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1 Introduction and summary

One of the important observables in Conformal Field Theory (CFT) is CT , the coefficient

of the two-point function of the stress-energy tensor Tµν , defined via [1]

〈Tµν(x1)Tλρ(x2)〉 = CT
Iµν,λρ(x12)

(x2
12)d

, (1.1)

where

Iµ ν,λρ(x) ≡ 1

2
(Iµλ(x)Iνρ(x) + Iµρ(x)Iνλ(x))− 1

d
δµνδλρ ,

Iµν(x) ≡ δµν − 2
xµxν
x2

. (1.2)

If the CFT has a global symmetry generated by conserved currents Jaµ , then another

interesting observable is CJ , the coefficient of their two-point functions:

〈Jaµ(x1)Jbν(x2)〉 = CJ
Iµν(x12)

(x2
12)d−1

δab . (1.3)

In CFTs with a large number of degrees of freedom, N , these observables typically admit

1/N expansions of the form

CJ = CJ0

(
1 +

CJ1

N
+
CJ2

N2
+O(1/N3)

)
,

CT = CT0

(
1 +

CT1

N
+
CT2

N2
+O(1/N3)

)
. (1.4)
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The values of CJ1 and CT1 have been calculated in a variety of models. Petkou [2] has

used large N methods and operator products expansions to calculate them as a function of

d in the scalar O(N) model. Very recently, these results were reproduced using the large

N diagrammatic approach in [3], where the same technique was also used to calculate CJ1

and CT1 as a function of d in the conformal Gross-Neveu model. An important feature of

the diagrammatic approach, which was uncovered in [3], is the necessity, in the commonly

used regularization scheme [4–8], of a divergent multiplicative “renormalization” ZT for

the stress-energy tensor. This factor is required by the conformal Ward identities in the

regularized theory.

In this paper we extend the methods of [3] to calculate CJ1(d) and CT1(d) in the con-

formal QED in d dimensions. This theory, which is reviewed in section 2, may be thought

of as the Maxwell field coupled to Nf massless 4-component Dirac fermions continued from

4 dimensions to a more general dimension d. The large N expansion in this model runs in

powers of the total number of fermionic components, which is N = 4Nf . In the physically

interesting dimension d = 3, this corresponds to an even number 2Nf of two-component

Dirac fermions.

Our main results are

CJ1(d) = ηm1

(
3d(d− 2)

8(d− 1)
Θ(d) +

d− 2

d

)
, (1.5)

CT1(d) = ηm1

(
3d(d− 2)

8(d− 1)
Θ(d) +

d(d− 2)

(d− 1)(d+ 2)
Ψ(d)− (d− 2)(3d2 + 3d− 8)

2(d− 1)2d(d+ 2)

)
, (1.6)

Θ(d) ≡ ψ′(d/2)− ψ′(1) , Ψ(d) ≡ ψ(d− 1) + ψ(2− d/2)− ψ(1)− ψ(d/2− 1) ,

where ψ(x) = Γ′(x)/Γ(x). Here ηm1(d) encodes the electron mass anomalous dimension;

it is [9]1

ηm1(d) = − 2(d− 1)Γ(d)

Γ(d2)2Γ(d2 + 1)Γ(2− d
2)
. (1.7)

In the physically interesting case of d = 3 we find

CJ1(3) =
736

9π2
− 8 ≈ 0.285821 ,

CT1(3) =
4192

45π2
− 8 ≈ 1.43863 . (1.8)

Let us compare our results with the earlier diagrammatic calculations [10, 11], which

were carried out in d = 3 using a regulator different from ours. Our result for CJ1(3)

agrees with that given by Huh and Strack in [11].2 However, our value of CT1(3) does

not agree with that given in [11], which after translating to our convention for N is

1We define the anomalous dimension of the electron mass operator Om = ψ̄ψ as ∆Om = d − 1 + ηm,

where ηm = ηm1/N +O(1/N2).
2In [11] only a numerical value C̃

(1)
J ≈ 0.59322699 was given. We have found the exact expression behind

this number: C̃
(1)
J = 136

3π2 − 4, which leads to CH&S
J1 = 368

9π2 − 4. The relative factor of 2 between this and

our (1.8) is due to the different conventions: in [11] NH&S
f is the number of d = 3 Dirac doublets. Therefore,

our N = 4Nf = 2NH&S
f .
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CH&S
T1 = 3808

45π2 − 8 ≈ 0.574024.3 The source of the disagreement is the effect of ZT , which

was not included in [11].

A nontrivial check of our results (1.5) and (1.6) comes from comparing them with the

known exact values in d = 2 and the 4 − ε expansions, see sections 3 and 5. Had we not

included ZT , there would be no agreement with the 4− ε expansion. In higher even d, the

conformal QED reduces to a free theory of N fermions and a conformal higher-derivative

Maxwell theory with the action (see e.g. [12])

Fµν(−∇2)
d
2
−2Fµν . (1.9)

Using the value of CT1 in general even dimensions, we extract the CT of this conformal

Maxwell theory

Cconf. Maxwell
T |even d = (−1)

d
2
d

S2
d

(
d

d
2 − 1

)
, (1.10)

where Sd = 2πd/2

Γ(d/2) .

In d = 3 the QED has a special “topological” U(1) symmetry current jtop = 1
2π ∗ F .

In section 4 we calculate its two-point function to order 1/N2, and obtain the associated

Ctop
J coefficient, in the normalization (1.3), to be

Ctop
J =

16

π4N

(
1 +

1

N

(
8− 736

9π2

)
+O(1/N2)

)
, (1.11)

where N = 4Nf is twice the number of two-components Dirac fermions. The leading order

term is in agreement with [10, 13].

The QED3 Lagrangian also has an enhanced SU(2Nf ) global symmetry, and for small

Nf this symmetry may be broken spontaneously to SU(Nf )× SU(Nf )× U(1) [14, 15]. In

section 6 we present a new estimate for the critical value of Nf above which the symmetry

breaking cannot occur by using the RG inequality CUV
T > CIR

T . It implies that the chiral

symmetry cannot be broken for Nf > 1 +
√

2. The status of this conclusion is uncertain,

since there are known violations of the inequality in some supersymmetric RG flows [16].

