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Abstract: String theory axions are interesting candidates for fields whose potential might

be controllable over super-Planckian field ranges and therefore as possible candidates for

inflatons in large field inflation. Axion monodromy scenarios are setups where the axion

shift symmetry is broken by some effect such that the axion can traverse a large number

of periods potentially leading to super-Planckian excursions. We study such scenarios in

type IIA string theory where the axion shift symmetry is broken by background fluxes.

In particular we calculate the backreaction of the energy density induced by the axion

vacuum expectation value on its own field space metric. We find universal behaviour for

all the compactifications studied where up to a certain critical axion value there is only a

small backreaction effect. Beyond the critical value the backreaction is strong and implies

that the proper field distance as measured by the backreacted metric increases at best

logarithmically with the axion vev, thereby placing strong limitations on extending the

field distance any further. The critical axion value can be made arbitrarily large by the

choice of fluxes. However the backreaction of these fluxes on the axion field space metric

ensures a precise cancellation such that the proper field distance up to the critical axion

value is flux independent and remains sub-Planckian. We also study an axion alignment

scenario for type IIA compactifications on a twisted torus with four fundamental axions

mixing to leave an axion with an effective decay constant which is flux dependent. There is

a choice of fluxes for which the alignment parameter controlling the effective decay constant

is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay

constant. However we show that these fluxes backreact on the fundamental decay constants

so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.
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1 Introduction

From the perspective of Quantum Field Theory (QFT) large field inflation has a number

of advantages over its small field counterpart: it can be realised by extremely simple

potentials and requires no fine-tuning of an inflection point or the initial value of the

field. However, as yet, no significant primordial tensor modes have been observed [1]. One

possible explanation could be that the QFT perspective is misleading because there are

Quantum Gravity (QG) constraints which actually obstruct this naively natural possibility,

for example by limiting the available field range over which the potential can remain flat

enough to be sub-Planckian. The question of the possible field excursion distances in an

ultraviolet (UV) theory of gravity is one which has bearing on our understanding of current

and future experimental results, through the connection to primordial tensor modes, while

on the other hand requires a well-understood quantum theory of gravity to answer with

significant detail and confidence.

A possible objection to large field inflation, or more generally to super-Planckian field

displacements, from an effective QFT perspective is that one might expect an infinite

number of operators controlled by powers of the field over the Planck scale to appear

once UV gravitational physics has been integrated out. Such a situation would imply a

breakdown of the effective theory for super-Planckian field values. An effective QFT answer

to this could be that there is an additional symmetry in the theory which is respected by

the UV physics and which controls these operators beyond their naive dimensional analysis.

In turn, the objection to this is that QG is expected to not respect any global symmetries

which could control operators in the theory. At this point it is not clear how to proceed
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through general reasoning. Without knowing the UV theory we can not analyse the actual

corrections from the UV physics, whether there is some symmetry that could control them

and to what extent. One way to progress is to utilise general expectations of properties

of QG, in particular along the lines of the Weak Gravity Conjecture (WGC), to restrict

certain scenarios [2–11]. Other approaches include an analysis of entropy bounds [12, 13].

In this paper we will adopt the approach of considering string theory as a UV completion

and explicitly study these questions in such a framework.

Within the string theory context we are interested in closed-string fields as candidates

for fields that can support super-Planckian excursions and therefore possibly large field

inflation. Such fields arising from a string compactification split into two classes, there

are moduli and there are axions. The two differ in a number of ways, perhaps the most

important one being that axions do not appear perturbatively (as an expansion in the

moduli vevs) in the Kahler potential due to a perturbative shift symmetry. Moduli fields

have been considered as possible candidates for fields that could support super-Planckian

excursions, see [14] for a review, [15] for early work and [16] for the most recent. However

in doing so one faces two problems. The first is the generic one of controlling Planck scale

suppressed operators since there is no UV symmetry to protect the moduli. The second

problem is that the moduli values are also the parameters which control the effective

theory such that their variation is bounded within a controlled effective theory. For too

small moduli values there are large corrections to the effective theory, while for too large

values the cut-off scale of the theory, for example the string or Kaluza-Klein scale, becomes

low. The problem is amplified by the fact that closed-string moduli appear in the Kahler

potential, and therefore in their own field space metric, in such a way that the canonically

normalised fields are logarithmic in the moduli values. Therefore the displacement distance

in the canonical field is exponentiated as a modulus variation which means one is fighting

for control against an exponential. This may be possible if the coefficient in the exponent

which multiplies the modulus could be controlled in some way, but it typically is only

dependent on intersection numbers of the Calabi-Yau (CY) and such quantities rather than

say a flux parameter. It is therefore difficult to ensure full control over super-Planckian

field excursion in such a scenario, at least while keeping the cutoff scale of the theory

sufficiently high, although we are not aware of a general proof against such a possibility.

Closed-string axions do not appear to suffer from these difficulties at first glance.

