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Abstract: The S-matrix of a quantum field theory is unchanged by field redefinitions, and

so it only depends on geometric quantities such as the curvature of field space. Whether

the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a

subtle question since one can make a coordinate change to convert a field that transforms

linearly into one that transforms non-linearly. Renormalizability of the Standard Model

(SM) does not depend on the choice of scalar fields or whether the scalar fields transform

linearly or non-linearly under the gauge group, but only on the geometric requirement that

the scalar field manifold M is flat.

Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory

(HEFT) have curvedM, since they parametrize deviations from the flat SM case. We show

that the HEFT Lagrangian can be written in SMEFT form if and only ifM has a SU(2)L×
U(1)Y invariant fixed point. Experimental observables in HEFT depend on local geometric

invariants ofM such as sectional curvatures, which are of order 1/Λ2, where Λ is the EFT

scale. We give explicit expressions for these quantities in terms of the structure constants

for a general G → H symmetry breaking pattern. The one-loop radiative correction in

HEFT is determined using a covariant expansion which preserves manifest invariance of

M under coordinate redefinitions. The formula for the radiative correction is simple when

written in terms of the curvature of M and the gauge curvature field strengths. We also

extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature

computation to the case of multiple singlet scalar fields.
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1 Introduction

Current experimental data is consistent with the predictions of the Standard Model (SM)

with a light Higgs boson of mass ∼ 125 GeV. The measured properties of the Higgs boson

agree with SM predictions, but the current experimental accuracy of measured single-

Higgs boson couplings is only at the level of ∼ 10%, and no multi-Higgs boson couplings

have been measured directly. It is important to consider generalizations of the SM with

additional parameters in order to quantify the accuracy to which the SM is valid or to

detect deviations from SM predictions.

Over the past 40 years, many theoretical ideas have been proposed for the underly-

ing mechanism of electroweak symmetry breaking. Theories that survive must be con-

sistent with the currently observed pattern of electroweak symmetry breaking, which is

– 1 –



J
H
E
P
0
8
(
2
0
1
6
)
1
0
1

well-described by the SM. A general model-independent analysis of electroweak symme-

try breaking can be performed using effective field theory (EFT) techniques. Assuming

there are no additional light particles beyond those of the SM at the electroweak scale

v ∼ 246 GeV, the EFT has the same field content as the SM. There are two main EFTs

used in the literature, the Standard Model Effective Field Theory (SMEFT) and Higgs

Effective Field Theory (HEFT). In this paper, we make the relationship between these two

theories precise.

The Higgs boson h of the SM is a neutral 0+ scalar particle. In the SM Lagrangian, it

appears in a complex scalar field H, which transforms as 21/2 under the SU(2)L × U(1)Y
electroweak gauge symmetry. An oft-stated goal of the precision Higgs physics program is

to test whether (a) the Higgs boson transforms as part of a complex scalar doublet which

mixes linearly under SU(2)L × U(1)Y with the three “eaten” Goldstone bosons ϕ, or (b)

whether the Higgs field is a singlet radial direction which does not transform under the

electroweak symmetry. In case (b), the three Goldstone modes ϕ transform non-linearly

amongst themselves under the electroweak symmetry, in direct analogy to pions in QCD

chiral perturbation theory, and do not mix with the singlet Higgs field. In case (a), there

are relations between Higgs boson and Goldstone boson (i.e. longitudinal gauge boson)

interactions, whereas in case (b), no relations are expected in general. An objective of this

paper is to explore the distinction between these two pictures for Higgs boson physics.

The properties of the scalar sector of the SM and its EFT generalizations can be clari-

fied by studying it from a geometrical point of view [1]. The scalar fields define coordinates

on a scalar manifoldM. The geometry ofM is invariant under coordinate transformations,

which are scalar field redefinitions. The quantum field theory S-matrix also is invariant

under scalar field redefinitions, so it depends only on coordinate-independent properties

of M. Consequently, experimentally measured quantities depend only on the geometric

invariants of M, such as the curvature. Formulating physical observables geometrically

avoids arguments based on a particular choice of fields. It also allows us to correctly pose

and answer the question of whether the Higgs boson transforms linearly or non-linearly

under the electroweak gauge symmetry. Further, a geometric analysis gives a better un-

derstanding of the structure of the theory and its coordinate-invariant properties.

The UV theory can have additional states, such as massive meson excitations in the case

of theories with strong dynamics. At low energies, the EFT interactions in the electroweak

symmetry breaking sector are described by a Lagrangian with scalar degrees of freedom

on some manifold M, with the Lagrangian expanded in gradients of the scalar fields. The

geometric description captures the features of the UV dynamics needed to make predictions

for experiments at energies below the scale of new physics.

The geometrical structure of non-linear sigma models has been worked out over many

years, mainly in the context of supersymmetric sigma models (see e.g. [2–12]). The appli-

cations to the SM Higgs sector presented here are new, and they provide a better under-

standing of the structure of HEFT and the search for signals of new physics through the

couplings of the Higgs boson.

Some of the results in this paper have already been given in ref. [1]. Here we provide

more explanation of the results presented there as well as details of explicit calculations in
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that work, including the derivation of the one-loop effective action for a curved scalar mani-

foldM. For most of the paper, we will assume that the scalar sector has an enlarged global

symmetry, known as custodial symmetry. Also note that we will usually treat the scalar

sector in the ungauged case, referring to the scalar fields as Higgs and Goldstone bosons.

The gauged version of the theory follows immediately by replacing ordinary derivatives by

gauge covariant derivatives. In the gauged case, the Goldstone bosons are eaten via the

Higgs mechanism, becoming the longitudinal polarization states of the massive electroweak

gauge bosons. Thus, the Higgs-Goldstone boson relations we refer to are in fact relations

between the couplings of the Higgs boson and the three longitudinal gauge boson states

W±L and ZL [13–15].

The organization of the paper is as follows. The relationship between the SM, SMEFT

and HEFT is discussed in section 2 from a geometrical point of view. It is shown that

SMEFT is a special case of HEFT whenM is expanded about an O(4) invariant fixed point.

Further, it is shown that the existence of such an O(4) invariant fixed point is a necessary

and sufficient condition for the existence of a choice of scalar fields such that the Higgs

field transforms linearly under the electroweak gauge symmetry. Section 3 presents the

covariant formalism for curved scalar field space. We discuss global and gauge symmetries

in terms of Killing vectors of the scalar manifold, and we derive the one-loop correction to

the effective action for curved M. In section 4, the geometric formulation of G/H theories

is connected with the standard coordinates of CCWZ. We give formulæ for the curvature

tensor in terms of field strengths for a general sigma model. We also discuss the extension

of the CCWZ standard coordinates to non-compact groups. As shown in ref. [1], the sign of

deviations from SM values of Higgs boson-longitudinal gauge boson scattering amplitudes

is controlled by sectional curvatures in HEFT. For G/H theories based on compact groups,

these sectional curvatures are typically positive. We compute the sectional curvature, and

show that in certain cases, it can be negative. In section 5, we briefly discuss the SM and

custodial symmetry violation, and the relation between the SM scalar manifold and the

configuration space of a rigid rotator. Section 6 generalizes HEFT to the case of multiple

singlet Higgs bosons. Finally, section 7 provides our conclusions. Additional formulae

are provided in the appendices, including intermediate steps in the computation of the

one-loop correction to HEFT given in refs. [1, 16], and discussion of the complications for

non-reductive cosets.

2 SM ⊂ SMEFT ⊂ HEFT

In this section, we discuss the scalar sector of the SM and its EFT generalizations, SMEFT

and HEFT, as well as the relationship between these three theories. We begin with a

summary of the scalar sector of the SM.

The SM scalar Lagrangian (with the gauge fields turned off) is

L = ∂µH
†∂µH − λ

(
H†H − v2

2

)2

. (2.1)

This scalar Lagrangian is the most general SU(2)L × U(1)Y invariant Lagrangian with

terms of dimension ≤ 4 built out of a Higgs doublet H that transforms as 21/2 under
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SU(2)L ×U(1)Y . As is well-known, the SM scalar sector has an enhanced global custodial

symmetry group O(4) ∼ SU(2)L × SU(2)R. This global symmetry can be made manifest

by writing the SM complex scalar doublet field H in terms of four real scalar fields,

H ≡ 1√
2

[
φ2 + iφ1

φ4 − iφ3

]
. (2.2)

Substitution in eq. (2.1) yields the Lagrangian

L =
1

2
∂µφ · ∂µφ−

λ

4

(
φ · φ− v2

)2
, (2.3)

where φ = (φ1, φ2, φ3, φ4). Lagrangian eq. (2.3) is invariant under G = O(4) global sym-

metry transformations

φ→ Oφ, OTO = 1. (2.4)

The scalar field φ transforms linearly as the four-dimensional vector representation of the

global symmetry group G = O(4). The minimum of the potential is the three-sphere S3 of

radius v,

〈φ · φ〉 = v2 , (2.5)

which is the Goldstone boson vacuum submanifold of the SM. The radius of the sphere,

v ∼ 246 GeV, is fixed by the gauge boson masses. It is conventional to choose the vacuum

expectation value

〈φ〉 = v


0

0

0

1

 , (2.6)

and expand the Lagrangian about this vacuum state in the shifted fields φ4 ≡ v + h and

φa ≡ ϕa, a = 1, 2, 3,

φ =


ϕ1

ϕ2

ϕ3

v + h

 , H =
1√
2

[
ϕ2 + iϕ1

v + h− iϕ3

]
. (2.7)

The vacuum expectation value 〈φ〉 spontaneously breaks the global symmetry group G =

O(4) to the unbroken global symmetry group H = O(3). The Goldstone bosons ϕa, a =

1, 2, 3, transform as a triplet under the unbroken global symmetry, whereas h transforms as

a singlet. We will refer to both the enlarged global symmetries G = O(4) ∼ SU(2)L×SU(2)R
and H = O(3) ∼ SU(2)V as custodial symmetries. The unbroken global symmetry group

H leads to the relation MW = MZ cos θW , which is a successful prediction of the SM. The

experimental success of this gauge boson mass relation implies that custodial symmetry is

a good approximate symmetry of the SM.
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The Lagrangian eq. (2.3) in terms of shifted fields eq. (2.7) becomes

L =
1

2
∂µϕ · ∂µϕ+

1

2
(∂µh)2 − λ

4

(
h2 + 2hv +ϕ ·ϕ

)2
. (2.8)

The singlet h is the physical Higgs field with mass

m2
h = 2λv2 , (2.9)

whereas the Goldstone bosons are strictly massless. In the gauged theory, the three Gold-

stone bosons ϕa of the G → H global symmetry breakdown are “eaten” via the Higgs

mechanism, becoming the longitudinal polarization states of the massive W± and Z gauge

bosons. Note that the O(4)-invariant potential V (h,ϕ) depends on an O(4)-invariant com-

bination of both h and ϕ.

Equating the scalar kinetic energy term in eq. (2.8) with

LKE =
1

2
gij (φ)

(
∂µφ

i
) (
∂µφj

)
, i, j = 1, 2, 3, 4, (2.10)

defines the scalar metric gSMij (φ) = δij for the SM scalar manifold M with coordinates

given by the scalar fields φi. Distances on M are determined by ds2 = gij (φ) dφidφj .

The four-dimensional SM scalar manifold M = R4 is shown in figure 1. The O(4)

symmetry acts by rotations. The minimum of the potential is the solid red curve, and forms

the three-dimensional Goldstone boson submanifold S3 of radius v. The parameterization

eq. (2.7) is a Cartesian coordinate system for M centered on the vacuum (black dot),

where h is the horizontal direction, and ϕa, a = 1, 2, 3, are the three other directions

orthogonal to h. The angular coordinates of S3 are ϕa/v. The O(4) symmetry acts linearly

on (ϕ1, ϕ2, ϕ3, v + h).

In Cartesian coordinates, it seems intuitively clear that ϕa and h interactions are re-

lated, given that the four scalar fields belong to the same Higgs doublet eq. (2.2). However,

the precise relation is subtle. In order to understand this point better, it is instructive to

express the SM Lagrangian eq. (2.3) in polar coordinates as well.

