2d%2

]
+ h

1
2

[
F 2d%2 + S2ds2

KE + F 2 (dτ +AKE)2
]
, (6.2)

where x′ ≡ dx/d%. Note that the minimal surface wraps the entire internal space.

One thus finds that the entanglement entropy functional is:

S =
1

4G10

∫
d3xd5y

√
detγ8 (6.3)

where √
detγ8 = h

1
2FS4

√
x′2 + hF 2

√
detgX5 . (6.4)

Since this determinant factorises we can immediately integrate over the internal space to

obtain

S =
VX5

4G10

∫
d3xh

1
2FS4

√
x′2 + hF 2 (6.5)

where the integration is over (%, y, z) and we define

VX5 =

∫
d5y
√

detgX5 . (6.6)
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Explicit expressions for the metric functions were calculated in [35, 36] working per-

turbatively in the number of flavors:

S = α′
1
2 e% (1 + ε∗ (1/6 + %∗ − %))

1
6 ; (6.7)

F = α′
1
2 e% (1 + ε∗(%∗ − %))

1
2 (1 + ε∗ (1/6 + %∗ − %))−

1
3 ;

dh

d%
= −Qcα′−2e−4% (1 + ε∗ (1/6 + %∗ − %))−

2
3 .

Here %∗ is a scale that is introduced for convenience; Qc is proportional to the number of

colors and ε∗ ≡ QfeΦ∗ is the small expansion parameter: Qf is proportional to the number

of flavors and Φ∗ is the value of the dilaton at %∗.

The equation for dh/d% can be integrated up to express h(%) in terms of incomplete

gamma functions, with integration constant being determined by the requirement that the

metric is asymptotically anti-de Sitter. Using the explicit expressions above and expanding

in ε∗ one finds:

h
5
4S4F =

Q
5
4
c

4
√

2
+

Q
5
4
c

32
√

2
ε∗ +

Q
5
4
c (19 + 48%− 48%∗)

1536
√

2
ε2∗ +O(ε3∗) (6.8)

Note that to order ε∗ this expression is independent of the radial coordinate.

Now let us turn to the calculation of the entanglement entropy from the five-dimensional

perspective. Let us first note that it is clear that the five-dimensional Einstein metric can-

not be identified as just the non-compact part of the above metric, i.e.

ds2
5 = h−

1
2dxµdx

µ + h
1
2F 2d%2. (6.9)

Using the latter metric the computation of the entanglement entropy from five dimensions

would be

S =
1

4G5

∫
d3x
√

detγ3 (6.10)

where √
detγ3 = h−

3
4

√
x′2 + hF 2. (6.11)

This does not agree with the ten-dimensional result; the latter contains also an additional

factor h
5
4S4F which as we showed above depends on the radial coordinate %.

6.1 Linear order

To extract the correct five-dimensional Einstein metric we can again use Kaluza-Klein

holography. Working to zeroth order in ε∗ the metric is

ds2
10 =

2α′√
Qc
e2%dxµdx

µ +

√
Qc
2

d%2 +

√
Qc
2

[
ds2
KE + (dτ +AKE)2

]
. (6.12)

By rescaling the coordinates one can pull out an overall factor as

ds2
10 =

√
Qc
2

[
e2%dx̃µdx̃

µ + d%2 + ds2
KE + (dτ +AKE)2

]
(6.13)
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where

x̃µ =
2
√
α′√
Qc

xµ (6.14)

For computational convenience, and to match the conventions of earlier sections, we will

set
√
Qc/2 =

√
α′ = 1; these factors can be reinstated if required. The leading order metric

is therefore the produce of AdS5 (in domain wall coordinates) with the Sasaki-Einstein

space.