Their vacuum expectation value (vev) is not a control parameter for the effective theory

and since they do not appear in the perturbative Kahler potential their field space metric is

also independent of their vev. Further they are protected by a perturbative shift symmetry

which is broken to a non-perturbative discrete symmetry. These properties make them

attractive candidates for fields that could support super-Planckian displacements within a

fully controlled setting. On the other hand an analysis of possible axion periodicity lengths

appears to suggest that a super-Planckian period for a fundamental string axion is not

achievable, see [17] for the key original paper and [18] for the most recent analysis (while

for example [19, 20] study possible exceptions). One possibility for avoiding this limitation

is to consider mixing two or more fundamental axions to get an effective super-Planckian

axion decay constant for an aligned combination [21]. This possibility has been studied in
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a string theory setting, see [14] for a review and [22–28] for recent work. Most relevant

for the work in this paper is the analysis in [27] of type IIA compactifications. There it

was shown that backreaction of the axion alignment parameter modified the metric on the

axion field space so as to precisely cancel any enhancement of the axion periodicity. It

was pointed out in [27] that in the case of more than two fundamental axions mixing, with

an additional contribution to the superpotential to fix the additional combination, it is

possible that this cancellation of the enhancement may be modified. In this work we will

study such a more general possibility by considering compactifications of type IIA string

theory on a twisted torus rather than a CY setting.

The primary focus of this work will be on a different idea for realising super-Planckian

displacements with axions which is termed axion monodromy [29, 30]. The basic idea

behind it is to include effects in the vacuum which break the axion periodicity, for example

a mass term, allowing it to traverse distances larger than a single period. For closed-string

axions the effects which break the axion monodromy can be taken as branes, in IIA 6-

branes as in [45], within IIB 5-branes as in [30] and 7-branes as in [31], or as background

fluxes. The fact that a background flux in string theory can induce a non-periodic potential

for an otherwise periodic axion is a well known effect in flux compactifications, though it

has only recently been applied in the context of large field inflation [32–44]. Recent work

has also studied axion monodromy induced by non-flux effects [45, 46].

Both axion alignment and axion monodromy share the feature that they have some

integer parameter N such that for N = 1 the field remains sub-Planckian and is then

parametrically increased to super-Planckian values by dialing N large. The crucial effect

which we focus on in this paper is the backreaction of the parameter N on the metric of

the axion field space as it is dialed large. We focus on this as it is physics which has the

right properties to form part of a censurship mechanism for large field displacements in

string theory. The backreaction is gravitational physics and it interacts with the metric on

the axion field space which determines the distance that the field travels. Further, while

in QFT we are free to pick the field space metric as we like, typically it is considered to

be a constant, in string theory it is a highly restricted and structured quantity. Ranging

from coarse structures such as the universal logarithmic behaviour in the moduli of the

Kahler potential signifying gravitational physics to fine details such as the structure of

singularities on the field space which capture highly non-trivial non-perturbative quantum

gravitational physics. Indeed the cancellation of N in the alignment scenarios found in [27]

are examples of this general idea, and the form of the Kahler potential played a central

role. If we let ourselves take the metric on the field space to be constant, or arbitrary, or

neglect its dependence on N , this effect would not be captured.

In the case of axion monodromy the parameter N is associated with the number of

periods that the axion traverses. Its backreaction effect is therefore the backreaction of the

energy density induced by the axion vev as it moves along its potential. For a sufficiently

smooth and diluted flux background the backreaction of N is captured at leading order by

its effect on the other moduli values.1 We would like to study this effect and determine

1See [47] for an analysis of backreaction in a non-dilute region within the context of large field inflation.
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its influence on the possible axion excursion distance. Since we must be careful to account

for any QG features of string theory that could affect this calculation we would like to

use a framework which is as clean and simple as possible. We will therefore study this

effect within the moduli stabilisation framework of type IIA flux compactifications on a

CY manifold [48, 49] or a twisted torus [50, 51] (see [54] for a more complete reference

list on these topics). In such a setting moduli stabilisation is a completely perturbative

process which means we only need to utilise tree-level expressions for the Kahler potential

and superpotential. Further it is simple enough to allow us to solve for the backreaction

of N explicitly and precisely. Finally it is a setting for which the uplift to 10-dimensional

supergravity solutions is well understood adding a further level of control. In this paper

we will focus on the backreaction of the axion vev on its field space metric and thereby its

excursion distance. There are a number of studies in the literature of the backreaction of

axion vevs in axion monodromy scenarios within different settings which instead focus on

the effect of flattening its potential or on the possible destabilisation of the vacuum. See for

example [41, 42, 55–59]. Perhaps most similar in a technical sense to our type IIA settings

are the non-geometric compactifications studied in [37–39, 43] which appear to share some

features with our constructions.

The paper is structured as follows. In section 2 we study backreaction effects in axion

monodromy scenarios, while in section 3 we study backreaction effects in an axion alignment

scenario. We summarise our results in section 4.

2 Axion monodromy and backreaction

In this section we analyse models of flux-induced axion monodromy in type IIA string

theory. There are two types of axions in compactifications of type IIA string theory

on Calabi-Yau orientifolds. The Ramond-Ramond (RR) axions which pair up with the

complex-structure moduli and the dilaton, and the Neveu-Schwarz (NS) axions which pair

up with the Kahler moduli. Turning on RR fluxes induces a potential for the NS axions

and vice-versa. They then become so-called monodromy axions, and the parameter N

amounts to the number of times they traverse their period and so is measured by their

vacuum expectation value. Therefore accounting for the effect of N on the field space

metric amounts to calculating the backreaction on the moduli of the axion vev.