In polar coordinates,1

φ = (v + h)n(π) , n · n = 1 , (2.11)

where (v+h) is the magnitude of φ, and n(π) ∈ S3 is a four-dimensional unit vector. The

four shifted scalar fields consist of the three dimensionless angular coordinates πa = πa/v

(the direction of n(π) on S3), and the radial coordinate h. The SM Lagrangian in polar

coordinates is

L =
1

2
(v + h)2 (∂µn)2 +

1

2
(∂µh)2 − λ

4

(
h2 + 2vh

)2
. (2.12)

An advantage of expressing the SM Lagrangian in polar coordinates is that the three

Goldstone boson fields of n(π) are derivatively coupled. In addition, the scalar potential in

1We use h, ϕ for the fields in Cartesian coordinates, and h, π (or h,n) in polar coordinates.
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Figure 1. Two-dimensional depiction of the four-dimensional scalar manifold M = R4 of the

SM. The SM vacuum is the black dot shown in the figure. The origin (green dot) is an O(4)

invariant fixed point. The left and right diagrams show the fields in Cartesian and polar coordinates,

respectively. O(4) symmetry acts linearly on the Cartesian coordinates. In polar coordinates, h is

O(4)-invariant, and the angular coordinates n(π) transform non-linearly under the O(4) symmetry.

The scalar manifold M is flat, so the scale Λ setting the curvature is formally infinite.

polar coordinates only depends on the radial coordinate h, whereas in Cartesian coordinates

it depends on all four scalar fields.

The O(4) symmetry transformations of M in polar coordinates are

h→ h, n→ On, (2.13)

so the Higgs field h is invariant under O(4) transformations, and n transforms linearly

by an orthogonal transformation that preserves the constraint n · n = 1. Due to the

constraint, however, only three of the four components of n are independent. Without

loss of generality, one can take the first three components of n to be the independent

components. Then, the fourth component n4 is a non-linear function of the independent

components n1,2,3. The non-linear constraint n·n = 1 turns the linear O(4) transformation

on n into a non-linear transformation when written in terms of unconstrained fields. Thus,

the O(4) transformation on the three independent angular coordinates πa/v is a non-linear

transformation.

Many different parameterizations of n(π) in terms of the independent unconstrained

coordinates πa/v are possible. Two natural non-linear parameterizations are the square

root parameterization and the exponential parameterization, which are defined by

n(π) =
1

v


π1

π2

π3√
v2 − π · π

 , (2.14)
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and

n(π) = exp

1

v


0 0 0 π1

0 0 0 π2

0 0 0 π3

−π1 −π2 −π3 0





0

0

0

1

 , (2.15)

respectively. For most of this paper, we use the exponential parameterization for n(π)

since it corresponds to the standard coordinates of CCWZ.

Rotations in the 12, 13 and 23 planes act linearly on (n1, n2, n3), and leave n4 invariant.

However, rotations in the 14, 24 and 34 planes mix (n1, n2, n3) and n4. For example, a 14

rotation gives

δn1 = δθ n4, δn2 = 0, δn3 = 0, δn4 = −δθ n1. (2.16)

In terms of the independent unconstrained coordinates πa of the square root parameteri-

zation, 12, 13 and 23 rotations act linearly, but a 14 rotation gives

δπ1 = δθ
√
v2 − π · π, δπ2 = 0, δπ3 = 0. (2.17)

The O(4) transformation eq. (2.17) is non-linear. Consequently, eq. (2.13) is called a

non-linear transformation, since it is non-linear when written in terms of unconstrained

coordinates (π1, π2, π3).

In polar coordinates, n and h are very different objects, and it is not at all obvious that

n and h interactions are related. Nevertheless, all we have done is switch from Cartesian

coordinates {ϕa, h} to polar coordinates {πa, h} while keeping the Lagrangian fixed. This

change of coordinates does not affect physical observables such as S-matrix elements. Any

relations that exist amongst physical observables must be present irrespective of the choice

of coordinates.

We have summarized the standard analysis of the SM in Cartesian and polar coordi-

nates. In Cartesian coordinates, the Higgs field h and the three Goldstone fields ϕa form

a four-dimensional representation which transforms linearly under O(4). In polar coordi-

nates, the Higgs field h is an O(4) singlet or invariant, and the three Goldstone bosons πa

parameterizing the S3 unit vector n(π) transform among themselves under the non-linear

O(4) transformation law eq. (2.13). The Higgs boson field h in polar coordinates is not the

same field as the Higgs boson field h in Cartesian coordinates. The relation between the

two Higgs boson fields is

(v + h)2 = (v + h)2 +ϕ ·ϕ, (2.18)

so that

h = h +
ϕ ·ϕ

2v
− 1

2

hϕ ·ϕ
v2

+ . . . (2.19)

By the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula, h and h give the same

S-matrix, and both are perfectly acceptable choices for the Higgs boson field.2

2The nomenclature “the Higgs field” is misleading, since there is no unique choice for the Higgs field.
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2.1 O(4) fixed point

We now return to the question of whether the Higgs field transforms linearly or non-linearly

under the electroweak gauge symmetry, and whether interactions of the Higgs boson and

the three Goldstone bosons (i.e. longitudinal gauge boson polarizations) are related. As we

have just seen, this question is not well-posed in the SM, since the answer depends on the

choice of coordinates. However, it is intuitively clear that there is an underlying relationship

between the couplings of the Higgs and Goldstone bosons in the SM that does not remain

valid in the general context of HEFT. We need to formulate any coupling relations in a

coordinate-invariant way. There are two conditions which make the SM special — (i) there

is a point φ = 0 (or H = 0) of M which is an O(4) invariant fixed point, and (ii) the

scalar manifold M is flat, i.e. it has a vanishing Riemann curvature tensor.3 As we now

see, relations in the SM between the couplings of the Higgs boson and the three Goldstone

bosons arise from these two conditions which are no longer true in HEFT in general.

We first analyze whether the Higgs field is part of a multiplet that transforms linearly

under the O(4) symmetry. Even in the SM, the answer to this question depends on the

choice of coordinates. The coordinate-invariant formulation of the question is: does there

exist a choice of coordinates for M such that the Higgs field is part of a multiplet that

transforms linearly under the O(4) symmetry? We now show that the answer is yes if and

only if M has an O(4) invariant fixed point.4

It is clear from the O(4) transformation law eq. (2.4) for φ that the origin φ = 0 is an

O(4) invariant fixed point. Any other theory that can be formulated using fields φ which

transform linearly under the O(4) symmetry also must have an O(4) invariant fixed point

at φ = 0. Thus, if there exists a choice of coordinates φ which transform linearly under

the O(4) symmetry, then the scalar manifold M has an O(4) invariant fixed point.

Now, we prove the converse statement. Consider a general scalar manifoldM, which is

described by coordinates which transform under O(4) transformations and which contains

an O(4) invariant fixed point P . Is there a choice of coordinates such that the scalar fields

transform linearly under the O(4) symmetry? The key result we need for the proof in this

direction is the linearization lemma of Coleman, Wess and Zumino [17], which states that

if P is an O(4) invariant fixed point, there exists a set of coordinates in a neighborhood

of P which transform linearly under O(4) transformations in some (possibly reducible)

representation of O(4). If this O(4) representation contains the four-dimensional vector

representation of O(4), then the four coordinates φi, i = 1, 2, 3, 4, which transform as a

vector, can be combined into a Higgs doublet H, as in eq. (2.2). Thus, the Higgs field

is part of a linear representation H if and only if there is an O(4) invariant fixed point

whose tangent space transforms under O(4) in a representation that contains the vector

representation. In most of our examples, the scalar manifold is four-dimensional, and the

tangent space of P automatically transforms as the vector representation, so we will omit

the condition that the tangent space transforms as the vector representation.

3In Cartesian coordinates, gSMij (φ) = δij , and it trivially follows that the Riemann curvature tensor

vanishes. Since the curvature is coordinate independent, it also vanishes in polar coordinates, even though

the metric is more complicated.
4In theories without custodial symmetry, the fixed point is SU(2)L ×U(1)Y invariant.
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The condition that M contains an O(4) fixed point divides theories into those which

can and cannot be written in a form where the Higgs boson is part of a multiplet that

transforms linearly under the electroweak gauge symmetry group Ggauge = SU(2)L×U(1)Y
(or the larger global custodial symmetry group G = O(4) = SU(2)L × SU(2)R). There are

theories which satisfy the condition that M contains an O(4) invariant fixed point, but

which do not have relations between the couplings of the Higgs boson and the Goldstone

bosons. To understand this point better, we now introduce SMEFT and HEFT.

2.2 SMEFT

SMEFT is an effective theory with the most general Lagrangian written in terms of SM

fields, including all independent higher dimension operators with dimension greater than

four, suppressed by an EFT power counting scale Λ. The independent operators at dimen-

sion six, and their renormalization [18, 19], has been worked out in detail [20–27].

In SMEFT, all operators involving scalar fields are written in terms of the Higgs doublet

field H. For simplicity, at present we assume that the custodial symmetry group of SMEFT

is G = O(4). The SMEFT scalar kinetic energy term, which consists of all operators built

out of Higgs doublet fields with two derivatives, is

LKE = ∂µH
†∂µH +

1

Λd−4

∑
i

CiO
(d)
i

= ∂µH
†∂µH +

1

Λ2
CHD

(
H†∂µH

)∗ (
H†∂µH

)
+ · · · , (2.20)

where the sum in the first line is over all independent mass dimension d operators built

out of two derivatives and Higgs doublet fields H† and H, and the second line gives the

explicit expression including the leading d = 6 operator. Using eq. (2.2) to write the Higgs

doublet H in terms of four real scalars φ, yields a scalar kinetic energy term of the form

LKE =
1

2

[
A

(
φ · φ
Λ2

)
∂µφ · ∂µφ+B

(
φ · φ
Λ2

)
(φ · ∂µφ)2

Λ2

]
, (2.21)

where the arbitrary functions A(z) and B(z) are defined by power series expansions in their

argument z ≡ φ · φ/Λ2. In the Λ → ∞ limit, the kinetic energy term of SMEFT reduces

to the SM kinetic energy term, so the function A(z) satisfies A(0) = 1. Comparison of

eq. (2.21) with eq. (2.10) yields the SMEFT scalar metric

gij(φ) = A

(
φ · φ
Λ2

)
δij +B

(
φ · φ
Λ2

)
φiφj
Λ2

. (2.22)

The Riemann curvature tensor Rijkl(φ) of the curved scalar manifold M in SMEFT can

be calculated from the above metric. The SM is a special case of the SMEFT in which all

higher dimension operators with d > 4 are set to zero, or equivalently, one takes the limit

Λ→∞. From eq. (2.22), we see that in this limit the SMEFT metric yields the SM scalar

metric gSMij (φ) = δij in Cartesian coordinates, and M → R4 becomes flat with vanishing

Riemann curvature tensor.
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Most composite Higgs models [28, 29] can be written in SMEFT form. A simple

example is the SO(5) → SO(4) composite Higgs model [30]. The symmetry breaking field

lives on a sphere of radius f in five dimensions, and can be written as[
φ√

f2 − φ · φ

]
. (2.23)

φ is the SMEFT field, and the Lagrangian can be written in SMEFT form. In general,

composite Higgs theories solve the hierarchy problem by vacuum misalignment. There is

a field configuration where the vacuum is “aligned,” so that the electroweak symmetry is

unbroken. This is the point φ = 0 of SMEFT, and φ measures deviations from this point,

as in eq. (2.23). In the neighborhood of φ = 0, φ gives a linear representation of O(4).

For HEFT to reduce to SMEFT form, this representation must transform as the vector

of O(4). Composite Higgs models which are consistent with experimental data are of this

type [31, 32].

The SMEFT is the EFT generalization of the SM where the scalar manifold has an

O(4) invariant fixed point, so that the Lagrangian can be written in terms of the Higgs

doublet field H or the four-dimensional vector field φ on which the O(4) symmetry acts

linearly. This restriction is not enough to give the same scattering amplitudes of Higgs

bosons and Goldstone bosons (longitudinal gauge bosons) as the SM, which can be verified

by explicit computation using eq. (2.21). In refs. [1, 33], it was shown that the high

energy behavior of the cross sections for WLWL → WLWL and WLWL → hh scattering

depend on two sectional curvatures which can be obtained from the Riemann curvature

tensor Rijkl(φ). The one-loop radiative correction in the scalar sector also depends on

the Riemann curvature tensor Rijkl(φ) [1]. The details of these calculations are presented

later in this paper. The important point is that the φφ → φφ scattering cross sections

and the one-loop radiative correction in SMEFT are equal to the SM values if and only

if M is flat, i.e. the Riemann curvature tensor of SMEFT vanishes. This statement is a

coordinate-independent condition, which is true in the SM using either Cartesian or polar

coordinates. Thus, the intuitive idea that the Goldstone boson and Higgs boson directions

in figure 1 are related in the SM can be formulated precisely as the condition that M in

the SM is a four-dimensional flat Euclidean space.

