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dimensional conformal field theory (CFT) on a torus. We require the length of the interval

` to be small with respect to the spatial and temporal sizes of the torus. The operator

product expansion of the twist operators allows us to compute the short interval expansion
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1 Introduction

The entanglement entropy characterizes the entanglement between a system and its envi-

ronment. It could be defined by the von Neumann entropy of the reduced density matrix

SA = −trAρA log ρA. (1.1)

In practice, it is often more convenient to compute the entanglement entropy by taking the

n→ 1 limit of the n-th order Rényi entropy

SA = lim
n→1

S
(n)
A , (1.2)

where the Rényi entropy is defined by

S
(n)
A = − 1

n− 1
log trAρ

n
A. (1.3)

The study of the Rényi entropy is interesting on its own, as it encodes the spectral infor-

mation of the reduced density matrix.

The entanglement entropy in quantum field theory is difficult to compute, due to the

fact that there are infinite degrees of freedom in a field theory [1], as nicely reviewed
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in [2]. If the quantum field theory is conformal invariant, there are more tools to use, in

particular for a two-dimensional (2D) conformal field theory (CFT) [3]. The standard way

of computing the entanglement entropy in a quantum field theory is the replica trick [4].

For a 2D CFT, one could insert the twist operators at the branch points to impose the

nontrivial boundary conditions on the fields in applying the replica trick [1, 3]. Then the

Rényi entropy is determined either by the partition function on the resulting Riemann

surface, which is generically of higher genus, or equivalently by the correlation function of

the twist operators on the original spacetime manifold but in an orbifold CFT.

The Rényi entropy on complex plane has been well studied. It is well known that

when there is a single interval of length `, the Rényi entropy has a universal form, which

is independent of details of the CFT and depends only on the central charge c [1]

Sn =
c(n+ 1)

6n
log

`

ε
, (1.4)

with ε being the UV cutoff. But for the case with two and more intervals, the Rényi en-

tropy would depend on the details of the CFT [5–7]. For the case of two disjoint intervals

there have been some studies. The analytical results of Rényi entropy Sn, n ≥ 2 for a free

compactified boson and Ising model have been presented in [5] and [7] respectively. For a

general CFT, it was proposed in [6] that one can use the operator product expansion (OPE)

of the twist operators to compute the Rényi entropy Sn, n ≥ 2. This proposal was gener-

alized to find the leading term of Rényi entropy with small cross ratio in [7]. This method

was also generalized to higher dimensions in [8]. More interestingly, the proposal has been

applied to the large c CFT with a gravity dual. In [9–13], the Rényi mutual information

has been computed and reorganized by the powers of 1/c.1 It was found that the leading

order terms agree exactly with the holographic Rényi entropy (HRE) [16–19], the next-to-

leading terms are in exact agreement with the one-loop correction to HRE [20, 21], and

moreover there are nonvanishing next-to-next-to-leading terms which should be identified

with the two-loop corrections to HRE [22, 23]. The study suggests that the holographic

computation should be correct even beyond classical gravity, as shown in recent study [24]

of the one-loop partition function of any handle-body configuration from dual CFT.

Another interesting case is the Rényi entropy on a torus. Now the CFT is in a thermal

state and within a finite size. There are both thermal and finite-size effects in the entangle-

ment entropy. In [25], the universal thermal correction to the single interval entanglement

entropy has been found. In [26–29], the Rényi entropy of free boson on a torus has been

discussed. In [30–33], the Rényi entropy of free fermion on a torus has been studied. In [34],

the Rényi entropy for the ŜU(N)1 Wess-Zumino-Witten model on the torus has been dis-

cussed. In [35], the thermal effect to the Rényi entropy of locally excited states has been

discussed. In particular, the single interval Rényi entropy on a torus in the large c CFT

dual to the AdS3 gravity has been investigated in [36–38] and the exact agreement up to

the next-to-leading order with the holographic computation has been found.

1If one takes the n → 1 limit and is only interested in the von Neumann mutual information, the

calculation would be much simpler, as shown in [14, 15].
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The studies in [25, 36–38] rely on the expansion of the thermal density matrix at the

low temperature or at the high temperature. In the low temperature case, the thermal

density matrix could be expanded

ρ =
e−βH

tre−βH
=

1

tre−βH

∑
φ

|φ〉〈φ|e−βEφ , (1.5)

where the summation is over all the normalized and orthogonalized excitations in the

theory. For the large c CFT, the contribution from the vacuum Verma module may dom-

inate [39] such that one can focus just on the states in the vacuum module. Then the

computation is reduced to the multi-point functions on a cylinder. This treatment could

be applied to the interval of almost any length, even though in the large interval limit

one needs the expansion with respect to the twist sector [28, 38]. The disadvantage in the

treatment is that one has to work in the low temperature or high temperature limit, and

the computation becomes complicated beyond the first few excited states, and it is hard

to read the 1/c terms.

In this work, we would like to apply another strategy to compute the single interval

Rényi entropy on torus. We focus on the case that the interval is short so that we can

apply the OPE of the twist operators. In this way, the computation boils down to the

one-point function of various operators on a torus. Such a strategy could be applied to any

CFT one is interested in. Here we pay more attention to the large c CFT. One advantage

of this approach is that it works for any temperature, or more generally for any modulus of

the torus. By expanding further in the low temperature and high temperature limits, we

find consistent picture with the results in [36, 37]. Furthermore, this new approach allows

us to read the 1/c terms easily.

The remaining parts of the paper are organized as follows. In section 2, we introduce

the general framework of our treatment. In section 3, we focus on the vacuum conformal

family of a large c CFT and discuss the low and high temperature limits, as well as the

effect of chemical potential. In section 4 we consider a large c CFT withW(2, 3) symmetry.

In section 5 we consider a large c N = (1, 1) superconformal field theory (SCFT). We

conclude with some discussions in section 6. In appendix A there are some useful CFT

basics. In appendix B there is an alternative calculation of low temperature expansion of

the one-point functions (3.5).