Nevertheless, it is interesting that the critical value of Nf it yields is close to other avail-

able estimates [12, 17–20] and is consistent with the results available from lattice gauge

theory [21, 22].

2 Large N expansion for conformal QEDd

The action for Maxwell theory coupled to Nf massless charged fermions in flat Euclidean

space

S =

∫
ddx

 1

4e2
FµνFµν −

Nf∑
i=1

ψ̄iγ
µ(∂µ + iAµ)ψi

 . (2.1)

3In [11] only a numerical value C̃
(1)
T ≈ −0.41548168 was given. We have found the exact expression

behind this number: C̃
(1)
T = 1592

45π2 − 4.
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Here the fermions ψi are taken to be four-component complex spinors. We define the

dimensional continuation of the theory by keeping the number of fermion components fixed.

In other words, we take γµ to be 4× 4 matrices satisfying {γµ, γν} = 2δµν 1, with Tr1 = 4.

All vector indices are formally continued to d dimensions, i.e. δµνδµν = d, γµγµ = d ·1, etc.

One may develop the 1/N expansion of the theory by integrating out the

fermions [15, 23]. This produces an effective action for the gauge field of the form

Seff =

∫
ddx

1

4e2
FµνFµν +

∫
ddxddy

(
1

2
Aµ(x)Aν(y)〈Jµ(x)Jν(y)〉0 +O(A3)

)
, (2.2)

where

Jµ = ψ̄iγµψ
i (2.3)

is the conserved U(1) current. Using the bare fermion propagator

δijG(p) = 〈ψi(p)ψ̄j(−p)〉 = δij
i/p

p2
, (2.4)

where /p ≡ γµpµ, the current two-point function in the free fermion theory is found to be

〈Jµ(p)Jν(−p)〉0 = N
2Γ(2− d

2)Γ(d2)2

(4π)
d
2 Γ(d)

(
δµν −

pµpν
p2

)
(p2)

d
2
−1 . (2.5)

Thus, when d < 4, one sees that the non-local kinetic term in (2.2) is dominant in the low

momentum (IR) limit compared to the two-derivative Maxwell term. Hence, the latter can

be dropped at low energies, and one may develop the 1/N expansion of the critical theory

by using the induced quadratic term

Scrit QED =

∫
ddp

(2π)d

(
1

2
Aµ(p)〈Jµ(p)Jν(−p)〉0Aν(−p)− ψ̄i i/pψi − iψ̄iγµAµψi

)
. (2.6)

Note that this effective action is gauge invariant as it should, due to conservation of

the current.

The induced photon propagator is obtained by inverting the non-local kinetic term

in (2.6). As usual, this requires gauge-fixing. Working in a generalized Feynman gauge,

the propagator is

Dµν(p) =
CA

N(p2)
d
2
−1+∆

(
δµν − (1− ξ)pµpν

p2

)
, (2.7)

where ξ is an arbitrary gauge parameter (ξ = 0 corresponds to Landau gauge ∂µA
µ = 0).

The normalization constant CA is given by

CA =
(4π)

d
2 Γ(d)

2Γ(d2)2Γ(2− d
2)

(2.8)

and in (2.7) we have introduced, as in [3], a regulator ∆ to handle divergences [4–8],

which should be sent to zero at the end of the calculation. This makes the interaction

vertex in (2.6) dimensionful, and one should introduce a renormalization scale µ so that

Svertex = −iµ∆
∫
ψ̄iγ

µAµψ
i.

– 4 –
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µ ν
= Dµν(p) = iγµi j

= δijG(p)
p µ

Figure 1. Feynman rules for the Large N QED.

The Feynman rules of the model are summarized in figure 1. In what follows we

calculate the two-point function of the SU(Nf ) current and stress-energy tensor, which are

given by4

Jaν = −ψ̄i(ta)ijγνψj ,

Tµν = −1

4

(
ψ̄iγ(µDν)ψ

i −D∗(µψ̄iγν)ψ
i
)
, (2.9)

where γ(µDν) ≡ γµDν + γνDµ and Dµ = ∂µ + iAµ. Note that there is no Maxwell term

contribution in Tµν , as this term was dropped in (2.6) in the critical limit.

We will work in flat Euclidean d-dimensional metric and introduce a null vector zµ,

which satisfies

z2 = zµzνδµν = 0 . (2.10)

From (1.1), (1.3), we see that the two-point functions of the projected operators T ≡zµzνTµν
and J ≡ zµJµ have the form

〈T (x)T (0)〉 =
4CT
(x2)d

x4
z

x4
,

〈Ja(x)Jb(0)〉 = δab
−2CJ

(x2)d−1

x2
z

x2
, (2.11)

where we have introduced the notation xz ≡ zµxµ. It will be also useful to report the

form of these two-point functions in momentum space, which may be obtained by Fourier

transform and reads

〈T (p)T (−p)〉 = CT
π
d
2 Γ(2− d

2)

2d−2Γ(d+ 2)

p4
z

(p2)2− d
2

,

〈Ja(p)Jb(−p)〉 = CJ
π
d
2 Γ(2− d

2)

2d−3Γ(d)

p2
z

(p2)2− d
2

δab , (2.12)

where pz ≡ zµpµ.

4As it was pointed out in [24], for correlation functions with only gauge invariant operators we can omit

the gauge fixing part and ghost part of the stress-energy tensor. This was explicitly checked in QCD in

d = 4 up to three-loops in [25].
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Ja(p)

p1

p+ p1

= −γz(t
a)ij

i

j

Tψ(p)

p1

p+ p1

= −1
2i(2p1z + pz)γzδ

i
j

i

j

TA(p) = −iγzδ
i
j

i

j

Az

Figure 2. Diagramatic representation for T = Tψ + TA and Ja.

J(p) J(−p)

D0 D1 D2

J(p) J(−p)J(p) J(−p)

Figure 3. Diagrams contributing to CJ up to order 1/N .