2.3 HEFT

HEFT is a generalization of the SM using the polar coordinate form of the SM La-

grangian, eq. (2.12). The theory is written in terms of three angular coordinates πa/v

that parametrize a unit vector n(π) ∈ S3, and one or more coordinates {hi}. As in the

SM, the unit vector n parametrizes the Goldstone bosons directions [34–38]. Here we re-

strict to one additional h field. The case of multiple {hi} is considered in section 6. The

coordinate h is chosen so that h = 0 is the ground state. The HEFT Lagrangian is

L =
1

2
v2F (h)2 (∂µn)2 +

1

2
(∂µh)2 − V (h) + . . . (2.24)
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Figure 2. The HEFT scalar manifold. There is S3 for each value of h. An O(4) invariant fixed

point exists if there is a value of h for which the radius of S3 vanishes. The fixed point φ0 at h = h∗
is shown in a dotted region of M since it need not exist. There is no boundary at the transition

between the solid and dotted regions, if the dotted region does not exist. Instead, the manifold can

extend to infinity, or is smoothly connected without a point where F (h) = 0. SMEFT has a scalar

manifold where φ = 0 is an O(4) invariant fixed point that always exists, and are like the HEFT

manifold including the dotted section.

where F (h) is an arbitrary dimensionless function with a power series expansion in h/v [39],

normalized so that

F (0) = 1 , (2.25)

since the radius of S3 in the vacuum is fixed to be v by the gauge boson masses. The

HEFT manifold is shown schematically in figure 2. M has a coordinate h, with an S3

fiber at each value of h. While h is often called the radial direction by analogy with the

polar coordinate form of the SM, in HEFT, h is simply a scalar field, and need not be

the radius of anything. HEFT power counting is discussed in [40], and is a combination of

chiral power counting [41, 42] and naive dimensional analysis [43]. The terms omitted in

eq. (2.24) are the NLO operators [44–48].

The O(4) transformation laws for h and n are given in eq. (2.13), so h is invariant and

n transforms non-linearly. The SM and SMEFT are both special cases of HEFT. In the

SM, the radial function is

F SM(h) =

(
1 +

h

v

)
. (2.26)

The SMEFT kinetic energy term eq. (2.21) yields the polar coordinate kinetic energy term

L =
1

2
(v + h)2A (z) (∂µn)2 +

1

2
[A (z) + z B (z)] (∂µh)2 , z =

(v + h)2

Λ2
. (2.27)

This kinetic energy term can be put into the standard form of HEFT by performing a field

redefinition on h to make the coefficient of the (∂µh)2 term equal to 1/2. Thus, the HEFT

scalar metric for one singlet Higgs field is

gij(φ) =

[
F (h)2gab(π) 0

0 1

]
, (2.28)
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where the function F (h) is parametrized by coefficients cn, n ≥ 1,

F (h) = 1 + c1

(
h

v

)
+

1

2
c2

(
h

v

)2

+ · · · . (2.29)

The coefficient c1 is already constrained by experiment to be equal to its SM value c1 = 1

to a precision of about 10%. The coefficient c2 is not constrained at present. The HEFT

scalar metric reduces to the SM scalar metric when F (h) = F SM(h) = 1 + h/v.

In the SMEFT, the functions A and B in eq. (2.22) are expanded out in powers of φ·φ,

whereas in the HEFT literature, they are treated as arbitrary (unexpanded) functions.

When is it possible to rewrite HEFT in SMEFT form? We have seen that a necessary

and sufficient condition is that there must exist an O(4) invariant fixed point P on M.

One can then define φ as coordinates around P and write the Lagrangian in terms of φ.

The general HEFT manifold consists of h and a sequence of spheres of radius vF (h) fibered

over each point of h. The HEFT manifold is depicted in figure 2. O(4) acts on the point

n on the surface of S3 by rotation, so that O(4) maps points on the the red curve onto

itself. No point of S3 is invariant under the full O(4) group, so the only way to have an

O(4) invariant fixed point is if the sphere has zero radius, i.e. if F (h∗) = 0 for some h∗.

Such a point may not exist; its existence depends on the structure of the HEFT manifold.

For example, if F (h) = eh/v cosh(1 + h/f) the HEFT manifold has no O(4) invariant fixed

point. In the SM, F (h) is given by eq. (2.26), and F (h∗) = 0 at h∗ = −v. If there is

an O(4) fixed point, the HEFT can be written as a SMEFT. Some examples are given in

refs. [48–50].

To summarize, HEFT with no O(4) invariant point, i.e. no point where F (h) = 0,

cannot be written in SMEFT form, and hence cannot be written using a doublet field H

(or equivalently, a four-dimensional vector field φ) which transforms linearly under the

electroweak gauge symmetry. This statement answers the question posed in the introduc-

tion: when do the scalar fields of HEFT transform linearly or non-linearly under the gauge

symmetry? They transform linearly if and only if F (h∗) = 0 for some h∗, so that there is

a O(4) fixed point.

Thus, we have shown that the relationship of the SM, SMEFT and HEFT is described

by the hierarchy SM ⊆ SMEFT ⊆ HEFT. SMEFT is a special case of HEFT when there is

a value of the Higgs field h∗ where F (h∗) = 0. The SM is the special case of SMEFT (and

HEFT) when there are no higher dimension operators in the theory, and so M is flat.

One can convert the SMEFT Lagrangian to HEFT form using eq. (2.11) to switch

from Cartesian to polar coordinates. One can attempt to convert from HEFT to SMEFT

form using

φ

(φ · φ)1/2
= n (2.30)

with (φ · φ)1/2 some function of h. This substitution gives a Lagrangian L(φ) that need

not be analytic in φ. However, if there is an O(4) fixed point, then there is a suitable

change of variables such that the resulting Lagrangian is analytic in φ.
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Scattering amplitudes are evaluated in perturbation theory by expanding the action in

small fluctuations about the vacuum (the black dot) in figure 2. The curvature of M is a

local quantity, given by the metric and its derivatives up to second order, evaluated at the

vacuum state. Scattering amplitudes, and hence experimentally measurable cross sections

depend directly on the curvature [1, 33], so the curvature of the EFT scalar manifold can

be determined experimentally.

Whether there is an O(4) invariant fixed point where F (h∗) = 0 is a non-perturbative

question, since F (0) = 1 in the ground state. One has to move a distance of at least h ∼ v
away from the ground state to probe the existence of a fixed point where F (h) vanishes.

3 Covariant formalism for curved scalar field space

In this section, we review the well-known geometric formulation of non-linear sigma mod-

els [3, 4, 11, 42, 51]. The use of functional methods for quantum corrections, com-

bined with a covariant formalism sheds light on a number of technical issues identified in

refs. [37, 52]. This covariant formalism has wide applicability — the CCWZ phenomeno-

logical Lagrangian is a special case of the geometric approach in a particular choice of

coordinates, as discussed in section 4.

3.1 Scalar fields on a curved manifold M

Consider N real scalar fields φi which are the coordinates of a curved scalar manifold M.

The scalar action for the O(p2) Lagrangian (with no gauge fields) containing all operators

with up to two derivatives is

S =

∫
d4x L [φ(x)] =

∫
d4x

(
1

2
gij (φ) (∂µφ)i (∂µφ)j + I (φ)

)
, (3.1)

where I(φ) is an invariant scalar density onM. The two-derivative terms define the scalar

metric gij(φ) ofM. Under a scalar field redefinition or change of scalar coordinates φ′ (φ),

the derivative
(
∂µφ

i
)

transforms as a contravariant vector

∂µφ
′ i =

(
∂φ′ i

∂φj

)
∂µφ

j , (3.2)

and the metric gij (φ) transforms as a tensor with two lower indices,

g′ij =

(
∂φk

∂φ′ i

)(
∂φl

∂φ′ j

)
gkl . (3.3)

Thus, the Lagrangian also is an invariant scalar density. The potential I(φ) is non-zero,

in general. It is a constant if all the fields φi are exact Goldstone bosons of an enlarged

global symmetry.

The first variation of the action yields the equation of motion for the field φ. Under

an infinitesimal variation φ→ φ+ η, the linear in η variation of the action is

δS =

∫
d4x

(
−gij (Dµ(∂µφ))i + I, j

)
ηj , (3.4)
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where

(Dµη)i ≡ ∂µηi + Γikj (∂µφ)k ηj (3.5)

is the covariant derivative on a vector field ηi and Γijk(φ) is the Christoffel symbol. From

eq. (3.4), one obtains the classical equation of motion

Ej = gij (Dµ (∂µφ))i − I, j = gij

(
∂2φi + Γikj (∂µφ)k (∂µφ)j

)
− I, j = 0 , (3.6)

which is the wave equation for φ on the curved manifold M.

The second variation of the action under an infinitesimal variation φ→ φ+ η is

δ2S =
1

2

∫
d4x

[
gij (Dµη)i (Dµη)j−Rijkl ηi(∂µφ)jηk(∂µφ)l−Ej Γjklη

kηl+I; ij ηiηj
]
, (3.7)

where Rijkl is the Riemann curvature tensor and

I; ij = ∇i∇jI =
∂2I

∂φi∂φj
− Γkij

∂I
∂φk

. (3.8)

Eq. (3.7) is not covariant because of the third term which depends explicitly on the connec-

tion Γijk. This term, however, vanishes on shell since it is proportional to the equation of

motion Ei. The non-covariant term leads to non-covariant divergences in Green functions

which vanish in S-matrix elements. Even though they have no physical consequences, the

appearance of non-covariant terms is puzzling since the original theory is covariant. The

non-covariant terms occur because the infinitesimal variation φ→ φ+ η is not a covariant

parameterization of fluctuations to second order in η, as was explained in ref. [3, 4].5

The variation of the scalar field ηi = δφi should transform as a vector under a change

of coordinates. However, under a change of coordinates,

φ′ i (φ+ η) = φ′ i (φ) +

(
∂φ′ i

∂φj

)
ηj +

1

2

(
∂2φ′ i

∂φj∂φk

)
ηjηk + . . . ≡ φ′ i (φ) + η′ i, (3.9)

implies that

η′ i =

(
∂φ′ i

∂φj

)
ηj +

1

2

(
∂2φ′ i

∂φj∂φk

)
ηjηk + . . . , (3.10)

which is the correct transformation law for a vector at first order in η, but not at second or-

der. The solution to this problem is to use geodesic coordinates to parametrize fluctuations

in φ, as shown in ref. [4]. The equation for a geodesic on M parameterized by λ is

d2φi

dλ2
+ Γijk(φ)

dφj

dλ

dφk

dλ
= 0 . (3.11)

Solving this equation in perturbation theory, starting at φi = φi0 with tangent vector

ηi gives

φi = φi0 + ληi − 1

2
λ2 Γijk(φ0) η

jηk + . . . (3.12)

5An explicit calculation of the O(N) model in the linear and non-linear formulations, and a computation

of the non-covariant terms can be found in v1 of this paper on arXiv.org.
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Fluctuations in φ are parameterized by picking ηi to be tangent vector such that the

geodesic reaches φ+ δφ at λ = 1, i.e. using the variation

φi → φi + ηi − 1

2
Γijkη

jηk +O(η3), (3.13)

which suffices to restore the correct transformation law for the vector η′ to second order in

the expansion,

η′ i =

(
∂φ′ i

∂φj

)
ηj . (3.14)

Expanding the action in the geodesic fluctuation η to quadratic order in η yields

S[φ+ η] = S[φ] +
δS

δφi

(
ηi − 1

2
Γijkη

jηk
)

+
δ2S

δφiδφj
ηiηj +O(η3) , (3.15)

which shows that there is a quadratic in η term proportional to the equation of motion

operator Ei ≡
(
δS/δφi

)
. This contribution exactly cancels the non-covariant term of

eq. (3.7), yielding a second variation of the action which transforms covariantly

δ2S =
1

2

∫
d4x

[
gij (Dµη)i (Dµη)j −Rijkl ηi(∂µφ)jηk(∂µφ)l + (∇i∇jI) ηiηj

]
. (3.16)

An equivalent way to implement the covariant expansion is to promote ordinary functional

derivatives to covariant functional derivatives [11],

∇iS =
δS

δφi
, ∇i∇jS =

δ2S

δφiδφj
− Γkij

δS

δφk
. (3.17)

The second variation of the action enters the one-loop correction to the functional

integral,

Γone-loop =
i

2
log det

(
−gik δ2S

δηkδηj

)
. (3.18)

The one-loop corrections computed using eq. (3.16) are covariant, since δ2S is covariant.

The two forms for δ2S, eq. (3.7) and eq. (3.16), differ in the form for φ′, eq. (3.10) and

eq. (3.13), i.e. by a field redefinition. Thus the two formulations have the same S-matrix,

but different Green functions. The covariant form eq. (3.16) has covariant Green functions

and S-matrix elements, so the non-covariant version eq. (3.7) has covariant S-matrix ele-

ments (since they are not changed by field redefinitions) but non-covariant Green functions.