2 Rényi entropy on torus

In this section, we introduce the general strategy to compute the single interval Rényi

entropy on a torus. We consider the case that the interval is short so that we may firstly

use the OPE of the twist operators and then sum over the expectation values of one-point

functions on the torus. We first briefly review the OPE of the twist operators, and then

calculate the single interval Rényi entropy on torus.
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2.1 OPE of twist operators

To calculate the n-th order Rényi entropy using the replica trick one has to calculate the

partition function of the CFT on a Riemann surface, or equivalently one can calculate the

correlation functions of twist operators σ, σ̃ in an orbifold CFT [1], which is denoted by

CFTn. The twist operators have conformal weights

hσ = hσ̃ = h̄σ = h̄σ̃ =
c(n2 − 1)

24n
. (2.1)

In CFTn one has OPE of the twist operators [6, 7, 9]

σ(z, z̄)σ̃(0, 0) =
cn

z2hσ z̄2h̄σ

∑
K

dK
∑
r,s≥0

arK
r!

āsK
s!
zhK+rz̄h̄K+s∂r∂̄sΦK(0, 0). (2.2)

Here cn is the normalization of the twist operators, and the summation over K is on all the

independent quasiprimary operators ΦK in CFTn, and there are definitions of coefficients

arK ≡
CrhK+r−1

Cr2hK+r−1

, āsK ≡
Cs
h̄K+s−1

Cs
2h̄K+s−1

, (2.3)

where the binomial coefficient is

Cyx =
Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
, (2.4)

and the OPE coefficient dK can be determined by the one-point function on the Riemann

surface Rn,1 [7]

dK =
1

αK`hK+h̄K
lim
z→∞

z2hK z̄2h̄K 〈ΦK(z, z̄)〉Rn,1 , (2.5)

with αK being the normalization coefficient of ΦK . The quasiprimary operators in CFTn

can be constructed by the quasiprimary operators in each copy of CFT.

For the vacuum conformal family, to level 8 the CFTn quasiprimary operators have

been constructed in [9, 10]. In this paper we only need the ones to level 6 that have

nonvanishing expectation values on the torus. Because of the translation symmetry, one-

point functions on torus are coordinate-independent, and so the derivatives of an operator

have vanishing expectation values on the torus. This simplifies the discussion. To level 6,

the holomorphic CFTn quasiprimary operators that have nonvanishing expectation values

on torus are listed as follows.

• At level 2 we have Tj .

• At level 4 we have Aj , and Tj1Tj2 with j1 < j2.

• At level 6 we have Bj , Dj , Tj1Aj2 with j1 6= j2, and Tj1Tj2Tj3 with j1 < j2 < j3.

Here the subscript j labels the replica and all the j’s take values from 0 to n − 1. The

detailed discussion on the quasiprimary operators can be found in appendix A. Note that

operators at level 5 and some of operators at level 6 have vanishing expectation values

– 4 –
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on the torus so that they can be ignored. The needed OPE coefficients dK have been

calculated in [9, 10]

dT =
n2−1

12n2
, dA=

(n2−1)2

288n4
, dB=−

(n2−1)2
(
2n2(35c+61)−93

)
10368n6(70c+ 29)

,

dD=
(n2−1)3

10368n6
, dj1j2TT =

1

8n4c

1

s4
j1j2

+
(n2−1)2

144n4
, dj1j2TA =

n2 − 1

96n6c

1

s4
j1j2

+
(n2−1)3

3456n6
, (2.6)

dj1j2j3TTT =− 1

8n6c2

1

s2
j1j2

s2
j2j3

s2
j3j1

+
n2 − 1

96n6c

(
1

s4
j1j2

+
1

s4
j2j3

+
1

s4
j3j1

)
+

(n2 − 1)3

1728n6
,

with

sj1j2 = sin
(j1 − j2)π

n
. (2.7)

We may introduce

bT = ndT , bA = ndA, bB = ndB, bD = ndD,

bTT =
∑
j1<j2

dj1j2TT , bTA =
∑
j1 6=j2

dj1j2TA , bTTT =
∑

j1<j2<j3

dj1j2j3TTT , (2.8)

and find

bTT =
(n2 − 1)[5c(n+ 1)(n− 1)2 + 2(n2 + 11)]

1440cn3
,

bTA =
(n2 − 1)2[5c(n+ 1)(n− 1)2 + 4(n2 + 11)]

17280cn5
,

bTTT =
(n− 2)(n2 − 1)[35c2(n+ 1)2(n− 1)3+42c(n2 − 1)(n2 + 11)−16(n+ 2)(n2 + 47)]

362880c2n5
.

(2.9)

It is similar for the quasiprimary operators in the antiholomorphic sector.

For other modules, the construction of quasiprimary operators is straightforward. In

the following discussion, we mainly consider the primary operator φ with conformal weight

(hφ, 0), in which case hφ has to be an integer or a half-integer. Such operators appear in

the CFT with W symmetry or the superconformal symmetry. In the OPE of the twist

operators, there are the quasiprimary operators from the module φ, among which the

operators φj1φj2 with j1 < j2 have the lowest scaling dimension. The normalization of φ

is chosen to be αφ. We have the OPE coefficient

dj1j2φφ =
i2hφ

αφ(2n)2hφ

1

s
2hφ
j1j2

. (2.10)

For later convenience, we introduce

bφφ =
∑
j1<j2

dj1j2φφ . (2.11)

Similarly, we have dj1j2
φ̄φ̄

and bφ̄φ̄ for the antiholomorphic sector.

– 5 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
0

2.2 Rényi entropy

We consider the Rényi entropy of one short interval A = [0, `] on a torus T with the

complex coordinate z. The modulus of the torus is τ = τ1 + iτ2, with τ1 and τ2 being real.

