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1 Introduction

Supersymmetry is one of the candidates for beyond the Standard Model and attracting

attention as the playground for testing the various ideas of analyzing the strongly-coupled

or non-perturbative dynamics, for instance, such as QCD. The supersymmetry severely

constrains the perturbative corrections and we can make non-perturbative predictions by

combining the holomorphic properties, the symmetry argument and the selection rules.

About twenty years ago, in a series of analyses of the four-dimensional N = 1 supersym-

metric gauge theories, Seiberg found a beautiful duality which relates the theories with

different ranks of the gauge groups [1]. After that, various dualities which contain not only

the (anti-)fundamental matters but also the adjoint, symmetric or anti-symmetric matters

were found by many authors (for example, see [2] which includes the comprehensive report

on the extension of the Seiberg duality).
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Among these dualities, one of the most constructive ways of finding the dualities is

a so-called “deconfinement technique” [3–5], where the two-index matters, such as the

anti-symmetric matters, are considered as the mesons of some (s-)confining gauge theo-

ries. Since the deconfined description only contains the fields in the (anti-)fundamental

representations, the usual Seiberg duality [1] can be adapted. Thus the dual description of

the SU(N) gauge theories with a two-index matter is given by the theories with a product

of the gauge groups, SU(N) × (other gauge groups). If the dual description also has the

two-index matters, we can again deconfine it by additional gauge groups. In this way, we

generally have the infinite duality sequences.

In three space-time dimensions, the dynamics of the supersymmetric gauge theories

with four supercharges was analyzed (for example, see [6–8]), where it was found that the

phenomena similar to 4d N = 1 SQCD arise: for example, chiral symmetry breaking, con-

finement, dynamical supersymmetry breaking. In addition, 3d SUSY gauge theories have

new features, say, Coulomb branch dynamics and real masses, which is closely related to

the fact that the 3d vector superfield supplies the Coulomb branch. These new ingredients

make the 3d dynamics highly interesting and complicated.

It is now known that there are various dualities also in 3d: the Giveon-Kutasov dual-

ity [9] relates the supersymmetric Chern-Simons matter gauge theories, which is a general-

ization of the level-rank duality in the pure Chern-Simons theory. The Aharony duality [10]

is a Seiberg-like duality of the U(N) or Sp(2N) gauge theories without Chern-Simons terms.

Furthermore the extensions including adjoint matters are very well studied [11–14]. How-

ever the deconfinement technique in 3d has not been investigated yet.

Recently dynamics of the Coulomb branch in the 3d N = 2 SUSY gauge theories have

been extensively studied [15–17], where it was argued that the effects of the real masses

for the matter fields, of the induced Chern-Simons levels and of the Fayet-Iliopoulos terms

are important to determine the low-energy dynamics. This understanding of the Coulomb

branch dynamics enables us to find the relationship between the 4d Seiberg dualities and

the 3d ones [17, 18].

For the 3d dualities with two-index matters, we have the 3d version of the Kutasov-

Schwimmer duality [13, 14]. The electric side is an U(Nc) gauge theories with Nf (anti-

)fundamental matters Q, Q̃ and an adjoint matter X with a superpotential W = trXk+1.

The magnetic dual is given by an U(kNf−Nc) gauge theory. The Kutasov-Schwimmer dual-

ity is regarded as the generalization of the conventional Seiberg duality containing only the

fundamental matters because the superpotential with some perturbations W =
∑k+1

i=1 gitrX
i

breaks the U(Nc) gauge symmetry into U(n1)× · · · ×U(nk) and each U(ni) part has only

the fundamental matters. Thus the problem reduces to the conventional Seiberg duality

at least in these perturbations. In addition, the superpotential truncates the chiral ring

up to trXk and as the result the moduli space of vacua becomes tractable. To find the

duality with two-index matters and without any superpotential is extremely non-trivial.

In four-dimensions we can use the deconfinement technique to find such a duality [3–5].

However such a technique has not been developed in three-dimensions.
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In this paper we will investigate the deconfinement technique for the 3d N = 2 super-

symmetric theories with two-index matters. We will especially focus on the deconfinement

of the anti-symmetric matters, which is performed by the s-confining phase of the 3d

N = 2 Sp(2N) gauge theory with 2N + 2 fundamental matters. However this method is

not limited to the anti-symmetrics. It will be easily generalized to the theories with the

symmetric or adjoint matters. By using the deconfinement technique we will find that the

large class of the SU(N) gauge theories with one anti-symmetric is completely s-confining.

Especially, when the dynamics of the both gauge groups are s-confining, we will be able to

find the non-gauge description as the dual theory. We will call this condition “s-confining

× s-confining”.

When considering the deconfinement in 3d, we are forced to study the product gauge

groups1 and the structure of their Coulomb branches since under the duality transforma-

tion the Coulomb branch will be non-trivially mapped. The rigorous proof of the mapping

is quite difficult due to the strong dynamics and will be checked only from the symmetry

and consistency argument. Thus we will consider the SU(2)N product gauge theory as a

supporting example on this subtlety, which is also the generalization of the “s-confining

× s-confining” structure. This theory was already investigated in 4d [21–23] and these

authors claimed that one can derive the exact superpotential by using the holomorphy

and the so-called “linearity principle” (integrating-in method) and that if we include the

bi-fundamental matters, the theory is in the Coulomb phase and the N = 1 Seiberg-Witten

curve can be studied. We will analyze the 3d version by using the quantum dynamics of

the 3d N = 2 SU(2) gauge theory and we will find the consistency with the 4d exact super-

potential and the dimensional reduction of the Seiberg-Witten curve [24]. As a by-product,

this will support the mapping rule of the Coulomb branch under the duality transformation.

The organization of this paper is as follows. In section 2, we will briefly review the

quantum dynamics of the 3d N = 2 Sp(2N) and SU(N) gauge theories which will be

employed for deconfining the anti-symmetric matters. Depending on the number of (fun-

damental) flavors, there are various phases. In section 3, we will show the deconfinement

of a 3d N = 2 SU(N) gauge theory with anti-symmetric matters and (anti-) fundamentals.

First example is a chiral gauge theory with a single anti-symmetric matter, two fundamen-

tals and 2N anti-fundamentals. Next we will study the 3d N = 2 SU(N) gauge theory with

two anti-symmetric matters and the vector-like matters in a fundamental representation,

which was considered by [25]. These examples are all s-confining and the dual theories

are given by the non-gauge theories. The s-confining phase of the first example is a new

result. In section 4, we will study the product gauge group SU(2)N , which is generalizing

the “s-confining × s-confining” structure in section 3. From the comparison with the 4d

exact result, we will find that the mapping rule of the Coulomb branch is correct. We will

also comment on the relation between the Seiberg-Witten curve and the 3d exact super-

potential. In section 5, a 3d N = 2 SU(N) gauge theory with an anti-symmetric matter

and the generic number of the (anti-)fundamentals is considered. Finally in section 6 we

conclude and discuss the future directions.

1The generic product gauge theories in 3d were investigated in [19, 20] by using the brane construction.
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2 Quantum aspects of 3d N = 2 Sp(2N) and SU(N) gauge theories

In this section we will briefly summarize the quantum aspects of the 3d N = 2 gauge

theories with SU(N) or Sp(2N) gauge symmetries,2 paying attention to the flat directions

(moduli) of the scalar fields, which is based on [7, 26]. Since there is a 3d N = 2 super-

symmetry which means the theory has four supercharges, the theory is obtained by the

dimensional reduction of the 4d N = 1 supersymmetric gauge theory. Thus a 3d chiral

superfield contains a single complex scalar field as usual. If there is no superpotential and

no quantum correction which makes this scalar massive, then the scalar field becomes a

flat direction. We will call this flat direction Higgs branch.

For a vector superfield there is also a real scalar field in the adjoint representation

coming from the compactified direction of the 4d gauge field A3 which is denoted as φ. We

usually diagonalize φ by the gauge and Weyl transformations

φ =

{
diag(φ1, φ2, · · · , φN ), φ1 > φ2 > · · · > φN ,

∑N
i=1 φi = 0 for SU(N)

diag(φ1, · · · , φN ,−φN , · · · ,−φ1), φ1 > φ2 > · · · > φN for Sp(2N).
(2.1)

When this adjoint scalar φ takes a generic vev 〈φ〉 6= 0, the gauge group is broken to

U(1)rank(G), where G is SU(N) or Sp(2N). Since a three-dimensional photon is dual to

a compact scalar field σ which we usually call “dual photon”, combining these two real

scalars, each U(1) vector superfield gives one complex scalar field

Φi = φi + iσi. (2.2)

Thus the vector superfield has the rank(G) dimensional flat directions at the tree-level.

However these directions are in many cases lifted by the instanton corrections [6–8]. In the

presence of the fundamental matters, only the single branch is un-lifted, which is denoted by

Y ∼

{
exp(Φ1 − ΦN ) for SU(N)

exp(Φ1 + ΦN ) for Sp(2N).
(2.3)

This exponential form is due to the fact that the dual photon is actually the compact

scalar. When the above Coulomb branch operators take some vev’s, the unbroken U(1)

gauge symmetry introduces a topological U(1)J symmetry whose current is defined as

JµU(1)J
= εµνρFU(1)

νρ . (2.4)

Since this current generates the shift symmetry of the dual photon, the Coulomb branch

operator is charged under the U(1)J global symmetry. When we usually have other U(1)

global symmetries, say, U(1)B which rotates the chiral superfields, the mixed Chern-Simons

term between U(1)J and U(1)B is induced from the one-loop diagrams and leads to the

mixing of the global U(1) symmetries in a non-trivial way. As the result, Y is not charged

under the U(1)B classically but quantum mechanically charged. These mixings are calcu-

lated by the Callias index theorem [27–29]. This phenomenon has the completely identical

2The convention of the Sp(2N) group is that Sp(2) ∼ SU(2)
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origin as the fact that in the Chern-Simons theory the electrically charged particles are

propagating with the magnetic flux accompanied.

Here we will show the global charges of these flat directions and the s-confining phases

which we will use later. Let us first consider the 3d N = 2 SU(N) gauge theory with

F fundamentals Q and F anti-fundamentals Q̃. The global symmetry of the theory is

SU(F )L×SU(F )R×U(1)B×U(1)A×U(1)R. The quantum numbers of the matter contents

and the Coulomb branch operator are in table 1, where λ is a gaugino.

SU(N) SU(F )L SU(F )R U(1)B U(1)A U(1)R

Q 1 1 1 R

Q̃ ¯ 1 ¯ −1 1 R

λ adj. 1 1 0 0 1

YSU(N) 1 1 1 0 −2F −2F (R− 1)− 2(N − 1)

Table 1. Quantum numbers of the electric theory.

The monopole-instanton lifts almost all the Coulomb branch and the one complex

dimension is expected to be un-lifted. We call it YSU(N). For F = N , the theory is in the

s-confining phase [7]. The effective degrees of freedom are a meson M := Q̄Q, two baryonic

operators B := QN , B̄ := Q̄N and the Coulomb branch operator YSU(N). The dynamics of

the s-confining phase is described by a superpotential

W = −YSU(N)(detM −BB̄), (2.5)

which is consistent with the global symmetries listed above.

For a 3d N = 2 Sp(2N) theory with 2F fundamental matters, the quantum numbers

of the matter fields and the Coulomb branch operator are summarized in table 2.

Sp(2N) SU(2F ) U(1)B U(1)R

Q 1 R

λ adj. 1 0 1

YSp(2N) 1 1 −2F −2F (R− 1)− 2N

Table 2. Quantum numbers of the 3d N = 2 Sp(2N) gauge theory.

We expect that the monopole-instantons again lift most of the Coulomb branch and

the complex one-dimensional part remains un-lifted and it is denoted by YSp(2N). The

s-confining phase arises for F = N + 1 [26], in which the gauge singlets M := QQ and

YSp(2N) with a superpotential

W = −YSp(2N)Pf M (2.6)

give the correct description of the low-energy dynamics.
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3 Deconfinement with s-confining × s-confining

3.1 SU(2N)

As an illustration of how the 3d deconfinement technique works, we will first consider the

3d N = 2 SU(2N) gauge theories with a single anti-symmetric matter and some non-vector

like (“chiral”) matters in the (anti-)fundamental representations. In 4d, the anti-symmetric

matters are deconfined into the (bi-)fundamental quarks by regarding the anti-symmetric

matters as the mesons of the s-confining Sp gauge theory [3–5]. We can apply the same

technique to the 3d case more easily as follows. Since we have no chiral anomaly in 3d,

without bothering about the chiral anomaly matching between the confined and deconfined

theories, we can easily deconfine the anti-symmetric matters by using the s-confining phase

of the 3d N = 2 Sp(2N − 2) theory. Only the subtlety comes from the existence of the

Coulomb branch which will be lifted by introducing the additional singlet and by coupling

it to the Coulomb branch. In this subsection, we will consider the case with the SU(2N)

gauge group. Next subsection, the SU(2N + 1) case will be given.