For the stress-tensor of conformal QED, we may write T = Tψ + TA, where the two

terms are given in momentum space by

Tψ(p) = −1

2

∫
ddp1

(2π)d
ψ̄i(−p1)iγz(2p1z + pz)ψ

i(p+ p1) ,

TA(p) = −
∫

ddp1

(2π)d
ψ̄i(−p1)iγzAzψ

i(p+ p1) ,

Ja(p) = −
∫

ddp1

(2π)d
ψ̄i(−p1)(ta)ijγzψ

j(p+ p1) . (2.13)

The diagrammatic representation is shown in figure 2.

3 Calculation of CJ1 and CT1

The diagrams contributing to 〈JJ〉 up to order 1/N

〈Ja(p)Jb(−p)〉 = D0 +D1 +D2 +O(1/N2) (3.1)

are shown in figure 3. Their expressions in momentum space and explicit results are listed

in appendix B.

Putting together the results, we find

〈Ja(p)Jb(−p)〉 = − tr(tatb)CJ0

(
1 +

CJ1(d)

N
+O(1/N2)

)
π
d
2 Γ(2− d

2)

2d−3Γ(d)

p2
z

(p2)2− d
2

, (3.2)

where CJ1(d) is given in (1.5), and

CJ0 = Tr1
1

S2
d

(3.3)
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Figure 4. Plot of CJ1.

Tψ(−p)Tψ(p)

D4

Tψ(−p)TA(p)

D3

D0

Tψ(−p)Tψ(p) Tψ(−p)Tψ(p)

D1

D6

TA(−p)TA(p)

D7

TA(p) TA(p)

Tψ(−p)TA(p)

D5

Tψ(−p)Tψ(p)

D2

D8

TA(p) TA(p)

Figure 5. Diagrams contributing to CT up to N0 order.

is the free fermion contribution. A plot of CJ1 as a function of d is given in figure 4. The

value in d = 3 was given in (1.8) above. One may also extract the following ε-expansions

CJ1|d=2+ε = −ε+O(ε2), CJ1|d=4−ε =
9ε

2
+

(
9

2
− 9ζ(3)

)
ε2 +O(ε3) . (3.4)

In d = 3 the leading correction is quite small even for small N ; for N = 4, corresponding

to Nf = 1, it makes CJ around 7% bigger than the free fermion result.

Let us now turn to the calculation of CT . Up to order N0, the stress-tensor two-point

function receives contribution from the diagrams shown in figure 5. Note that for some

topologies we did not draw explicitly diagrams with the opposite fermion loop direction,

but they have to be included. We list the integrands and results for these diagrams in

appendix B. We have

〈T ren(p)T ren(−p)〉 = Z2
T 〈T (p)T (−p)〉 = Z2

T

(
8∑

n=0

Dn +O(1/N)

)
, (3.5)

where we have introduced a “ZT -factor” [3], which is computed in appendix A from the

Ward identity. It reads ZT = 1 + (ZT1/∆ + Z ′T1)/N +O(1/N2), with

ZT1 = − d(d− 2)ηm1

2(d+ 2)(d− 1)
, Z ′T1 = − (d− 2)ηm1

(d+ 2)(d− 1)
, (3.6)

– 7 –
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Figure 6. Plot of CT1.

where ηm1 is given in (1.7). Putting together the results for the diagrams given in

appendix B, we obtain

〈T ren(p)T ren(−p)〉 = CT0

(
1 +

CT1(d)

N
+O(1/N2)

)
π
d
2 Γ(2− d

2)

2d−2Γ(d+ 2)

p4
z

(p2)2− d
2

, (3.7)

where CT1(d) is given in (1.6), and the free fermion contribution is

CT0 = N
d

2S2
d

. (3.8)

As a check of our calculation, we note that the final result does not depend on the gauge

parameter ξ.

A plot of CT1(d) in 2 < d < 4 is given in figure 6. We see that CT1 is negative for

2 < d < 2.79. This means that the inequality CUV
T > CIR

T is violated for the flow from

conformal QEDd (which may be thought of as the UV fixed point of the Thirring model)

to the free fermion theory for 2 < d < 2.79. However, it holds for 2.79 < d < 4, including

in particular d = 3.

Near some even dimensions we find

CT1|d=2+ε = −2− ε

4
, CT1|d=4−ε = 8− ε

6
, CT1|d=6−ε = −30 +

61ε

6
. (3.9)

Note that in d = 2 we get

CT |d=2 =
N

S2
2

(
1− 2

N

)
. (3.10)

This result is precisely as expected, since the conformal QED2 corresponds to the mul-

tiflavor Schwinger model with 2Nf Dirac fermions, which is described by a CFT with

central charge c = 2Nf − 1 [26, 27]. Normalizing (3.10) by the free scalar contribution

Csc
T = d/((d − 1)S2

d), and recalling N = 4Nf , we obtain precisely this central charge. In

section 5 we will see that CT1|d=4−ε also agrees with the 4− ε expansion.

Near even dimensions the QEDd theory is expected to be described by the free fermions

weakly coupled to a U(1) gauge theory with the local kinetic term (1.9). For example, in

– 8 –
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D1 D2

jµtop(p) jνtop(−p)jνtop(−p)jµtop(p)jµtop(p)

D0

jνtop(−p)

Figure 7. Diagrams contributing to Ctop
J up to 1/N2 order.

d = 6 this higher-derivative theory was explored in [12, 28–33]. We may use (1.6) to extract

the CT coefficient for the conformal Maxwell theory (1.9). From (1.6) it follows that

CQED
T1 |even d =

2(−1)
d
2 d!

(d2 − 1)!(d2 + 1)!
= 2(−1)

d
2

(
d

d
2 − 1

)
. (3.11)

Recalling that the contribution of the free massless fermions is given by (3.8), we find that

the CT of the conformal Maxwell theory is

Cconf. Maxwell
T |even d =

d

2S2
d

CQED
T1 |even d = (−1)

d
2
d

S2
d

(
d

d
2 − 1

)
. (3.12)

In d = 4, 6, 8, 10, . . . this formula gives 16,−90, 448,−2100, . . . times 1/S2
d . In d = 4 this

agrees with the standard answer for the Maxwell theory. In d = 6, 8, . . ., eq. (3.12) gives

new results for the values of CT in the free conformal theory with the higher-derivative

action (1.9).