The modulus τ is related to the inverse temperature β and chemical potential µE by

τ1 =
βµE
L

, τ2 =
β

L
. (2.12)

Note that here we are working in Euclidean space, and the Euclidean chemical potential

µE is real. If we want the Minkowski result, in the final Rényi entropy we have to make

the analytical continuation µE = −iµ with the Minkowski chemical potential µ being real.

The spatial period of the torus is L so we have

z ' z + L(r + sτ), r, s ∈ Z. (2.13)

Without loss of generality, we may set L = 1. As usual we define

q ≡ e2πiτ . (2.14)

The partition function is given by

trAρ
n
A = 〈σ(`, `)σ̃(0, 0)〉T =

cn

`2(hσ+h̄σ)

∑
K

dK`
hK+h̄K 〈ΦK(0, 0)〉T . (2.15)

Due to OPE of the twist operators, we have summation over the one-point functions of the

quasiprimary operators in CFTn. In principle, this could be applied to any CFT. Here

we are more interested in the large c CFT dual to the AdS3 gravity. In this case, the

contribution is dominated by the vacuum module. To the level we are interested in, all

quasiprimary operators in the OPE are the products of the quasiprimary operators in a

single CFT on different replica. Therefore, their expectation values are just the products

of the ones on the torus. The resulting partition function is

trAρ
n
A=

cn

`2(hσ+h̄σ)

{
1+bT 〈T 〉T `2+

(
bA〈A〉T +bTT 〈T 〉2T

)
`4+
(
bB〈B〉T +bD〈D〉T +bTA〈T 〉T 〈A〉T

+ bTTT 〈T 〉3T
)
`6 +O(`8) +

∑
φ

[
`2hφ

(
bφφ〈φ〉2T +O(`2)

)
+O(`3hφ)

]}

×
{

1 + bT 〈T̄ 〉T `2 +
(
bA〈Ā〉T + bTT 〈T̄ 〉2T

)
`4 +

(
bB〈B̄〉T + bD〈D̄〉T + bTA〈T̄ 〉T 〈Ā〉T

+ bTTT 〈T̄ 〉3T
)
`6 +O(`8) +

∑
φ̄

[
`2hφ

(
bφ̄φ̄〈φ̄〉2T +O(`2)

)
+O(`3hφ)

]}
, (2.16)

with the two summations being over all the nonidentity holomorphic and antiholomorphic

primary operators respectively. Consequently we can get the short interval expansion of

– 6 –
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the single interval Rényi entropy

Sn =
c(n+ 1)

6n
log

`

ε
− 1

n− 1

{
bT
(
〈T 〉T + 〈T̄ 〉T

)
`2 +

[
bA
(
〈A〉T + 〈Ā〉T

)
+

(
bTT −

1

2
b2T

)(
〈T 〉2T + 〈T̄ 〉2T

) ]
`4 +

[
bB
(
〈B〉T + 〈B̄〉T

)
+ bD

(
〈D〉T + 〈D̄〉T

)
+ (bTA − bT bA)

(
〈T 〉T 〈A〉T + 〈T̄ 〉T 〈Ā〉T

)
+

(
bTTT−bT bTT +

1

3
b3T

)(
〈T 〉3T + 〈T̄ 〉3T

)]
`6

+O(`8) +
∑
φ/φ̄

`2hφ
[
bφφ〈φ〉2T + bφ̄φ̄〈φ̄〉2T +O(`2) +O(`hφ)

]}
. (2.17)

Note that φ and φ̄ appear in pairs, and the summation above is over such pairs. Therefore,

the computation of the single interval Rényi entropy is reduced to the one-point functions

on the torus. Note that because of translation symmetry the one-point functions on torus

are independent of the coordinate.

On a torus, the one-point function of the stress tensor is given by [40]

〈T 〉T = 2πi∂τ logZ, (2.18)

with Z being the partition function on the torus. From the Ward identity on torus [40],

we get

〈T (y)T (z)〉T =
c

12
℘′′(y − z) +

(
〈T 〉T + 2℘(y − z) + 4η1 + 2πi∂τ

)
〈T 〉T ,

〈T (x)T (y)T (z)〉T =
c

12
(℘′′(x− y) + ℘′′(x− z))〈T 〉T

+
(
〈T 〉T + 2℘(x− y) + 2℘(x− z) + 8η1 + 2πi∂τ

)
〈T (y)T (z)〉T

+
(
ζ(x− y)− ζ(x− z) + 2η1y − 2η1z

)
〈∂T (y)T (z)〉T , (2.19)

with ℘(x) being the Weierstrass P function, ζ(x) being the Weierstrass ζ function, and

η1 = 4π2

(
1

24
−
∞∑
k=1

kqk

1− qk

)
. (2.20)

From (2.19) and the definitions in (A.1) and (A.2), we get

〈A〉T =
cg2

120
+ (〈T 〉T + 4η1 + 2πi∂τ )〈T 〉T , 〈B〉T = −9cg3

70
− 9g2

25
〈T 〉T ,

〈D〉T = − 3c(5c+ 22)g3

5(70c+ 29)
+
cg2η1

15
+

c

60
πi∂τg2 + 2π

[
3(〈T 〉T + 4η1)i∂τ − 2π∂2

τ

]
〈T 〉T

+
(42c2 − 61c− 836)g2

24(70c+ 29)
〈T 〉T +

[
(〈T 〉T + 4η1)(〈T 〉T + 8η1) + 8πi∂τη1

]
〈T 〉T .

(2.21)

Here we have introduced

g2 =
4π4

3

(
1 + 240

∞∑
k=1

σ3(k)qk

)
,

g3 =
8π6

27

(
1− 504

∞∑
k=1

σ5(k)qk

)
, (2.22)

where σa(k) is the divisor function.