Before entering into the calculation it is worthwhile to expand on the methodology we

will utilise to study the backreaction and field range. If there is some constraint on field

distances in string theory it is unclear what form it takes. The notion of a bound on a

single field variation, tracing a line in scalar field space, is not well defined in the presence

of multiple fields since a higher dimensional field space trivially supports an infinite length

line. It may be that it is possible to formulate a constraint on the volume of field spaces,

but in the absence of such a well defined formulation we adopt a different approach. Once

we introduce a potential to the theory we can consider the dimensionality of the vacuum

space of the theory. At the non-perturbative level one expects all fields to gain a potential

which means that if the vacuum space is not empty then it is a collection of points. We

can also consider the perturbative vacuum space which can be higher dimensional but
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still typically reduced from the dimensionality of the total field space. Then within this

framework there are two natural ways to identify a one-dimensional field space along which

we can test bounds on excursion distances. The first is the lightest direction in field space.

This is the identification we will use when studying axion alignment. It is possible to think

of this as a theory where we integrate out all the heavier fields to obtain an effective field

theory for a single field and see if our knowledge of the UV origin of this theory constrains

the effective field range.

The second possibility for identifying a single-field space is to consider dropping the

requirement for one field to lie in the vacuum. So we displace by hand a single field from the

vacuum and ask how far can this field go. This is the approach we will adopt for studying

axion monodromy models, with the field away from the vacuum being the massive axion.

This is quite a different setting to the previous one and we should not think of integrating

out the other fields to obtain some effective theory for the field we are displacing. Rather

they must be kept in the theory and we must adjust their values appropriately to track

their minima as a function of the displaced field, this is the backreaction effect which we

crucially want to capture. If the other fields are much more massive than the field which

is displaced from the vacuum then they will not change much over the displacement, but

this does not have to be imposed for the procedure to be well-defined. Note that it could

be that after displacing the field far enough away from a stable vacuum we reach a point

where the minima for the other fields disappear and they become unstable themselves. In

this case the whole theory would undergo some phase transition to a different vacuum. We

will show examples of such cases but they will not be of central interest for us, we will

focus on the cases where the other fields have well defined, though continuously changing,

minima.

Once we identify a line path in field space we are interested in how far along this path

the field can displace. We must consider the proper path length in field space, so for a

space of fields spanned by νi coordinates with metric gij we want to calculate

∆φ ≡
∫
γ

√
gij
∂νi

∂ρ

∂νj

∂ρ
dρ . (2.1)

Here ρ is the world-line element along the path defined by γ which is specified as an

embedding γ : ρ → νi (ρ). The important effect to capture is that gij is a function of ρ

once the gravitational backreaction is accounted for, and the integral is then appropriately

modified. Applying this to the type IIA string theory setting we will be interested in the

case where the path in (axion) field space is along a certain linear combination of fields

ρ =
∑
i

hiν
i . (2.2)

We can then simplify (2.1) to

∆φ =

∫ ρf

ρi

(
hig

ijhj
)− 1

2 dρ . (2.3)
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This is seen to be the integration of the canonical normalisation factor for the field ρ from

its initial values ρi to its final one ρf .2

2.1 Ramond-Ramond axions

We begin by analysing the displacement of a massive combination of RR axions from the

minima. We will initially study a simplified model where each sector of moduli, complex-

structure, Kahler, and dilaton have only one representative variation. This captures the

behaviour of the system under a universal scaling of the moduli, and can be thought

of as restricting the moduli values to be equal. We will see that the important physics

manifests already in this simple setting. In section 2.1.2 we will then generalise the results

to a realistic Calabi-Yau system of moduli in the RR axions sector (which is the complex-

structure moduli sector). In section 2.1.3 we will further generalise the setting to the case

of a twisted torus.

2.1.1 Single field models

The starting point is the model studied in [27] which considered a simplified version of the

IIA on CY model

K = − log s− 3 log u− 3 log t , W = e0 + ih0S − ih1U +
i

6
mT 3 . (2.4)

Here the hi are NS fluxes, while e0 and m are RR fluxes. Note that we use the notation

of [51]. The superfields are

S = s+ iσ , U = u+ iν , T = t+ iv . (2.5)

There are two simplifications which enter this construction. The first is that, as discussed

above, we have taken only a single modulus in the Kahler and complex-structure moduli

sector. The second simplification is that we have turned off some fluxes, see (2.11) for the

full set of fluxes. There is one axion combination ρ which becomes massive due to the

fluxes and therefore suffers a monodromy effect

ρ = e0 − h0σ + h1ν . (2.6)

As discussed above, to capture the backreaction effect of the axion vev we study the values

of the moduli which solve the equations

∂TV = ∂uV = ∂sV = 0 , (2.7)

as a function of the vev of ρ. Here V is the scalar potential of the theory following

from (2.4). We do not impose the minima equations for the two axion combinations of σ

and ν, this is because one combination is perturbatively massless while the other we would

like to displace from its minimum.