4 Ctop
J for the topological current in d = 3

In d = 3, it is interesting to compute Ctop
J for the “topological” U(1) current

jµtop =
i

4π
εµνλFνλ , (4.1)

where the factor of i arises because we are working in Euclidean signature, and the nor-

malization is such that the associated charges are integers. The diagrams contributing

to the current two-point function up to order 1/N2 are shown in figure 7. The diagrams

D1 and D2 have the same structure as the corresponding ones in figure 4 for the SU(Nf )

current,5 with the difference that at the external points we now have the gauge U(1) cur-

rent, to which we attach the two induced photon propagators. Thus, using the results from

appendix B, we find

〈jµtop(p)jνtop(−p)〉 = − 1

(4π)2
εµρσeντλ〈(pρAσ(p)− pσAρ(p))(pτAλ(−p)− pλAτ (−p))〉

= − |p|
4π2

CA
N

(
1− CJ1(3)

N
+O(1/N2)

)(
δµν −

pµpν
p2

)
, (4.2)

5In fact these diagrams can be extracted from the evaluation of the polarization operator, which was

computed in case of QCD in [34].
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Nf 1 2 3 4 5 10 20

CT /CT0 1.3597 1.1798 1.1199 1.0899 1.0719 1.0360 1.0180

CJ/CJ0 1.0715 1.0357 1.0238 1.0179 1.0143 1.0072 1.0036

8π2Ctop
J 3.0106 1.5632 1.0550 0.7961 0.63919 0.3219 0.1615

Table 1. Results for CT , CJ and Ctop
J in d = 3 for different values of Nf , the number of 4-component

fermions (half the number of 2-component Dirac spinors). CT and CJ are normalized by the free

field values in (3.8) and (3.3). To facilitate the comparison with [13], Ctop
J is normalized by the free

fermion contribution (3.3) for 2-component spinors (Tr1 = 2), which is Tr1/S2
3 = 1/(8π2).

where CA and CJ1(d) are given in (2.8) and (1.5), which yield CA|d=3 = 32 and the value

of CJ1(3) given in (3.4). Therefore, we finally get

〈jµtop(p)jνtop(−p)〉 = − 8|p|
π2N

(
1 +

1

N

(
8− 736

9π2

)
+O(1/N2)

)(
δµν −

pµpν
p2

)
. (4.3)

Comparing with the momentum space normalization in (2.12), we find the result given in

eq. (1.11). We note that this is related to CJ in (1.4)–(1.8) by an inversion, CA ∼ 1/CJ .

This essentially follows from the fact that in the large N critical QED, Aµ and Jµ are

related by a Legendre transformation [35, 36], see eq. (2.6).

The conformal bootstrap constraints on the values of CJ , CT and Ctop
J in QED3 for

Nf = 1, 2, 3 were recently discussed in [13]. In table 1 we summarize our results for these

coefficients in d = 3 and for different values of Nf (the number of 4-component fermions).

These results appear to fall within the regions allowed by the bootstrap for Nf = 1, 2, 3.

5 4− ε expansion of CJ and CT

To find CJ in the 4 − ε expansion to the leading non-trivial order, we have to compute

diagrams with the same topology as those in the large N approach, figure 3, but now the

photon propagator is the standard one obtained from the Maxwell term. It reads

Dµν(p) =
1

p2

(
δµν − (1− ξ)pµpν

p2

)
, (5.1)

where we have introduced an arbitrary gauge parameter (ξ = 1 is the usual Feynman

gauge, and ξ = 0 Landau gauge).

The renormalization of the electric charge is well-known, and in minimal subtraction

scheme it reads [37]:

e0 = µ
ε
2

(
e+

4Nf

3ε

e3

(4π)2
+

(
8N2

f

3ε2
+

2Nf

ε

)
e5

(4π)4
+ . . .

)
, (5.2)

where e is the renormalized coupling, and the corresponding beta function is

β = − ε
2
e+

4Nf

3

e3

(4π)2
+

4Nfe
5

(4π)4
− 2Nf (22Nf + 9)

9

e7

(4π)6
+ . . . . (5.3)
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Then, one finds an IR stable perturbative fixed point at

e∗ = π

√
6ε

Nf

(
1− 9

16Nf
ε+

3(44Nf + 207)

512N2
f

ε2 +O(ε3)

)
. (5.4)

Computing the diagrams in figure 3 with the photon propagator (5.1), taking a Fourier

transform to coordinate space, and setting e = e∗ at the end, we obtain in d = 4− ε

CJ/C
free
J = 1 +

9ε

8Nf
+O(1/N2

f ) , (5.5)

which precisely agrees with (3.4) (recall that in this case we have N = NfTr1 = 4Nf ).

To calculate the 4 − ε expansion of CT to order ε, we will use as a shortcut the fact

that in d = 4 the CT coefficient may be obtained as (see e.g. [38, 39])

CT =
640

π2
βa , (5.6)

where βa is the beta function for the Weyl-squared term, which is known to be [40, 41]

βa =
Nf + 2

20(4π)2
+

7Nf

36

e2

(4π)4
+ . . . . (5.7)

The first term corresponds to the contributions of the free fermions and of the Maxwell

field, while the second one encodes the leading interaction corrections. The second term,

when evaluated at the IR fixed point (5.4) in d = 4− ε, gives 7ε
6(16π)2

. However, this is not

the only contribution of order ε because the free field contributions need to be evaluated

in 4 − ε dimensions. The contribution of free massless fermions is given in (3.8). The

contribution of the Maxwell field is more subtle, since this theory is scale invariant but not

conformal away from four dimensions [42]. However, defining the projected stress-tensor

TMaxwell = zµzνFµαF
α
ν (this selects the traceless part of Tµν), and using the field strength

two-point function [42]

〈Fµν(x)Fρσ(0)〉 =
(2d− 4)Γ

(
d
2 − 1

)
4π

d
2 (x2)d/2

[(
δµρ −

d

2
xµxρ/x

2

)(
δνσ −

d

2
xνxσ/x

2

)
− µ↔ ν

]
(5.8)

we find that 〈TMaxwell(x)TMaxwell(0)〉 takes the form (2.11), just as in a conformal field

theory, with the normalization given by

CMaxwell
T =

d2(d− 2)

2S2
d

. (5.9)

This serves as the natural definition of CT for the Maxwell theory (in d = 4, it agrees with

the well-known result [1]). Putting these results together we find

CQED
T = C free ferm

T

(
1 +

d(d− 2) + 35ε/6

N
+ . . .