Now let

S = So(1 + δS); F = F o(1 + δF ); h = ho(1 + δh), (6.15)

where the superscript refers to the value in the AdS5×S5 background and the perturbations

are expressed as power series in the parameter ε∗. The explicit forms for the perturbations

are:

δS = ε∗

(
1

36
+

1

6
(%∗ − %)

)
+ · · · (6.16)

δF = ε∗

(
− 1

18
+

1

6
(%∗ − %)

)
+ · · ·

δh = ε∗

(
1

18
− 2

3
(%∗ − %)

)
+ · · ·

The metric can as before be written as

gAB = goAB + hAB (6.17)

where

hµν = e2%

(
−1

2
δh+

3

8
(δh)2 + · · ·

)
ηµν (6.18)

= e2%ε∗

(
− 1

36
+

1

3
(%∗ − %)

)
ηµν + · · ·

h%% = = 2δF +
1

2
δh+ δF 2 − 1

8
δh2 + δhδF (6.19)

= − 1

12
ε∗ + · · ·

while along the compact space

habdy
adyb = hKEds

2
KE + hττ (dτ +AKE)2 (6.20)

with

hKE = 2δS +
1

2
δh+ δS2 − 1

8
δh2 + δhδS =

1

12
ε∗ + · · · (6.21)

and hττ = h%%. Here the ellipses denote terms of order ε2∗ and higher.

As in previous sections, the metric perturbations can be expressed in the complete basis

of harmonics. For the metric perturbations in the non-compact directions, this expansion

involves only the constant harmonic, i.e.

hmn ≡ h0
mn. (6.22)
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since (6.18)–(6.19) are independent of the compact space coordinates. Now consider the

perturbations along the compact space. The trace of the metric perturbation

haa = goabhab = 4hKE + hττ (6.23)

is independent of the compact space coordinates, and therefore the expansion of the trace

in harmonics involves only the constant harmonic

haa ≡ π0 =
1

4
ε∗ + · · · (6.24)

We will discuss the decomposition of the traceless part into harmonics below.

To linear order in the metric perturbations the correction to the five-dimensional Ein-

stein metric is

Hmn = h0
mn +

1

3
π0gomn (6.25)

and therefore to linear order in ε∗

Hµν = ε∗

(
1

18
+

1

3
(%∗ − %)

)
e2%ηµν + · · · H%% = O(ε2∗) (6.26)

This defines the five-dimensional Einstein metric to linear order.

We already showed that the entanglement entropy for a strip computed in the ten-

dimensional metric gAB = goAB + hAB is always equivalent, to linear order in the pertur-

bations, to the entanglement entropy computed using the five-dimensional Einstein metric

g5
mn = gomn +Hmn. This general result implies that (6.5) is indeed equivalent to

S =
1

4G5

∫
d3x
√
g5
yyg

5
zz

√
g5
ρρ + g5

xx(x′)2 (6.27)

at linear order in the perturbations. One can show the equivalence directly using the

identifications

g5
µν = h

1
3F

2
3S

8
3 ηµν g5

ρρ = h
4
3F

8
3S

8
3 , (6.28)

to linear order in ε∗.

6.2 Non-linear order

The traceless part of the metric perturbation on the compact space is

h(ab)dy
adyb =

(
hKE

5
− hττ

5

)
ds2
KE +

(
4hττ

5
− 4hKE

5

)
(dτ +AKE)2 (6.29)

Working to linear order in the perturbations

h(ab)dy
adyb =

(
1

30
ε∗ + · · ·

)
ds2
KE +

(
− 2

15
ε∗ + · · ·

)
(dτ +AKE)2 (6.30)

We can now project this onto harmonics:

h(ab) =
∑(

φItY It
(ab) + ψIvD(aY

Iv
b) + χID(aDb)Y

I
)
. (6.31)
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For example ∫
Dah(ab)D

bY IdΩ = 4ΛI
(

ΛI

5
− 1

)
z(k)χI , (6.32)

where

�Y I = ΛIY I (6.33)

and dΩ is the volume element on the Sasaki-Einstein, with z(k) the harmonic normalisation.