To be more specific, the first example is a 3d N = 2 SU(2N) gauge theory with

two fundamentals, 2N anti-fundamentals and one anti-symmetric matter. We call this

theory “electric”. The deconfined description is easily obtained by a SU(2N)×Sp(2N −2)

theory. The global symmetry of the theory is SU(2N) × SU(2) × U(1)3 × U(1)R. The

matter contents and their quantum numbers of the deconfined description are summarized

in table 3. In the table, YSU(2N) and YSp(2N−2) are the Coulomb branch coordinates of the

SU(2N) and Sp(2N − 2) gauge groups respectively and we here chose the U(1)R charge as

a generic value because we do not know the correct U(1)R charge which is realized in the

far infrared region.

SU(2N) Sp(2N − 2) SU(2N) SU(2) U(1) U(1) U(1) U(1)R

Q � � 1 1 1 0 0 R1

Q′′ � 1 1 � 0 1 0 R2

Q̄ ¯ 1 � 1 0 0 1 R3

S 1 1 1 1 2N 0 0 2NR1

YSU(2N) 1 1 1 1 −2N + 2 −2 −2N −(2N − 2)R1 − 2R2 − 2NR3 + 2

YSp(2N−2) 1 1 1 1 −2N 0 0 −2NR1 + 2

Table 3. Quantum numbers of the s-confining × s-confining theory.

Due to the special number of the (anti-)fundamentals, both of the gauge groups,

SU(2N) and Sp(2N − 2) are in the s-confining phases. We call this structure “s-confining

× s-confining” according to the 4d case in [30] where the 4d versions of “s-confining ×
s-confining” were considered. In this theory we can replace both of the gauge dynamics

with the descriptions with only the chiral superfields and without the gauge fields. The

Coulomb branch of the Sp(2N − 2) gauge theory is lifted by the singlet field S giving the

mass term

W = SYSp(2N−2). (3.1)

– 6 –
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Since the dynamics of the Sp(2N − 2) gauge theory is in the s-confining phase, we can

first replace the Sp(2N) dynamics to a theory with only the Sp(2N − 2)-gauge singlets

by assuming g2
SU � g2

Sp. The low-energy effective theory becomes a 3d N = 2 SU(2N)

gauge theory in table 4. The matter contents includes the anti-symmetric matter which

we wanted to deconfine.

SU(2N) SU(2N) SU(2) U(1) U(1) U(1) U(1)R

V := QQ 1 1 2 0 0 2R1

Q′′ � 1 � 0 1 0 R2

Q̄ ¯ � 1 0 0 1 R3

YSp(2N−2) 1 1 1 −2N 0 0 −2NR1 + 2

S 1 1 1 2N 0 0 2NR1

Table 4. Quantum numbers of the electric SU(2N) theory.

The superpotential describing the s-confining phase of the Sp(2N − 2) gauge theory is

W = −YSp(2N−2)V
N + SYSp(2N−2), (3.2)

where the notations like V N is a bit sloppy because more rigorously we should regard this

as a Pfaffian. But in this article this abbreviation is enough for our purposes. Notice that

the fields V and YSp(2N−2) are not composites but elementary fields from the low-energy

SU(2N) gauge theory point of view since we are in the s-confining phase of the Sp(2N)

theory. Due to the mass term between S and YSp(2N−2), the first term plays no role at all

and the equation of motion for YSp(2N−2) gives S = V N . At the low-energy limit, we have

the 3d N = 2 SU(2N) gauge theory with two fundamentals, 2N anti-fundamentals and

one anti-symmetric matter with no tree-level superpotential.

The Coulomb branch of this theory is complicated due to the reason discussed

in [25, 31], where it was shown that the presence of the anti-symmetric matter and the

“chiral” nature of the (anti-) fundamental matters make the Coulomb branch complicated

since the various mixed Chern-Simons terms and the FI terms are effectively generated

along the Coulomb branch and this leads to the modification of the monopole-instanton

structure and it makes the Coulomb branch non-gauge invariant. This may allow us to

have the two-dimensional Coulomb branch. Then in this case we also expect more than

one coordinate to be required for describing the entire Coulomb branch. The Coulomb

branch direction

Y ∼


σ

0
. . .

0

−σ

 (3.3)

which is usually globally defined and un-lifted should be dressed by some matter fields.

This is because the chirality of the matter contents induces the effective Chern-Simons term

– 7 –
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along the direction Y , and then Y becomes non-gauge invariant. The dressed Coulomb

branch operators which are expected to be un-lifted are as follows.

Y V N−1, Y V N−2Q′′2 (3.4)

The global charges of these operators are in table 5.

SU(2N) SU(2) U(1) U(1) U(1) U(1)R

Y 1 1 −4N + 4 −2 −2N −(4N − 4)R1 − 2R2 − 2NR3 + 2

Y V N−1 1 1 −2N + 2 −2 −2N −(2N − 2)R1 − 2R2 − 2NR3 + 2

Y V N−2Q′′2 1 1 −2N 0 −2N −2NR1 − 2NR3 + 2

Table 5. Global symmetries of the (dressed) monopole operators.

Here we will briefly show that these composite operators are indeed gauge invariant

according to the discussion in [25, 31]. First, along the Coulomb branch direction Y , the

gauge group is broken as

SU(2N)→ SU(2N − 2)×U(1)1 ×U(1)2, (3.5)

where the indices of U(1)1 and U(1)2 are only labeling the U(1) gauge groups and do

not indicate the Chern-Simons level. The generators of these two U(1)’s are conveniently

chosen as

TU(1)1 =


1

0
. . .

0

−1

 , TU(1)2 =


N − 1

−1
. . .

−1

N − 1

 , (3.6)

where we neglect the normalization of the generators which is not important here. Under

this gauge symmetry breaking, the matter fields are decomposed as

�→ �(0,−1) + 1(1,N−1) + 1(−1,N−1) (3.7)

¯ → ¯ (0,1) + 1(−1,1−N) + 1(1,1−N) (3.8)

→
(0,−2)

+ �(1,N−2) + �(−1,N−2) + 1(0,2N−2). (3.9)

Along the Y direction, some of the above fields are massive and should be integrated

out. Then the mixed Chern-Simons term is induced for U(1)1 and U(1)2:

k
U(1)1,U(1)2
eff = −2N + 2. (3.10)

This mixed Chern-Simons term makes the Coulomb branch operator Y gauge non-invariant

under the U(1)2 gauge group. The U(1)2 charge of Y is 2N − 2. Then we can make this

operator gauge invariant by multiplying a field in a representation ¯ because ¯ decomposes

under the above gauge symmetry breaking as

¯ → ¯
(0,2)

+ �̄−1,2−N + �̄1,2−N + 1(0,2−2N), (3.11)

– 8 –
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and we can use the last component 1(0,2−2N) for making the Coulomb branch operator

gauge invariant. Thus we have two types of the dressed monopole operators:

Y V N−1, Y V N−2Q′′2. (3.12)

Next we will replace the SU(2N) dynamics with the s-confining one by assuming

g2
Sp(2N−2) � g2

SU(2N). The theory becomes a 3d N = 2 Sp(2N) gauge theory with the

following matter contents (table 6). We call this theory “magnetic”.

Sp(2N − 2) SU(2N) SU(2) U(1) U(1) U(1) U(1)R

M := QQ̄ � � 1 1 0 1 R1 +R3

M1 := Q′′Q̄ 1 � � 0 1 1 R2 +R3

B := Q2N−2Q′′2 1 1 1 2N − 2 2 0 (2N − 2)R1 + 2R2

B̄ := Q̄2N 1 1 1 0 0 2N 2NR3

YSU(2N) 1 1 1 −2N + 2 −2 −2N −(2N − 2)R1 − 2R2 − 2NR3 + 2

S 1 1 1 2N 0 0 2NR1

Y mag
Sp(2N−2) 1 1 1 −2N 0 −2N −2NR1 − 2NR3 + 2

Table 6. Quantum numbers of the magnetic Sp(2N) gauge theory.

In the deconfinement description with the SU(2N) × Sp(2N − 2) gauge symmetry,

the Sp-monopole has the fermionic zero modes coming from Q. Thus this Sp-monopole

(instanton) should behave as the vertex for Q. On the other hand, in the s-confined

description with the Sp(2N − 2) gauge symmetry, we have only the SU(2N) singlets and

thus the Sp(2N)-monopole has the fermionic zero-modes from the mesino M := QQ̄. As the

result, these two Sp(2N)-monopoles have the different types of the fermionic zero-modes

although the numbers of the zero-modes are identical. Then, the naive relation YSp(2N−2) ∼
Y mag

Sp(2N−2) is not correct. This fact can be confirmed from the quantum numbers of these

operators. More correctly the operator matching of the Coulomb branch coordinates of

the Sp(2N − 2) gauge groups is expected to be

YSp(2N−2) = Y mag
Sp(2N−2)B̄ (3.13)

up to an unimportant normalization factor. The role of B̄ is expected to absorb the

unwanted zero-modes coming from the Q̄ superfields. Thus the mass term for YSp(2N−2) is

mapped into the Yukawa term

W = SY mag
Sp(2N−2)B̄ (3.14)

and the s-confining phase of the SU(2N) gauge theory is described by

W = −YSU(2N)(M
2N−2M2

1 −BB̄) + SY mag
Sp(2N−2)B̄. (3.15)

The resulting theory is again s-confining since the magnetic Sp(2N − 2) theory has

the 2N fundamentals M , thus we move on to the description with only the gauge singlets.

The matter contents and their global charges are summarized in the following table.

– 9 –
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SU(2N) SU(2) U(1) U(1) U(1) U(1)R

N := MM 1 2 0 2 2R1 + 2R3

M1 � � 0 1 1 R2 +R3

B 1 1 2N − 2 2 0 (2N − 2)R1 + 2R2

B̄ 1 1 0 0 2N 2NR3

YSU(2N) 1 1 −2N + 2 −2 −2N −(2N − 2)R1 − 2R2 − 2NR3 + 2

Y mag
Sp(2N−2) 1 1 −2N 0 −2N −2NR1 − 2NR3 + 2

S 1 1 2N 0 0 2NR1

Table 7. Global charges of the non-gauge theory.

The superpotential describing the low-energy dynamics is

W = −Y mag
Sp(2N−2)N

N − YSU(2N)(N
N−1M2

1 −BB̄) + SY mag
Sp(2N−2)B̄ (3.16)

and the operator matching between the electric and magnetic sides is

S = V N , B = V N−1Q′′2, N = V Q̄2, M1 = Q′′Q̄, B̄ = Q̄2N

YSU(2N) = Y V N−1, Y mag
Sp(2N−2) = Y V N−2Q′′2. (3.17)

In this way, we can find that the 3d N = 2 SU(2N) gauge theory with two fundamental

matters, 2N anti-fundamental matters and one anti-symmetric matter is an s-confining

theory. This is a new s-confining theory not discussed in the literature. By introducing the

mass terms for the (anti-)fundamentals, we can easily flow to the theories with the lower

numbers of (anti-)fundamentals.

As the check of the above duality and the validity of the 3d deconfinement method,

we can derive this s-confining description from 4d. We know that the 4d N = 1 SU(2N)

gauge theory with one anti-symmetric matter V , 2N anti-fundamental matters Q̄ and four

fundamental matters Q is s-confining [4, 32–36]. The s-confined (magnetic) description is

given by the following chiral superfields in table 8,

SU(2N) SU(2N) SU(4)

V 1 1

Q̄ ¯ 1

Q 1

M := QQ̄ 1

H̄ := AQ̄2 1 1

T := V N 1 1 1

H1 := V N−1Q2 1 1

H2 := V N−2Q4 1 1 1

B̄ := Q̄2N 1 1 1

Table 8. Quantum numbers of the non-gauge theory.

and the superpotential

W = TM4H̄N−2 +H1M
2H̄N−1 +H2H̄

N + B̄TH2 + B̄H2
1 , (3.18)

– 10 –



J
H
E
P
0
8
(
2
0
1
6
)
1
2
3

where we omitted the scaling factor for simplicity and in the table 8, we abbreviated the

global U(1) symmetries. The 3d N = 2 SUSY theories and their dualities are obtained by

the dimensional reduction of the 4d N = 1 dualities [17, 18].

First we put the electric and magnetic theories on a circle and introduce the non-

perturbative superpotential coming from the Kaluza-Klein monopoles, which is absent in

the s-confining magnetic description. In order to switch off the KK-monopole contribution,

we need to turn on the real masses for the fundamental matters by gauging the subgroup

of the SU(4) global symmetry, whose generator is

T =


0

0

1

−1

 . (3.19)

This background gauging introduces the real masses for the last two components of Q. If

we take the low-energy limit, the superpotential induced by the KK-monopole vanishes.