The one-loop radiative correction can be computed from eq. (3.18). For renormaliza-

tion of the theory at one-loop in dimensional reqularization, we only require the divergent

one-loop contribution to the Lagrangian. This contribution can be extracted using the

covariant derivative formalism in refs. [11, 53–56], which gives the same result as an earlier

explicit computation by ’t Hooft [57]. The results are given in eq. (3.45), after we have

discussed the gauged version of eq. (3.18). Since δ2S is covariant, the radiative corrections

are also covariant when computed this way.
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3.2 Global symmetry on M

We now consider the global symmetries of the ungauged action eq. (3.1). The global

symmetries of the scalar kinetic energy term are the isometries of M. These isometries are

specified by a set of vector fields tiα, the Killing vectors ofM, where the different isometries

are labelled by α. The Killing vectors generate the infinitesimal field transformations

δθφ
i = θα tiα (φ) , (3.19)

where θα are infinitesimal parameters. The gradient of φ transforms as

δθ
(
∂µφ

i
)

= θα
(
∂tiα
∂φj

)(
∂µφ

j
)
. (3.20)

For the O(N) sigma model, the global symmetries of the scalar kinetic energy term

are G = O(N) transformations on the N -component real scalar field φ. The N(N − 1)/2

Killing vectors of M are

tiab (φ) = i [Mab]
i
j φ

j = i (Mab φ)i , (3.21)

where Mab, 1 ≤ a < b ≤ N , are the N ×N anti-symmetric Hermitian matrices

[Mab]
i
j = −i

(
δiaδjb − δjaδib

)
, 1 ≤ a < b ≤ N, (3.22)

and the label α has been replaced by the bi-index ab. The Killing vectors in eq. (3.21)

are linear in the N Cartesian components of the field φ, but not in the N polar com-

ponents. The O(N) Killing vectors can be divided into the (N − 1)(N − 2)/2 Killing

vectors of the unbroken subgroup H = O(N − 1) and the (N − 1) Killing vectors which are

spontaneously broken,

tiab (φ) = i (Mab φ)i =
(
δiaφb − δibφa

)
, 1 ≤ a < b < N ,

tiaN (φ) = i (MaN φ)i =
(
δiaφN − δiNφa

)
, 1 ≤ a < N . (3.23)

Restricting to the scalar submanifold SN−1 such that 〈φ · φ〉 = v2 with h = 0, yields

Nϕ = (N − 1) independent real scalar fields ϕa. The Killing vectors of SN−1 on the first

line of eq. (3.23) act linearly on the ϕa in both Cartesian and polar coordinates. Those on

the second line act non-linearly, since φN =
√
v2 −ϕ ·ϕ. Explicitly,

tiab (ϕ) = i (Mab ϕ)i =
(
δiaϕb − δibϕa

)
, 1 ≤ a < b < N ,

tiaN (ϕ) = i (MaN φ)i = δia
√
v2 −ϕ ·ϕ, 1 ≤ a < N , (3.24)

for i = 1, . . . , N − 1.

The infinitesimal field transformations generated by the Killing vectors in eq. (3.19)

leave the action eq. (3.1) invariant, provided that

Ltαg = 0 , LtαI = 0 , (3.25)
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where Ltα is the Lie derivative for Killing vector tiα. The first condition in eq. (3.25) is the

definition of a Killing vector; it is an isometry of the metric. The second condition is that

the potential is invariant.

The Lie bracket [tα, tβ ] of two isometries is also an isometry since[
Ltα ,Ltβ

]
= L[tα,tβ], (3.26)

so the Killing vectors form the symmetry algebra

[tα, tβ ]i = f γ
αβ tiγ . (3.27)

Evaluating the Lie bracket gives

[tα, tβ ]i = tkαt
i
β, k − tkβtiα, k = f γ

αβ tiγ . (3.28)

Note that the above equation also holds with the ordinary derivative tiα,k replaced by the

covariant derivative

tiα ;k = tiα ,k + Γikj t
j
α =

∂tiα
∂φk

+ Γikj t
j
α, (3.29)

since the Christoffel symbol is symmetric in lower indices, and cancels in the antisymmetric

derivative of eq. (3.28). The Killing vectors in eq. (3.24) are a non-trivial example of Killing

vectors which form a closed set under the Lie bracket.

As noted at the beginning of the section, a covariant treatment guarantees that vectors

ηi transform the same way as ∂µφ
i under isometries, e.g.

δθη
i = θα

(
∂tiα
∂φj

)
ηj , (3.30)

which is a linear transformation law.

3.3 Local symmetry on M

The global symmetries eq. (3.19) can be promoted to local symmetries by replacing the

global symmetry parameters θα by functions of spacetime θα(x),

δθφ
i(x) = θα(x) tiα (φ(x)) , (3.31)

and introducing gauge fields.

The gauge covariant derivative of the scalar field on the curved manifold M is de-

fined by

(Dµφ(x))i ≡ ∂µφi(x) +Aβµ(x) tiβ(φ(x)) , (3.32)

where Aβµ(x) is the gauge field associated with the Killing vector tiβ(φ), and the gauge

coupling constant and a factor of i has been absorbed into the gauge field. The gauge
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covariant derivative of the scalar field should transform the same way as ∂µφ
i in eq. (3.20)

under the local symmetry, which implies the transformation rule

δθ (Dµφ)i = θα(x)

(
∂tiα
∂φj

)
(Dµφ)j . (3.33)

Consequently, the transformation law of Aβµ(x) under the local symmetry is

(
δθA

β
µ

)
tiβ = −

(
∂µθ

β
)
tiβ + θβAγµ

(
tjγ
∂tiβ
∂φj
− tjβ

∂tiγ
∂φj

)
. (3.34)

Using the definition of the Lie bracket in eq. (3.28), this equation yields the usual trans-

formation law for the gauge field

δθA
α
µ = −∂µθα − f α

βγ θβAγµ . (3.35)

The gauged version of the Lagrangian eq. (3.1) is

L =
1

2
gij(φ) (Dµφ)i (Dµφ)j + I(φ) , (3.36)

where the partial derivatives of the scalar field have been replaced by gauge covariant

derivatives eq. (3.32). The first variation of the Lagrangian gives the gauged generalization

of the equation of motion eq. (3.6),

Ei = gij

(
∂µδ

j
k +Aβµt

j
β, k

)
(Dµφ)k + gilΓ

l
jk (Dµφ)j (Dµφ)k − I, i

≡ gij (Dµ (Dµφ))j − I, i . (3.37)

The gauge covariant derivative Dµφ of coordinates φi is given in eq. (3.32), and the gauged

covariant derivative Dµ on a vector field ηi is

(Dµη)i =
(
∂µη

i + Γikj∂µφ
kηj
)

+Aβµ

(
tiβ,j + Γijk t

k
β

)
ηj (3.38)

which is the gauged generalization of eq. (3.5). Eq. (3.38) is the appropriate definition for

covariant derivatives acting on vector fields. It arises in our calculation by a direct calcu-

lation to obtain the equations of motion eq. (3.37) by varying the Lagrangian eq. (3.36).

One can show that eq. (3.38) transforms as

δθ (Dµη)i = θα(x)

(
∂tiα
∂φj

)
(Dµη)j . (3.39)

The derivation of eq. (3.39) relies on two useful identities. The first is obtained by differ-

entiating eq. (3.28),

fαβ
γ

(
∂tiγ
∂φk

)
=

[(
∂2tiβ

∂φj∂φk

)
tjα−

(
∂2tiα

∂φj∂φk

)
tjβ

]
+

[(
∂tiβ
∂φj

)(
∂tjα
∂φk

)
−
(
∂tiα
∂φj

)(
∂tjβ
∂φk

)]
.

(3.40)
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The second relation is that the Lie derivative of the Levi-Civita connection vanishes because

tα is a Killing vector. The explicit formula is

0 = LtαΓikj = t`α
∂Γikj
∂φ`

+
∂t`α
∂φk

Γi`j +
∂t`α
∂φj

Γik` −
∂tiα
∂φ`

Γ`kj +
∂2tiα

∂φk∂φj
. (3.41)

The first and second variations of the gauged action up to second order give the gauged

versions of eqs. (3.4) and (3.16),

δS =

∫
d4x

[
−gij (Dµ (Dµφ))i ηj + I,iηi

]
,

δ2S =
1

2

∫
d4x

[
gij (Dµη)i (Dµη)j −Rijkl (Dµφ)j (Dµφ)l ηiηk + (∇i∇jI) ηiηj

]
. (3.42)

The gauge field now appears implicitly in every term except for those involving the potential

I. The second variation δ2S depends on the curvature Rijkl of M, but it does not have a

term that depends on the gauge curvature (i.e. field-strength) Fµν .

The divergent one-loop contribution in 4− 2ε dimensions for quadratic actions such as

eq. (3.16) was derived by ’t Hooft in ref. [57],

∆L1−loop =
1

32π2ε

(
1

12
Tr [YµνY

µν ] +
1

2
Tr
[
X2
])

, (3.43)

where

[Yµν ]ij ≡ [Dµ ,Dν ]ij , [X]ik ≡ −R
i
jkl(Dµφ)j(Dµφ)l + gij I;jk . (3.44)

’t Hooft’s original derivation is valid when the scalar metric is δij . Our form eq. (3.43) with

Yµν and X given by eq. (3.44) applies for any metric gij . Eq. (3.44) is the second Seeley-

DeWitt coefficient in the heat-kernel expansion, and has been studied by many authors

(see ref. [58] for a review).

The matrix X is the mass squared term for the fluctuations η in eq. (3.42), and Yµν is a

field strength tensor constructed from the covariant derivative D . An explicit computation

using the identities (3.40) and (3.41) shows that Yµν is equal to the sum of the curvature

of M and the curvature of the gauge field,

[Yµν ]i j = [Dµ,Dν ]i j = Rijkl (Dµφ)k (Dνφ)l + Fαµν t
i
α;j . (3.45)

For Goldstone bosons, where I is a constant, X and Yµν are both proportional to

two derivatives of φ times the curvature Rijkl, i.e. they are order O(Rp2), where R is a

typical curvature and p is a typical momentum. Thus, the one-loop correction, which is

proportional to the traces of X2 and Y 2
µν , is order O(R2p4), and is O(p4) as one expects

in chiral perturbation theory. The O(p4) correction is proportional to the square of the

curvature, and vanishes if the manifold is flat, i.e. in a theory such as the SM. Thus,

the SM is renormalizable even in non-linear coordinates; one-loop graphs do not require

four-derivative counterterms. The Fµν term in Yµν gives the Goldstone boson contribution

to the gauge coupling β-function of order O(F 2
µν), and the running of operators involving

field strengths of order O(RFµνp
2).
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The quadratic invariants that enter eq. (3.43) are

Tr
[
X2
]

= (∇i∇jI)(∇j∇iI) +Ri(dµφ) j (dµφ)R
j
(dνφ) i (dνφ)

− 2(∇i∇jI)Ri (dµφ) j (dµφ) , (3.46)

and

Tr [YµνY
µν ] = Rij (dµφ) (dνφ)R

j
i (dµφ) (dνφ) + 2Rj i (dµφ) (dνφ)F

α
µν(tiα);j + FαµνF

β
µν(tiα);j(t

j
β);i .

(3.47)

Eq. (3.47) is universal and applies to many theories. The one-loop correction in HEFT,

which is complicated, and was given previously in refs. [1, 16], is simply an expansion of

eq. (3.47) into component fields. More details about the expansion are given in appendix B.

As explained in ref. [1], the same formula eq. (3.47) applies to HEFT, the SM scalar sector,

dilaton theories, and chiral perturbation theory.

To close this section, we consider spontaneous symmetry breaking in a theory with

an invariant potential LtαI = 0, so that we have exact Goldstone bosons. The fields φi

have vacuum expectation values
〈
φi
〉
, and transform as δφi = θα tiα(〈φ〉). Thus, broken

symmetries tiA satisfy tiA(〈φ〉) 6= 0, and tiA(〈φ〉) is a vector in the Goldstone boson direction

— i.e. motion along the vector field tiA (for each broken generator) is motion between

different vacuum states with the same value of the potential I.