While h(ab) does not depend on the Sasaki-Einstein coordinates, all individual harmonics

depend on the coordinates and h(ab) is therefore decomposed into an infinite series of

harmonics, as one would have anticipated, given the smearing.

As in section 5, the perturbations associated with non-trivial harmonics do not con-

tribute to the entanglement entropy at linear order, but they do contribute at non-linear

order. Unfortunately the non-linear relation between the five-dimensional Einstein metric

and the ten-dimensional metric is not known for general perturbations in which φIt , ψIv

and χI are non-zero and therefore we cannot check the equivalence of five-dimensional and

ten-dimensional entanglement entropy to non-linear order.

It is interesting to note, however, that the ten-dimensional entanglement entropy (6.5)

can be expressed in five-dimensional form (6.27) provided that one makes the identifica-

tions (6.28). This suggests that the five-dimensional Einstein metric at non-linear order is

simply

ds2 = h
1
3F

2
3S

8
3
(
hF 2d%2 + ηµνdx

µdxν
)
. (6.34)

One could explore whether this is indeed the correct expression for the five-dimensional

Einstein metric by checking whether it gives the expected forms for e.g. one point function

and higher correlation functions of the holographic stress energy tensor.

Finally, we should note that very similar analysis should be applicable to smeared solu-

tions in other dimensions including [17]; one would need to set up Kaluza-Klein holography

for ABJM to explore this case.

7 General case

In this section we consider ten-dimensional asymptotically AdS5 × S5 type IIB solutions

which respect the Poincaré invariance of the dual field theory. The ten-dimensional Einstein

metric therefore takes the form

ds2 = gρρdρ
2 + gµνdx

µdxν + 2gρadρdy
a + gabdy

adyb (7.1)

where gµν ∝ ηµν and all metric components depend on (ρ, ya). For simplicity let us focus

on the case in which the SO(6) symmetry is broken to SO(5), so that the metric depends

only on ρ and a single angular coordinate θ. (Examples of such supergravity solutions

would be D3-brane Coulomb branch solutions in which all branes lie along a line.)

Suppose we make a coordinate redefinition (ρ, θ)→ (r, ϑ) to bring the metric into the

following form

ds2 = e2B(r,ϑ)
(
dr2 + e2A(r)dxµdxµ

)
+ 2A(r, ϑ)drdϑ+ gϑϑ(r, ϑ)dϑ2 + gS4(r, ϑ)dΩS4 ,

(7.2)
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with r being the radial coordinate of the five-dimensional metric in Einstein frame:

ds2
5 = dr2 + e2A(r)dxµdxµ. (7.3)

For consistent truncations, we know the explicit form of the map between five and ten-

dimensional solutions, i.e. the explicit form of B(r, ϑ) etc. In the vicinity of the conformal

boundary one can use Kaluza-Klein holography to work out the map as a power series in

the radial coordinate.

Deep in the interior of a general such spacetime we do not know the explicit form

of the map, but such a map must exist. Note however that the causal structures of the

five-dimensional Einstein metric and the ten-dimensional Einstein metric do not necessarily

agree: even in consistent truncations, the former can be singular while the latter is smooth.

The choice of a specific ten-dimensional radial coordinate adapted to the five-dimensional

Einstein metric corresponds to identifying the RG scale of the dual field theory. The five-

dimensional Einstein metric would in general be supported by the stress energy tensor

associated with the entire tower of Kaluza-Klein modes.

Next consider the simplest possible entangling surface in this geometry, corresponding

to the half plane entangling region x > 0 in the dual field theory. On symmetry grounds, the

bulk entangling surfaces are codimension two surfaces x = 0 at constant time. Agreement

between the ten-dimensional and five-dimensional entanglement entropies requires

1

4G10

∫
d3xd5y

√
γ =

1

4G5

∫
d3x
√
γ5 (7.4)

which in turn requires that∫
drdϑe2B+2A

(
e2Bgϑϑ −A2

) 1
2
√

detgS4 = π3

∫
dre2A. (7.5)

In this paper we have effectively checked that this relation holds in all cases in which we

can independently calculate the five-dimensional Einstein metric. In cases where the five-

dimensional Einstein metric is not known, one may be able to deduce the five-dimensional

Einstein metric by insisting that this expression hold.