)
= C free ferm

T

(
1 +

8− ε/6
N

+ . . .

)
,

(5.10)

which exactly agrees with (3.9). This gives a highly non-trivial test of the dimension

dependence of CT1.
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6 A new estimate for symmetry breaking in QED3

In d = 3, the QED Lagrangian has SU(2Nf ) global symmetry. For Nf < Nf,crit it may

be broken via the generation of vacuum expectation value of the operator
∑Nf

j=1 ψ̄jψ
j

(this is written using the 4-component spinors ψi and gamma-matrices) [14, 15]. This

operator preserves the 3-d time reversal symmetry, but it breaks the global symmetry to

SU(Nf )× SU(Nf )×U(1).

In an earlier paper [12], using the F -theorem inequality FUV > F IR [43–47] we showed

that theories with Nf = 5 and higher must be in the conformal phase. The F -theorem

method is inconclusive, however, for theories with Nf ≤ 4. There is lattice evidence that

theories with Nf = 1, 2 are not conformal [21, 22],6 but little is known about theories

with Nf = 3, 4.

Let us now consider a different RG inequality:

CUV
T > CIR

T , (6.1)

which is sometimes called “the CT theorem”. While there is a known d = 3 counter-

example to this inequality [16], which involves theories with N = 2 supersymmetry, many

known RG flows appear to obey (6.1). For example, it is obeyed for flows involving the

scalar O(N) [2, 3] and the Gross-Neveu model [3]. If we think of the conformal QED3

theory as the UV fixed point of the Thirring model, then the inequality (6.1) is obeyed by

the flow to the free fermion theory because CT1(3) > 0. We may also test this inequality

for the flow from the QED theory in the extreme UV, which consists of the free decoupled

Maxwell field and Nf 4-component fermions, to the conformal QED3. For the former we

find using (5.9) and (3.8)

CUV
T =

12Nf + 9

32π2
. (6.2)

For the interacting conformal phase, using our result (1.8), we have

CIR
T =

6Nf

16π2

(
1 +

4192
45π2 − 8

4Nf
+O(1/N2

f )

)
. (6.3)

We see that at large Nf (6.1) is obeyed to order N0
f because 9 > 3

(
4192
45π2 − 8

)
≈ 4.32.

Let us now try applying (6.1) to the d = 3 flow from QED in the extreme UV to the

broken symmetry phase. For the former we have (6.2). The latter is a free conformal field

theory of 2N2
f + 1 scalar fields; therefore, it has

CIR
T =

3(2N2
f + 1)

32π2
. (6.4)

We find that the two expressions are equal for Nf = Nf,crit = 1+
√

2 ≈ 2.414. This suggests

that theories with Nf = 3 and higher are in the conformal phase. The inequality (6.1),

however, does not require the Nf = 1, 2 theories to be conformal, and indeed there is lattice

evidence that they are not [21, 22].7

6See, however, the recent lattice work [48] suggesting that they are conformal.
7A more stringent value Nf,crit = 3/2 follows from the RG inequality based on the coefficient of the ther-

mal free energy [49]. This appears to be in contradiction with the lattice gauge theory work [22] claiming

that the Nf = 2 theory is not conformal. However, both Nf,crit =3/2 and Nf,crit = 1+
√

2≈2.414 are con-

sistent with the recent paper [48] claiming that the symmetry breaking does not take place even for Nf =1.
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7 CT for large Nf QCDd

To the leading nontrivial order, the large Nf computations for QCD look similar to those

in the QED case. The results for large Nf QCD at the critical point can be deduced from

the lagrangian [8, 33, 34, 50–55]

Lcrit QCD = −ψ̄iγµ(∂µ + iAaµt
a)ψi +

Nf

2ξ
(�(d−4)/2∂A)2 + ∂µc̄

a∂µca + fabc∂µc̄aAbµc
c , (7.1)

where ψi with i = 1, . . . , Nf are the quark fields belonging to the fundamental represen-

tation of the colour group G, Aaµ is the gluon field and ca and c̄a are the ghost fields in

the adjoint representation of the colour group. We will use the following notation for the

Casimirs of the Lie group generators ta ([ta, tb] = ifabctc):

tr(tatb) = C(r)δab, tata = C2(r) · I, facdf bcd = C2(G) · I (7.2)

and also tr(I) = d(r) and δabδab = d(G). The stress-energy tensor is (2.9) with Dµ =

∂µ + iAaµt
a, and as we mentioned above we can omit the gauge fixing and ghost parts

of Tµν when computing correlation functions of gauge invariant operators. The diagrams

contributing to CT to order 1/Nf are the same as in the QED case (see figure 5). It is not

hard to show that the relations between QED and QCD diagrams are

DQCD
0 = d(r)DQED

0 , DQCD
n = d(G)DQED

n , n = 1, . . . , 8 , (7.3)

where for some diagrams we used the identity d(r)C2(r) = d(G)C(r). Therefore, we find

CQCD
T = d(r)CT0

(
1 +

1

N

d(G)

d(r)
CT1 +O(1/N2)

)
, (7.4)

where CT0 and CT1 are the results for QED given in (3.8) and (1.6). For SU(Nc) gauge

group we have d(r) = Nc and d(G) = N2
c − 1, thus

CQCD
T = NcCT0

(
1 +

1

N

N2
c − 1

Nc
CT1 +O(1/N2)

)
. (7.5)

Let us check that this agrees with the known exact result for central charge in d = 2

gauge theory with massless flavors. The conformal limit of SU(Nc) gauge theory has central

charge [26, 27, 56, 57]

c = cfree −
(N2

c − 1)k

k +Nc
. (7.6)

The subtraction of the second term is due to the gauging of the SU(Nc) Kac-Moody algebra

with level k. Since there are 2Nf 2-d Dirac flavors in the fundamental representation of

SU(Nc), we have k = 2Nf . This theory may be described by a SU(2Nf )Nc × U(1) WZW

model [26, 27]. Its central charge is

c = 2Nf
2NfNc + 1

2Nf +Nc
= NfNc −

2(N2
c − 1)Nf

2Nf +Nc
= 2NfNc

(
1− 1

2Nf

N2
c − 1

Nc
+ . . .