In the gauged case, the Goldstone bosons are eaten, giving a mass term for the gauge

bosons. The Lagrangian of eq. (3.36) gives the gauge boson mass term

L =
1

2
M2
BCA

B
µA

Cµ, M2
BC (〈φ〉) ≡ gij(〈φ〉) tiB(〈φ〉) tjC(〈φ〉) . (3.48)

The rank of M2
BC determines the number of massive gauge bosons, which cannot exceed

the dimension of the manifold M. If the number of isometries exceeds dimM, then there

are unbroken symmetries. This is true in theM = SN theory, where there are N(N +1)/2

isometries which form the group G = O(N + 1), and the unbroken subgroup H = O(N)

has N(N − 1)/2 generators. The number of broken generators is N , which is equal to the

dimension of SN .

4 CCWZ and non-compact groups

In this section, we connect the geometric formalism with the explicit formulæ of CCWZ [17,

59] for Goldstone boson Lagrangians with symmetry breaking pattern G → H. We are

interested in applying the formalism to non-compact groups, and to sigma models with

non-trivial metrics on G/H. Our presentation thus parallels the discussion in the original

work, while pointing out differences which arise for the case of non-compact groups.

Consider a group G with generators tα, α = 1, · · · , dimG, satisfying the Lie algebra g

[tα, tβ ] = if γ
αβ tγ , (4.1)

and the Jacobi identity

f λ
αβ f σ

γλ + f λ
γα f σ

βλ + f λ
βγ f σ

αλ = 0 . (4.2)
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To allow for negatively curved spaces [33, 60], we do not assume that the group G is

compact. Consequently, the Lie algebra eq. (4.1) implies that the structure constants f γ
αβ

are antisymmetric in their first two indices, f γ
αβ = −f γ

βα , but total antisymmetry of the

structure constants in all three indices, which is true for compact groups, is not assumed.

The group G is spontaneously broken to the subgroup H with generators Ta, a =

1, · · · , dimH, satisfying the Lie algebra h,

[Ta, Tb] = if c
ab Tc . (4.3)

The remaining broken generators of the coset G/H needed to span g are given by XA,

A = 1, · · · , dimG/H. The choice of the broken generators XA is not unique. In the

familiar example of broken chiral symmetry in QCD, different choices of broken generators

lead to different parameterizations of the chiral Lagrangian, e.g. by ξ(x) which transforms

as ξ → Lξh† = hξR†, or by U(x) which transforms as LUR† [61].

The g commutation relations of the generators tα = {Ta, XA} in eq. (4.1) decompose

into the following commutation relations for the unbroken and broken generators

[Ta, Tb] = if c
ab Tc , (4.4a)

[Ta, XB] = if C
aB XC + if c

aB Tc , (4.4b)

[XA, XB] = if C
AB XC + if c

AB Tc . (4.4c)

The first line eq. (4.4a) is the Lie algebra h of the subgroup H in eq. (4.3), which is closed

under commutation, so the commutator [Ta, Tb] has no term proportional to the broken

generators XC , which implies that the structure constants f C
ab = 0.

For compact groups, complete antisymmetry of the structure constants then implies

that f c
aB = 0, so eq. (4.4b) simplifies to

[Ta, XB] = if C
aB XC , (4.5)

which implies that the broken generators XA form a (possibly reducible) representation

R(π) of the unbroken subgroup H. The generators Ta of H in the R(π) representation are

determined by the structure constants f C
aB ,[

TR(π)

a

]
B

C = −if C
aB . (4.6)

The h commutation relations eq. (4.4a) in representation R(π),[
TR(π)

a , TR(π)

b

]
= if c

ab TR(π)

c , (4.7)

follow from the Jacobi identity eq. (4.2).

For non-compact groups, eq. (4.5) need not be satisfied. For now, we restrict our

attention to symmetry breaking patterns where eq. (4.5) holds, so f c
aB = 0. Such cosets

are called reductive cosets. Non-reductive cosets are discussed in appendix C. An example

of a reductive coset is the breaking of the Lorentz group down to its rotation subgroup. For

reductive cosets, the broken generators transform as a representation R(π) of the unbroken
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symmetry group H, just as in the compact case. The coset is reductive if H is compact,

even if G is non-compact.

Often, there is a discrete symmetry of the Lie algebra XA → −XA under which the

broken generators change sign. The presence of such a discrete symmetry implies that the

structure constants f c
aB and f C

AB vanish, so the Lie algebra reduces to

[Ta, Tb] = if c
ab Tc ,

[Ta, XB] = if C
aB XC , (4.8)

[XA, XB] = if c
AB Tc .

An example is chiral symmetry breaking in the strong interactions, where the broken

generators are odd under parity. Cosets with such a discrete symmetry are referred to as

symmetric cosets. Symmetric cosets are automatically reductive.

The CCWZ formalism picks elements of G/H cosets using the exponential map of the

broken generators {XA}

ξ(x) ≡ eiπ·X , π ·X ≡ πA(x)XA =

(
πA(x)

Fπ

)
XA, (4.9)

where πA(x) are the dimensionless spacetime-dependent parameters describing the Gold-

stone boson directions on the vacuum coset G/H. This exponential map gives a unique

association between a point in the coset G/H and πA(x) in a neighborhood of the identity

element e. An arbitrary group element g ∈ G in the neighborhood of the identity element

e can be written uniquely as

g = eiπ·Xeiα·T , (4.10)

where α ·T ≡ αa(x)Ta. Left action by an arbitrary group element g ∈ G on G/H is given by

Tg : ξ(x)→ g ξ(x), (4.11)

which maps a point in coset space to a new point in coset space. The transformation law

for ξ(x) is

g ξ(x) = ξ′(x) h (ξ(x), g) , g ∈ G, h ∈ H , (4.12)

where ξ′(x) is a new coset and h ∈ H is an implicit function of g ∈ G and the original coset

ξ(x). Using the identity

g ξ(x) =
(
g ξ(x) g−1

)
g , g ξ(x) g−1 = exp

(
i π(x) ·

(
g X g−1

))
, (4.13)

one sees that if g = h0 ∈ H is an unbroken symmetry transformation, then h (ξ(x), h0) = h0.

In addition, ξ′ = h0ξh
−1
0 , which implies that (since the coset is assumed reductive)

π′
A

(x) =
[
DR(π)

(h0)
]A

B
πB(x) , (4.14)
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where DR(π)
(h0) is the H transformation matrix in the R(π) representation. Note that for

reductive cosets, if g = h0 ∈ H, then h (ξ(x), h0) = h0 is a constant (i.e. it does not depend

on x through ξ(x)).

The CCWZ procedure for building a G-invariant Lagrangian is to map all fields to the

origin of coset space ξ = 1 with π(x) = 0 by left-action by g = ξ−1, and to define covariant

derivatives in terms of this map. Explicitly, one starts with

ξ−1Dµξ = ξ−1(∂µ + iAαµ tα)ξ (4.15)

where the gauge coupling constant has been absorbed into the normalization of the gauge

field Aαµ. If only a subgroup Ggauge ⊂ G is gauged, then only gauge bosons of Ggauge appear

in the above equation, or equivalently, the gauge bosons corresponding to global symmetry

directions are set equal to zero. In addition, different factor gauge groups in Ggauge can

have distinct gauge coupling constants. Power series expansion of ξ−1Dµξ shows that it

can be expressed in terms of multiple commutators, so it is an element of the Lie algebra

g which can be decomposed in terms of unbroken and broken generators,

ξ−1Dµξ = ξ−1Dµξ
∣∣
T

+ ξ−1Dµξ
∣∣
X

= i Vµ + i (Dµπ) ,

ξ−1Dµξ
∣∣
T
≡ i Vµ = i V a

µ Ta,

ξ−1Dµξ
∣∣
X
≡ i (Dµπ) = i (Dµπ)AXA. (4.16)

The above equations define Vµ and (Dµπ). Usually, one normalizes the generators so that

Tr tαtβ = δαβ/2, and projects out the broken and unbroken pieces of ξ−1Dµξ by taking the

appropriate traces. The decomposition of a vector into a linear combination of basis vectors

does not require an inner product on the vector space, so eq. (4.16) is well-defined even

without this normalization of generators. An orthogonal normalization of generators is not

possible for non-compact G, but eq. (4.16) is well-defined. Under an unbroken symmetry

transformation h ∈ H, Vµ transforms like a gauge field

Vµ → hVµ h
−1 − (∂µh) h−1 , (4.17)

and (Dµπ) transforms by adjoint action by H in the representation R(π),

(Dµπ)→ h (Dµπ) h−1 . (4.18)

These last two equations require the reductive coset condition f c
aB = 0. The generalization

to non-reductive cosets is discussed in appendix C.

The pion covariant derivative can be decomposed into a purely pionic piece and a

gauge field piece,

(Dµπ)A ≡ [e(π)]AB
(
∂µπ

B
)

+ FAα (π)Aαµ (4.19)

where [e(π)]AB are vierbeins of the G/H vacuum manifold, and FAα (π) are related to the

Killing vectors of G/H.
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For groups where (Dµπ)A transforms as a single irreducible representation R(π), as in

QCD, the simplest invariant Lagrangian is the O(p2) term

L =
1

2
F 2
π

∑
A

(Dµπ)A (Dµπ)A

=
1

2
F 2
π

∑
A

[e(π)]AB [e(π)]AC (∂µπ)B (∂µπ)C + · · ·

≡ 1

2
gBC(π) (∂µπ)B (∂µπ)C + · · · , (4.20)

where Fπ is the Goldstone boson decay constant, and the ellipsis denotes terms depending

on the gauge fields. The Lagrangian eq. (4.20) defines the scalar field metric of the G/H
vacuum manifold,

gBC(π) = F 2
π

∑
A

[e(π)]AB [e(π)]AC . (4.21)

If the representation is reducible, the sum in eq. (4.20) can be divided into sums over the

individual irreducible representations, with arbitrary weights for each irreducible represen-

tation. The most general O(p2) term allowed is

L =
1

2
F 2
π

∑
A,B

ηAB (Dµπ)A(Dµπ)B , (4.22)

where ηAB is a symmetric tensor invariant under the adjoint action of H, eq. (4.18). ηAB is

a positive definite matrix so that the pion kinetic energies have the correct sign. Note that

ηAB is a constant, i.e. it does not depend on π. One can always define a positive definite

kinetic energy if H is a compact subgroup, e.g. by choosing ηAB = δAB. In summary, the

most general scalar metric for G/H is

gCD(π) = F 2
π

∑
A,B

ηAB [e(π)]AC [e(π)]BD , (4.23)

and the Killing vectors in section 3.2 are given by

tAα (π) =
[
e−1(π)

]A
B
FBα (π), (4.24)

where
[
e−1(π)

]
is the inverse vierbein, which satisfies the identity

[
e−1(π)

]A
B [e(π)]BC = δAC . (4.25)

Eq. (4.24) can easily be derived by looking at the shift π → π + δπ for an infinitesimal G
transformation.

For the HEFT example, we need to evaluate the curvature tensors at the vacuum field

configuration πA = 0, which requires knowing the metric tensor to quadratic order in π.

The curvature at any other point can then be obtained using left-action by G. Expanding
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eq. (A.4) and using the most general Lie algebra relations eqs. (4.4a), (4.4b) and (4.4c),

one obtains

(Dµπ)A = ∂µπ
A +

1

2
f A
CB πC∂µπ

B +
1

6
f A
Dα f α

CB πDπC∂µπ
B + . . .

+AAµ + f A
Bα πBAαµ +

1

2
f A
Cβ f β

Bα πBπCAαµ + . . . . (4.26)

The term AAµ only involves the broken generators, and it is the square of this term in the

kinetic energy which results in the broken gauge bosons acquiring a mass proportional to

F 2
π . From eq. (4.19), the vierbein is

[e(π)]AB = δAB +
1

2
f A
CB πC +

1

6
f A
Dα f α

EB πDπE + . . . (4.27)

Using eq. (4.23), the metric gCD(π) is

1

F 2
π

gCD(π) = ηCD+
1

2

(
ηADf

A
EC +ηCBf

B
ED

)
πE (4.28)

+

(
1

6
ηCBf

B
Eα f α

FD +
1

6
ηADf

A
Eα f α

FC +
1

4
ηABf

A
EC f B

FD

)
πEπF +O(π3) .

For a compact group, the structure constants are completely antisymmetric, so the linear

term in π vanishes if ηAB ∝ δAB. However, in some cases, such as the SM with custodial

symmetry violation, the linear term is non-zero.

The geometric quantities we need can be computed directly from the metric eq. (4.28).