7.1 Relation to Lewkowycz-Maldacena derivation

In this section we will explain the origin of the top down entanglement entropy formula,

using a similar approach to Lewkowycz-Maldacena in [3].

The entropy associated with a given density matrix ρ can be computed using the replica

trick as

S = −n∂n [logZ(n)− n logZ(1)]n=1 (7.6)

where

Z(n) = Tr(ρn). (7.7)

Here Z(1) can be computed by considering (Euclidean) evolution on a circle, i.e.

ρ = P exp

(
−
∫ τ0+2π

τ0

dτH(τ)

)
(7.8)
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x0

x

y

τ

Figure 3. The half space entangling region x ≥ 0, with boundary the y-axis. The coordinate τ is

the polar coordinate in the plane of x and the Euclidean time x0.

where H is the Hamiltonian and the periodicity of the τ direction is 2π. Z(n) is then com-

puted by considering the evolution over a circle of n times the length of the original circle.

In the context of thermal density matrices the circle direction is Euclidean time. For

entanglement entropy, the appropriate circle direction is that enclosing the boundary of the

entangling region, see the example shown in figure 3. The well-known CHM map relates

certain thermal entropies to entanglement entropies in conformal field theories [2].

To compute the entanglement entropy holographically (to leading order in 1/N), one

considers a dual spacetime whose Euclidean onshell action gives minus log Z(1). The replica

holographic dual is constructed by considering a boundary theory in which the circle has

period n times the length of the original circle. Then logZ(n) is minus the action IE(n)

for a smooth solution of the bulk field equations in which the circle has a periodicity of n

times the original periodicity. Hence we can use holography to rewrite (7.6) as

S = n∂n [IE(n)− nIE(1)]n=1 (7.9)

The second term in (7.9) is associated with the solution at n = 1 but with the circle having

periodicity of n times the original length; this solution has a conical singularity but the

contribution of the conical singularity to the onshell action is not included.

In [3] the main focus was implicitly asymptotically anti-de Sitter geometries, i.e. so-

lutions of lower-dimensional gauged supergravity theories, in which the bulk actions are

Einstein gravity coupled to matter fields. However, the general arguments given in [3]

apply equally to any holographic dual and therefore, in particular, apply to solutions of

type IIB supergravity in ten dimensions which asymptote to AdS5 × S5.

In cases where a consistent truncation exists, one obtains the same result for working

out the onshell (Einstein frame) action from ten dimensions using the Euclidean continu-
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ation of (4.1)

IE = − 1

16πG10

∫
d10x
√
g

[
R− 1

2 · 5!
F 2

(5) + · · ·
]

(7.10)

as one does using the five-dimensional Euclidean action:

IE = − 1

16πG5

∫
d5x
√
g5 [R(g5) + · · · ] (7.11)

where the ellipses denote the matter contributions to the consistent truncation. In cases

for which no consistent truncation exists, it remains true that the onshell action computed

from ten dimensions, by construction, gives the same result as the five-dimensional onshell

action. However, when no consistent truncation exist, the ellipses in (7.11) include the

complete tower of Kaluza-Klein modes.

We now need to argue that (7.9) localises on a minimal surface and is given by

S =
A

4G10
=

A

4G5
(7.12)

where A is the area of the Ryu-Takayanagi surface and A is the area of the codimension

two minimal surface in ten dimensions.

Let us first give an argument following the approach of [3]. LetMn be the regular bulk

geometry corresponding to τ being periodic with period 2πn and let M1 be the geometry

with a conical singularity. Note that the conical singularity extends to the conformal

boundary, in contrast to the black hole setup discussed in [3] in which it was localised in

the interior of the bulk geometry.