– 7 –
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Note that the short interval expansion (2.17) holds for any value of torus modulus τ ,

but the expansions in (2.20) and (2.22) may not converge. For any τ we can always find

an SL(2,Z) modular transformation2

τ ′ =
aτ + b

cτ + d
, q′ = e2πτ ′ , (2.23)

with a, b, c, d ∈ Z and ad − bc = 1, and make the expansions in (2.20) and (2.22) be

well-defined. The transformation rules are

η1(τ) =
η1(τ ′)

(cτ + d)2
+

cπi

cτ + d
,

g2(τ) =
g2(τ ′)

(cτ + d)4
, g3(τ) =

g3(τ ′)

(cτ + d)6
. (2.24)

For consistency of the CFT, the partition function Z is invariant under the SL(2,Z) trans-

formation

Z(τ) = Z(τ ′). (2.25)

At a low temperature, the holomorphic sector of the density matrix of the vacuum

conformal family can be expanded as

ρvac = |0〉〈0|+ q2

αT
|T 〉〈T 〉+ q3

α∂T
|∂T 〉〈∂T 〉+ q4

α∂2T
|∂2T 〉〈∂2T 〉+ q4

αA
|A〉〈A〉+O(q5). (2.26)

More generally, there could be other modules in the theory. Thus one can add other

holomorphic conformal families and have the density matrix

ρ = ρvac +
∑
φ

ρφ, (2.27)

with the definition

ρφ = qhφ
∞∑
k=0

qk
∑
i,j

Gijφ,k|φ, k, i〉〈φ, k, j|. (2.28)

Here hφ is the conformal weight, k denotes the levels in the φ conformal family, and Gijφ,k
is the inverse of the matrix 〈φ, k, i|φ, k, j〉. The one-point function of an operator on the

torus is just the thermal expectation value of the operator on the cylinder, which can

be calculated by mapping the cylinder to a complex plane. In other words, one can cut

open the torus and insert a complete set of state basis at the cut such that the one-point

function on the torus reduces to a summation of three-point functions. In Neveu-Schwarz

(NS) sector, a holomorphic operator with half-integer conformal weight has vanishing one-

point function. For a nonidentity holomorphic primary operator φ with integer conformal

weight hφ, one can get the one-point function on the torus

〈φ〉T =
(2πi)hφ

trρ

∑
ψ

qhψ
∞∑
k=0

qk
∑
i,j

Gijψ,k〈ψ, k, i|φ0|ψ, k, j〉, (2.29)

2One should not confuse the integer c here with the central charge.
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with φ0 being the 0-th mode of φ. In the low temperature expansion, the leading order

contribution of the one-point function is

〈φ〉T = (2πi)hφqhψ
Cψφψ
αψ

+ · · · , (2.30)

with ψ being the primary operator that has the lowest conformal weight hψ among the

ones with nonvanishing structure constant Cψφψ and αψ being its normalization. In the

Rényi entropy (2.17) we have the following term in the expansion of ` and q

`2hφbφφ〈φ〉2T ∼ `2hφq2hψ
(Cψφψ)2

αφα
2
ψ

+ · · · . (2.31)

The behavior of the term in the expansion of 1/c has to be discussed case by case.

3 Vacuum conformal family

In the discussion above, the prescription can be applied to any CFT at any temperature.

In this section we focus on the contributions of the vacuum conformal family to the Rényi

entropy, and we temporarily ignore the contributions from other conformal families. We

would like to compute the entropy at both the low and high temperature limits, in order

to compare with the results got in [36, 37].

3.1 Low temperature limit

At a low temperature we first consider the case without chemical potential, and we have3

q = q̄ = e−2πβ � 1. (3.1)

We will briefly discuss the case with chemical potential in the end of this subsection. On

the gravity side the Rényi entropy can be calculated to the order q4 [20, 36, 37], and the

gravity result has been confirmed from the CFT side [25, 36, 37]. We may expand the

holographic Rényi entropy by the length of the interval `. The classical part is

Scl
n =

c(n+ 1)

6n
log

`

ε
− π2c(n+ 1)

36n
`2 +

(
− π4c(n+ 1)

1080n
− π4c(n− 1)(n+ 1)2

9n3
q2

− 4π4c(n− 1)(n+ 1)2

9n3
q3 − 11π4c(n− 1)(n+ 1)2

9n3
q4 +O(q5)

)
`4 +

(
− π6c(n+ 1)

17010n

+
2π6c(n− 1)(n+ 1)2

27n3
q2 +

20π6c(n− 1)(n+ 1)2

27n3
q3+

2π6c(n−1)(n+1)2(48n2−1)

27n5
q4

+O(q5)

)
`6 +O(`8), (3.2)

3Note that the length of the spatial direction L has been set to be 1.
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and the one-loop part is

S1-loop
n,(2) =

(
4π2(n+ 1)

3n
q2 +

2π2(n+ 1)

n
q3 +

4π2(n+ 1)

n
q4 +O(q5)

)
`2

+

(
− 2π4(n+ 1)(9n2 − 11)

45n3
q2 − 2π4(n+ 1)(41n2 − 44)

45n3
q3

− 2π4(n+ 1)(49n2 − 51)

15n3
q4 +O(q5)

)
`4 +

(
4π6(n+ 1)(17n4 − 46n2 + 31)

945n5
q2

+
2π6(n+ 1)(492n4 − 1013n2 + 527)

945n5
q3 +

4π6(n+ 1)(1654n4−2903n2+1255)

945n5
q4

+O(q5)

)
`6 +O(`8). (3.3)

The calculation of the Rényi entropy to higher orders of q is very cumbersome. However,

since it is exact in `, one can get the Rényi entropy to the higher order of ` very easily.