2Note that we work in conventions where a real scalar field has canonical kinetic terms (∂φ)2, with no

prefactor of 1
2
.
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The solution to these equations was presented in [27] and reads

s = α
ρ

h0
, u = −3α

ρ

h1
, t = 1.96

( ρ
m

) 1
3
, v = 0 , (2.8)

with α ' 0.38. Note that this solution is only valid for sufficiently large values of ρ. In

fact the solution does not flow to a physical minimum for any value of ρ which can be

seen by noting that there is no physical supersymmetric vacuum for the system (due to

the restriction on the superpotential). Nonetheless it is a useful model for capturing the

axion back-reaction, indeed the crucial point is that we find for the axion field space metric
√
gρρ ∼ s−1 ∼ ρ−1. This means that the metric on the field space of the axion is modified

so that the canonically normalised field distance is only logarithmic in the vev of ρ [27].

More precisely we obtain from (2.3)

∆φ =

∫ ρf

ρi

1

2

(
(h0s)

2 +
1

3
(h1u)2

)− 1
2

dρ ' 0.7 log

(
ρf
ρi

)
. (2.9)

There are two qualitative features of (2.9) to highlight. The most important feature is that

the proper field distance is only logarithmic in the axion variation. This is the type of

behaviour we expect from moduli fields and not axions. In this sense, once backreaction

is accounted for, inducing a potential for an axion makes it behave like a modulus. The

second important features is that the prefactor 0.7 is flux independent. Therefore there is

no parameter to adjust in the model to make the field excursion large while keeping the

logarithmic term small. While formally the field distance is unbounded, as discussed in the

introduction it is not likely to be possible to obtain super-Planckian displacements in such

a setting. Indeed it is precisely this logarithmic behaviour of moduli which we attempted

to avoid by working with axions since an exponentially large variation of the moduli is

difficult to support in an effective theory which is under control. And from (2.8) we see

that indeed the moduli scale exponentially with the proper axion field distance.

Let us consider the generality of the result of ∆φ ∼ log ρ. To do this it is useful

to notice that the equations determining the values of the moduli (2.7) satisfy a scaling

symmetry

ρ→ λρ , s→ λs , u→ λu , T → λ
1
3T . (2.10)

When we solve for the moduli in terms of ρ and the fluxes, only the ρ field carries weight

under this symmetry and therefore s and u must be proportional to it. This argument

is sufficient to establish the behaviour (2.9) up to a constant of proportionality factor.

Now consider a general CY compactification with an arbitrary number of moduli. The

system still satisfies the symmetry (2.10) with an equal scaling of all the moduli because

of the logarithmic behaviour of the Kahler potential. Therefore there must be an overall

proportionality of all the ui moduli to ρ which is sufficient to establish the logarithmic

behaviour of (2.9). The proportionality factor 0.7 in the universal behaviour (2.9) however

can in principle depend on dimensionless fluxes, such as the hi, in the case of an arbitrary

CY manifold. In section 2.1.2 we study this problem and show that it is flux independent

and of order one.
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For the superpotential (2.4) the only flux parameter which carries weight under the

scaling symmetry (2.10) is e0. This is particularly simple since it can just be absorbed into

the definition of ρ. If we consider the most general superpotential for type IIA on a CY

there are additional fluxes which scale with the symmetry (2.10). The simplified version

takes the form

W = e0 + ih0S − ih1U + ie1T − qT 2 +
i

6
mT 3 . (2.11)

The fluxes of type e1 and q carry weights under the symmetry (2.10) of 2
3 and 1

3 respectively.

Their introduction implies a number of important changes. First, as we will show, the

theory now develops physical minima. Secondly they imply a modification to the general

argument leading to the behaviour (2.9) which accounts for the dimensionful fluxes. The

solutions for the moduli in terms of ρ now fall into two classes: those which in the limit

{e1, q} → 0 reduce to the previous solution, and those which break down in this limit.

We will turn to studying the solutions in detail soon but first let us make some general

statements about the first class, which for {e1, q} → 0 reduces to (2.9). These solutions

must have some functional form for the moduli in terms of ρ such that when ρ is larger

than some critical value ρcrit set by the magnitude of the fluxes which break the symmetry

ρcrit ∼
(
e

3
2
1 + q3

)
they converge to (2.8). The first thing to observe is therefore that by

taking large fluxes we can delay the onset of the scaling behaviour (2.8) arbitrarily far in

ρ distance. The fluxes therefore act to shield the moduli from the axion vev backreaction.

However, even though the variation in ρ can be extended parametrically far through this

method we can see that this will not imply an arbitrarily far proper field distance. The

rough argument is that if we assume that the moduli which control the axion field space

metric, s and u, remains approximately constant up to ρ ∼ ρcrit then since at ρcrit their

values go like s ∼ ρcrit this will be their approximate value over the regime of small ρ. The

proper axion field distance ∆φ up to ρcrit will therefore behave as

∆φ ∼ ∆ρ

{s, u}|ρcrit
∼ ρcrit

ρcrit
∼ 1 . (2.12)

So while ρcrit may be arbitrarily large, controlling the backreaction for arbitrarily large field

distances, its value cancels in the proper field distance. The argument presented is quite

general but imprecise and the rest of this section will be dedicated to essentially filling in

the missing details in it.