Now the argument given in [3] goes as follows. Consider a smooth offshell configuration

with geometry M̃n which regularises the conical singularity of M1. Away from the fixed

point surface the geometry of M̃n agrees with that ofM1 and M̃n is chosen such that the

offshell configuration differs by order (n − 1) from a solution of the equations of motion.

Let ĨE(n) be the onshell action of the configuration with geometry M̃n. Since the offshell

configuration can always be viewed as a first order variation of an onshell configuration

(working perturbatively in the expansion parameter (n−1)), its action is equivalent to IE(n)

up to quadratic order in (n− 1) and therefore we can replace IE(n) by ĨE(n) in (7.9):

S = n∂n

[
ĨE(n)− nIE(1)

]
n=1

(7.13)

Since the geometries only differ at the fixed point set, it is then apparent that this expression

localises on the fixed point set. Moreover, the contribution is extensive in the area of the

codimension two fixed point set and is proportional to the integral over the cone directions∫
d2x
√
gR ∼ 4π(1− n). (7.14)

Thus we can write

S =
A

16πGN

(
−n∂n

∫
d2x
√
gR
)
n=1

=
A

4GN
, (7.15)

where GN is the Newton constant.

– 32 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
8

This general argument clearly does not depend on the spacetime asymptotics, and is

thus equally applicable to asymptotically AdS and asymptotically AdS×S geometries. The

overall constant of proportionality obtained in (7.15) can always be fixed by exploiting the

CHM map, relating spherical region entanglement entropy to hyperbolic black hole entropy.

The latter is given by the standard expression, the area of the horizon (in the Einstein frame

metric) divided by 4GN .

Starting with (7.13) we can give a different argument that this expression localises on

fixed point sets of the vector ∂τ using the work of Gibbons and Hawking [28]. We consider

the case in which ∂τ is a Killing vector both on the boundary and in the bulk.2 Since τ is

a circle symmetry we can always write the metric locally as

ds2 = V (dτ + ω)2 + V −1ds2
B (7.16)

where the scalar V and the one form ω take values on the base space B, which is the

space of non-trivial orbits of the circle symmetry. The fibering is trivial if the one form

ω is globally exact; we have implicitly assumed this above. By construction the onshell

Euclidean action can be expressed as an integral over B:

IE =

∫
dτdD−1x

√
gL = βτ

∫
B
dD−1xV −1√gBL (7.17)

where βτ is the periodicity of τ ,
√
gB is the base metric determinant and L is the onshell

Lagrangian.

The circle symmetry k = ∂τ has fixed points wherever V = 0. The action of the

symmetry is generated by the antisymmetric matrix D[MKN ]; such matrices have even

rank, i.e. rank (2, 4 . . .). (The zero rank case would imply that the Killing vector is zero

and acts trivially.) When D[MKN ] has rank 2k the action of the symmetry leaves fixed a

(D − 2k)-dimensional submanifold. Note that when ω is globally exact the only possible

fixed point sets are of dimension (D − 2).

Gibbons and Hawking showed in [28] that for four-dimensional Einstein gravity the

onshell action (7.17) can be expressed as the divergence of a Noether current Js associated

with a dilation symmetry:

IE = βτ

∫
B
dD−1x

√
gBDsJ

s = βτ

∫
∂B
dD−2σsJ

s (7.18)

and hence the action localises on the (D− 2)-dimensional boundary ∂B of the base space.

The boundary ∂B consists of (D − 2)-dimensional boundaries surrounding each fixed

point together with the spatial boundary at infinity (if B is non-compact). When τ is the

imaginary time, contributions from infinity are associated with conserved charges (mass

M etc) while contributions from the fixed point sets give the entropy S:

IE = βτM+ · · · − S (7.19)

where the ellipses denote contributions from additional conserved charges.