The Christoffel symbol is

ΓABC =
1

2
ηAG

(
ηCEf

E
BG + ηBEf

E
CG

)
+

1

4

(
f E
GB ηEC + f E

GC ηEB
) (
f A
DH ηHG + f G

DH ηAH
)
πD

− 1

4

(
f G
HC f E

DB + f G
DC f E

HB

)
ηAH ηGE π

D

+
1

12

(
f A
Cα f α

DB + f A
Bα f α

DC

)
πD

+
1

4

(
f α
CG ηBE + f α

BG ηCE
)
ηAGf E

Dα πD +O(π2), (4.29)

where ηAB is the inverse of ηAB, and the Jacobi identity has been used to simplify the final

result. The Riemann curvature tensor is

1

F 2
π

RABCD =
1

4

(
f α
AB f E

Dα ηCE − f α
AB f E

Cα ηDE + f α
CD f E

Bα ηAE − f α
CD f E

Aα ηBE
)

+
1

4

(
f G
AD f E

BC − f G
AC f E

BD − 2f G
AB f E

CD

)
ηGE

+
1

4
ηGE

[(
f H
AG ηDH + f H

DG ηAH
) (
f I
BE ηCI + f I

CE ηBI
)

−
(
f H
BG ηDH + f H

DG ηBH
) (
f I
AE ηCI + f I

CE ηAI
)]
, (4.30)
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where we recall that the sum on α runs over both broken and unbroken generators, whereas

the sums on E, etc. are only over the broken generators. The Ricci curvature is

RBD =
1

4

(
f α
AB f A

Dα + f α
AD f A

Bα − f α
AB f G

Cα ηDGη
AC − f α

AD f G
Cα ηBGη

AC
)

− 3

4
f G
AB f H

CD ηACηGH

+
1

4
ηGH

(
f R
AG ηDR + f R

DG ηAR
) (
f R
BH ηCR + f R

CH ηBR
)
ηAC

− 1

2

(
f R
BG ηDR + f R

DG ηBR
)
f A
AH ηGH , (4.31)

and the scalar curvature is

F 2
πR=f α

AB f A
Cα ηBC− 1

4
f C
AB f D

GH ηAGηBHηCD+
1

2
f B
AC f A

BD ηCD−f A
AC f B

BD ηCD .

(4.32)

The scalar curvature does not have a definite sign unless the group is compact. Eqs. (4.28),

(4.29), (4.30), (4.31) and (4.32) are valid even for non-reductive cosets.

The results simplify considerably in a number of special cases. For a symmetric coset,

f C
AB = 0, and the curvatures eqs. (4.30), (4.31) and (4.32) reduce to

1

F 2
π

RABCD =
1

4

(
f α
AB f G

Dα ηCG − f α
AB f G

Cα ηDG + f α
CD f G

Bα ηAG − f α
CD f G

Aα ηBG
)
,

RBD =
1

4

(
f α
AB f A

Dα + f α
AD f A

Bα − f α
AB f G

Cα ηDGη
AC − f α

AD f G
Cα ηBGη

AC
)
,

F 2
πR = f α

AB f A
Cα ηBC , (4.33)

where the sum on α = {a,A} can be restricted to the unbroken generator index a only.

Another special case is G compact and ηAB = δAB. For a compact group, the gener-

ators can be normalized so that Tr tαtβ ∝ δαβ , so the structure constants are completely

antisymmetric tensors in their three indices. Writing the structure constants with three

lower indices in the usual notation for compact groups, eqs. (4.30), (4.31) and (4.32) sim-

plify to

1

F 2
π

RABCD = fABαfCDα −
3

4
fABGfCDG = fABgfCDg +

1

4
fABGfCDG ,

RBD = fABgfADg +
1

4
fABGfADG ,

F 2
πR = fABgfABg +

1

4
fABGfABG . (4.34)

An interesting feature is the relative 1/4 for the sum over broken generator index G relative

to the sum over unbroken generator index g.
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If one adds the additional restriction that the coset of the compact group G is sym-

metric, so fABC = 0, the formulæ eqs. (4.34) simplify further to

1

F 2
π

RABCD = fABgfCDg,

RBD = fABgfADg =
1

2
CA(G)δBD,

F 2
πR =

1

2
CA(G)Nπ, (4.35)

where CA(G) is the Casimir in the adjoint representation of G, and Nπ = dimG/H is the

number of broken generators.

Finally, if the gauge group is compact and completely broken, so that G/H = G, and

ηAB = δAB, eqs. (4.34) become

1

F 2
π

RABCD =
1

4
fABGfCDG,

RBD =
1

4
CA(G)δBD,

F 2
πR =

1

4
CA(G)Nπ . (4.36)

4.1 Matter fields

We refer to all non-Goldstone boson or gauge fields generically as matter fields. The CCWZ

transformation for matter fields ψ under the group transformation law eq. (4.12) is

ψ → D(ψ)(h)ψ , (4.37)

where D(ψ)(h) are the H representation matrices for ψ. Note that D(ψ)(h) is assumed to

be an irreducible representation, so if it is reducible, one must first decompose it into its

irreducible representations. The different irreducible representation components are then

treated as separate matter fields. One can define a chiral covariant derivative for matter

field ψ by

Dµψ →
(
∂µ + iT (ψ)

a V a
µ

)
ψ , (4.38)

where T
(ψ)
a are the generators of the unbroken subgroup H in the representation D(ψ)(h)

of H. The chiral covariant derivative transforms as

(Dµψ)→ D(ψ)(h) (Dµψ) . (4.39)

The covariant derivative eq. (4.38) is derived in CCWZ. The argument relies on defining

it as the ordinary derivative at ξ = 1, and then using G action to define it for arbitrary

ξ. The key point (which is not true for non-reductive cosets) is that if g ∈ H, then h in

eq. (4.12) is a constant, so the ordinary derivative transforms the same way as the field,

eq. (4.37). Using this result at ξ = 1, the transformation eq. (4.39) for arbitrary ξ follows.

The covariant derivative eq. (4.38) is based on eq. (4.16), and hence on the Maurer-

Cartan form g−1dg. This is the canonical connection on the principal H-bundle G → G/H,
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and makes no reference to a metric, i.e. to ηAB. One can also define covariant derivatives

based on the metric (Christoffel) connection eq. (4.29), which does depend on ηAB. The

two are equivalent if ηAB = δAB, i.e. if the G-invariant metric on G/H is obtained from

a G-invariant metric on G. The difference in the connections transforms as a H-invariant

tensor [62], so that the change in connection can be compensated by a change in coefficients

of invariant terms in the sigma model Lagrangian. The exponential map ξ(λ) = exp(Xλ)

is geodesic for the Maurer-Cartan connection, but not for a general ηAB metric connection.

4.2 Sectional curvature

The sectional curvature K(Y, Z) in the plane spanned by tangent vectors Y and Z is

defined by

K(Y, Z) =
RABCDY

AZBY CZD

〈Y, Y 〉 〈Z,Z〉 − 〈Y,Z〉2
(4.40)

where the inner product 〈∗, ∗〉 is w.r.t. the metric gAB. The Cauchy-Schwartz inequality

implies the denominator is positive, so the sign of the sectional curvature depends on

the sign of the numerator. The sign of the sectional curvature is important, because, as

shown in refs. [1, 33, 60], the sign of deviations in Higgs-gauge boson scattering amplitudes

from SM amplitudes is determined by the sign of the sectional curvatures of the HEFT

sigma model.

From eq. (4.30),

1

F 2
π

RABCDY
AZBY CZD =

1

2
f α
Y Z

(
f A
Zα Y BηAB − f A

Y α ZBηAB
)
− 3

4
f A
Y Z f B

Y Z ηAB

+
1

4

(
f A
Y G ZBηAB + f A

ZG Y BηAB
) (
f C
Y H ZDηCD + f C

ZH Y DηCD
)
ηGH

− f A
Y G f C

ZH Y BZDηABηCDη
GH (4.41)

and we have used the definition

[Y,Z] =
[
Y ATA, Z

BTB
]
≡ f α

Y Z tα (4.42)

for f α
Y Z . The general form eq. (4.41) does not have a definite sign.

For compact groups with ηAB ∝ δAB, antisymmetry of the structure constants implies

1

F 2
π

RABCDY
AZBY CZD = f g

Y Z f g
Y Z +

1

4
f G
Y Z f G

Y Z ≥ 0 (4.43)

is positive definite for any pair of vectors Y, Z. For compact groups with ηAB 6= δAB,

the sectional curvatures need not be positive. A simple example is G = SU(2) completely

broken, with ηAB = diag(η1, η2, η3), and Y = (1, 0, 0), Z = (0, 1, 0), in which case

K(Y,Z) =
2(η1 + η2)η3 + (η1 − η2)2 − 3η23

4F 2
πη1η2η3

(4.44)

which is negative for η3 � η1,2.

In HEFT applications where there is only a single h field, the possible sectional cur-

vatures are:
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(a) Both Y and Z are in the Goldstone boson directions. Since the Goldstone boson

manifold S3 is a maximally symmetric space, K(Yπ, Zπ) is independent of the choice

Yπ, Zπ, and is the quantity K(Yπ, Zπ) = R4 in ref. [1].

(b) Y is in the Goldstone boson direction, and Z is in the h direction. In this case

K(Yπ, Zh) is independent of the choice Yπ and Zh (since there is only one direction

Zh) and is K(Yπ, Zh) = R2h in ref. [1].

As shown in ref. [1], deviations in WLWL →WLWL were proportional to r4 = R4(h =

0), the sectional curvature where Y and Z are in Goldstone boson directions. The longi-

tudinal gauge bosons at high energies are related to the Goldstone bosons, and so probe

the Goldstone boson directions in M. The WLWL → hh scattering amplitudes is propor-

tional to r2h = R2h(h = 0), and probes the sectional curvature where Y is in a Goldstone

boson direction, and Z in the Higgs direction. If the HEFT is based on a composite Higgs

theory [28], where h is itself a (pseudo) Goldstone boson of some strong dynamics at a

scale f > v, then we see from eq. (4.43) that R4 and R2h are both positive if the com-

posite Higgs model is based on a compact group. On the other hand, if the sigma-model

group is non-compact, it is possible to get negative values [33] for these curvatures because

eq. (4.41) has no definite sign.

We also consider multi-Higgs theories in section 6. In such theories, the possible

sectional curvatures are R4 = K(Yπ, Zπ), R2h,I = K(Yπ, ZI), where ZI runs over the

possible Higgs directions, and K(YI , ZJ) over distinct pairs of Higgs directions I 6= J .

5 The Standard Model and custodial symmetry violation

The SM sigma model for the custodial symmetric breaking pattern SU(2)L × SU(2)R →
SU(2)V can be written in the CCWZ formalism, choosing the broken generators to be

TL. Let

U(x) = eiπ
A(x)TA (5.1)

be a 2× 2 matrix, where TA are SU(2)L generators, and πA are dimensionless.

The ξ field of the CCWZ formalism given by exponentiating the broken generators is

ξ(x) =

(
U(x)

0 12×2

)
, (5.2)

where the first 2 × 2 block is the SU(2)L transformation, and the second is the SU(2)R
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transformation. From this ξ field, one finds

ξ(x)−1Dµξ =

(
U(x)−1

0 12×2

)[(
∂µU(x)

0 0

)
+

(
ig2W

α
µ TαU(x)

0 ig1BµT3

)]

=

(
U(x)−1∂µU(x) + U(x)−1ig2W

α
µ TαU(x)

0 ig1BµT3

)

=

(
ig1BµT3

0 ig1BµT3

)

+

(
U(x)−1∂µU(x) + U(x)−1ig2W

α
µ TαU(x)− ig1BµT3

0 0

)
, (5.3)

where the last line projects onto the unbroken and broken spaces, respectively. Thus,

we obtain

i(Dµπ)ATA = U(x)−1∂µU(x) + U(x)−1ig2W
α
µ TαU(x)− ig1BµT3, (5.4)

and, using the results in appendix A,

(Dµπ)A =

(
sin |π|
|π|

)
dπA +

(
1− cos |π|
|π|2

)
εABCπ

BdπC +

(
|π| − sin |π|
|π|3

)
πA(π · dπ)

+ g2W
A
µ cos |π|+ g2

(
sin |π|
|π|

)
εABCπ

BWC
µ

+ g2

(
1− cos |π|
|π|2

)
(π ·Wµ)πA − g1BµδA3 (5.5)

with |π|2 = π · π. Decomposing (Dµπ)A into gauge and non-gauge pieces as in eq. (4.19)

yields

(Dµπ)A = eAB∂µπ
B + FAβ W

β
µ + FAZ Zµ + FAγ Aµ , (5.6)

where

eAB =

(
sin |π|
|π|

)
δAB −

(
1− cos |π|
|π|2

)
εABCπ

C +

(
|π| − sin |π|
|π|3

)
πAπB ,

FAβ =
e

sW

[
δAβ cos |π|+

(
sin |π|
|π|

)
εADβπ

D +

(
1− cos |π|
|π|2

)
πβπA

]
, β = 1, 2

FAZ =
e

sW cW

[
δA3
(
s2W + c2W cos |π|

)
+ c2W

(
sin |π|
|π|

)
εAB3π

B + c2W

(
1− cos |π|
|π|2

)
π3πA

]
,

FAγ = e

[
−δA3 (1− cos |π|) +

(
sin |π|
|π|

)
εAB3π

B +

(
1− cos |π|
|π|2

)
π3πA

]
, (5.7)
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with cW = cos θW and sW = sin θW . The FAα can be used to construct the Killing vectors

using eq. (4.24). Expanding these equations gives

eAB = δAB −
1

2
εABCπ

C +
1

6

[
πAπB − |π|2 δAB

]
+ . . .