There will be two steps to improving the argument just presented for the structure of

the proper length field variation. First we would like to make it more quantitative keeping

track of the relevant coefficients, and then we will determine the actual values of these

coefficients. It is useful to introduce some coordinate redefinitions. First we absorb some

of the fluxes into the definition of the moduli and other fluxes

s̃ = h0s , ũ = −h1u , T̃ = Tm
1
3 , ẽ1 = e1m

− 1
3 , q̃ = qm−

2
3 , (2.13)

and introduce the flux combination

f ≡ −ẽ1 − 2q̃2 . (2.14)
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An important role in our analysis will be played by the particular moduli values which

correspond to a physical supersymmetric vacuum of the system. In this vacuum the fields

take the values

s̃0 =
ũ0

3
=
t̃30
15

=
2

9

√
10

3
f

3
2 , ρ0 =

2

3
q̃
(
3f + 2q̃2

)
, ṽ0 = −2q̃ , (2.15)

where we take h0 > 0, h1 < 0 and m > 0. In analysing the potential it is convenient to

shift the axion definitions by their supersymmetric minimum values

ρ′ ≡ ρ− ρ0 , v′ ≡ ṽ − ṽ0 . (2.16)

This is useful because after this shift the scalar potential, up to an overall constant factor,

only depends on the single flux parameter f explicitly

V = h0h
3
1mṼ

(
s̃, ũ1, t̃, v

′, ρ′, f
)
. (2.17)

Therefore solutions to the equations (2.7) will depend on only one parameter in these vari-

ables. The dependence of the potential on only one flux parameter f can be understood as

follows. Three flux parameters in the superpotential can be absorbed into moduli rescaling

as in (2.13) which leaves three parameters e0, e1 and q. The theory however also respects

two shift symmetries, one for the RR axions and one for the NS axion which can be used to

absorb two more flux parameters into a shift in the axions. This leaves one flux parameter,

which through our shifts is f . Note that we could equally use the shift symmetries to set

e0 and q to zero for example.

The quantity of interest for us is the proper distance traversed by the massive axion

field ρ up to its critical value, as given in (2.3)

∆φ =

∫ ρf

ρi

(
hig

ijhj
)− 1

2 dρ =

∫ ρ′crit

0

1

2

(
s̃2 +

1

3
ũ2

)− 1
2

dρ′ = g

(
ρ′crit

f
3
2

)
= r , (2.18)

where g is some arbitrary function which depends only on the shown ratio of ρ′crit and f ,

and r is a flux-independent number. The important point is that the result is independent

of any flux parameters. In this analysis we have taken with generality the initial value

at ρ′ = 0. The non-trivial step is the third equality since s̃ and ũ are some complicated

functions of ρ′. However recall that we still have the symmetry (2.10) of the system under

which f carries weight 2
3 and ρ′ carries weight 1. Since ∆φ must be dimensionless under

this symmetry it can only depend on the appropriate ratio of ρ′crit and f . The final step

uses the fact that ρ′crit scales with f
3
2 since it is only f which breaks the symmetry that

leads to the solution 2.8. The end result is some flux-independent number which is expect

to be of order one, to which we now turn.

We proceed now to analyse the structure of the scalar potential in detail to determine

the precise numerical factors in the previous analysis. Consider a solution to (2.7), this

will satisfy

− 3

4
e−K

(
3s̃
∂Ṽ

∂s̃
− ũ∂Ṽ

∂ũ

)
= (3s̃− ũ)

(
6s̃− t̃3 + 2ũ

)
= 0 . (2.19)
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Therefore turning points of the potential split into two branches

Branch 1: ũ = 3s̃ ,

Branch 2: ũ = −3s̃+
1

2
t̃3 . (2.20)

From (2.15) we see that only the first branch supports a supersymmetric minimum, and

only for f > 0. However a turning point of the potential occurs for both branches, for

either sign of f , at the point ρ′ = v′ = 0. These are then non-supersymmetric minima in

general. Analysing the Hessian at these turning points shows that for the supersymmetric

turning point of branch 1 there is one negative eigenvalue, while for the non-supersymmetric

minima of branch 2 all the eigenvalues are positive. In the case of a negative eigenvalue

it lies above the Breitenlohner-Freedman (BF) bound and so all these turning points are

stable minima. These minima will form the starting points for our axion excursions in ρ′.

As we move away from the minimum in ρ′ the stability with respect to the other directions

continues to hold. For clarity we will henceforth restrict to f > 0 so that the minimum of

branch 1 is supersymmetric, while the branch 2 minimum is non-supersymmetric.3

As we move ρ away from its supersymmetric minimum the other moduli will adapt as

in (2.7). Consider branch 1 in (2.20). The system is quite complicated but we could solve

it numerically and match the result onto a function. We find that to good accuracy the

following function matches the numerical analysis

s̃ =
[(
αρ′
)4

+ βf3
(
ρ′
)2

+ s̃4
0

] 1
4
. (2.21)

Here α is as in (2.8), α ' 0.38, and β ' 0.05.4 This shows the interpolating behaviour

between the supersymmetric minimum value for ρ′ and the large vev limit (2.8). We can

therefore define ρ′crit as the value of ρ′ for which the first term in (2.21) becomes equal in

magnitude to the sum of the other two. This gives

ρ′crit ' 1.7f
3
2 . (2.22)

We can now evaluate the general expression (2.18) using the solution, which gives

∆φ ' 0.9 . (2.23)

This gives the precise numerical evaluation of the general structure discussed previously.