2Throughout this paper we have assumed Poincaré invariance of the dual field theory. In the case of the

half space entangling region shown in figure 3 this guarantees that ∂τ is indeed a Killing vector.
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The entropy S includes not only the usual area terms but additional contributions

associated with a scalar potential ψ dual to the one-form ω, see [28]:

dψ = V 2 ∗3 dω (7.20)

where the dual is computed on the base space B. In four dimensions the fixed point sets are

either two-dimensional bolts, characterised by their self-intersection Y , or zero-dimensional

nuts, characterised by relatively prime integers (p, q). The entropy contributions are then

given by

S =
A

4G4
+

β2
τ

16πG4

∑
bolts

ψY +
β2
τ

16πG4

∑
nuts

ψ

pq
(7.21)

where the scalar potential ψ is invariant over a bolt.

The scalar potential contributions are zero if ω is globally exact, and then the entropy

reduces to the usual form:

S =
A

4G4
(7.22)

with A the sum of the areas of (D−2)-dimensional fixed point sets. The expressions (7.18)

and (7.19) are believed to apply to Einstein gravity coupled to matter in all dimensions

although explicit expressions for the terms in the entropy depending on the one-form ω are

not known in general dimensions.

In the case at hand, the circle direction is not the imaginary time but the approach

of [28] can still be applied, provided that the circle direction is a symmetry. Thus the

onshell action can be expressed as

IE = βτ
∑
a

ΦaQa − S (7.23)

where Φa and Qa are conjugate potential and conserved charge pairs, respectively, and S
is again associated with fixed point sets of the circle symmetry. By construction we choose

M̃n to be such that the charge terms cancel between the two terms in (7.13) leaving

S = [n∂n(n− 1)]n=1S = S, (7.24)

i.e. the entanglement entropy is equal to the geometric entropy, which is given by (7.22)

when the fibration in (7.16) is trivial.

Note that the derivation using (7.18) relies on ∂τ being a Killing vector. While τ is

periodic, it is not necessarily a symmetry direction even for generic entangling regions on

flat spatial hypersurfaces of constant time. For example, consider the spherical entangling

region w = R in a four-dimensional quantum field theory in the flat background

ds2 =
(
dx0
)2

+ dw2 + w2
(
dθ2 + sin2 θdφ2

)
(7.25)

where x0 is the imaginary time. By changing coordinates as

w = R+ w̃ cos τ x0 = w̃ sin τ (7.26)
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to

ds2 = dw̃2 + w̃2dτ2 + (R+ w̃ cos τ)2
(
dθ2 + sin2 θdφ2

)
(7.27)

we note that the boundary of the entangling region is at w̃ = 0, with ∂τ having a dimension

two fixed point set at w̃ = 0. Here τ is the circle direction used in the replica trick, but

it is not a symmetry. In most previous discussions of holographic entanglement, the circle

direction τ was trivially fibered but not necessarily a symmetry.

On the other hand, the approach of (7.18) raises the interesting possibility that there

may in general be additional leading order contributions to the holographic entanglement

entropy, beyond the area of the extremal surface. Suppose that the following metric de-

scribes the geometry near the boundary of an entangling region (in a three-dimensional

field theory):

ds2 = dw̃2 + w̃2(dτ + a(w̃)dφ)2 + b(w̃)dφ2, (7.28)

with b(0) 6= 0. Here ∂τ is a Killing vector with a two-sphere fixed point set at w̃ = 0, which

is interpreted as the boundary of the entangling region. Note that for suitable choices of

(a(w̃), b(w̃)) one can obtain (7.28) as a limit of the Euclidean Kerr-de Sitter metric.