On the CFT side, if we only consider the vacuum conformal family, we have the

partition function

Z = q−
c
24 q̄−

c
24

∞∏
k=2

1

(1− qk)(1− q̄k)
. (3.4)

From (2.18) and (2.21) we get the one-point functions4

〈T 〉T =
π2c

6
− 8π2q2 − 12π2q3 − 24π2q4 +O(q5),

〈A〉T =
π4c(5c+ 22)

180
+

8π4(5c+ 22)

3
q2 + 12π4(5c+ 22)q3 + 168π4(c+ 6)q4 +O(q5),

〈B〉T = − 62π6c

525
+

96π6(120c+1)

25
q2+

144π6(720c+161)

25
q3+

288π6(1640c+841)

25
q4+O(q5),

〈D〉T =
π6c(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)
+

22π6(2c− 1)(5c+ 22)(7c+ 68)

3(70c+ 29)
q2

+
31π6(2c− 1)(5c+ 22)(7c+ 68)

70c+ 29
q3+

2π6(2c− 1)(7c+ 68)(215c− 638)

70c+ 29
q4+O(q5).

(3.5)

There are similar results for the antiholomorphic operators. Using (2.17) and doing large

c expansion, we obtain the Rényi entropy, which could be organized by the powers of 1/c

S(2)
n = SL

n + SNL
n,(2) + SNNL

n,(2) + · · · . (3.6)

Here the notation (2) denotes that we are considering the large c CFT dual to the pure

AdS3 gravity, and the superscripts L, NL, NNL denote the leading order, next-to-leading

order and next-to-next-to-leading order respectively. We did not have subscript (2) in the

leading part, since it is universal and does not depend on the operator content of the CFT.

The leading contribution SL
n is proportional to c, and it is in perfect agreement with the

4The low temperature expansion of these one-point functions can be reproduced in a different method,

as shown in appendix B.
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classical part of the holographic Rényi entropy Scl
n in (3.2). The next-to-leading part SNL

n,(2)

is of order one, and it agrees exactly with the one-loop gravitational part S1-loop
n,(2) in (3.3).

The next-to-next-to-leading part SNNL
n,(2) is proportional to 1/c

SNNL
n,(2) =

(
−8π4(n+ 1)(n2 + 11)

45n3c
q4 +O(q5)

)
`4

+

(
8π6(n+ 1)(26n4 + 271n2 − 345)

945n5c
q4 +O(q5)

)
`6 +O(`8), (3.7)

which is expected to match the two-loop correction to the holographic Rényi entropy. Note

that expansion of Rényi entropy to the higher orders of q is straightforward and can be

done easily. However, the expansion of Rényi entropy to higher orders of ` is cumbersome.

The parameter region of the method in this paper is different from that of the gravity and

CFT methods in [20, 25, 36, 37].

When the chemical potential is turned on, one need to make the replacement

qm → qm + q̄m

2
= cos(2πmβµE)e−2πmβ , m ∈ Z (3.8)

in the Rényi entropy. In the Minkowski spacetime, we have to make the analytical contin-

uation µE = −iµ, and the replacement becomes

qm → qm + q̄m

2
= cosh(2πmβµ)e−2πmβ , m ∈ Z. (3.9)

The CFT at a low temperature with a chemical potential is dual to the thermal AdS with

angular momentum. It would be nice to see if the Rényi entropy can be reproduced on the

gravity side.

3.2 High temperature limit without chemical potential

At the high temperature limit without chemical potential, the classical and one-loop gravity

results are just making the following replacement [20] in (3.2) and (3.3)

`→ `

iβ
, q = e2πiτ = e−2πβ → q′ = e2πiτ ′ = e−2π/β , (3.10)

except the ` in the logarithmic function. The classical part becomes

Scl
n =

c(n+ 1)

6n
log

`

ε
+
π2c(n+ 1)

36n

`2

β2
+

(
− π4c(n+ 1)

1080n
− π4c(n− 1)(n+ 1)2

9n3
q′2

− 4π4c(n− 1)(n+ 1)2

9n3
q′3 − 11π4c(n− 1)(n+ 1)2

9n3
q′4 +O(q′5)

)
`4

β4
−
(
− π6c(n+ 1)

17010n

+
2π6c(n−1)(n+1)2

27n3
q′2 +

20π6c(n−1)(n+1)2

27n3
q′3 +

2π6c(n−1)(n+1)2(48n2−1)

27n5
q′4

+O(q′5)

)
`6

β6
+O(`8), (3.11)
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and the one-loop part becomes

S1-loop
n,(2) = −

(
4π2(n+ 1)

3n
q′2 +

2π2(n+ 1)

n
q′3 +

4π2(n+ 1)

n
q′4 +O(q′5)

)
`2

β2

+

(
− 2π4(n+ 1)(9n2 − 11)

45n3
q′2 − 2π4(n+ 1)(41n2 − 44)

45n3
q′3

− 2π4(n+ 1)(49n2 − 51)

15n3
q′4 +O(q′5)

)
`4

β4
−
(

4π6(n+ 1)(17n4 − 46n2 + 31)

945n5
q′2

+
2π6(n+ 1)(492n4 − 1013n2 + 527)

945n5
q′3 +

4π6(n+1)(1654n4−2903n2+1255)

945n5
q′4

+O(q′5)

)
`6

β6
+O(`8). (3.12)

On the CFT side we make the modular transformation

τ ′ = −1

τ
, (3.13)

and expand the Rényi entropy in q′. Using the transformation rules (2.24) and (2.25), we

get the high temperature expansion of the one-point functions (2.18) and (2.21)

〈T 〉T = − π2c

6β2
+

8π2

β2
q′2 +

12π2

β2
q′3 +

24π2

β2
q′4 +O(q′5),

〈A〉T =
π4c(5c+ 22)

180β4
+

8π4(5c+ 22)

3β4
q′2 +

12π4(5c+ 22)

β4
q′3 +

168π4(c+ 6)

β4
q′4 +O(q′5),

〈B〉T =
62π6c

525β6
− 96π6(120c+1)

25β6
q′2− 144π6(720c+161)

25β6
q′3− 288π6(1640c+841)

25β6
q′4+O(q′5),

〈D〉T = − π6c(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)β6
− 22π6(2c− 1)(5c+ 22)(7c+ 68)

3(70c+ 29)β6
q′2

− 31π6(2c− 1)(5c+ 22)(7c+ 68)

(70c+ 29)β6
q′3− 2π6(2c−1)(7c+68)(215c−638)

(70c+ 29)β6
q′4+O(q′5).