The key result is that the canonically normalised field distance is independent of any fluxes

and is of order one.

We performed a similar evaluation for the non-supersymmetric branch 2 in (2.20). We

did not derive an analytic expression for the moduli as a function of ρ′ but studied it

3We have analysed also the cases for f < 0. We find similar behaviour with the only key difference

being that for this sign of flux excursions for large ρ′ along branch 2 destabilise the potential such that the

turning points in the moduli disappear and the theory then undergoes a phase transition to a new vacuum.

While interesting this limits the excursion distances in field space and is not the focus of this work.
4For f < 0 we find a similar fit but with β ' 0.03.
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Figure 1. Plots showing the moduli s̃ and ũ as a function of ρ′ = ρ − ρ0 for displacement of ρ′

along branch 2 of (2.20). The plots are for flux value f = 6 and show the same function over two

different ranges so as to show the behaviour up to ρcrit ' f
3
2 ' 15, and the asymptotic behaviour

of ũ.

numerically. We find that for s̃ the large ρ′ scaling regime takes the form

s̃ ' 1.7

(
ρ′

f

)3

. (2.24)

The critical value of ρ′ where this regime begins is again around f
3
2 as shown in figure 1.

The modulus ũ instead asymptotes to zero but for values of ρ′ � ρcrit as shown in figure 1.

We can approximate to a decent accuracy the distance traveled by the canonical field up

to ρ′crit by taking s̃ and ũ to be constants over that distance which gives then ∆φ ' 0.5.

Note that because s̃ scales with a larger power of ρ′ after the critical point than for branch

1 the distance up to ρ′ → ∞ is not even logarithmically divergent but is finite. It gets

cutoff very quickly giving an increase in ∆φ of order a percent.

We have found that although the strong axion backreaction can be delayed arbitrarily

far in terms of the axion vev, the proper field distance is flux independent. The cancellation

of the flux parameters in the result for the proper length in field space is strikingly similar

to a flux cancellation found in the case of axion alignment in [27]. Indeed the two can

be related naturally. We can approximate the moduli to be independent of ρ′ for values

ρ′ < ρ′crit and write the distance that the axion traverses before strong backreaction as
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∆φ ∼ ρ′critfρ′ ∼ Nfρ′ where N = f
3
2 in terms of the flux. Here fρ′ is the normalisation

factor appearing in the proper field distance (2.3) evaluated at ρ′ < ρ′crit, which can be

defined as the axion decay constant for ρ′. Now consider an axion alignment scenario

between two axions, labeled by ν1 and ν2. The effective massless axion combination ψ

appears in two instantons, in one of them with an effective decay constant which, before

accounting for back-reaction effects, is enhanced by N so that f1
ψ ∼ Nfν2 and in the other

one with an effective decay constant which is not enhanced f2
ψ ∼ fν2 . Here fνi are the

fundamental decay constants for the νi axions. After accounting for backreaction, as in [27],

one finds that fν2 ∼
fν1
N so that f1

ψ does not enhance. This scaling with the parameter

N implies an identification of the naively enhanced axion decay constant in the alignment

scenario with the proper field length in monodromy f1
ψ ↔ ∆φ, and the un-enhanced decay

constant of the second instanton in alignment with the monodromy axion decay constant

f2
ψ ↔ fρ′ . This map can be thought of as zooming into the origin of the large effective axion

period in an axion alignment scenario where the potential looks approximately quadratic

rather than sinusoidal and therefore is similar to an axion monodromy scenario. On top

of the quadratic potential there is an oscillating one from the sub-leading instanton and

after N such periods we reach a critical axion value. In the alignment scenario this is

where the quadratic approximation breaks down and the periodic nature of the system

kicks in to censure the excursion distance, in the monodromy setting at the same axion

value instead the strong backreaction kicks in and serves as the cutoff mechanism. In both

cases although there are N oscillations before the cutoff mechanism the oscillation period

scales as 1
N thereby ensuring a cancellation in the proper excursion length.

2.1.2 Calabi-Yau models

So far we have restricted to the simplest setting where we have just a single representative

from each moduli sector. We are now interested in studying how the results obtained are

modified when we consider more involved CY compactifications with multiple moduli. We

will consider still a simplified model where we take only a single representative variation in

the Kahler moduli sector but will consider a more complicated complex-structure moduli

sector. Let us consider the following setup

K = − log s− 2 log
√
u1

(
u2 −

2

3
u1

)
− 3 log t ,

W = e0 + ih0S − ih1U1 − ih2U2 + ie1T − qT 2 +
i

6
mT 3 . (2.25)

The complex-structure moduli Kahler potential is the mirror of the P[1,1,2,2,6] CY studied

in [60], see [48, 62] for details of the mirror map for type IIA orientifolds. The massive

axion combination we are interested in displacing is

ρ = e0 − h0s+ h1ν1 + h2ν2 . (2.26)