Given the boundary metric (7.28) in the vicinity of the entangling region boundary,

one can then reconstruct the asymptotic expansion of the 4-dimensional bulk metric:

ds2 =
dρ2

ρ2
+

1

ρ2
gstdx

sdxt (7.29)

with

gstdx
sdxt = dw̃2 + w̃2(dτ + a(w̃)dφ)2 + b(w̃)dφ2 +O(ρ2) (7.30)

where terms at order ρ2 can be computed from the curvature of the boundary metric,

see [37]. Thus, the fixed point set of ∂τ is extended to a two-dimensional surface in the

bulk. Following the logic above, the associated entanglement entropy should depend not

just not on the area of this surface but also on the non-trivial fibration of this circle direction

over the surface. From (7.29) one can deduce that the potential (7.20) satisifes

dψ =
w̃3

ρ2

a′√
b
dρ+ · · · (7.31)

and hence the potential ψ is indeed constant on the surface defined by w̃(ρ) with w̃ → 0 as

ρ→ 0. Integration of this equation to find the potential and hence apply the formula (7.21)

would however require the full bulk reconstruction and we postpone this analysis for fu-

ture work.

8 Conclusions

In this paper we have presented evidence that the entanglement entropy computed from

top-down (1.2) is equivalent to that computed using the Ryu-Takanagi formula (1.1); we

showed that the formulae agree in a wide range of examples and used general arguments

based on the replica trick. Both formulae, (1.1) and (1.2), are applicable to time inde-

pendent situations. It would be interesting to generalise the analysis of this paper to the

– 35 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
8

covariant holographic entanglement entropy [8] and, in particular, to understand whether

contributions associated with non-trivial fibration of the circle coordinate over the entan-

gling region boundary can indeed arise.

The relationship between the ten-dimensional solution and the lower-dimensional

asymptotically AdS solution is in general very complicated. To calculate quantities re-

lated to the dual stress energy tensor, one needs to extract the asymptotic form of the

lower-dimensional metric, which is related to the ten-dimensional metric by derivative field

redefinitions. It is computationally complex to extract the required field redefinitions. The

agreement between (1.1) and (1.2) imposes constraints on the field redefinitions which

can be used both to check Kaluza-Klein holography calculations and, in symmetric situa-

tions, to infer the lower-dimensional fields, without going through the entire Kaluza-Klein

holography procedure.

In this paper we have focussed primarily on backgrounds which are asymptotic

to AdSd+1 × X but the general arguments of section 8 are equally applicable to any

gauge/gravity duality for which the conformal boundary is timelike and the bulk theory is

described by Einstein gravity. Thus in particular the top-down entanglement entropy (1.2)

is applicable to top-down realisations of Lifshitz and Schrödinger (with one example of

the latter being given in section 4). The formula (1.2) is also applicable to non-conformal

brane dualities [38], in the regimes where supergravity is a valid description.

Our results have implications for the long standing question of how the compact part

of the bulk spacetime is reconstructed from field theory data: entanglement entropy tells us

about minimal surfaces in the top-down geometry. One could use these surfaces to explore

how global features of the top-down geometry are reconstructed.

Acknowledgments

We would like to thank Nico Jokela and Kostas Skenderis for useful comments and discus-

sions. This work was supported by the Science and Technology Facilities Council (Con-

solidated Grant “Exploring the Limits of the Standard Model and Beyond”) and by the

Engineering and Physical Sciences Research Council. MMT was supported in part by

National Science Foundation Grant No. PHYS-1066293 and the hospitality of the Aspen

Center for Physics. We thank the 2015 Simons Center Summer Workshop and the Galileo

Galilei Institute for Theoretical Physics for hospitality and the INFN for partial support

during the completion of this work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[2] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

– 36 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440


J
H
E
P
0
8
(
2
0
1
6
)
1
5
8

[3] A. Lewkowycz and J.M. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[4] T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav. 29

(2012) 153001 [arXiv:1204.2450] [INSPIRE].

[5] M. Headrick, General properties of holographic entanglement entropy, JHEP 03 (2014) 085

[arXiv:1312.6717] [INSPIRE].

[6] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

[7] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of

gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

[8] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[9] T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP

01 (2007) 090 [hep-th/0611035] [INSPIRE].

[10] I. Bah, A. Faraggi, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic entanglement

entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A 24 (2009) 2703

[arXiv:0710.5483] [INSPIRE].
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