Then the electric theory reduces to the 3d N = 2 SU(2N) gauge theory with one anti-

symmetric V , 2N anti-fundamentals and two fundamentals Q without superpotentials. On

the magnetic side, the following fields are only massless:

M̂ := Ma,i (a = 1, · · · , 2N, i = 1, 2)

H̄, T, H2, B̄

h1 := H12
1 , h2 := H34

1 (3.20)

The low-energy superpotential becomes

W = h2M̂
2H̄N−1 +H2H̄

N + B̄TH2 + B̄h1h2, (3.21)

which is precisely the same as (3.16) if we notice the identification

M̂ ∼M1, H̄ ∼ N, T ∼ S (3.22)

h1 ∼ B, h2 ∼ YSU(2N), H2 ∼ Y mag
Sp(2N−2). (3.23)

We could alternatively start with the following deconfined theory with the “s-confining

× s-confining” structure (table 9). In this case we also have the same result except for the

additional singlet to be added, then we will briefly show the result.

SU(2N) Sp(2N) SU(2) SU(2N) U(1) U(1) U(1) U(1)R
Q � � 1 1 1 0 0 R1

Q′ 1 � � 1 0 1 0 R2

Q̄ ¯ 1 1 � 0 0 1 R3

S 1 1 1 1 2N 2 0 2NR1 + 2R2

YSU(2N) 1 1 1 1 −2N 0 −2N −2NR1 − 2NR3 + 2

YSp(2N) 1 1 1 1 −2N −2 0 −2NR1 − 2R2 + 2

Table 9. Quantum numbers of the deconfined theory with s-confining × s-confining structure.
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We find that both parts of the SU(2N) gauge group and of the Sp(2N) are in the

s-confining phases. First we consider the case with g2
Sp � g2

SU where the Sp(2N) gauge

theory first confines (table 10).

SU(2N) SU(2) SU(2N) U(1) U(1) U(1) U(1)R

V := QQ 1 1 2 0 0 2R1

V ′ := QQ′ � � 1 1 1 0 R1 +R2

V ′′ := Q′Q′ 1 1 1 0 2 0 2R2

Q̄ ¯ 1 � 0 0 1 R3

YSp(2N) 1 1 1 −2N −2 0 −2NR1 − 2R2 + 2

S 1 1 1 2N 2 0 2NR1 + 2R2

Table 10. Quantum numbers of the electric theory.

We call this description “electric” and it is a 3d N = 2 SU(2N) gauge theory with

chiral (anti-)fundamental matters and an anti-symmetric matters. The superpotential is

W = −YSp(2N)(V
NV ′′ + V N−1V ′2). (3.24)

If we introduce the singlet field S coupled to the Coulomb branch of the Sp(2N) vector

superfield

W = SYSp(2N), (3.25)

the fields S, YSp are massive and integrated out, the field V ′′ is completely decouples from

the other sectors. As the result, we obtain the 3d N = 2 SU(2N) gauge theory with two

fundamental matters, 2N anti-fundamentals and one anti-symmetric matter without the

tree-level superpotential in the infrared limit.

Next we will consider g2
Sp � g2

SU and we can replace the dynamics of the SU(2N)

part with the s-confining one, in which the theory only contains the fundamentals and the

gauge singlets. We call this description “magnetic theory”. The quantum numbers of the

magnetic theory are given in table 11.

Sp(2N) SU(2) SU(2N) U(1) U(1) U(1) U(1)R

M := QQ̄ � 1 � 1 0 1 R1 +R3

B := Q2N 1 1 1 2N 0 0 2NR1

B̄ := Q̄2N 1 1 1 0 0 2N 2NR3

Q′ � � 1 0 1 0 R2

YSU(2N) 1 1 1 −2N 0 −2N −2NR1 − 2NR3 + 2

S 1 1 1 2N 2 0 2NR1 + 2R2

Y mag
Sp(2N) 1 1 1 −2N −2 −2N −2NR1 − 2NR3 − 2R2 + 2

Table 11. Quantum numbers of the magnetic theory.

The relation between the original Coulomb branch YSp(2N) and Y mag
Sp(2N) can be found

from the symmetry argument as

YSp(2N) = Y mag
Sp(2N)B̄, (3.26)
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so the mass term for YSp(2N) is mapped into

W = SY mag
Sp(2N)B̄ (3.27)

and the superpotential which describes the s-confining phase is

W = −YSU(2N)(M
2N −BB̄). (3.28)

The resulting theory is a 3d N = 2 Sp(2N) gauge theory with the 2N +2 fundamental

flavors M,Q′ and the gauge singlets S,B, B̄ and YSU(2N). Notice that the magnetic Sp(2N)

gauge theory is again s-confining, then we have the alternative description with only the

gauge singlets (table 12).

SU(2) SU(2N) U(1) U(1) U(1) U(1)R

B := Q2N 1 1 2N 0 0 2NR1

B̄ := Q̄2N 1 1 0 0 2N 2NR3

YSU(2N) 1 1 −2N 0 −2N −2NR1 − 2NR3 + 2

N1 := MM 1 2 0 2 2R1 + 2R3

N2 := MQ′ � � 1 1 1 R1 +R2 +R3

N3 := Q′Q′ 1 1 0 2 0 2R2

Y mag
Sp(2N) 1 1 −2N −2 −2N −2NR1 − 2NR3 − 2R2 + 2

S 1 1 2N 2 0 2NR1 + 2R2

Table 12. Global symmetries of the s-confining description of the magnetic theory.

Including the coupling with S, the superpotential is rewritten as follows:

W = −YSU(2N)(M
2N −BB̄)− Y mag

Sp(2N)(N
N
1 N3 +NN−1

1 N2
2 ) + SY mag

Sp(2N)B̄

→ −YSU(2N)(N
N
1 −BB̄)− Y mag

Sp(2N)(N
N
1 N3 +NN−1

1 N2
2 ) + SY mag

Sp(2N)B̄. (3.29)

This is the alternative description to the theory in table 7. The fields B, B̄, YSU(2N) and N1

in table 12 are identified with the fields S, B̄, Y mag
Sp(2N−2) and N in table 7. The correspon-

dence of the remaining fields N2, N3, Y
mag

Sp(2N) and S in table 12 is more subtle. The direction

labeled by SY mag
Sp(2N) in table 12 corresponds to YSU(2N)B in table 7 and the direction with

N2
2Y

mag
Sp(2N) in table 12 is matched with YSU(2N)M

2
1 in table 7. N3 is identified with V ′′ in

the electric theory. All the terms in (3.29), except for the third term including N3, are

translated into

W → −Y mag
Sp(2N−2)(N

N − SB̄)− YSU(2N)N
N−1M2

1 + YSU(2N)BB̄. (3.30)

This shows the precise agreement up to an introduction of N3. However, since in the

alternative description we introduce the additional singlet V ′′ and it will decouple after

the use of the equation of motion, we cannot see the complete agreement between the
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superpotentials (3.16) and (3.29). In order to see the agreement of the superpotential, we

can introduce the following mass term from the beginning

δW = S′Q′Q′ = S′N3, (3.31)

where S′ is the new gauge singlet. This lifts the would-be decoupled direction and we

recover the superpotential (3.16). Notice that the correspondence of the superpotential for

the theories in table 7 and table 12 does not mean the equivalence of these two theories.

We should regard the correspondence as an IR duality since the operators N2, N3, Y
mag

Sp(2N)

and S are mapped in a complicated way discussed above and the correspondence of the

superpotential is not a simple relabeling of the fields.

3.2 SU(2N + 1)

For the SU(2N+1) gauge group, we start with the following s-cofining × s-confining theory

(table 13) with an N = 2 supersymmetry. We need an additional Sp(2N) fundamental

matter in order to have the s-cofining × s-confining structure.

SU(2N + 1) Sp(2N) SU(2N + 1) U(1) U(1) U(1) U(1) U(1)R

Q � � 1 1 0 0 0 R1

Q′ 1 � 1 0 1 0 0 R2

Q′′ � 1 1 0 0 1 0 R3

Q̄ ¯ 1 � 0 0 0 1 R4

S 1 1 1 2N + 1 1 0 0 (2N + 1)R1 +R2

YSU(2N+1) 1 1 1 −2N 0 −1 −2N − 1 −2NR1 −R3 − (2N + 1)R4 + 2

YSp(2N) 1 1 1 −2N − 1 −1 0 0 −(2N + 1)R1 −R2 + 2

Table 13. Quantum numbers of the s-confining × s-confining theory for SU(2N + 1).

The Coulomb branch for the Sp(2N) gauge group is lifted by introducing the mass

term just as before.

W = SYSp(2N). (3.32)

Replacing the dynamics of the Sp(2N) gauge theory with the s-confining description, we

have the 3d N = 2 SU(2N + 1) gauge theory with two fundamental matters, 2N + 1

anti-fundamental matters and one anti-symmetric matter. The matter contents and their

quantum numbers are summarized in the following table.

SU(2N + 1) SU(2N + 1) U(1) U(1) U(1) U(1) U(1)R

V := QQ 1 2 0 0 0 2R1

V ′ := QQ′ � 1 1 1 0 0 R1 +R2

Q′′ � 1 0 0 1 0 R3

Q̄ ¯ � 0 0 0 1 R4

YSp(2N) 1 1 −2N − 1 −1 0 0 −(2N + 1)R1 −R2 + 2

S 1 1 2N + 1 1 0 0 (2N + 1)R1 +R2

Table 14. Quantum numbers of the SU(2N + 1) “electric” gauge theory.

The superpotential describing the above s-confining phase is

W = −YSp(2N)V
NV ′ + SYSp(2N). (3.33)
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If we use the equation of motion of S, the first term in the superpotential palys no role.

Then, at the low-energy limit, we have the 3d N = 2 SU(2N + 1) gauge theory with the

two fundamentals, the 2N + 1 anti-fundamentals and the anti-symmetric matter without

any tree-level superpotential.

If we consider the case with g2
SU � g2

Sp, we first change the SU(2N + 1) dynamics

to the s-confining one. The theory becomes a 3d N = 2 Sp(2N) gauge theory with the

following field contents and we call this theory “magnetic” (table 15).

Sp(2N) SU(2N + 1) U(1) U(1) U(1) U(1) U(1)R

M := QQ̄ � � 1 0 0 1 R1 +R4

M1 := Q′′Q̄ 1 � 0 0 1 1 R3 +R4

B := Q2NQ′′ 1 1 2N 0 1 0 2NR1 +R3

B̄ := Q̄2N+1 1 1 0 0 0 2N + 1 (2N + 1)R4

Q′ � 1 0 1 0 0 R2

YSU(2N+1) 1 1 −2N 0 −1 −2N − 1 −2NR1 −R3 − (2N + 1)R4 + 2

S 1 1 2N + 1 1 0 0 (2N + 1)R1 +R2

Y mag
Sp(2N) 1 1 −2N − 1 −1 0 −2N − 1 −(2N + 1)R1 − (2N + 1)R4 −R2 + 2

Table 15. Quantum numbers of the Sp(2N) “magnetic” gauge theory.

The Coulomb branch coordinates on the electric and magnetic sides are identified as

YSp(2N) = Y mag
Sp(2N)B̄, (3.34)

and the superpotential describing the s-confining phase of the part of the SU(2N+1) gauge

theory is

W = −YSU(2N+1)(M
2NM1 −BB̄) + SY mag

Sp(2N)B̄. (3.35)

Notice that this theory is again s-confining, so we can go on to the non-gauge theory

as follows (table 16).

SU(2N + 1) U(1) U(1) U(1) U(1) U(1)R

N := MM 2 0 0 2 2R1 + 2R4

N1 := MQ′ � 1 1 0 1 R1 +R2 +R4

M1 � 0 0 1 1 R3 +R4

B 1 2N 0 1 0 2NR1 +R3

B̄ 1 0 0 0 2N + 1 (2N + 1)R4

YSU(2N+1) 1 −2N 0 −1 −2N − 1 −2NR1 −R3 − (2N + 1)R4 + 2

Y mag
Sp(2N) 1 −2N − 1 −1 0 −2N − 1 −(2N + 1)R1 − (2N + 1)R4 −R2 + 2

S 1 2N + 1 1 0 0 (2N + 1)R1 +R2

Table 16. Quantum numbers of the Sp(2N) gauge theory.

The superpotential becomes

W = −YSU(2N+1)(N
NM1 −BB̄)− Y mag

Sp(2N)N
NN1 + SY mag

Sp(2N)B̄. (3.36)

The operator matching to the theory in table 14 can be easily found from the global

symmetries:

N = V Q̄2, N1 = V ′Q̄, M1 = Q′′Q̄

B = V NQ′′, B̄ = Q̄2N+1, S = V NV ′. (3.37)
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For the case with SU(2N), we can have the alternative deconfinement (table 9), which

is the freedom of tuning the numbers of the SU(2N) fundamentals and the Sp fundamen-

tals. However, for SU(2N + 1), we only have this deconfinement since Sp(2Ñ + 1) is not

allowed. We below give the simple argument for this. Let us consider the 3d N = 2

SU(2N + 1)× Sp(2Ñ) theory with one bi-fundamental, F ′ fundamentals in SU(2N +1), F

anti-fundamentals in SU(2N + 1) and F ′′ fundamentals in Sp(2Ñ). For both of the gauge

groups to be s-confining we have the following constraints

2N + 1 + F ′′ = 2Ñ + 2

F = 2Ñ + F ′ = 2N + 1,

which implies

F ′ = a+ 1, F ′′ = −a+ 1, a := 2N − 2Ñ . (3.38)

Since a is even, only the allowed value is a = 0, which was discussed above.