Let us look at its proper length (2.3)

∆φ =

∫ ρf

ρi

√
3

2

[
6h2

0s
2 + 6h2

1u
2
1 + 8h1h2u

2
1 + h2

2

(
4u2

1 − 4u1u2 + 3u2
2

)]− 1
2 dρ ,

=

∫ ρf

ρi

√
3

2

[
6s̃2 +

(
6 + 8r + 4r2

)
ũ2

1 − 4rũ1ũ2 + 3ũ2
2

]− 1
2 dρ . (2.27)
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Here we defined s̃ = h0s, ũi = −hiui, r = h2
h1

. An important qualitative difference from the

simpler one-modulus expression (2.18) is that there appears a flux parameter r explicitly.

This parameter is dimensionless under the symmetry (2.10) and therefore may appear

arbitrarily in the evaluation of the integral for ∆φ. At the same time it is also not possible

to write the potential with only a one-parameter explicit dependence as in (2.17) and

instead we have a two-parameter system Ṽ
(
s̃, ũ1, ũ2, t̃, v

′, ρ′, f, r
)
. In order to see how

the new parameter r may affect the field distance we therefore need to study the moduli

stabilisation equations. Proceeding as before we have the supersymmetric minimum

s̃0 =
3 + 2r

3
(ũ1)0 =

3 + 2r

6 (1 + r)
(ũ2)0 =

t̃30
15

=
2

9

√
10

3
f

3
2 , ρ0 =

2

3
q̃
(
3f + 2q̃2

)
, ṽ0 = −2q̃ .

(2.28)

We define ρ′ and v′ as in (2.16). Turning to solving the stabilisation equations (2.7) we find

a again a factorisation structure however now with four branches which determine both ũ1

and ũ2 in terms of s̃ and t̃ as

Branch 1: ũ1 =
3s̃

3 + 2r
, ũ2 =

6 (1 + r) s̃

3 + 2r
,

Branch 2: ũ1 =
3s̃

3 + 2r
, ũ2 =

1

3

(
−6 (3 + r) s̃

3 + 2r
+ t̃3

)
,

Branch 3: ũ1 =
−6s̃+ t̃3

2 (3 + 2r)
, ũ2 =

6 (3 + r) s̃+ rt̃3

9 + 6r
,

Branch 4: ũ1 =
−6s̃+ t̃3

2 (3 + 2r)
, ũ2 = −

(1 + r)
(
6s̃− t̃3

)
3 + 2r

. (2.29)

Once we impose lying on any of the branches the remaining three equations in (2.7) depend

only on s̃, t̃, v′, ρ′ and f . Importantly the dependence on r drops out which means that the

solutions for s̃ and t̃ only depend on f and ρ′. Further, once we impose a branch from (2.29)

we find that the dependence on r also drops out from the proper field length (2.27). For

example for branch 1 we have

∆φ =

∫ ρ′crit

0

1

4s̃
dρ′ , (2.30)

which is the same expression as branch 1 for the one modulus case. After imposing branch

1 of (2.29), the equations determining s̃ are also the same as the one modulus case which

means that the result is identical to (2.23). Similarly branch 4 of (2.29) reproduces the one

modulus branch 2 case. The other new branches for the two modulus case give different

results but the key property that the integrand in ∆φ depends on only one flux parameter

f guarantees by the previous reasoning that the result is flux independent. In summary,

we find that for this example of a more complicated CY setting with multiple complex-

structure moduli there is additional structure in the relations between the ui and s and an

additional flux parameter in the potential, but in the proper field length this parameter

drops out and the results is qualitatively and for some cases quantitatively the same as the

one modulus case studied in detail in the previous subsection.
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Let us present a different example CY. The complex-structure moduli Kahler potential

is the mirror of the P[1,1,1,6,9] CY studied in [61].

K = − log s− 2 log

(
u

3
2
1 − u

3
2
2

)
− 3 log t . (2.31)

The proper path length is given by

∆φ =

∫ ρf

ρi

√
3

4

[
3h2

0s
2 + 6h1h2u1u2 + h2

2

√
u2

(
2u

3
2
1 + u

3
2
2

)
+ h2

1

(
u2

1 + 2
√
u1u

3
2
2

)]− 1
2

dρ .

(2.32)

Let us define

s̃ = h0s , T̃ = Tm
1
3 , ẽ1 = e1m

− 1
3 , q̃ = qm−

2
3 , (2.33)

and f as in (2.14). There is a supersymmetric vacuum at

s̃0 = −h
3
1+h3

2

3h2
2

(u2)0 = −h
3
1+h3

2

3h2
1

(u1)0 =
t̃30
15

=
2

9

√
10

3
f

3
2 , ρ0 =

2

3
q̃
(
3f+2q̃2

)
, ṽ0 = −2q̃ .