FAβ =
e

sW

[
δAβ

(
1− 1

2
|π|2

)
+ εADβπ

D +
1

2
πβπA

]
+ . . . , β = 1, 2

FAZ =
e

sW cW

[
δA3

(
1− 1

2
c2W |π|

2

)
+ c2W εAB3π

B +
1

2
c2Wπ

3πA
]

+ . . . ,

FAγ = e

[
−1

2
|π|2 δA3 + εAB3π

B +
1

2
π3πA

]
+ . . . . (5.8)

In unitary gauge, π = 0 and

FAβ =
e

sW
δAβ , β = 1, 2, FAZ =

e

sW cW
δA3 , FAγ = 0, (5.9)

so the photon is massless, and W,Z acquire mass.

The most general O(p2) Lagrangian is

L =
1

2

∑
AB

ηAB(Dµπ)A(Dµπ)B (5.10)

where ηAB is aH-invariant tensor. For the SM with custodial SU(2) symmetry, the breaking

pattern is SU(2)L × SU(2)R → SU(2)V . The tensor ηAB must be invariant under the

unbroken H = SU(2)V symmetry, so

ηAB =
v2

8
δAB, (5.11)

where v ∼ 246 GeV is chosen to give the correct gauge boson masses.

If custodial symmetry is not exact, the breaking pattern is SU(2)L×U(1)Y → U(1)em,

and ηAB must be invariant under the unbroken H = U(1)em symmetry. In this case,

ηAB =
v2

8

 1 0 0

0 1 0

0 0 ρ

 , (5.12)

where ρ is the ρ-parameter

ρ =
M2
Zc

2
W

M2
W

, (5.13)

which is no longer equal to one. The experimental constraint on the ρ parameter is an

extremely stringent constraint on custodial symmetry violation, since it requires |ρ− 1| .
0.01. A simple example of custodial symmetry violation is the SM with an additional

triplet scalar field [63]

χ =

[
1√
2
χ+ −χ++

χ0 − 1√
2
χ+

]
. (5.14)
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If the doublet and triplet vacuum expectation values are

〈H〉 =

[
0
vD√
2

]
, 〈χ〉 =

[
0 0
vT√
2

0

]
, (5.15)

then the values of the ηAB parameters in eq. (5.12) are

v2 = v2D + 2v2T , ρ =
v2D + 4v2T
v2D + 2v2T

. (5.16)

The geometry of the scalar manifold with metric eq. (5.10) has been studied in other

contexts [64]. The configuration space of a rigid body with one point fixed is given by the

rotation matrix R(θ, φ, ψ) ∈ SO(3) parameterized by three Euler angles, and, up to Z2

factors, is the same as the Goldstone boson manifold of the SM. Rotations of the body

about space-fixed axes correspond to SO(3)L rotations R→ gLR, gL ∈ SO(3), and rotations

about the body-fixed axes correspond to SO(3)R rotations R → Rg−1R , gR ∈ SO(3). The

body-axis angular momenta are given by ωATA = R−1Ṙ. The kinetic energy for a rigid

body is then given by the analog of eq. (5.10),

L =
1

2

∑
A

IA
(
ωA
)2
, (5.17)

where ηAB can be chosen to be diagonal by picking the body axes to coincide with the

principal axes of the body. The kinetic energy for a spherical top with all three principal

moments of inertia equal, I1 = I2 = I3, is the analog of the SM with custodial symmetry.

The configuration space of the top is the (undeformed) three-sphere S3. The custodial

symmetry violating case is analogous to I1 = I2 6= I3, which is the configuration space

of a symmetric top. This space is known as the squashed three-sphere, and also occurs

in the metric for the Taub universe [64]. The asymmetric top with all Ii different would

correspond to the SM with electromagnetism broken.

6 HEFT with multiple singlet scalar bosons

The HEFT formalism can be extended to the case of multiple singlet (under custodial

SU(2)) Higgs fields hI , I = 1, 2, · · · , which involves adding additional singlet scalars to the

SM field content. The generalization of the HEFT Lagrangian eq. (2.24) to multiple singlet

scalar fields is

L =
1

2
v2F (h)2 (∂µn)2 +

1

2
gIJ(h)

(
∂µh

I
) (
∂µh

J
)
− V (h) + . . . (6.1)

where F (h) is an arbitrary function of the dimensionless singlet scalar fields hI/v. The

coordinates {hI} are chosen so that h = (0, 0, . . . , 0) is the ground state, and the HEFT

function F (h) is normalized so that

F (0, . . . , 0) = 1 (6.2)

since the radius of S3 in the vacuum is fixed to be v by the gauge boson masses.
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Consider the O(4)→ O(3) symmetry breaking pattern of the SM, with multiple scalar

fields hI which are singlets under the unbroken custodial O(3) symmetry. The most general

metric of the scalar fields Φi ≡ {πA, hI} has the form

gij (Φ) =

[
F (h)2gAB(π) 0

0 gIJ(h)

]
, (6.3)

where πA/v are coordinates on the coset space G/H = O(4)/O(3) = S3, and gAB(π) is

the metric on the unit 3-sphere. O(4) invariance implies that the off-diagonal metric terms

gAI and gIA vanish, and that gIJ(h) has no dependence on the π fields. An easy way to

prove that the general metric takes the form eq. (6.3) is to note that a point on S3 is

given by a four-component unit vector n. The entry gIJ(h) can depend on n, but not on

its derivatives; O(4) invariance then requires it to be function of n · n = 1, and therefore

independent of π. Similarly, gIA∂µπ
A is an O(4) invariant function of n and ∂µn with

one derivative; the only invariant object is ∂µn · n = 0, so the off-diagonal entries vanish.

The 11 entry has the form F (h)2gAB(π) because G-invariance requires that h dependence

is an overall multiplicative factor, since there is only one G-invariant metric on S3. We will

consider the geometry of the metric eq. (6.3), with a general metric gAB(π), so the results

are valid for a general G/H manifold as long as the off-diagonal terms of gij(Φ) vanish as

in eq. (6.3).

Using the metric eq. (6.3), the Christoffel symbols are

ΓABC = γABC , ΓABK =
F,K
F

δAB, ΓAJK = 0,

ΓIBC = −FF,MgIMgBC , ΓIBK = 0, ΓIJK = γIJK , (6.4)

where γABC and γIJK are the Christoffel symbols computed from the metrics gAB(π) and

gIJ(h), respectively. Similarly, in the expressions below, rABCD, rBD and rπ are the

curvatures computed from the metric gAB(π), whereas rIJKL, rJL and rh are the curvatures

computed from the metric gIJ(h). The Riemann curvature tensor is

RABCD = rABCD − gMNF,MF,N
(
δAC gDB − δAD gBC

)
, RABCL = 0,

RABKL = 0, RIJCD = 0,

RIJKD = 0, RIJKL = rIJKL,

RAJCD = 0, RAJKL = 0,

RIBCD = 0, RIBKD = −gDB gIM F;MK ,

RIBKL = 0, RAJCL = −δAC F;JL . (6.5)

The covariant derivatives of F are w.r.t. γIJK . The Ricci tensor is

RBD = rBD − gRSF,RF,S(Nπ − 1)gBD − gBDgRSFF;RS ,

RBL = 0,

RJL = −NπF;JL + rJL, (6.6)
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and the curvature scalar is

R =
1

F 2
rπ −Nπ(Nπ − 1)

1

F 2
gRSF,RF,S − 2Nπ

1

F
gRSF;RS + rh. (6.7)

If G/H is a maximally symmetric space,

rABCD =
1

F 2
π

(
δAC gBD − δAD gBC

)
, rBD =

1

F 2
π

(Nπ − 1)gBD, rπ =
1

F 2
π

Nπ(Nπ − 1).

(6.8)

The above expressions reduce to the formulæ given in ref. [1] for one Higgs singlet field h

and G/H a symmetric space, which used

gIJ(h) = 1, F (h) = 1 + c1

(
h

v

)
+

1

2
c2

(
h

v

)2

+ . . . (6.9)

with Fπ = v.

The above expressions can be further simplified if one picks one h field to be the radius

of S3, F ({h}) = h1, in which case F does not depend on hI , I 6= 1. The radial direction

is in general not a mass-eigenstate direction. Letting ρ be the radial direction, with ρ = 1

in the vacuum, and letting the remaining directions still be called hI (there is one less h

now), with I, J,K running over ρ, {h}, one gets a simpler version of the above equations,

where F,K = 1 if K = ρ, and zero otherwise. For example,

F → ρ, GRSF,RF,S → Gρρ, F;RS → −γρRS , (6.10)

etc.

7 Conclusions

In this paper, we have discussed the relation between the SM and two of its generalizations,

SMEFT and HEFT, and have shown that HEFT can be written in SMEFT form if and only

if there is an O(4) invariant fixed point of the scalar manifold in a neighborhood of which

the scalar fields transform as a vector of O(4). We have shown that the SM can be written

using scalar fields transforming either linearly or non-linearly under SU(2)L×U(1)Y , and is

renormalizable with either choice. Whether “the Higgs transforms linearly or non-linearly”

is not observable; the correct question, which can be resolved experimentally, is whether

the SM scalar manifold M is flat or curved.

We have discussed the formulation of scalar fields on a curved manifold, including the

case with gauge symmetry, reviewed the computation of one-loop corrections in terms of

the curvature, and applied these known results to the case where the manifold is a coset.

The general expressions were used to obtain the one-loop renormalization of HEFT [1, 16],

and details of the computation are given here.

Deviations of Higgs and longitudinal gauge boson scattering amplitudes from their SM

values are given by sectional curvatures of the scalar manifold. In simple examples based on

G/H symmetry breaking with compact groups, the sectional curvatures are positive, which

fixes the signs of deviations from the SM. We are investigating examples where sectional

curvatures can be negative, and have given the generalization of the CCWZ formalism to

non-compact groups.
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AM would like to thank Luis Alvarez-Gaumé, Luca Merlo, and Vyacheslav Rychkov for

helpful discussions. This work was partially supported by grants from the Simons Foun-

dation (#340282 to Elizabeth Jenkins and #340281 to Aneesh Manohar) and by DOE

grant DE-SC0009919. RA would like to thank the CERN theory group for hospitality

and funding.

A Exponential parametrization of the O(N) model

The real antisymmetric Goldstone boson matrix is given by

Π ≡ i (π ·X) =

[
0 π

−πT 0

]
=


0 . . . 0 π1

0 . . . 0 π2

...
...

...

0 . . . 0 πNϕ

−π1 . . . −πNϕ 0

 , (A.1)

where πA ≡ πA/Fπ. ξ is

ξ ≡ eΠ = 1 +

(
sin |π|
|π|

)
Π +

(
1− cos |π|
|π|2

)
Π2, |π|2 ≡ πAπA. (A.2)

The Maurer-Cartan form is

ξ−1∂µξ =

(
sin |π|
|π|

)
i (∂µπ) ·X +

(
|π| − sin |π|
|π|3

)(
πB∂µπ

B
)
iπ ·X

+

(
1− cos |π|
|π|2

)[
−
(
∂µπ

A
)
πB + πA

(
∂µπ

B
)

0

0 0

]
, (A.3)

where the first two terms are linear combinations of the broken generators, and the last

term is a linear combination of the unbroken generators. The indices A,B in the last term

are the row and column indices of the Nϕ × Nϕ submatrix in the upper 11 block. Using

eq. (4.16),

(Dµπ)A =

(
sinπ

π

)
(∂µπ)A +

(
π − sinπ

π3

)(
πB∂µπ

B
)
πA, (A.4)

and

ξ−1∂µξ
∣∣
T

= iVµ · T =

(
1− cosπ

π2

)[
−
(
∂µπ

A
)
πB + πA

(
∂µπ

B
)

0

0 0

]
. (A.5)

B One-loop renormalization of HEFT

In this appendix, we provide some intermediate results in the computation of the one-loop

renormalization of HEFT [1, 16].
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The metric for the scalar manifold M in HEFT is

gij(φ) =

[
v2F (h)2gab(π) 0

0 1

]
, (B.1)

where F (h) is a dimensionless function with a power series expansion in h/v, and gab(π) is

the metric on the Goldstone boson manifold G/H = S3. The field h has mass dimension

one, π is dimensionless, and i runs over indices a, h. The scalar kinetic term in HEFT is

given by

L =
1

2
gij(φ)∂µφ

i∂µφj =
1

2
v2F (h)2 gab(π) ∂µπ

a∂µπb +
1

2
∂µh ∂

µh

≡ 1

2
F (h)2 v2 ∂µn · ∂µn+

1

2
∂µh ∂

µh, (B.2)

where the unit vector n(π) is a dimensionless function of the the three independent coor-

dinates πa = πa/v on S3. Note that we have chosen to normalize πa to be dimensionless

coordinates, which differs from ref. [1] by a rescaling by v. Eq. (B.2) implies that the S3

metric gab(π) is given in terms of the unit vector n(π) by

gab(π) ≡ ∂n(π)

∂πa
· ∂n(π)

∂πb
. (B.3)

The Riemann curvature tensor Rijkl(φ) obtained from the scalar metric gij(φ) consists

of the non-vanishing components

Rabcd(φ) =
[
1− v2(F ′(h))2

]
v2F (h)2 (gac(π)gbd(π)− gad(π)gbc(π)) ,

Rahbh(φ) = −v2F (h)F ′′(h)gab(π), (B.4)

and components related to these by the permutation symmetry of the Riemann tensor.