3.3 SU(2N) with an anti-symmetric flavor

In the previous subsections, we have considered the deconfinement of the SU(N) gauge

theory with one anti-symmetric matter and “chiral” (anti-)fundamental matters, where

the anti-symmetric matter was described in terms of the s-confining theory with the Sp

gauge groups. Due to the special number of the (anti-)fundamentals, the part of the SU(N)

gauge groups is also s-confining. According to the 4d case in [30], we call this structure “s-

confining × s-confining”. In this section, we will further study the cases with “s-confining ×
s-confining”. We will consider the SU(2N) gauge theories with matters in representations

of and ¯.

The first example is a 3d N = 2 SU(4) gauge theory with 2( + ¯)and 2 , where the

fields and ¯ in a SU(4) gauge group are in the same representation. This theory was

first considered by [25] where it was concluded by the dimensional reduction method from

4d that the theory is s-confining. The quantum numbers of the matter contents are chosen

as follows (table 17) in harmony with the ones in [25]. We call this theory “electric”.

SU(4) SU(2)L SU(2)R SU(2)A U(1) U(1) U(1) U(1)R

A 1 1 � 0 0 −3 0

Q � 1 1 1 0 2 1
3

Q̄ ¯ 1 � 1 0 −1 2 1
3

Table 17. Quantum numbers of the electric theory.

This theory has the following deconfinement description in table 18 with the SU(4)×
SU(2)× SU(2) gauge symmetry with a superpotential

W = S1YSU(2)1 + S2YSU(2)2 , (3.39)

which lifts all the SU(2) × SU(2) Coulomb branches.
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SU(4) SU(2)1 SU(2)2 SU(2)L SU(2)R U(1) U(1) U(1) U(1)′ U(1)R

x 1 1 1 0 0 −3
2 1 0

x̄ ¯ 1 1 1 0 0 −3
2 −1 0

Q 1 1 1 1 0 2 0 1
3

Q̄ ¯ 1 1 1 0 −1 2 0 1
3

S1 1 1 1 1 1 0 0 −6 4 0

S2 1 1 1 1 1 0 0 −6 −4 0

YSU(4) 1 1 1 1 1 −2 2 −2 0 2
3

YSU(2)1 1 1 1 1 1 0 0 6 −4 2

YSU(2)2 1 1 1 1 1 0 0 6 4 2

Table 18. Quantum numbers of the deconfinement theory.

Note that each SU(2)1,2 gauge theory is in the s-confining phase, then we find the

confined description whose matter contents are anti-symmetric matters A1,2 and singlets

YSU(2)1,2 with the SU(4) gauge symmetry and the following superpotentials

W = −YSU(2)1A
2
1 − YSU(2)2A

2
2 (3.40)

where A1 := xx and A2 := x̄x̄. These two singlets of the Coulomb branches couple to the

singlets S1, S2 and become massive, then at low-energy we recover the electric theory. The

electric theory has the global SU(2)A symmetry which rotates the anti-symmetric matters,

however in this deconfined theory this symmetry is not manifest. Only the U(1) subgroup

of the SU(2)A symmetry is manifest, which we denoted as U(1)′.

The SU(4) part of the deconfined description is also s-confining, so we can move on to

the s-confined description which is a 3d N = 2 SU(2)× SU(2) gauge theory (table 19).

SU(2)1 SU(2)2 SU(2)L SU(2)R U(1) U(1) U(1) U(1)′ U(1)R

M := QQ̄ 1 1 1 -1 4 0 2
3

M1 := Qx̄ 1 1 1 0 1
2 −1 1

3

M2 := xQ̄ 1 1 0 -1 1
2 1 1

3

M3 := xx̄ 1 1 0 0 -3 0 0

B := x2Q2 1 1 1 1 2 0 1 2 2
3

B̄ := x̄2Q̄2 1 1 1 1 0 -2 1 -2 2
3

YSU(4) 1 1 1 1 -2 2 -2 0 2
3

S1 1 1 1 1 0 0 −6 4 0

S2 1 1 1 1 0 0 −6 −4 0

Y mag
SU(2)1

1 1 1 1 0 2 5 -2 4
3

Y mag
SU(2)2

1 1 1 1 -2 0 5 2 4
3

Table 19. Quantum numbers of the s-confined description 1.

The s-confining superpotential is

W = S1YSU(2)1 + S2YSU(2)2 − YSU(4)(M
2M2

3 −M2
1M

2
2 +MM1M2M3 −BB̄). (3.41)
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The relation between the Coulomb branch operators in the electric and s-confined theories

is expected from the global symmetries as

YSU(2)1 = Y mag
SU(2)1

B̄ (3.42)

YSU(2)2 = Y mag
SU(2)2

B. (3.43)

Both parts of the SU(2)1,2 gauge theories are again s-confining, then we have the

following s-confining description (table 20).

SU(2)1 SU(2)L SU(2)R U(1) U(1) U(1) U(1)′ U(1)R

M 1 1 -1 4 0 2
3

V := M1M1 1 1 1 2 0 1 -2 2
3

V1 := M1M3 1 1 0 −5
2 -1 1

3

V2 := M3M3 1 1 1 0 0 -6 0 0

M2 1 0 -1 1
2 1 1

3

B 1 1 1 2 0 1 2 2
3

B̄ 1 1 1 0 -2 1 -2 2
3

YSU(4) 1 1 1 -2 2 -2 0 2
3

Y mag
SU(2)2

1 1 1 -2 0 5 2 4
3

S1 1 1 1 0 0 −6 4 0

S2 1 1 1 0 0 −6 −4 0

Y ′mag
SU(2)1

1 1 1 -2 2 4 0 2
3

Table 20. Quantum numbers of the s-confined description 2.

The superpotential describing the second s-confining phase is

W = S1YSU(2)1 + S2YSU(2)2 − YSU(4)(M
2V2 − VM2

2 +MV1M2 −BB̄)

− Y mag
SU(2)2

(V V2 − V 2
1 ). (3.44)

The relation of the Coulomb branch operators (3.43) is verified from this superpotential

because if we take the equation of motion for Y mag
SU(2)2

, we have S2B = V V2−V 2
1 which says

S2x
2Q2 = x̄4x2Q2. Thus S2 is identified with the square of the anti-symmetric matters.

The relation between the Coulomb branch operators of the SU(2)1 gauge group in these

two s-confined descriptions is found from the symmetry argument

Y mag
SU(2)1

= Y ′
mag
SU(2)1

V. (3.45)

The resulting SU(2)1 gauge theory is also s-confining, so the theory ends up with a

non-gauge theory. The matter contents and the operator matching are summarized in

table 21.
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SU(2)L SU(2)R U(1) U(1) U(1) U(1)′ U(1)R operator matching

M 1 -1 4 0 2
3 QQ̄

V 1 1 2 0 1 -2 2
3 AQ2

N := V 2
1 1 1 2 0 -5 -2 2

3 massive

N1 := V1M2 1 -1 -2 0 2
3 QA2Q̄

N2 := M2M2 1 1 0 -2 1 2 2
3 AQ̄2

V2 1 1 0 0 -6 0 0 A2

B 1 1 2 0 1 2 2
3 AQ2

B̄ 1 1 0 -2 1 -2 2
3 AQ̄2

YSU(4) 1 1 -2 2 -2 0 2
3 Coulomb branch

Y mag
SU(2)2

1 1 -2 0 5 2 4
3 massive

Y ′mag
SU(2)1

1 1 -2 2 4 0 2
3 Coulomb branch

S1 1 1 0 0 −6 4 0 A2

S2 1 1 0 0 −6 −4 0 A2

Table 21. Global charges of the s-confined description 2.

The superpotential finally becomes

W = S1Y
′mag
SU(2)1

B̄V + S2Y
mag

SU(2)2
B − YSU(4)(M

2V2 − V N2 +MN1 −BB̄)

− Y mag
SU(2)2

(V V2 −N)− Y ′mag
SU(2)1

(NN2 −N2
1 )

= −YSU(4)(M
2V2 − V N2 +MN1 −BB̄) + Y ′

mag
SU(2)1

(S1B̄V + S2BN2 − V V2N2 −N2
1 )

(3.46)

and the relation of the Coulomb branch operators is

YSU(2)1 = Y mag
SU(2)1

B̄ = Y ′
mag
SU(2)1

B̄V (3.47)

YSU(2)2 = Y mag
SU(2)2

B. (3.48)

N and Y mag
SU(2)2

are massive and integrated out. The fields listed above are completely the

same as [25]. However the superpotential is slightly different. Although we expect the two

superpotentials describe the same physics, but it is not clear why we obtain the different

potential. One of the reasons comes from the fact that our formulation does not have the

explicit SU(2)A global symmetry.

This step of deconfining the anti-symmetric tensors is easily generalized to the SU(2N)

gauge theories with an anti-symmetric flavor, and ¯. The deconfinement of the two anti-

symmetric matters can be performed by introducing the Sp(2N − 2) × Sp(2N − 2) gauge

group. The matter contents are in table 22. In order to preserve the “s-confining ×
s-confining” structure, only the two fundamental flavors are included.
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SU(2N) Sp(2N − 2)1 Sp(2N − 2)2 SU(2) SU(2)

x 1 1 1

x̄ ¯ 1 1 1

Q 1 1 1

Q̄ ¯ 1 1 1

Table 22. Quantum numbers of the deconfined theory of the SU(2N) with anti-symmetrics.

We omitted the global U(1) charges for simplicity of the discussion and did not listed

the Coulomb branch operators in the above table. The part of the SU(2N) gauge theory in

the deconfined description is s-confining so we have the following theory (table 23), where

we will neglect the gauge singlets throughout the rest of this section.

Sp(2N − 2)1 Sp(2N − 2)2 SU(2) SU(2)

M1 := Qx̄ 1 1

M2 := xQ̄ 1 1

M3 := xx̄ 1 1

Table 23. Quantum numbers of the s-confined description 1.

Again, since these two Sp(2N−2) gauge theories are s-confining, the following confining

description only with the Sp(2N − 2)1 gauge group is obtained (table 24).

Sp(2N − 2)1 SU(2) SU(2)

M2 1

V1 := M1M3 1

V2 := M3M3 1 1

Table 24. Quantum numbers of the s-confined description 2.

The Sp(2N) gauge theory with one anti-symmetric and 4 fundamentals is special in

the sense that it can be deconfined by the Sp(2N − 2) gauge theory and the deconfined

description is again s-confining and that its s-confining description again has the structure

with an Sp gauge theory with one anti-symmetric and 4 fundamentals. In this way we

can iteratively reduce the gauge group and the ant-symmetric matters which appear in

the s-confining theory can be deconfined until we end up with the Sp(2) = SU(2) gauge

theory which is also s-confining. We eventually need the N Sp gauge groups to completely

deconfine the theory. In this process, the N Coulomb branches of the Sp gauge theories are

introduced and these are identified with the complicated Coulomb branches of the electric

SU(2N) gauge theory with 2( + ¯) and + ¯, which is consistent with the analysis in [25]

and we find the 3d N = 2 SU(2N) gauge theory with with + ¯ and 2 is indeed in

the s-confining phase. Notice that for the deconfinement of the anti-symmetrics in the Sp

gauge group, we need to subtract the “trace” part of the anti-symmetric matter but this

does not spoil the above discussion.

For a 3d N = 2 SU(2N+1) gauge theory with 2( + ¯), and ¯, we have the following

deconfined description. In table 25 we only listed the gauge symmetries.
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SU(2N + 1) Sp(2N)1 Sp(2N)2

x 1

x̄ ¯ 1

p1 1 1

p2 1 1

Q 1 1

Q̄ ¯ 1 1

Table 25. Quantum numbers of the deconfinement for SU(2N + 1).

The Coulomb branches of the two Sp(2N)’s are lifted by introducing the singlets as

before. This theory again reduces to the Sp(2N) gauge theory with one anti-symmetric and

4 fundamentals and with some singlets. So we find that the theory is completely s-confining

and the number of the Coulomb branch coordinates is N . This is again consistent with [25].

4 Gauge theories with SU(2)N gauge group

In the previous section, we have typically studied the 3d N = 2 SU × Sp product gauge

theory, where both of the gauge dynamics are (s-)confining. Under the replacement of

one of the gauge dynamics to the s-confining one, the Coulomb branch whose gauge group

remains is non-trivially mapped as (3.13). This mapping can be checked from the simple

consistency check and the symmetry argument but there is no rigorous proof. So it would

be preferable here to generalize the “s-confining × s-confining” structure and to give the

additional support on the mapping of the Coulomb branches.