(3.14)

Note that if we restore L in (3.5), then eq. (3.14) equal eq. (3.5) after the simple

substitutions

L→ iβ, q → q′. (3.15)

There are similar results for the antiholomorphic operators. Using (2.17) and organizing

the Rényi entropy by the powers of 1/c, we find

S(2)
n = SL

n + SNL
n,(2) + SNNL

n,(2) + · · · . (3.16)

Now SL
n and SNL

n,(2) are in exact match with the classical part Scl
n (3.11) and the one-loop

part S1-loop
n,(2) (3.12) respectively. The next-to-next-to-leading part is

SNNL
n,(2) =

(
−8π4(n+ 1)(n2 + 11)

45n3c
q′4 +O(q′5)

)
`4

β4

−
(

8π6(n+ 1)(26n4 + 271n2 − 345)

945n5c
q′4 +O(q′5)

)
`6

β6
+O(`8). (3.17)
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The CFT at a high temperature with vanishing chemical potential is dual to nonrotating

BTZ (Bañados-Teitelboim-Zanelli) black hole [41].

3.3 High temperature limit with chemical potential

When we turn the chemical potential on, the calculation is similar. Firstly, we have

τ = iβL, βL = β(1− iµE) = β(1− µ), (3.18)

τ̄ = −iβR, βR = β(1 + iµE) = β(1 + µ).

Note that in the Euclidean space the left- and right-moving inverse temperatures βL,R
are complex, but they are real in the Minkowski spacetime. One can see this point, for

example, in [42]. At a high temperature β is small, and we work in the parameter region

that µ is of order one. We make the modular transformation

τ ′ = −1

τ
=

i

βL
, q′ = e2πiτ ′ = e−2π/βL , (3.19)

τ̄ ′ = −1

τ̄
= − i

βR
, q̄′ = e−2πiτ̄ ′ = e−2π/βR .

The one-point functions 〈T 〉T , 〈A〉T , 〈B〉T , 〈D〉T are formally the same as (3.14) by setting

β → βL. The one-point functions of the antiholomorphic operators 〈T̄ 〉T , 〈Ā〉T , 〈B̄〉T , 〈D̄〉T
can be got from 〈T 〉T , 〈A〉T , 〈B〉T , 〈D〉T by setting βL → βR, q′ → q̄′. We get the Rényi

entropy by the powers of 1/c

S(2)
n = SL,L

n + SL,R
n + SNL,L

n,(2) + SNL,R
n,(2) + SNNL,L

n,(2) + SNNL,R
n,(2) + · · · . (3.20)

Here the superscripts L,R denote the Rényi entropy from the holomorphic and antiholo-

morphic sectors respectively, or, in terms of the Minkowski CFT, the left- and right-moving

sectors. Formally, SL,L
n , SNL,L

n,(2) and SNNL,L
n,(2) are just half of the previous subsection results

SL
n , SNL

n,(2), and SNNL
n,(2) in (3.16) after setting β → βL. Also SL,R

n , SNL,R
n,(2) and SNNL,R

n,(2) are just

SL,L
n , SNL,L

n,(2) and SNNL,L
n,(2) after setting βL → βR, q′ → q̄′.

The CFT at the high temperature with a chemical potential is dual to the gravita-

tional configuration of rotating BTZ black hole. The holographic computation of the Rényi

entropy in this case has not been worked out. However, the classical part of the entan-

glement entropy can be read from the length of a geodesic in the background of the BTZ

black hole [43]

Scl =
c

6
log

(
βLβR
π2ε2

sinh
π`

βL
sinh

π`

βR

)
. (3.21)

Expanding the holographic entanglement entropy by small `, we get

Scl =
c

6

[
2 log

`

ε
+
π2`2

6

(
1

β2
L

+
1

β2
R

)
− π4`4

180

(
1

β4
L

+
1

β4
R

)
+O(`6)

]
. (3.22)

This agrees with the above leading CFT result in (3.20)

Scl = lim
n→1

(
SL,L
n + SL,R

n

)
. (3.23)
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4 CFT with W(2, 3) symmetry

In the AdS3/CFT2 correspondence, we may extend the pure AdS3 gravity to include the

higher spin fields. With the higher spin fields, it turns out that after imposing appropriate

asymptotical boundary conditions, the higher spin AdS3 gravity could be dual to a 2D

CFT with W symmetry [44, 45]. In the CFT with W symmetry, we have to consider

the contributions from the operators W and W̄ , besides the stress tensor T , T̄ . Here we

only consider the CFT with W(2, 3) symmetry. The low temperature expansion of the

additional Rényi entropy from the operator W has been computed on both the gravity

and CFT sides [37]. As we consider only the thermal state without higher spin chemical

potential and correspondingly the gravitational configuration without higher spin hair,

the contributions from the W operators appear first in the next-to-leading order on the

CFT side and in the one-loop correction on the bulk side. We may further expand such

contributions from W, W̄ fields by the length of the interval

S1-loop
n,(3) =

(
2π2(n+ 1)

n
q3 +

8π2(n+ 1)

3n
q4 +O(q5)

)
`2 +

(
− 2π4(n+ 1)(7n2 − 8)

15n3
q3

− 8π4(n+ 1)(17n2 − 18)

45n3
q4 +O(q5)

)
`4 +

(
2π6(n+ 1)(128n4 − 313n2 + 191)

945n5
q3

+
4π6(n+ 1)(538n4 − 1107n2 + 573)

945n5
q4 +O(q5)

)
`6 +O(`8). (4.1)

On the CFT side, the torus partition function receives the contribution from W oper-

ators as well

Z = q−
c
24 q̄−

c
24

∞∏
k=0

1

(1− qk+2)(1− qk+3)(1− q̄k+2)(1− q̄k+3)
. (4.2)