Rabcd(φ) is proportional to the tensor (gacgbd − gadgbc) because S3 is a maximally symme-

tric space.

The quantities X and Yµν from eqs. (3.44) and (3.45) that appear in the one-loop

correction eq. (3.43) contain terms depending on the Riemann curvature tensor. The

Riemann curvature tensor components contributing to [X]ik and [Yµν ]ij , respectively, are

Rijkl(Dµφ)j(Dµφ)l

=

 [1− v2(F ′)2] [(Dµπ)2 δac − (Dµπ)a(Dµπ)c
]
− F ′′

F (∂µh)(∂µh)δac
F ′′

F (Dµπ)a(∂µh)

v2FF ′′(∂µh)(Dµπ)c −v2FF ′′(Dµπ)2

 ,
Rijkl(Dµφ)k(Dνφ)l

=

 [1− v2(F ′)2] [(Dµπ)a(Dνπ)b − (Dνπ)a(Dµπ)b]
F ′′

F [(Dνπ)a(∂µh)− (Dµπ)a(∂νh)]

−v2FF ′′ [(∂µh)(Dνπ)b − (∂νh)(Dµπ)b] 0

 .
(B.5)

The Lagrangian term I(φ) containing the potential and Yukawa couplings is

I(φ) = −V (h) +K(h)n ·W (B.6)
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where W is a constant, in the notation of ref. [1].

∇i∇jI =

[
gab
[
v2FF ′ (W · nK ′ − V ′)−W · nK

]
F
(
K
F

)′
W · n,a

F
(
K
F

)′
W · n,b −V ′′ +K ′′n ·W

]
(B.7)

where n,a = ∂n/∂πa.

The field strength Yµν is

[Yµν ]i j =

 [1−v2(F ′)2] [(Dµπ)a(Dνπ)b−(Dνπ)a(Dµπ)b]
F ′′

F [(∂µh)(Dνπ)a−(∂νh)(Dµπ)a]

−v2FF ′′ [(∂µh)(Dνπ)b−(∂ν)h(Dµπ)b] 0


+Aβµν(tiβ);j (B.8)

with

Aβµν(tiβ);j =

 0 −FF ′(∂bn)TAµνn

v2 F
′

F g
ac(∂cn)TAµνn g

ac(∂cn)TAµν(∂bn)

 (B.9)

and

Aµ =


0 gW 3

µ + g′Bµ −gW 2
µ gW 1

µ

−gW 3
µ − g′Bµ 0 gW 1

µ gW 2
µ

gW 2
µ −gW 1

µ 0 gW 3
µ − g′Bµ

−gW 1
µ −gW 2

µ −gW 3
µ + g′Bµ 0

 (B.10)

in terms of the electroweak gauge bosons. The field strength tensor Aµν is given by

eq. (B.10) with the replacements Wα
µ → Wα

µν , Bµ → Bµν . The covariant derivative Dµn

is given by

Dµn = ∂µn+ Aµn (B.11)

treating n as a four-component column vector, and using matrix multiplication. The

covariant derivative on π is defined implicitly through

Dµn ·Dµn = gab(π)(Dµπ)a(Dµπ)b (B.12)

Substituting the above equations into eq. (3.43) gives eq. (59) in ref. [1].

C Non-reductive cosets

In this appendix, we comment briefly on the CCWZ formalism when [Ta, XB] contains a

piece proportional to the unbroken generators, so that the coset is non-reductive. Such

examples are relevant for constructing G/H theories with negative sectional curvature [1].

One can still define the CCWZ ξ field as in eq. (4.9) which transforms as in eq. (4.12).

The complication for the non-reductive case is in eq. (4.13). For g ∈ H,

g
(
πA(x)XA

)
g−1 (C.1)
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is no longer a linear combination of the broken generators, but also has a component along

the unbroken generators,

g πA(x)XA g
−1 = XA

[
DR(π)

(g)
]A

Bπ
B + TaM

a
Bπ

B , (C.2)

where DR(π)
is the R(π) transformation matrix constructed out of f C

aB , as in eq. (4.6),

and Ma
Bπ

B is the component in the unbroken direction. The exponential of eq. (C.2) can

be schematically written as

eX+T = eX
′
eT

′
(C.3)

where X,X ′ are linear combinations of broken generators, and T, T ′ are linear combinations

of unbroken generators, and the primed and unprimed quantities are connected by the

Baker-Campbell-Hausdorff formula. Thus one gets eq. (4.12) with some important changes

even if g ∈ H: (a) The relation between π and π′ is non-linear. Eq. (4.14) only holds for

the linear term, i.e. for the transformation of the tangent vector to the Goldstone boson

manifold at the origin, and (b) h′(ξ(x), g) depends on ξ and hence x, even if g ∈ H.

The transformation of (Dµπ) and Vµ in eqs. (4.17) and (4.18) is also changed,

(Dµπ)→ h(Dµπ)h−1
∣∣
X

(C.4)

Vµ → hVµh
−1 − ∂µhh−1 + h(Dµπ)h−1

∣∣
T

(C.5)

(Dµπ) transforms by adjoint action by H in the representation R(π), as before. However,

Vµ picks up an additional piece and no longer transforms as a gauge field under H. One can

still define Goldstone boson kinetic terms as before, eq. (4.20). However, since Vµ does not

transform as a gauge field, it is not possible to define covariant derivatives on matter fields

ψ which transform as arbitrary irreducible representations of H, as was done in CCWZ.

Nevertheless, some matter fields are allowed in the EFT. For example, if ψ transforms as

a representation RG of the full group G,

ψ → D(g)ψ , (C.6)

then

(∂µ + itαA
α
µ)ψ (C.7)

is a covariant derivative, where the generators tα are in the RG representation. Following

CCWZ, we can define new fields χ by

χ = D(ξ†)ψ (C.8)

which transform as

χ→ D(h)χ , (C.9)
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where h is given by eq. (4.12). The covariant derivative eq. (C.7) turns into

(∂µ + ξ−1Dµξ)χ =
[
∂µ + i(Dµπ)AXA + iV a

µ Ta
]
χ (C.10)

on χ using eq. (4.17). The sum (Dµπ + Vµ) in the covariant derivative transforms as a

gauge field

(Dµπ + Vµ)→ h (Dµπ + Vµ)h−1 − ∂µhh−1 , (C.11)

and the covariant derivative eq. (C.10) is well-defined. For compact groups, where (Dµπ)

transforms as

(Dµπ)→ h (Dµπ)h−1 , (C.12)

and does not mix with Vµ, one can omit (Dµπ) in eq. (C.10) to get the CCWZ covariant

derivative. In this case, for the covariant derivative on χ to make sense, it is only necessary

to define the action of the unbroken generators Ta on χ, i.e. one can restrict χ to only

be in an irreducible representation of H; it does not have to form a representation of G.

Baryons in QCD are an example — they form a representation of the unbroken SU(3)V
symmetry, but not of chiral SU(3)L × SU(3)R. However, for the non-reductive case, it is

necessary to retain the (Dµπ) term in the covariant derivative, to cancel the extra piece

in the transformation of Vµ, the last term in eq. (C.5). In this case, we need to define the

action of Ta and XA, which requires χ to form a representation of the full symmetry G,

not just its unbroken subgroup.

The main difficulty for sigma models with non-compact H is unitarity. The ψ kinetic

energy term for compact groups H is∑
a

(Dµψ)†a (Dµψ)a (C.13)

if ψ is a complex scalar. If H is non-compact, then the unitary representations are in-

finite dimensional. For a finite dimensional non-unitary representation, the kinetic term

eq. (C.13) is not an invariant, since ψ† does not transform as the inverse of ψ. One can

construct invariant terms. For example, if H is SO(3, 1), and ψ transforms as the (real)

vector representation, ∑
i=1,2,3

(Dµψi) (Dµψi)− (Dµψ4) (Dµψ4) (C.14)

is invariant, as should be familiar from the Lorentz group. Eq. (C.14) has a wrong sign

kinetic term, and leads to ghosts. We do not know, in general, whether there are finite

dimensional representations for a non-compact group H with a positive definite H-invariant

kinetic energy term. This is possible for a trivial example: if H is a non-compact U(1), i.e.

of the form h = expαT , −∞ ≤ α ≤ ∞, one can pick the fermion to transform as exp iqα,

and the kinetic energy eq. (C.13) is H-invariant.

One can construct a suitable kinetic energy term if H is compact even if G is non-

compact, since ψ transforms under H, not G. An example of this type based on SO(4, 1)→
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SO(4) was studied in ref. [33]. In this case, the low energy EFT is unitary. However,

implementing a unitary UV theory in which G invariance is manifest is problematic, and

we do not know of any examples where this is possible.6

C.1 Example of a non-reductive coset

A simple example of a non-reductive coset is the 2-parameter group of matrices[
1 0

x y

]
, y > 0, (C.15)

under multiplication. The generators (absorbing a factor of i) can be chosen as

T =

[
0 0

1 0

]
, X =

[
0 0

0 −1

]
, (C.16)

with the commutation relation

[T,X] = T . (C.17)

If the matrices act on a vector

v =

[
0

1

]
, (C.18)

then Tv = 0, Xv 6= 0, so that T is an unbroken generator and X is a broken generator.

The matrices are sufficiently simple that the CCWZ formulæ can be computed explicitly.

The exponential of a Lie algebra element is

g = eaT+bX =

[
1 0

a
b (1− e−b) e−b

]
, (C.19)

so that

ξ = eπX =

[
1 0

0 e−π

]
, (C.20)

and

euT =

[
1 0

u 1

]
. (C.21)

The CCWZ multiplication rule

geπX = eπ
′Xeu

′T (C.22)

6A simple argument due to S. Rychkov is to look at G-current correlators
〈
JµαJ

ν
β

〉
in the UV theory. G

invariance requires the correlator to be proportional to the Killing form Bαβ , which is not positive definite

if G is non-compact, so that unitarity is violated. However, the low-energy EFT correlators are unitary, so

it might be possible to construct theories where the G symmetry of G/H arises only in the low energy limit.
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with g in eq. (C.19) gives

π′ = π + b,

u′ =
a

b

(
eb − 1

)
eπ. (C.23)

In the special case where g ∈ H, b = 0 and

π′(x) = π(x),

u′(x) = aeπ(x), (C.24)

so that u′ depends on x through π(x). Eq. (C.22) becomes

eaT eπX = eπXh, h(x) = eae
π(x)T , (C.25)

and h depends on x even for an unbroken transformation.

The Maurer-Cartan form is

ξ−1dξ = dπX, ω = ξ−1dξ
∣∣
X
, V = ξ−1dξ

∣∣
T
, (C.26)

so that

ω = dπX, V = 0. (C.27)

Under a global unbroken transformation g = exp aT ,

ξ−1dξ → ξ′ −1dξ′ = dπ′X. (C.28)

Using eq. (C.22),

ω′ = ω, V ′ = 0. (C.29)

The transformation laws are

ω′ = hωh−1
∣∣
X

V ′ = hωh−1
∣∣
T

+ hV h−1 − dhh−1 (C.30)

with h in eq. (C.25). These equations are satisfied because of the extra hωh−1 term in the

V transformation.
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