In this section, we will consider the theories with the product gauge groups. We mainly

focus on the product of the SU(2) gauge symmetries, where these SU(2)’s are s-confining or

have the quantum modified constraint. In four-dimensions, these theories were studied for

various reasons. One of the motivations was the investigation of the N = 1 Seiberg-Witten

curve [21, 23, 37, 38] and the other was the derivation of the exact superpotential [22]

by using the holomorphy and the “linearity principle” (integrating-in method). Here we

will study the 3d version and derive the 3d exact superpotentials. We will find the close

relation between the Seiberg-Witten curve and the exact superpotentials. The connection

between the 4d and 3d superpotentials will give the further evidence of the mapping rule

for the Coulomb branch operators.

The relation between the 4d Seiberg-Witten theory and the 3d N = 4 theory is in-

vestigated in [24], in which the dimensional reduction of the curve leads to the moduli

space of the 3d theory. An important claim in [24] is that the variables x, y describing the

Seiberg-Witten curve become physical ones if we compactify the theory on R3×S1. We here

generalize this to the N = 1 Seiberg-Witten curve. We will thus investigate the dynamics

of the product SU(2)N gauge theory in two ways. One of them is to use a Seiberg-Witten

curve and relate it to the 3d superpotential. The other one is to directly study the 3d theory

just as we have done in the previous section. We will find that the N = 1 Seiberg-Witten

curves are also dimensionally reduced and they well describe the 3d moduli space.
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4.1 Bi-fundamental and fundamental matters

As an illustrative example, we first consider the 3d N = 2 SU(2)×SU(2) gauge theory with

bi-fundamental matters and fundamental matters. The matter contents are summarized in

table 26. The four-dimensional version of this theory was first investigated in [22], where

the authors derived an exact superpotential using the holomorphy and the integrating-in

method (“linearity principle”). We here analyze the 3d version and the theory in S1 × R3

and find the close relation to the 4d results. In the table below, we put the indices on the

two SU(2) gauge groups for distinguishing and labeling the gauge groups. We listed the dy-

namical scales of the 4d theory which is necessary in the S1×R3 space-time. Notice that the

theory in 3d has the global SU(2)×U(1)×U(1)×U(1)R symmetry, but for the 4d limit the

chiral anomaly reduces one combination of the U(1) symmetries to the spurious symmetry.

SU(2)1 SU(2)2 SU(2) U(1) U(1) U(1)R
Q 1 1 0 0

L 1 0 1 0

YSU(2)1 1 1 1 −2 0 0

YSU(2)2 1 1 1 −2 −2 2

η1 = Λ5
1 1 1 1 2 0 2

η2 = Λ4
2 1 1 1 2 2 0

X := QQ 1 1 1 2 0 0

Y := LL 1 1 1 0 2 0

Table 26. Quantum numbers of the SU(2) × SU(2) gauge theory.

If we assume g2
1 � g2

2 at a certain energy scale, we can replace the SU(2)2 gauge theory

with two flavors to the s-confined description with the superpotential

Weff = −YSU(2)2(XY −N2), (4.1)

where we defined N := QL. The low-energy effective theory is an SU(2)1 gauge theory

with a single flavor (two doublets). The quantum numbers are as follows (table 27).

SU(2)1 SU(2) U(1) U(1) U(1)R
X 1 1 2 0 0

Y 1 1 0 2 0

N := QL 1 1 0

YSU(2)2 1 1 −2 −2 2

Y ′SU(2)1
1 1 −2 −2 0

Table 27. Quantum numbers of the SU(2)1 s-confined gauge theory.

The Coulomb branch operator Y ′SU(2)1
is not identical to YSU(2)1 but we can easily

identified as

YSU(2)1 ∼ Y
′

SU(2)1
Y, (4.2)

where the normalization factor is not important since we can absorb it by rescaling the

chiral superfields. Since the low-energy description is the SU(2)1 gauge theory with one
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flavor, it has the quantum modified moduli space [7]. So, the theory is described by the

following superpotential

W = −YSU(2)2(XY − T ) + λ(TY ′SU(2)1
− 1) (4.3)

= λ(XY Y ′SU(2)1
− 1) (4.4)

where T := N2 and λ is a Lagrange multiplier field. In the second line above, we integrated

out T and YSU(2)2 . It is important to note that from this analysis we first have the flat

direction labeled by N but finally this direction is lifted. This is very consistent with the

four dimensional analysis [22].

In order to connect the 3d dynamics to the 4d one, we need to put a theory on

S1×R3 and include the non-perturbative superpotential coming from the compactification.

This superpotential is generated by the Kaluza-Klein monopole [6–8] and the form of the

superpotential takes a simple form

W = η1YSU(2)1 + η2YSU(2)2 . (4.5)

Combining this with the s-confining superpotential (4.3), integrating out the massive fields

T, YSU(2)2 and Y ′SU(2)1
and eliminating the Lagrange multiplier λ, we arrive at

Wlow−energy =
η1Y

XY − η2
. (4.6)

This is precisely the same as [22] and we recover the 4d dynamics. In deriving the above

result, it is crucially important to use the identification (4.2) and this ahows the validity

of the mapping of the Coulomb branch operators (4.2).

4.2 Bi-fundamental matters

Next we will consider the 3d N = 2 SU(2) × SU(2) gauge theory with only the bi-

fundamental matters. For a single bi-fundamental, we can use the previous result by

turning on the mass term to the fundamental matters. The matter contents and their

quantum charges are summarized in table 28.

SU(2)1 SU(2)2 SU(F ) U(1) U(1)R

Q 1 0

Y1 1 1 1 −2F 2F − 2

Y2 1 1 1 −2F 2F − 2

η1 := Λ6−F
1 1 1 1 2F 4− 2F

η2 := Λ6−F
2 1 1 1 2F 4− 2F

Table 28. Quantum numbers of the SU(2) × SU(2) gauge theory with F bi-fundamentals.

The four-dimensional version of this theory with F = 2 is analyzed in [21] (for the

generalization of the product gauge group, see [23, 38]). An important result of the four-

dimensional analysis is that the theory shows the Coulomb phase whose rank is 1 and can

be effectively described by the U(1) gauge theory whose gauge coupling is expressed by a

N = 1 Seiberg-Witten curve.

– 23 –



J
H
E
P
0
8
(
2
0
1
6
)
1
2
3

Here we will investigate the cases with F = 1 and F = 2 respectively and we will

find the result for F = 2 has intimate connection with the Seiberg-Witten curve obtained

in [21]. So this is showing the N = 1 generalization of [24] where the 3d reduction of the

Seiberg-Witten curve was studied in a 4d N = 2 pure SYM with the inclusion of a softly

supersymmetry breaking term.

4.2.1 F = 1

Suppose the SU(2)2 gauge group first becomes strong, the theory has the quantum deformed

moduli space

W = λ(XY2 − 1). (4.7)

The resulting low-energy theory has the following matter contents (table 29). Y ′1 is a

Coulomb branch operator in the low-energy SU(2)1 gauge theory.

SU(2)1 U(1) U(1)R
X := QQ 1 2 0

Y2 1 −2 0

Y ′1 1 0 −2

Table 29. Quantum numbers of the low-energy SU(2)1 gauge theory.

Since the SU(2)1 gauge theory has no flavor, there is no stable vacuum [7]:

W = λ(XY2 − 1) +
1

Y ′1
. (4.8)

This is consistent with the known result [39] since SU(2) × SU(2) ∼= SO(4) and the

bi-fundamental in SU(2)× SU(2) is a vector matter in SO(4). In [39], it is shown that the

3d N = 2 SO(4) with a single flavor has no stable SUSY vacuum.

For F = 1, we can flow from the previous subsection by the mass deformation

Wdef = mLL = mY. (4.9)

Thus the effective superpotential is

W = −YSU(2)2(XY − T ) + λ(TY ′SU(2)1
− 1) +mY (4.10)

and this has no stable solution.

4.2.2 F = 2

For F = 2, each dynamics of the SU(2)1,2 gauge groups is in the s-confining phase. First we

will change the SU(2)2 dynamics. Since the low-energy SU(2)1 gauge theory (see table 30)

involves only the adjoint matter, we have the enhanced N = 4 supersymmetry if we omit

the superpotential

W = −Y2(X2
1 +X2

2 ), (4.11)

which breaks the supersymmetry from N = 4 to N = 2.
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SU(2)1 SU(F = 2) U(1) U(1)R
X1 := QQ adj. 1 2 0

X2 := QQ 1 adj. 2 0

Y2 1 1 −4 2

Y ′1 1 1 −4 0

Table 30. Quantum numbers of the low-energy SU(2)1 theory.

The resulting theory is the SU(2) gauge theory with an adjoint matter, which is re-

garded as the SO(3) gauge theory with a single fundamental (vector) matter. This theory

is known to be described by the following quantum constraint [39]

Y 2
SO(3)N + q̃2 + 1 = 0, (4.12)

where N := X2
1 and YSO(3) is a Coulomb branch operator of the SO(3) gauge group. q̃ is a

dual “quark”. The Seiberg dual of the SO(3) gauge theory with a single flavor is effectively

given by the non-gauge theory, then the dual “quark” q̃ is a gauge singlet chiral superfield.

The Coulomb branch operators between the SU(2) and SO(3) gauge groups is related as

Y ′1 = Y 2
SO(3). This is very plausible since the minimal monopole charges are different in

these gauge groups. Furthermore the global charges of these two operators suggest this

relation. Since we are actually dealing with not the SO(3) but the SU(2) gauge group, it

would be plausible to change the variables [24]

Y 2
SO(3) → Y ′1 , YSO(3)q̃ → q. (4.13)

Under this change, the constraint becomes

Y ′21 N + q2 + Y ′1 = 0. (4.14)

Summing up all the superpotentials and the constraint, we have the low-energy dynamics

described by

W = −Y2(N +X2
2 ) + λ(Y ′21 N + q2 + Y ′1)

→ λ(−Y ′21 X
2
2 + q2 + Y ′1), (4.15)

where in the second line we have integrated out the massive fields Y2 and N . This is again

consistent with the analysis of [39], where a 3d N = 2 O(4) theory with two flavors is

investigated and they claim that the Coulomb phase is described by the similar constraint.

The consistency can be easily shown by the following replacement.

Y ′1 → Y 2
O(4), q → q̃ YO(4) (4.16)

Let us connect the 3d dynamics with the 4d one. The 4d dynamics was studied

in [21]. The low-energy theory is in the Coulomb phase whose rank is 1 and the gauge

coupling and the singularity structure on the moduli space are captured by the following

Seiberg-Witten curve

y2 = x3 + x2(−U + Λ4
1 + Λ4

2) + Λ4
1Λ4

2x, (4.17)
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where U := detQQ. In order to dimensionally reduce the theory to 3d, we first notice that

the x, y variables are not physical ones in the 4d limit but in R3 × S1 or in the 3d limit

we can treat these variables as physical fields [24]. Then we can introduce the Seiberg-

Witten curve as the constraint between the chiral superfields x, y and U . Notice that U is

a physical variable in 4d and 3d, along which we have the massless excitation.

When we take the 3d limit we should redefine the variables x, y, U and absorb Λ1 and

Λ2 since in the 3d limit we must take Λ1,2 → 0 and the three-dimensional gauge couplings

to be fixed. According to the Seiberg-Witten prescription [24] we change the variables as

x̃ := (Λ4
1Λ4

2)−1x (4.18)

ỹ := (Λ4
1Λ4

2)−1y (4.19)

v := x− U + Λ4
1 + Λ4

2, (4.20)

then the Seiberg-Witten curve becomes

ỹ2 = x̃2v + x̃. (4.21)

In this expression we can safely take the 3d limit and find the good agreement with the 3d

analysis with the identification ỹ = q̃, v = X2
2 and x̃ = −Y ′1 .

4.3 SU(2)× SU(2)× SU(2)

We generalize the previous result on the SU(2)× SU(2) gauge theory with bi-fundamental

matters to the theory with the SU(2)× SU(2)× SU(2) gauge symmetry, where the theory

will have the “s-confining × s-confining × s-confining” structure. The four-dimensional

version is investigated in [23], where the N = 1 Seiberg-Witten curve is derived. The

matter contents and their quantum numbers are in table 31. The theory has the global

U(1)1 ×U(1)2 ×U(1)3 ×U(1)R symmetry which is anomaly-free in 3d.

SU(2)1 SU(2)2 SU(2)3 U(1)1 U(1)2 U(1)3 U(1)R

Q1 1 1 0 0 0

Q2 1 0 1 0 0

Q3 1 0 0 1 0

Y1 1 1 1 −2 0 −2 2

Y2 1 1 1 −2 −2 0 2

Y3 1 1 1 0 −2 −2 2

Table 31. Quantum numbers of the triple SU(2)’s gauge theory.

Since all the gauge groups have the structure with the SU(2) with two flavors, the

theory is reduced to the SU(2) × SU(2) theory by use of the s-confined description. If we

first change the SU(2)3, we obtain the following theory in table 32, where we put primes

on the Coulomb branch coordinates to distinguish these operators from Y1,2.
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SU(2)1 SU(2)2 U(1)1 U(1)2 U(1)3 U(1)R

Q1 1 0 0 0

N1 := Q2Q3 0 1 1 0

M2 := Q2Q2 1 1 0 2 0 0

M3 := Q3Q3 1 1 0 0 2 0

Y3 1 1 0 −2 −2 2

Y ′1 1 1 −2 −2 −2 2

Y ′2 1 1 −2 −2 −2 2

Table 32. Quantum numbers of the SU(2)1 × SU(2)2 gauge theory.