)
, (7.7)
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which is in agreement with (7.5) evaluated in d = 2. For a general gauge group G we have

c = 2Nfd(r)− 2d(G)Nf

2Nf + d(r)
= 2Nfd(r)

(
1− 1

2Nf

d(G)

d(r)
+ . . .

)
, (7.8)

which agrees with (7.4). Analogously, one can easily see that we have the same relation

between CJ in QCD and QED:

CQCD
J = d(r)CJ0

(
1 +

1

N

d(G)

d(r)
CJ1 +O(1/N2)

)
, (7.9)

where CJ0 and CJ1 are the results for QED given in (3.3) and (1.5).

Note added. After the first version of this paper appeared, the value of CT for the d = 6

conformal Maxwell theory was calculated directly in [58]. The result is in agreement with

our (3.12), providing a check of our methods.
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A Calculation of ZT

In this appendix we present the computation of the ZT factor for the stress-energy tensor

in the theory of Critical QED. As we show below, a non-trivial ZT is required for the Ward

identity to hold. We define the “renormalized” stress-energy tensor T ren
µν by

T ren
µν (x) = ZTTµν(x) , (A.1)

where ZT = 1 + (ZT1/∆ +Z ′T1)/N +O(1/N2), and Tµν is the “bare” stress-tensor. To find

ZT we will use the three-point function 〈T ren
µν (x1)Oren

m (x2)Oren
m (x3)〉, where Oren

m = ZOmOm
is the electron mass operator, ZOm is its renormalization constant and the bare operator is

Om = ψ̄ψ . (A.2)

This three point function is gauge invariant. So using conformal invariance and conservation

of the stress-tensor, one has the general expression for the three-point function

〈T ren
µν (x1)Oren

m (x2)Oren
m (x3)〉 =

−CTOmOm
(x2

12x
2
13)

d
2
−1(x2

23)∆Om−
d
2

+1

(
(X23)µ(X23)ν −

1

d
δµν(X23)2

)
,

(A.3)

where

(X23)ν =
(x12)ν
x2

12

− (x13)ν
x2

13

. (A.4)

The conformal Ward identity gives

CTOmOm =
1

Sd

d∆Om

d− 1
COm , (A.5)
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Om(p) Om(−p)

D0 D2

Om(p) Om(−p)

D1

Om(p) Om(−p)

Figure 8. Diagrams contributing to 〈Om(p)Om(−p)〉 up to order 1/N .

where COm and ∆Om are two-point constant and anomalous dimension of the operator Om
in coordinate space:

〈Oren
m (x)Oren

m (0)〉 =
COm

(x2)∆Om
. (A.6)

Taking the Fourier transform of (A.3) and setting the momentum of the stress-energy

tensor to zero for simplicity, one finds in terms of the projected stress tensor T = zµzνTµν

〈T ren(0)Oren
m (p)Oren

m (−p)〉 = (d− 2∆Om)C̃Om
p2
z

(p2)
d
2
−∆Om+1

, (A.7)

where C̃Om is the two-point constant of 〈Oren
m Oren

m 〉 correlator in the momentum space:

〈Oren
m (p)Oren

m (−p)〉 =
C̃Om

(p2)1− d
2
−ηm

, (A.8)

and ∆Om = d−1+ηm, where ηm = ηm1/N+O(1/N2). In order to find C̃Om , ZOm and ηm1

up to 1/N order, we have to calculate the diagrams depicted in figure 8. The expressions

for the diagrams are

D0 =

∫
ddp1

(2π)d
(−1)Tr(G(p+ p1)G(p1)) , (A.9)

D1 = 2(i)2µ2∆

∫
ddp1d

dp2

(2π)2d
(−1)Tr(G(p+ p1)G(p1)γν1G(p2)γν2G(p1))Dν1ν2(p1 − p2) ,

D2 = (i)2µ2∆

∫
ddp1d

dp2

(2π)2d
(−1)Tr(G(p+ p1)γν1G(p+ p2)G(p2)γν2G(p1))Dν1ν2(p1 − p2)

and

〈Oren
m (p)Oren

m (−p)〉 = Z2
Om〈Om(p)Om(−p)〉 = Z2

Om

(
D0 +D1 +D2 +O(1/N2)

)
. (A.10)

Computing these diagrams one finds

2ZOm1 = ηm1 = − 2(d− 1)Γ(d)

Γ(d2)2Γ(d2 + 1)Γ(2− d
2)

(A.11)

and

C̃Om =
41−dπ

3−d
2 Tr1

Γ
(
d−1

2

)
sin(π d2)

(
1 +

1

N
ηm1

(
3d(d− 2)

8(d− 1)
Θ(d)−Ψ(d) +

d− 2

d

))
, (A.12)

where Θ(d) ≡ ψ′(d/2)− ψ′(1) and Ψ(d) ≡ ψ(d− 1) + ψ(2− d/2)− ψ(1)− ψ(d/2− 1).
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Now we can calculate the three-point function 〈T ren(0)Oren
m (p)Oren

m (−p)〉 using Feyn-

man diagrams, namely we have

〈T ren(0)Oren
m (p)Oren

m (−p)〉 = ZTZ
2
Om〈T (0)Om(p)Om(−p)〉 (A.13)

and the diagrams contributing to 〈T (0)Om(p)Om(−p)〉 up to order 1/N are shown in

figure 9, and the explicit results are listed in eq. (A.14) below. Putting these diagrams

together and equating the expression (A.7) required by conformal symmetry with the

diagrammatic result for (A.13), we find that the required ZT factor is the one given in (3.6).

As a check of our calculation, we note that dependence on the gauge parameter ξ drops

out from the final result.