Consequently, from (2.18) and (2.21) we read the one-point functions

〈T 〉T =
π2c

6
− 8π2q2 − 24π2q3 − 40π2q4 +O(q5),

〈A〉T =
π4c(5c+ 22)

180
+

8π4(5c+ 22)

3
q2 + 8π4(7c+ 50)q3 +

8π4(61c+ 542)

3
q4 +O(q5),

〈B〉T = − 62π6c

525
+

96π6(120c+ 1)

25
q2 +

2592π6(40c+ 9)

25
q3 +

96π6(984c+ 577)

5
q4+O(q5),

〈D〉T =
π6c(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)
+

22π6(2c− 1)(5c+ 22)(7c+ 68)

3(70c+ 29)
q2

+
6π6(350c3 + 5661c2 − 3702c− 14648)

70c+ 29
q3

+
2π6(8890c3 + 78695c2 − 1393042c− 136424)

3(70c+ 29)
q4 +O(q5). (4.3)

Compared to (3.5), there are corrections starting from the order q3. As shown in ap-

pendix A, on torus we have

〈W 〉T = 0. (4.4)
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The next primary operator is E (A.7) at level 6, and its leading contribution to the Rényi

entropy is (A.10). This is beyond our consideration. From (2.17), we get the Rényi entropy

in expansion of 1/c

S(2,3)
n = SL

n + SNL
n,(2) + SNL

n,(3) + · · · , (4.5)

with the leading part SL
n equaling Scl

n (3.2), the next-to-leading part SNL
n,(2) equaling

S1-loop
n,(2) (3.3), and the next-to-leading part SNL

n,(3) equaling S1-loop
n,(3) (4.1).

5 N = (1, 1) SCFT

In an N = (1, 1) SCFT, we have to consider the operators G and Ḡ, besides the stress

tensor T , T̄ . The N = (1, 1) SCFT is dual to the N = 1 supergravity (SUGRA) in the

AdS3 spacetime. The low temperature expansion of the additional Rényi entropy has been

calculated on both SUGRA and SCFT sides [13], and we further expand the result by the

length of the interval

S1-loop
n,(3/2) =

(
π2(n+ 1)

n
q3/2 +

5π2(n+ 1)

3n
q5/2 +O(q3)

)
`2 +

(
− π4(n+ 1)(13n2 − 17)

60n3
q3/2

− π4(n+ 1)(47n2 − 51)

36n3
q5/2+O(q3)

)
`4+

(
π6(n+ 1)(205n4 − 614n2 + 457)

7560n5
q3/2

+
π6(n+ 1)(4663n4 − 9610n2 + 5027)

7560n5
q5/2 +O(q3)

)
`6 +O(`8). (5.1)

On CFT side, we consider the torus partition function

Z = q−
c
24 q̄−

c
24

∞∏
k=0

(1 + qk+3/2)(1 + q̄k+3/2)

(1− qk+2)(1− q̄k+2)
. (5.2)

From (2.18) and (2.21) we get the one-point functions

〈T 〉T =
π2c

6
− 6π2q3/2 − 8π2q2 − 10π2q5/2 +O(q3),

〈A〉T =
π4c(5c+ 22)

180
− 2π4(c− 16)q3/2 +

8π4(5c+ 22)

3
q2 − 2π4(5c− 284)

3
q5/2 +O(q3),

〈B〉T = − 62π6c

525
+

72π6

25
q3/2 +

96π6(120c+ 1)

25
q2 + 696π6q5/2 +O(q3),

〈D〉T =
π6c(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)
− π6(70c3 − 1903c2 + 20054c+ 8104)

2(70c+ 29)
q3/2

+
22π6(2c− 1)(5c+ 22)(7c+ 68)

3(70c+ 29)
q2 − π6(350c3−38075c2+1065526c+59624)

6(70c+ 29)
q5/2

+O(q3). (5.3)

Since G is fermionic, in the NS sector we have 〈G〉T = 0. The next primary operator is

C (A.12) at level 4, and its leading contribution to the Rényi entropy is (A.15). Similar to

the case of CFT with W(2, 3) symmetry, this is beyond our consideration. From (2.17),

we get

S(2,3/2)
n = SL

n + SNL
n,(2) + SNL

n,(3/2) + · · · , (5.4)
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with the leading part SL
n equaling Scl

n (3.2), the next-to-leading part SNL
n,(2) equal-

ing S1-loop
n,(2) (3.3), and the next-to-leading part SNL

n,(3/2) equaling S1-loop
n,(3/2) (5.1).

6 Conclusion

In this paper we investigated the short interval expansion of the single interval Rényi

entropy for a two-dimensional CFT on torus. The length of the interval ` is small such

that we could apply the OPE of the twist operators to reduce the computation to the one-

point functions on the torus. Even though the prescription could be applied to any CFT,

we focused on the large c CFT dual to the AdS3 gravity and we got the Rényi entropy

to order `6. We discussed the cases of vacuum conformal family, the CFT with W(2, 3)

symmetry, and N = (1, 1) SCFT, and found consistent agreement with the existing results

in all the cases. We discussed the case with chemical potential as well.

In the previous studies of the Rényi entropy in a large c CFT on the torus [36–38],

there is no restriction on the length of the interval except that it should not be comparable

with the size the torus , but one has to take the low or high temperature limit in order to

expand the thermal density matrix appropriately. It is unwieldy to get the higher orders

thermal corrections to the Rényi entropy. In the new prescription based on the short

interval expansion, we have to take the small interval limit and only get the first few orders

of interval length. However, the higher order thermal corrections, or finite size corrections,

of the Rényi entropy can be got easily. In particular, we may read the 1/c correction quite

easily, which is hard to find in the old treatment. Furthermore, we can study the case with

nonvanishing chemical potential in the new prescription. The Rényi entropy in this case

can be read easily. It would be nice to see if this can be reproduced on the gravity side.
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A Some basics of CFT

In this appendix we review some useful basics of the two-dimensional CFT. We mainly give

some quasiprimary operators in the vacuum conformal family, and some primary operators

in CFT W(2, 3) symmetry and N = (1, 1) SCFT.