The superpotential is

W = −Y3(N2
1 +M2M3) (4.22)

and the relations between the Coulomb branch operators are

Y ′1M2 = Y1, Y ′2M3 = Y2. (4.23)

The matter contents charged under the SU(2)1 × SU(2)2 gauge symmetry are com-

pletely the same as the previous subsection so we can reduce the SU(2) × SU(2) gauge

symmetry to a single SU(2) gauge theory (table 33). The low-energy superpotential is

W = −Y ′2(M1N2 +N2
3 +N2

4 ). (4.24)

SU(2)1 U(1)1 U(1)2 U(1)3 U(1)R

M1 := Q1Q1 1 2 0 0 0

N2 := N1N1 1 0 2 2 0

N3 := Q1N1|anti−symmetric part 1 1 1 1 0

N4 := Q1N1|symmetric part adj. 1 1 1 0

Y3 1 0 −2 −2 2

Y ′2 1 −2 −2 −2 2

Y ′′1 1 −2 −2 −2 0

Table 33. Quantum numbers of the SU(2)1 gauge theory.

Since this theory is again the same as the previous subsection, so we have the quantum

modified constraint as the low-energy description

Y ′′21 T + q̃2 + Y ′′1 = 0, (4.25)
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where T := N2
4 . Combining all the contributions we end up with

W = −Y3(N2
1 +M2M3)− Y ′2(M1N2 +N2

3 +N2
4 ) + λ(Y ′′21 T + q̃2 + Y ′′1 )

= −Y3(N2 +M2M3)− Y ′2(M1N2 +N2
3 + T ) + λ(Y ′′21 T + q̃2 + Y ′′1 ). (4.26)

Integrateing out Y3, N2, Y
′

2 and T , we obtain the low-energy effective superpotential

W = λ(Y ′′21 (M1M2M3 −N2
3 ) + q̃2 + Y ′′1 ). (4.27)

This is again consistent with the Seiberg-Witten curve describing the four dimensional

version of this theory

y2 = x3 + x2(Λ4
1M2 + Λ4

2M3 + Λ4
3N1 −N1M2M3 +N2

3 ) + xΛ4
1Λ4

2Λ4
3. (4.28)

We can easily generalize the above analysis to the 3d N = 2 SU(2)N gauge theory and

obtain the low-energy effective description with the superpotential

W = λ(Y 2(M1 · · ·MN − T 2) + q̃2 + Y ), (4.29)

where Mi := QiQi and T := Q1 · · ·QN . One possible application of the 3d SU(2)N theory

is an analysis of the 3d N = 2 SU(4) gauge theory with four anti-symmetrics. This theory

can be deconfined into the 3d N = 2 SU(4)× SU(2)4 gauge theory, in which the Coulomb

branches of the SU(2)4 vector multiplets should be lifted. The SU(4) part is also in the

s-confining phase and the low-energy theory reduces to the SU(2)4 gauge theory discussed

above. Since the SU(4) gauge theory with four anti-symmetrics is equivalent to the SO(6)

gauge theory with four vector matters, this is very consistent with the fact that the 3d

N = 2 O(Nc) gauge theory with Nc−2 vector matters has the quantum modified constraint.

5 SU(N) with an antisymmetric matter

In this section we will consider the deconfinement and the Seiberg dual of the theory with

an anti-symmetric matter, where the deconfined description does not have the “s-confining

× s-confining” structure. Although the anti-symmetric matter is deconfined in the same

way as the previous sections by using the dynamics of the 3d N = 2 Sp gauge theory,

constructing the dual theory will become very complicated because in our method we are

lifting up the unnecessary Coulomb moduli and the Coulomb branch operator labeling

it is non-trivially mapped under the duality transformation. Then we here show two

deconfinement descriptions and their duals. First, we will deconfine the anti-symmetric

by lifting up the Coulomb moduli of the Sp gauge group. This is completely the same as

the previous one. Next we will give the different approach, where the un-wanted Coulomb

branch is just decoupled from the other sector and remaining as the massless direction.

5.1 Lifting up the Coulomb moduli

5.1.1 The electric theory

The electric theory is a 3d N = 2 SU(2N) gauge theory with F , F ′ ¯ and with no

tree-level superpotential. Since there is no chiral anomaly in 3d, any values of F and F ′

are allowed. The generalization to a SU(2N + 1) case is straightforward, so we will not

discuss it. The quantum numbers of the matter contents are as follows (table 34).
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SU(2N) SU(F ) SU(F ′) U(1)B U(1)A U(1)X U(1)R

Q � � 1 1 1 0 0

Q̃ ¯ 1 � −1 1 0 0

A 1 1 0 0 2 0

Table 34. Quantum numbers of the electric theory.

The global U(1)R charge can be generally mixed with other U(1) symmetries and

the genuine U(1)R charge which is realized in the IR fixed point would not be the above

combination. In this section we will consider the dual description for F ′ = F + 2N − 2 in

which we can use the 3d SU(Nc) Seiberg duality developed in [17].

5.1.2 The deconfined description

The anti-symmetric matter can be deconfined into the 3d N = 2 SU(2N) × Sp(2N − 2)

gauge theory with the following matter contents (table 35):

SU(2N) Sp(2N − 2) SU(F ) SU(F ′) U(1)B U(1)A U(1)X U(1)R

Q � 1 � 1 1 1 0 0

Q̃ ¯ 1 1 � −1 1 0 0

x � � 1 1 0 0 1 0

S 1 1 1 1 0 0 2N 0

YSU(2N) 1 1 1 1 2N − 2 −2F − 2N + 2 −2N + 2 2F − 2

YSp(2N−2) 1 1 1 1 0 0 −2N 2

Table 35. Quantum numbers of the deconfined SU(2N)× Sp(2N − 2) gauge theory.

The difference between the 4d and 3d cases is the appearance of the Coulomb branch

YSp(2N−2) and the new singlet S which is coupled to the unnecessary Coulomb branch

direction and lifts up it. Then the deconfined theory has to include the superpotential

W = SYSp(2N−2). (5.1)

Applying the s-confining description of the Sp(2N − 2) gauge theory when g2
SU � g2

Sp,

we go back to the electric theory mentioned above. The effective low-energy degrees of

freedom are the mesons A = xx and the Coulomb branch coordinate YSp(2N−2). However,

the field YSp(2N−2) is massive due to the superpotential.

5.1.3 The first dual description

For g2
SU � g2

Sp, we can think of the Sp(2N −2) gauge group as the flavor symmetry and we

can use the 3d Seiberg duality for SU(Nc) gauge group [17] if we restrict ourselves to the case

with F ′ = F + 2N −2. The dual description is given by a 3d N = 2 U(F −2)×Sp(2N −2)

gauge theory with the following matter contents (table 36);
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U(F − 2) Sp(2N − 2) SU(F ) SU(F + 2N − 2) U(1)B U(1)A U(1)X U(1)R

q 1 1 ¯ 1 0 −1 0 1

q̃ ¯−1 1 1 ¯ 0 −1 0 1

x̃ 1 1 1 1 0 −1 1

b 1−(F−2) 1 1 1 2 F 2N − 2 2− F

b̃ 1+(F−2) 1 1 1 −2N F + 2N − 2 0 2− F

YSU(2N) 1 1 1 1 2N − 2 −2F − 2N + 2 2− 2N 2F − 2

M := QQ̃ 1 1 0 2 0 0

M1 := xQ̃ 1 1 −1 1 1 0

X̃± 1 1 1 1 0 0 0 2

Y mag
Sp(2N−2) 1−(F−2) 1 1 1 2N −F − 2N + 2 −2N F

Table 36. Quantum numbers of the first dual U(F − 2)× Sp(2N − 2) gauge theory.

where X̃± are the Coulomb branch coordinates of the U(F − 2) gauge group and the

Y mag
Sp(2N−2) is describing the Sp(2N − 2) Coulomb branch. For the non-zero vevs of X̃± the

gauge symmetry breaks as U(F − 2) → U(F − 4) × U(1) × U(1) and the operators X̃±
create the monopoles corresponding to U(1)×U(1). We can not identify Y mag

Sp(2N−2) with the

Coulomb branch operator YSp(2N−2) of the deconfined theory. The first dual description

has the superpotential

W = Mqq̃ +M1x̃q̃ + YSU(2N)bb̃+ X̃+ + X̃−, (5.2)

which is consistent with all the global symmetries listed above.

The matching of the baryonic operators between the electric and magnetic theories is

Bl := xlQ2N−l = bx̃2N−2−lqF+l−2N (5.3)

B̄ := Q̃2N = b̃q̄F−2 (5.4)

and this identification removes almost all the ambiguities of the assignment of the global

U(1) charges of the dual theory. A subtlety of the operator matching between the dual

and the deconfined theories arises from the Sp(2N − 2) Coulomb branch operators. If we

regard the U(F − 2) gauge symmetry as the global one, the Sp(2N − 2) Coulomb branch

operator Y mag
Sp(2N−2) is negatively charged under the U(1) ⊂ U(F − 2) symmetry. So we can

make it neutral by multiplying some fields. In this case the Sp(2N − 2) Coulomb branch

operator is expected to be identified as

YSp(2N−2) = Y mag
Sp(2N−2)b̃, (5.5)

which is completely consistent with all the global symmetries. Then the mass term for

YSp(2N−2) becomes the Yukawa interaction

W = SY mag
Sp(2N−2)b̃. (5.6)
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Since we start with the SU(2N) gauge theory with an anti-symmetric matter, then we

generally have more than one-dimensional Coulomb branch. The equation of motion for S

says that the flat direction labeled by Y mag
Sp(2N−2)b̃ is lifted but the directions like

Y mag
Sp(2N−2)q

F−2, bb̃ (5.7)

are not. The latter is lifted by the equation of motion for YSU(2N). The Coulomb branch

structure of the electric theory is not fully understood but this dual description suggests

that YSU(2N) and Y mag
Sp(2N−2)q

F−2 are identified with the Coulomb branch operators on the

electric side. In the electric theory, the globally defined monopole operator Y is not gauge

invariant and the “dressed” operators,

Y AN−1, Y AN−2Q2 (5.8)

are expected to be gauge invariant and to parametrize the Coulomb branch because of the

discussion in section 3. It is important to notice that the second one is charged under

the global SU(F ) symmetry and on the Coulomb branch the non-Abelian flavor sym-

metry would be broken. These operators are identified with YSU(2N) and Y mag
Sp(2N−2)q

F−2

respectively from the symmetry argument. Thus the deconfinement method explains the

complexity of the Coulomb branch for theories with the tensorial matters in a simpler way.

However this argument does not exclude the possibility that the other types of Coulomb

branch operators also remain as massless directions. The full analysis of the Coulomb

branch of the electric theory will be left as the future study.

Next we can perform the Aharony dual transformation for the Sp(2N − 2) gauge

theory [10] and the second dual theory will be given by the 3d N = 2 U(F −2)×Sp(2F −4)

gauge theory. However the theory includes the anti-symmetric matter in the U(F−2) gauge

group and its Coulomb brach becomes very complicated. We will generally expect to need

two coordinates for describing it. It is highly non-trivial how to map the operators X̃±.

Since these are appearing in the superpotential, we must translate these operators in terms

of the second dual theory language.

5.1.4 The second dual description

The second dual description is given by a 3d N = 2 U(F − 2)× Sp(2F − 4) gauge theory.

The matter contents are in table 37 and the superpotential is

W = Mqq̃ +N1q̃ + YSU(2N)bb̃+ X̃+ + X̃−

+N ˜̃x˜̃x+N1
˜̃xM̃1 +N2M̃1M̃1 + Y mag

Sp(2N−2)YSp(2F−4) + SY mag
Sp(2N−2)b̃. (5.9)

Notice that N1 and q̃ are massive and integrating out these fields induces the fourth order

term in the superpotential.
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U(F − 2) Sp(2F − 4) SU(F ) SU(F + 2N − 2) U(1)B U(1)A U(1)X U(1)R
q 1 1 ¯ 1 0 −1 0 1

q̃ ¯−1 1 1 ¯ 0 −1 0 1
˜̃x ¯−1 1 1 −1 0 1 0

b 1−(F−2) 1 1 1 2 F 2N − 2 2− F
b̃ 1+(F−2) 1 1 1 −2N F + 2N − 2 0 2− F

YSU(2N) 1 1 1 1 2N − 2 −2F − 2N + 2 2− 2N 2F − 2

M := QQ̃ 1 1 0 2 0 0

M̃1 1 1 ¯ 1 −1 −1 1

N := x̃x̃
2

1 1 1 2 0 −2 2

N1 := x̃M1 1 1 1 0 1 0 1

N2 := M1M1 1 1 1 −2 2 2 0

Y mag
Sp(2N−2) 1−(F−2) 1 1 1 2N −F − 2N + 2 −2N F

X̃± 1 1 1 1 0 0 0 2

YSp(2F−4) 1+(F−2) 1 1 1 −2N F + 2N − 2 2N −F + 2

Table 37. Quantum numbers of the second dual theory.