Let us end this section by listing the results for the diagrams in figure 9. They are

given by

D0 = −Tr1
π csc(π d2 )Γ(d2 )

(4π)
d
2 Γ(d− 2)

p2
z

(p2)2− d
2

,

D1 =
1

N
D0ηm1

((
1

∆
− log

(
p2

µ2

))(
d− 4

4
+

dξ

4(d− 1)

)
+

((
d− 4

4
+

dξ

4(d− 1)

)
Ψ(d)

− d3 − 8d2 + 16d− 16

4(d− 2)d
− d2ξ

4(d− 2)(d− 1)

))
,

D2 =
1

N
D0ηm1

(
−
(

1

∆
−log

(
p2

µ2

))(
d3−7d2+10d−8

8(d− 1)(d+ 2)
+

dξ

8(d−1)

)
−
((

d3−7d2+10d−8

8(d− 1)(d+ 2)
+

dξ

8(d− 1)

)
Ψ− 2d7−21d6+63d5−68d4−60d3+192d2−160d+64

8(d− 2)(d− 1)2d(d+ 2)2
− (2d3−7d2+12d−8)ξ

8(d− 2)(d− 1)2

))
,

D3 =
1

N
D0ηm1

(
−
(

1

∆
−log

(
p2

µ2

))(
d

4
+

dξ

4(d−1)

)
+

(
3d(d−2)2

8(d−1)2
Θ(d)−

(
d

4
+

dξ

4(d−1)

)
Ψ(d)

+
d3 − d2 + 2d− 4

4(d− 2)(d− 1)2
+

(
3d2 − 6d+ 4

)
ξ

4(d− 2)(d− 1)2

))
,

D4 =
1

N
D0ηm1

((
1

∆
− log

(
p2

µ2

))(
d− 4

8
+

dξ

8(d− 1)

)
+

((
d− 4

8
+

dξ

8(d− 1)

)
Ψ(d)

+
3d3 − 16d2 + 32d− 16

8(d− 2)(d− 1)d
− d2ξ

8(d− 2)(d− 1)2

))
,

D5 =
1

N
D0ηm1

(
−
(

1

∆
− 2 log

(
p2

µ2

))(
(d− 2)2

4(d− 1)(d+ 2)

)
−
(

(d− 2)2

2(d− 1)(d+ 2)
Ψ(d)

− (d− 2)
(
5d4 − 9d3 + 4d2 + 28d− 16

)
4(d− 1)2d(d+ 2)2

− (d− 2)ξ

2(d− 1)2

))
,

D6 =
1

N
D0ηm1

(
3d(d− 2)

8(d− 1)2
Θ(d) +

d− 2

4(d− 1)
− (d− 2)ξ

2(d− 1)2

)
,

D7 =
1

N
D0ηm1

(
3d(d− 2)

8(d− 1)2
Θ(d) +

1

2(d− 1)
− ξ

2(d− 1)

)
,

D8 =
1

N
D0ηm1

((
1

∆
− log

(
p2

µ2

))(
d− 2

2(d− 1)

)
+

(
(d− 2)

2(d− 1)
Ψ(d)− d2 − 3d+ 4

2(d− 1)d
+

ξ

2(d− 1)

))
,

D9 =
1

N
D0ηm1

(
−
(

1

∆
−2 log

(
p2

µ2

))(
d−2

4(d−1)

)
−
(

(d−2)

2(d−1)
Ψ(d)− d

3−3d2+5d−4

2(d− 1)2d
+

(d−2)ξ

2(d−1)2

))
,

D10 =
1

N
D0ηm1

(
− 3d(d− 2)

8(d− 1)2
Θ(d)− 2d− 3

2(d− 1)2
+

(d− 2)ξ

2(d− 1)2

)
, (A.14)
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Tψ(0)

Om(p)

Om(−p)
D0 D1 D2 D3 D4

TA(0)

D7 D8

D9 D10

D5 D6

Figure 9. Diagrams contributing to 〈T (0)Om(p)Om(−p)〉 up to order 1/N .

where Θ(d) ≡ ψ′(d/2)− ψ′(1) and Ψ(d) ≡ ψ(d− 1) + ψ(2− d/2)− ψ(1)− ψ(d/2− 1) and

ηm1 is given in (A.11). We notice that

D7 +D8 +D9 +D10 =
D0ηm1

N∆

(d− 2)

4(d− 1)
. (A.15)

B Results for 〈JJ〉 and 〈TT 〉 diagrams

The diagrams for 〈JJ〉 shown in figure 3 are given explicitly by

D0 = tr(tatb)

∫
ddp1

(2π)d
(−1)Tr(γzG(p1)γzG(p+ p1)) , (B.1)

D1 = 2 tr(tatb)(i)2µ2∆

∫
ddp1d

dp2

(2π)2d
(−1)Tr(γzG(p+ p1)γzG(p1)γν1G(p2)γν2G(p1))Dν1ν2(p1−p2) ,

D2 = tr(tatb)(i)2µ2∆

∫
ddp1d

dp2

(2π)2d
(−1)Tr(γzG(p+ p1)γν1G(p+ p2)γzG(p2)γν2G(p1))Dν1ν2(p1−p2)

and the results are

D0 = tr(tatb)Tr1
π csc

(
πd
2

)
Γ
(
d
2

)
(4π)

d
2 (d− 1)Γ(d− 2)

p2
z

(p2)2− d
2

,

D1 =
1

N
D0ηm1

((
1

∆
− log

(
p2

µ2

))(
d− 4

4
+

dξ

4(d− 1)

)
+

((
d− 4

4
+

dξ

4(d− 1)

)
Ψ(d)

+
3d3 − 16d2 + 32d− 16

4(d− 2)(d− 1)d
− d2ξ

4(d− 2)(d− 1)2

))
,

D2 =
1

N
D0ηm1

(
−
(

1

∆
− log

(
p2

µ2

))(
d− 4

4
+

dξ

4(d− 1)

)
+

(
−
(
d− 4

4
+

dξ

4(d− 1)

)
Ψ(d)

+
3d(d− 2)

8(d− 1)
Θ(d) +

(d− 4)d

4(d− 2)(d− 1)
+

d2ξ

4(d− 2)(d− 1)2

))
. (B.2)
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The diagrams for 〈TT 〉 depicted in figure 5 are given explicitly by