The operators in the holomorphic sector of the vacuum conformal family can be written

as quasiprimary operators and their derivatives. In level 2, one has the quasiprimary
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operator T , with the usual normalization αT = c
2 . In level 4, we have

A = (TT )− 3

10
∂2T, αA =

c(5c+ 22)

10
. (A.1)

In level 6, we have

B = (∂T∂T )− 4

5
(∂2TT )− 1

42
∂4T, αB =

36c(70c+ 29)

175
,

D = (T (TT ))− 9

10
(∂2TT )− 1

28
∂4T +

93

70c+ 29
B, (A.2)

αD =
3c(2c− 1)(5c+ 22)(7c+ 68)

4(70c+ 29)
.

Under a general coordinate transformation z → f(z), we have

T (z) = f ′2T (f) +
c

12
s, A(z) = f ′4A(f) +

5c+ 22

30
s
(
f ′2T (f) +

c

24
s
)
,

B(z) = f ′6B(f)− 8

5
f ′4sA(f)− 70c+ 29

1050
f ′4s∂2T (f) +

70c+ 29

420
f ′2(f ′s′ − 2f ′′s)∂T (f)

− 1

1050

(
28(5c+ 22)f ′2s2 + (70c+ 29)(f ′2s′′ − 5f ′f ′′s′ + 5f ′′2s)

)
T (f)

− c

50400

(
744s3 + (70c+ 29)(4ss′′ − 5s′2)

)
,

D(z) = f ′6D(f) +
(2c− 1)(7c+ 68)

70c+ 29
s

(
5

4
f ′4A(f) +

5c+ 22

48
s
(
f ′2T (f) +

c

36
s
))

, (A.3)

with the definition of Schwarzian derivative

s(z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (A.4)

For holomorphic sector of the CFT with W(2, 3) symmetry, we have the primary

operator W at level 3 with the usual normalization αW = c
3 . All the operators constructed

by T and W are of integer spins, and so for any such quasiprimary operator φ we have

CφWφ = 0. (A.5)

So from (2.29), we conclude that on torus

〈W 〉T = 0. (A.6)

At level 6 there is primary operator

E = (WW )− 1

84
∂4T − 40

9(5c+ 22)
∂2A+

215

18(70c+ 29)
B − 16(191c+ 22)

3(2c− 1)(5c+ 22)(7c+ 68)
D.

(A.7)

There are the normalization and structure constant

αE = CWEW =
4c(c+ 2)(c+ 23)(5c− 4)(7c+ 114)

9(2c− 1)(5c+ 22)(7c+ 68)
, (A.8)
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from which we get in the large c limit

(CWEW )2

αEα2
W

= 2 +O(1/c). (A.9)

Using (2.31), we have the term in Rényi entropy under the limit of small `, small q, and

large c

`12bEE〈E〉2T ∼ `12q6c0. (A.10)

For holomorphic sector of the N = (1, 1) SCFT, we have the primary operator G at

level 3/2 with the usual normalization αG = 2c
3 . Since G is fermionic, in NS sector we have

〈G〉T = 0. (A.11)

The next primary operator is at level 4

C = (∂GG)− 3

10
∂2T − 17

5c+ 22
A. (A.12)

There are the normalization and structure constant

αC = CGCG =
c(4c+ 21)(10c− 7)

6(5c+ 22)
, (A.13)

and in the large c limit we get

(CGCG)2

αCα2
G

= 3 +O(1/c). (A.14)

Under the limit of small `, small q, and large c, we have the term in Rényi entropy

`8bCC〈C〉2T ∼ `8q3c0. (A.15)

B Low temperature expansion of one-point functions

In this appendix we reproduce the low temperature expansion of the one-point func-

tions (3.5) in a different method. We use the strategy that is introduced in the end of

section 2. In the calculations we need the normalization factors

αT =
c

2
, α∂T = 2c, α∂2T = 20c, αA =

c(5c+ 22)

10
, (B.1)

and the structure constants

CTTT = c, CTTA =
c(5c+ 22)

10
, CTTB = −2c(70c+ 29)

35
,

CTTD = 0, CTAA =
2c(5c+ 22)

5
, CAAA =

c(5c+ 22)(5c+ 64)

25
,

CAAB = −4c(5c+22)(14c+73)

35
, CAAD=

6c(2c− 1)(5c+ 22)(7c+ 68)

70c+ 29
. (B.2)
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We have the CFT on a cylinder with coordinate z, spatial period L = 1, and the holomor-

phic thermal density matrix (2.26). For T , we have the expectation value

〈T (z)〉T =
tr
[
ρvacT (z)

]
trρvac

=
〈0|T (z)|0〉+ q2〈T |T (z)|T 〉

αT
+ q3〈∂T |T (z)|∂T 〉

α∂T
+ q4〈∂2T |T (z)|∂2T 〉

α∂2T
+ q4〈A|T (z)|A〉

αA
+O(q5)

1 + q2 + q3 + 2q4 +O(q5)
.

(B.3)

The three-point correlation functions on the right side can be calculated by mapping the

cylinder to a complex plane C with coordinate f(z) = e2πiz. For example, we have

〈∂T |T (z)|∂T 〉 = f ′2〈∂T (∞)T (f)∂T (0)〉C +
c

24
〈∂T (∞)∂T (0)〉C =

π2c(c− 72)

3
. (B.4)

Similarly, we can calculate other three-point correlation functions and then get the low

temperature expansion of 〈T 〉T . In the way method we can get 〈A〉T , 〈B〉T , and 〈D〉T to

the order q4. The results are the same with (3.5).
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D 92 (2015) 126002 [arXiv:1412.0763] [INSPIRE].
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