The problem of this description is that since the part of U(F − 2) now includes the

anti-symmetric matter
2
, the corresponding Coulomb branch becomes highly involved.

In general, we expect more than one coordinate to describe the Coulomb moduli. Here we

start with the analysis of the Coulomb modui from the lower values of F . This analysis

is inevitably required because the superpotential contains the Coulomb branch operator

X̃± and these operators are the ones of the first dual theory and we need to express these

operators in the second dual theory language.

For F = 3 where the gauge group is U(1) and all the fields have the charges ±1 under

this U(1). Notice that we cannot construct N := x̃x̃ for F = 3. This very simplifies the

structure of the Coulomb branch. All the charged fermions are equally contributing to the

zero-modes around the monopole background with respect to this U(1). The global charges

of the Coulomb branch operators X̃
U(1)
± which are related to the above monopole can be

calculated by counting these fermionic zero-modes. Thus we find that the Coulomb branch

operators X̃
U(1)
± has the same global charges as X̃±. Therefore X̃± are naturally mapped

to the Coulomb branch operators X̃
U(1)
± of the second dual U(1) × Sp(2) gauge theory up

to an irrelevant normalization factor.

For F = 4, We have a U(2) gauge theory with the doublets, F �1, (2F − 4)�−1, two

negatively charged singlets 1−2 and two positively charged singlets 1+2, where we are not

including the massive fields. Along the Coulomb branch, the U(2) gauge symmetry breaks

to U(1)1 ×U(1)2 and the matter fields decompose as

�1 → 1(1,0) + 1(0,1), �−1 → 1(1,0) + 1(0,1) (5.10)

1−2 → 1(−1,−1), 1+2 → 1(1,1), (5.11)

where we renoramalized the U(1)’s by reorganizing the Cartan subalgebra of U(2) and

these U(1)’s are defined as

T1 =

(
1 0

0 0

)
, T2 =

(
0 0

0 1

)
. (5.12)

The above decomposition of the matters implies that the all the matter fields are equally
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contributing the mixed Chern-Simons terms such as

k
U(1)1,U(1)B
eff =

1

2

∑
all the fermions

qU(1)1qU(1)Bsign(m) (5.13)

which determines the U(1)B charges of the Coulomb branch operators X̃
U(2)
± . Along the

Coulomb branch with U(2)→ U(1)×U(1), we find

k
U(1)1,U(1)B
eff = k

U(1)1,U(1)A
eff = k

U(1)1,U(1)X
eff = 0, k

U(1)1,U(1)R
eff = −2. (5.14)

From the relation between the mixed Chern-Simons terms and the global U(1) charges,

qU(1)global = −kU(1)1,U(1)global
eff , (5.15)

we find that the quantum numbers of the Coulomb branch operator X̃
U(2)
± are identical to

the ones of X̃±. We end up with the identification X̃± ∼ X̃U(2)
± up to a normalization factor.

For F = 5, we have the U(3) gauge theory with the “chiral” matters and some singlets

under the SU(3) ⊂ U(3). Since these matter fields have the different U(1) ∼ U(3)/SU(3)

charges, the Coulomb branch has the complicated quantum numbers. Under the breaking

with U(3)→ U(1)1 ×U(1)2 ×U(1)3, the matter field ¯2 decomposes into

1(0,1,1) + 1(1,0,1) + 1(1,1,0). (5.16)

This means that the effective mixed Chern-Simons term k
U(1)1,U(1)others
eff has two contribu-

tions from this matter field. Noticing this subtlety we again find X̃± ∼ X̃U(3)
± .

For F > 5, the U(F − 2) theory has the anti-symmetric matter
2

and the Coulomb

branch becomes more complicated. Then we further deconfine this anti-symmetric matter

by introducing the Sp(F − 4) gauge theory, where we are assuming F is even, but it is

easily generalized to the odd F case which we will not discuss here. The deconfined theory

has the following matter contents and their global charges (table 38).

U(F − 2) Sp(2F − 4) Sp(F − 4) SU(F ) SU(F + 2N − 2) U(1)B U(1)A U(1)X U(1)R
q 1 1 1 ¯ 1 0 −1 0 1
˜̃x ¯−1 1 1 1 −1 0 1 0

b 1−(F−2) 1 1 1 1 2 F 2N − 2 2− F
b̃ 1+(F−2) 1 1 1 1 −2N F + 2N − 2 0 2− F

YSU(2N) 1 1 1 1 1 2N − 2 −2F − 2N + 2 2− 2N 2F − 2

M := QQ̃ 1 1 1 0 2 0 0

M̃1 1 1 1 ¯ 1 −1 −1 1

y 1 1 1 1 1 0 −1 1

N2 := M1M1 1 1 1 1 −2 2 2 0

Y mag
Sp(2N−2) 1−(F−2) 1 1 1 1 2N −F − 2N + 2 −2N F

S′ 1+(F−2) 1 1 1 1 F − 2 0 2− F F − 2

X̃± 1 1 1 1 1 0 0 0 2

YSp(2F−4) 1 1 1 1 1 −2N F + 2N − 2 2N −F + 2

YSp(F−4) 1−(F−2) 1 1 1 1 2− F 0 F − 2 4− F
Xdec
± 1 1 1 1 1 0 0 0 2

Table 38. Quantum numbers of the second deconfined theory.
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The anti-symmetric matter N is deconfined into y and we introduce a singlet in order to

lift up the Coulomb moduli of Sp(F −4). The important point is that the Coulomb moduli

YSp(F−4) is charged under the U(1) gauge group which is the abelian part of U(F − 2).

Then S′ is also charged under the U(F − 2) and contributes as the zero-mode around

the monopole background. The superpotential now includes δW = S′YSp(F−4) and this

term is very non-trivial from the UV field theory point of view. In order to avoid this

difficulty, we will discus the different approach of deconfining the two-index matters in the

next subsection. Summing up the all the contributions to the superpotential, we have

W = −Mq ˜̃xM̃1 + YSU(2N)bb̃+ X̃+ + X̃−

+ (yy)˜̃x˜̃x+N2M̃1M̃1 + Y mag
Sp(2N−2)YSp(2F−4) + SY mag

Sp(2N−2)b̃+ S′YSp(F−4). (5.17)

We can easily find that X̃± are mapped to the Coulomb branch operators Xdec
± of the

second deconfined U(F − 2)× Sp(2F − 4)× Sp(F − 4) gauge theory.

In this way, we can understand the Coulomb brach dynamics of the theory with the

two-index matter from the quantum dynamics of the theory with only the fundamental

matters. This is the advantage of the deconfinement.

5.2 Decoupling the Coulomb moduli

Finally we show the different approach, where the unnecessary Coulomb branch is not lifted

but remains as the flat direction and it will be completely decoupled from the other sector.

Let us again consider the 3d N = 2 SU(N) gauge theory with a single anti-symmetric, F

fundamentals and F ′ = F + 2N − 2 anti-fundamentals without a tree-level superpotential.

The theory is deconfined into the following theory in table 39 without the introduction of

the singlet lifting up the Coulomb branch. We need instead include the additional matter

fields and the superpotential

W = xp1p2 + p1p1p3. (5.18)

SU(N) Sp(N+K-2) SU(F ) SU(F ′) SU(K) U(1)B U(1)A U(1)X U(1)R

Q � 1 � 1 1 1 1 0 0

Q̃ ¯ 1 1 � 1 −1 1 0 0

x � � 1 1 1 0 0 1
2 0

p1 1 � 1 1 � B A X R

p2 ¯ 1 1 1 ¯ −B −A −1
2 −X 2−R

p3 1 1 1 1 ¯ −2B −2A −2X 2− 2R

YSp 1 1 1 1 1 −BK −AK −1
2N −XK −RK + 2

Table 39. Quantum numbers of the deconfined SU(N)× Sp(N +K − 2) gauge theory.

Notice that in this theory the additional matter fields are included unlike the previous

subsection and this is very similar to the 4d deconfinement [5]. Here we leave the ambigu-

ities of the U(1) charges. For even N , we should take even K. For odd N , K should be
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odd and we can take K = 1. In that case, we don’t need a p3 field because the meson p1p1

cannot be constructed. Then the superpotential is simply W = xp1p2.

If we assume that the Sp(N+K−2) theory first confines, then the low-energy theory is

described by the mesons A = xx,A1 := xp1, A2 := p1p1 and the Coulomb branch operator

YSp with the effective superpotential

W = A1p2 +A2p3 − YSp Pf

(
A A1

−A1 A2

)
. (5.19)

The mesons A1 and A2 are massive due to the tree-level superpotential, then the effective

superpotential is vanishing and plays no role. The important point is that the Coulomb

branch operator YSp is completely decoupled from the other sector of the theory. Thus we

recover the electric SU(N) gauge theory with F fundamentals, F ′ anti-fundamentals and

an anti-symmetric without a superpotential.

For F ′ = F + N − 2, the SU(N) theory has the dual description [17] with the (non-

special) unitary gauge group. The dual is given by a U(F +K− 2)×Sp(N +K− 2) gauge

theory. The superpotential is

W = M3p1 + p1p1p3 +Mqq̃ +M1qp̃2 +M2x̃q̃ +M3x̃p̃2 + YSUbb̃+ X̃+ + X̃−, (5.20)

and the matter contents are summarized in table 40.

U(F +K − 2) Sp(N +K − 2) SU(F ) SU(F +N − 2) SU(K) U(1)B U(1)A U(1)X U(1)R

q �1 1 ¯ 1 1 B − 1 A− 1 X + 1
2 R

q̃ ¯−1 1 1 ¯ 1 1−B −A− 1 −X − 1
2 2−R

x̃ �1 � 1 1 1 B A X R

p1 1 � 1 1 � B A X R

p̃2 ¯−1 1 1 1 0 0 0 0

p3 1 1 1 1 ¯ −2B −2A −2X 2− 2R

b 1−(F+K−2) 1 1 1 1 −B(F +K − 2) + F F −A(F +K − 2) −X(F +K − 2)− 1
2(F −N) −R(F +K − 2)

b̃ 1F+K−2 1 1 1 1 B(F − 2)−N − F + 2 A(F − 2) +N + F − 2 X(F − 2) + 1
2F − 1 R(F − 2)− 2F + 4

YSU 1 1 1 1 1 BK +N − 2 AK − 2F −N + 2 XK − 1
2N + 1 RK + 2F − 2

M = QQ̃ 1 1 � � 1 0 2 0 0

M1 = Qp2 1 1 � 1 ¯ 1−B 1−A −1
2 −X 2−R

M2 = xQ̃ 1 � 1 � 1 −1 1 1
2 0

M3 = xp2 1 � 1 1 ¯ −B −A −X 2−R
Y mag

Sp 1−(F+K−2) 1 1 1 1 −BK −BF + 2B + F +N − 2 −AK −AF + 2A− F −N + 2 −XF −XK + 2X − 1
2F −

1
2N + 1 −KR− FR+ 2R+ 2F − 2

Table 40. Quantum numbers of the first dual U(F +K − 2)× Sp(N +K − 2) gauge theory.

The advantage of this method is that the un-needed Coulomb branch is automatically

decoupled then we don’t worry about how to map these Coulomb branch operators and we

can apply the conventional Seiberg or Aharony dualities without worrying about the UV

realization of the terms such as SYSp. However, it is again difficult to see what degrees of

freedom are decoupled from the dual theory. It would be interesting to see what degrees

of freedom are actually decoupled by using the index calculations or the method presented

in [40]. This will be left as the future work. In this first dual description, we expect that

the Coulomb branch operator of the deconfined description YSp relates to the Coulomb

branch operator of the Sp(N +K − 2) gauge group in a following way:

YSp = Y mag
Sp b̃. (5.21)

This implies that the combination Y mag
Sp b̃ is completely decouples from the other moduli.

This is highly non-trivial statement and it should be checked.
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The superpotential gives the mass terms between the fields M3 and p1, then we can

integrate out them. Then the theory reduces to

W = (x̃p̃2)(x̃p̃2)p3 +Mqq̃ +M1qp̃2 +M2x̃q̃ + YSUbb̃+ X̃+ + X̃− (5.22)

with the following matter contents (table 41).