D0 = Nf

(−i
2

)2 ∫ ddp1

(2π)d
(2p1z + pz)

2(−1)Tr(γzG(p+ p1)γzG(p1)),

D1 = 2Nfµ
2∆

(−i
2

)2

(i)2

∫
ddp1d

dp2

(2π)2d
(2p1z + pz)

2(−1)

× Tr(γzG(p+ p1)γzG(p1)γν1G(p2)γν2Gp1)Dν1ν2(p1 − p2) ,

D2 = Nfµ
2∆

(−i
2

)2

(i)2

∫
ddp1d

dp2

(2π)2d
(2p1z + pz)(2p2z + pz)(−1)

× Tr(γzG(p+ p1)γν1G(p+ p2)γzG(p2)γν2Gp1)Dν1ν2(p1 − p2) ,

D3 = N2
fµ

4∆

(−i
2

)2

(i)4

∫
ddp1d

dp2d
dp3

(2π)3d
(2p1z + pz)(−1)

× Tr(γzG(p+ p1)γν1G(p1 − p3)γν2G(p1))

×Dν1ν3(p+p3)Dν2ν4(p3)(2p2z+pz)(−1)Tr(γzG(p2)γν4G(p2 − p3)γν3G(p+p2)) + . . . ,

D4 = 2Nfµ
2∆

(−i
2

)
(−i)(i)

∫
ddp1d

dp2

(2π)2d
(2p1z + pz)(−1)

× Tr(γzG(p+ p1)γzG(p2)γν1G(p1))Dν1z(p1 − p2) ,

D5 = 2N2
fµ

4∆

(−i
2

)
(−i)(i)3

∫
ddp1d

dp2d
dp3

(2π)3d
(−1)

× Tr(γzG(p1 − p3)γν1G(p1))Dν1ν2(p3)Dzν3(p+ p3)

× (2p2z + pz)(−1)Tr(γzG(p2)γν2G(p2 − p3)γν3G(p+ p2)) + . . . ,

D6 = Nfµ
2∆(−i)2

∫
ddp1d

dp2

(2π)2d
(−1)Tr(γzG(p+ p2)γzG(p1))Dzz(p1 − p2) ,

D7 = N2
fµ

4∆(−i)2(i)2

∫
ddp1d

dp2d
dp3

(2π)3d
(−1)Tr(γzG(p1 − p3)γν1G(p1))Dzz(p+ p3)Dν1ν2(p3)

× (−1)Tr(γzG(p2)γν2G(p2 − p3)) ,

D8 = N2
fµ

4∆(−i)2(i)2

∫
ddp1d

dp2d
dp3

(2π)3d
(−1)Tr(γzG(p1 − p3)γν1G(p1))Dν1z(p3)Dzν2(p+ p3)

× (−1)Tr(γzG(p2 − p3)γν2G(p+ p2)) (B.3)

where dots mean that there is also an expression which corresponds to the opposite direction

of the fermion loop. After carrying out the momentum integrals using techniques similar

to the ones described in the appendices of [3], we find

D0 = −N π1− d
2 csc(π d2)Γ(d2)

4
d
2

+1(d− 1)(d+ 1)Γ(d− 2)

p4
z

(p2)2− d
2

,

D1 =
1

N
D0ηm1

((
1

∆
− log

(
p2

µ2

))(
d− 4

4
+

dξ

4(d− 1)

)
+

((
d− 4

4
+

dξ

4(d− 1)

)
Ψ(d)

+
2d4 − 10d3 + 15d2 + 4d− 8

2(d− 2)(d− 1)d(d+ 1)
− d(2d− 1)ξ

2(d− 2)(d− 1)2(d+ 1)

))
,
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D2 =
1

N
D0ηm1

(
−
(

1

∆
− log

(
p2

µ2

))(
d3 − 7d2 + 10d− 8

4(d− 1)(d+ 2)
+

dξ

4(d− 1)

)
+

(
3d(d− 2)

8(d− 1)
Θ(d)

−
(
d3 − 7d2 + 10d− 8

4(d− 1)(d+ 2)
+

dξ

4(d− 1)

)
Ψ(d) +

5d5 − 27d4 + 44d3 − 30d2 − 12d+ 16

2(d− 2)(d− 1)2d(d+ 1)(d+ 2)

−
(
d3 − 4d2 + 2

)
ξ

2(d− 2)(d− 1)2(d+ 1)

))
,

D3 =
1

N
D0ηm1

(
−
(

1

∆
− 2 log

(
p2

µ2

))(
(d− 2)2

2(d− 1)(d+ 2)

)
+

(
2(d− 2)

(d− 1)(d+ 2)
Ψ(d)

− d
(
d3 − 8d+ 11

)
(d− 1)2(d+ 1)(d+ 2)

+
ξ

2(d− 1)

))
+ dD0/(2N) , (B.4)

and

D4 =
1

N
D0ηm1

((
1

∆
−log

(
p2

µ2

))(
d−2

d−1

)
+

(
(d−2)Ψ(d)

d−1
− d

4−4d3+5d2+2d−2

(d− 1)2d(d+ 1)
+

ξ

d−1

))
,

D5 =
1

N
D0ηm1

(
−
(

1

∆
−2 log

(
p2

µ2

))(
d−2

2(d−1)

)
−
(

(d−2)Ψ(d)

d− 1
− d

4−4d3+5d2+2d−2

(d− 1)2d(d+ 1)
+

ξ

d−1

))
− dD0/N ,

D6 =
1

N
D0ηm1

(
− ξ − 1

2(d− 1)

)
,

D7 =
1

N
D0ηm1

(
ξ − 1

2(d− 1)

)
,

D8 = dD0/(2N) , (B.5)

where Θ(d) ≡ ψ′(d/2)− ψ′(1) and Ψ(d) ≡ ψ(d− 1) + ψ(2− d/2)− ψ(1)− ψ(d/2− 1) and

ηm1 is given in (A.11). We notice that

D4 +D5 +D6 +D7 +D8 =
D0ηm1

N∆

(d− 2)

2(d− 1)
− dD0/(2N) . (B.6)
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