U(F +K − 2) Sp(N +K − 2) SU(F ) SU(F +N − 2) SU(K) U(1)B U(1)A U(1)X U(1)R

q �1 1 ¯ 1 1 B − 1 A− 1 X + 1
2 R

q̃ ¯−1 1 1 ¯ 1 1−B −A− 1 −X − 1
2 2−R

x̃ �1 � 1 1 1 B A X R

p̃2 ¯−1 1 1 1 0 0 0 0

p3 1 1 1 1 ¯ −2B −2A −2X 2− 2R

b 1−(F+K−2) 1 1 1 1 −B(F +K − 2) + F F −A(F +K − 2) −X(F +K − 2)− 1
2(F −N) −R(F +K − 2)

b̃ 1F+K−2 1 1 1 1 B(F − 2)−N − F + 2 A(F − 2) +N + F − 2 X(F − 2) + 1
2F − 1 R(F − 2)− 2F + 4

YSU 1 1 1 1 1 BK +N − 2 AK − 2F −N + 2 XK − 1
2N + 1 RK + 2F − 2

S 1 1 1 1 1 BK AK 1
2N +XK RK

M = QQ̃ 1 1 � � 1 0 2 0 0

M1 = Qp2 1 1 � 1 ¯ 1−B 1−A −1
2 −X 2−R

M2 = xQ̃ 1 � 1 � 1 −1 1 1
2 0

Y mag
sp 1−(F+K−2) 1 1 1 1 −BK −BF + 2B + F +N − 2 −AK −AF + 2A− F −N + 2 −XF −XK + 2X − 1

2F −
1
2N + 1 −KR− FR+ 2R+ 2F − 2

Table 41. Quantum numbers of the low-energy first dual theory.

Finally one may expect that the method presented in this subsection can be applied

to the theories discussed in section 3. We can generally use this method but the resulting

deconfined theory has no “s-confining × s-confining” structure and we cannot reproduce

the s-confining superpotential. At this stage we have no natural answer to explain the

discrepancy and this will be left as the future work.

6 Summary and discussion

In this paper we developed a deconfinement technique in the 3d N = 2 supersymmetric

gauge teories and investigated the dynamics of the product gauge group with special at-

tention to their s-confining phases. This method is quite general and would be applicable

to any two-index matters3 and general product gauge groups. We here concentrated on the

anti-symmetric matters which were deconfined by the s-confining phase of the 3d N = 2

Sp(2N) gauge theory. The mesonic operators in the s-confining phase describe the Higgs

branch and they are identified with the two-index matters we want. The difference between

the 3d and 4d deconfinement methods is the presence of the Coulomb branch coordinates

of the s-confining gauge theories. The unnecessary flat directions are lifted by introduc-

ing the additional singlets and by coupling them to the Coulomb branch coordinates as

the mass terms. In the “s-confining × s-confining” theories, these additional singlets are

3For the symmetric matters, we will be able to use the s-confining phase of the 3d N = 2 O(N) gauge

theory with F = N−1 vector matters, where the s-confining description includes the symmetric meson, the

Coulomb branch operator and the dual gauge-singlet quarks. For the purpose of the deconfinemnt of the

symmetric matters, we need lift up the Coulomb branch and the dual quarks by introducing the additional

gauge singlets. This seems different from the 4d deconfinement of the symmetric matter. Since the low-

energy dynamics of the 4d N = 1 SO(N) gauge theory with N − 4 vector matters has two inequivalent

branches where one of them is confining and the other has no stable vacuum [41]. Thus in 4d, we have to

omit the second branch and we have to choose the confining phase. In this sense the deconfinement of the

symmetric matter is not well investigated in 4d. In 3d, we will not have such a problem. For the adjoint

matters, we can use the s-confining phase of the 3d N = 2 SU(N) or U(N) gauge theories.
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identified with the gauge singlets which consist of the two-index matters. For the theory

with an anti-symmetric flavor, we have found the same massless direction as [25] but the

form of the superpotential is slightly different. We have no satisfying reason to explain this

discrepancy but we expect these two potentials describe the same physics. This will be left

as the future work. For the analysis of the 3d N = 2 SU(2)N product gauge theory, we

derived the exact superpotential which describes the low-energy 3d dynamics and this is

highly consistent with the exact superpotential in 4d and with the Seiberg-Witten curve.

The deconfined technique is usually not so useful because the dynamics of either SU(N)

or Sp(2N ′) gauge group is alway strong in the infrared region and we do not have the

weakly coupled description. This situation is the same for the 3d deconfinement and

what is even worse is that, in 3d, all the gauge theories become strong even if the U(1)

gauge theories are considered. However, while the 3d theories with two-index matters

generally have the very complicated Coulomb moduli, the deconfined description have

more tractable Coulomb branch since there are only the (bi-)fundamental matters. This is

one of the advantages of the deconfinement in 3d. One direction of the Coulomb branch

in the SU(2N) theory with an anti-symmetric matter is related to the Coulomb branch

of the Sp(2N − 2) gauge group in the deconfined SU(2N) × Sp(2N − 2) theory. If we go

on to the dual description of the SU(2N)× Sp(2N − 2) gauge theory, we can further find

the Coulomb branch operator labeling the remaining part of the Coulomb branch of the

electric theory. However the mapping of the full Coulomb branch operators between the

electric and deconfined description is non-trivial, which will be left as a future study.

Furthermore, we have shown that the 3d deconfinement with “s-confining× s-confining”

structure gives the completely s-confining description with no gauge group for the SU(N)

gauge theory with anti-symmetric matters, which was absent in the 4d case with “s-

confining × s-confining”. It is very interesting to further investigate the deconfinement

with “s-confining× s-confining” and find a new s-confining description of the theory with

two-index matters. It is also important to generalize the “s-confining × s-confining” struc-

ture to the cases with “s-confining × quantum modified constraint” or “quantum modified

constraint × quantum modified constraint”, which is easily performed by changing the

matter contents.

The difference between the 3d and 4d deconfinement is that the 3d deconfinement

and the duality transformation affect the structure of the Coulomb branch operators. The

Coulomb branch of the 3d N = 2 SU(N) gauge theory with anti-symmetric matters is very

complicated and sometimes the two coordinates are required to describe it [25, 31]. In the

deconfined description we also have the two Coulomb branch operators: one of them is a

SU(N) Coulomb branch and the other one comes from a Sp(2N) gauge theory. Remember

that in the deconfined description discussed in this paper, the SU(N) part of the SU× Sp

gauge theory is “vector-like”, so we need only a single operator for describing the SU(N)

Coulomb branch. These two Coulomb branches correctly explain the unlifted Coulomb

branch of the 3d N = 2 SU(N) gauge theory with anti-symmetric matters. When one first

changes the dynamics of the Sp part into the confined description, the Coulomb branch of

the SU(N) part becomes highly complicated as explained in [25, 31]. If we first change the

SU(N) dynamics into the Seiberg dual or a confined one, the Coulomb branch of the Sp
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part is modified because the fermions contributing to the Sp-monopole are mesons. When

we further exchange the Sp part to the dual description and obtain the second dual, the

Coulomb branch of the SU part becomes complicated since the duality transformation of the

Sp part introduces the two-index matters in the SU(N) gauge group. In 4d, we can think

of the SU gauge group as a flavor symmetry under the Sp Seiberg duality transformation

and only the matter contents change. The modification of the Coulomb branch under the

duality sequence is peculiar to the 3d deconfinement.

We showed the alternative way of the deconfinement, namely decoupling the Coulomb

moduli. In this method we do not lift the unnecessary Coulomb branch but only decouple

it from the other sector by introducing the additional matters. This is successful but it

is difficult to find the decoupled direction in the dual theories. In order to deal with this

problem, it would be preferable to find the decoupled degrees of freedom on the dual side,

for example, by using the argument in [40], where the quantum dimensions of the operators

are investigated by means of the F-maximization and the decoupled directions are studied.

We can use the same technique in our example.

In this paper we checked the validity of the deconfinement with “s-confining ×
s-confining” by the correspondence of the moduli space and the comparison with the known

dualities. Although this check is quite strong, it is worth performing the another checks.

For example, we can compare the (superconformal) indices of the electric and magnetic

theories by using the localization method [42–46]. Furthermore it is important to find

the correct U(1)R charge realized in the infrared comformal fixed point, which would be

possible if we use the F-maximization. If the duality is correct, the infrared U(1)R charges

on the electric and magnetic sides should be identical. This would be a non-trivial check

of the duality.

It is also possible to apply the 3d deconfinement technique to the (supersymmetric)

Chern-Simons matter theories with two-index matters. This is a simple generalization

and all the story which we gave in this paper can be applied. In section 5, we studied

the deconfinement of the 3d N = 2 SU(N) gauge theory with one anti-symmetric, F

fundamentals and F ′ = F + 2N − 2 anti-fundamentals. The deconfined theory is a vector-

like theory and its dual is given by the U(F − N) × Sp(N + K − 2) gauge theory. It is

interesting to consider the chiral version. The Seiberg duality of the chiral gauge theory is

considered in [17, 47, 48] and we can use it for finding the duality of the 3d N = 2 SU(N)

gauge theory with an anti-symmetric, F fundamentals and general F ′ anti-fundamentals.

It is also possible and interesting to study the deconfinement of the adjoint matters and the

symmetric matters. These are described in terms of the s-confining phases of the (S)U(N)

and (S)O(N) gauge theories respectively.

Now we have the 3d and 4d deconfinement methods. Then it is quite intriguing to

understand the relation between them. It would be possible to dimensionally reduce the 4d

deconfinement description into the 3d one because the deconfined description only contains

the fundamental matters, so the reduction and the deformation required for obtaining the

3d duality would be the same as [17]. The procedure is very simple: first, we put the

4d theory on a circle and take into account the effect of the compactification. The effect

mainly comes from the KK-monopoles (twisted instantons) [49], which generate the non-
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perturbative superpotential. The same step is also carried out for the dual theory. In this

way we can obtain the 3d or R3 × S1 duality with the superpotential. In order to obtain

the duality without the superpotential, we need to further deform the theory by giving

real masses and taking the low-energy limit. On the dual side we need to find the same

deformation as the electric side. However since the global U(1) charge assignment of the

matter contents is complicated in the deconfinement theory, it is difficult to find where the

low-energy limit should be taken in the dual theory. Thus it is very interesting problem to

find the connection of the 3d and 4d deconfinement methods.

In section4, we discussed the dimensional reduction of the special class of the N = 1

Seiberg-Witten curve where the 4d theory only has the rank-1 Coulomb branch. But one

can generally write down the Seiberg-Witten curves for the theories with also the Higgs

branch. The dimensional reduction would well work for such theories and one can obtain

the effective 3d superpotentials including the Higgs and Coulomb moduli from the Seiberg-

Witten curve. We will briefly show the story of this direction. The Seiberg-Witten curve

generically contains the mass or coupling dependence for the matter chiral superfields and

in this sense the Higgs branch is integrated out. In the dimensional reduction of the theory

whose dynamics on the Coulomb branch is described by the Seiberg-Witten curve, we can

interpret the variables x, y describing the curve as the dynamical fields. Integrating in the

matter contribution into the superpotential by inverse Legendre transformations we obtain

the correct description of the Coulomb and Higgs branches. To be more specific, let us

consider the 4d N = 2 SU(2) gauge theory with Nf = 1 fundamental flavors [50]. The

corresponding Seiberg-Witten curve is

y2 = x2(x− u) + 2mx+ 1, (6.1)

where m is a mass term for the hypermultiplet and u := trφ2. By changing the variables

as x − u =: v [50], compactifying the theory on a circle and introducing the soft SUSY

breaking term to the adjoint chiral superfield since we are interested in the dynamics of

the 3d N = 2 theories, we obtain the superpotential

W = λ(y2 − x2v − 2mx− 1) + ε(xη − v), (6.2)

where ε is a SUSY breaking parameter, η is a 4d dynamical scale and λ is a Langrange

multiplier to impose the defining equation of the Seiberg-Witten curve. Integrating out

λ, y and v, we find the low-energy superpotential

W = εxη + ε
1− 2mx

x2
. (6.3)

Note that since the effective superpotential has the linear dependence on m, then Legendre

transforming m to the meson field M gives the identification M ∼ 2ε
x . If we rescale x as

Y := x/(2ε) and interpret this as the Coulomb branch operator, we can find the quantum

modified constraint MY = 1, which is found in [7]. In this rescale and by taking the 3d

limit where η → 0, the first and second terms in the superpotential are vanishing. This

analysis is straightforwardly generalized to Nf = 2 [50], in which the Seiberg-Witten curve
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takes

y2 = (x2 − 1)v + 2m1m2x− (m2
1 +m2

2) (6.4)

in terms of the rescaled variables. We can integrate in the meson fields M12 and M34

and find

W = −M12M34x

2ε
+ · · · = −M12M34Y + · · · , (6.5)

where the ellipses are the terms vanishing in the limit with ε→∞ and η → 0. This result

is beautifully consistent with the effective superpotential W = −Y PfM . Notice that since

the above derivation relies on the integrating-in method, we may in general include other

terms and in many cases we are missing new massless degrees of freedom appearing in

the origin of the moduli space. The similar analyses are found in [51–54] and it would be

possible to generalize the analysis to more complicated N = 1 Seiberg-Witten curves with

the higher ranks. It is also worth investigating the 3d N = 2 SU(N)× SU(N) theory with

bi-fundamental matters since the 4d version of this theory has the Coulomb phases and we

will be able to find the interesting physics also in 3d.
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