(2.34)

Note that the physical domain of fluxes is at h0 > 0, h1 < 0, h2 > 0, and |h1| > |h2|. As

before we shift the axions by their supersymmetric values (2.16) to define ρ′ and v′, and

also define r = h2
h1

. Turning now to the solutions to (2.7) we find two physical branches

Branch 1: u1 = − 3s̃

h1 (1 + r3)
, u2 = − 3r2s̃

h1 (1 + r3)
,

Branch 2: u1 =
6s̃− t̃3

2h1 (1 + r3)
, u2 =

r2
(
6s̃− t̃3

)
2h1 (1 + r3)

. (2.35)

Restricting to these branches leads to remaining equations which are independent of the

hi and which exactly match the corresponding equations for the one modulus case in the

respective branches. Therefore the solutions for s̃ are the same again. Further, evaluating

the integrand in (2.32) over the branches leads to a cancellation of the hi fluxes leading

again to a flux independent result as in the one modulus case.

We have found the same behaviour also for other examples for CY Kahler potentials,

and given that the cancellation of the fluxes in the final result appears to be very intricate

it is reasonable to expect that there is an underlying reason or symmetry behind this which

holds for any CY. However we were unable to prove this.

2.1.3 Twisted torus models

In section 2.1.2 we studied a modification of the simplest model of section 2.1.1 through

adding structure to the Kahler potential. In particular this added another independent

flux parameter making the system a two parameter one. In this section we modify the

simplest model through a modification of the superpotential. This will lead again to a

two flux parameter system. We consider a compactification of type IIA string theory on a
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twisted torus.5 The details of the compactification are given in section 3.2. We will study

a simpler version of this model where we restrict the complex structure and Kahler moduli

to a single variation, ie. take one representative in each class. The key addition to the

models of section 2.1.1 is an additional superpotential interaction which couples the dilaton

and complex-structure moduli to the Kahler moduli. Due to this interaction both the RR

axions gain a mass for generic fluxes. We will therefore restrict the fluxes further such

that only one combination of the RR axions gains a (perturbative) mass while the other

remains massless. This then singles out the massive direction as a monodromy axion along

which we will displace and study the backreacted field excursion distance. The system we

study is

K = − log s−3 log u−3 log t , W = e0 +ialS−iblU+ie1T−qT 2 +
i

6
mT 3 +aST−bTU .

(2.36)

The two new interactions and flux parameters are a and b. We have restricted the NS

flux hi to be of the form h0 = al and h1 = bl with l some free parameter which is only

constrained by quantisation of the NS flux. This ensures that only one combination of the

RR axions gains a mass. We can now perform some field redefinitions to make the system

simpler. First we shift the axions and fluxes to set e0 = q = 0 through

v = v′ − 2q

m
, σ = σ′ +

3e0m
2 + 6e1mq + 8q3

3am (lm− 2q)
,

l′ = l − 2q

m
, e′1 =

3e0m
2 + 3e1lm

2 + 6lmq2 − 4q3

3lm2 − 6mq
. (2.37)

We then define the rescaled fields

T ′ =
T̃

m
1
3

, U = − l̃m
1
3 Ũ

b
, S′ =

l̃m
1
3 S̃

a
, e′1 = ẽ1m

1
3 , l′ =

1

l̃m
1
3

. (2.38)

The resulting superpotential and Kahler potential (up to an unimportant constant shift)

then take the form

K = − log s̃− 3 log ũ− 3 log t̃ , W = i
(
S̃ + Ũ

)
+ iẽ1T̃ +

i

6
T̃ 3 + l̃T̃

(
S̃ + Ũ

)
. (2.39)

This makes it manifest that there are only two flux parameters in the system and that only

one combination of RR axions gains a mass which we denote as ρ = σ̃+ν̃. In the form (2.39)

we see that we recover the torus limit as studied in section 2.1.1 by taking l̃→ 0.6

The system has a supersymmetric vacuum. In the limit l̃→ 0 this is the solution given

in (2.15). For non-vanishing l̃ it is given by [51]

s̃0 =
1

3
ũ0 =

ṽ0t̃0

l̃
, t̃20 =

15

l̃
ṽ0

(
1 + ṽ0 l̃

)
, ρ0 = −9ṽ0 + 8ṽ2

0 l̃ + 2ẽ1 l̃

2l̃2
, (2.40)

5More generally these can be considered as compactifications on a manifold with SU(3)-structure as

in [52, 53]. In particular coset spaces are very tractable cases with few moduli.
6Note that in terms of the original fluxes this is taking a, b→ 0, l→∞ with al and bl finite.
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Figure 2. Plot showing s̃ as a function of ρ′ for the case of a twisted torus compactification with

fluxes ẽ1 = −6 and l̃ = 1.

and ṽ0 is given by the cubic equation

160ṽ3
0 l̃

2 + 186ṽ2
0 l̃ + 27ṽ0 + 6ẽ1 l̃ = 0 . (2.41)

As before, it is useful to introduce the shifted axion field

ρ′ = ρ− ρ0 . (2.42)

Turning to the scalar potential turning point equations (2.7), we have two branches of

solutions

Branch 1: ũ = 3s̃ ,

Branch 2: ũ =
−6s̃− 12ṽl̃s̃− 6ṽ2 l̃2s̃− 2l̃2s̃t̃2 + t̃3

2
(

1 + 2ṽl̃ + ṽ2 l̃2 − l̃2t̃2
) . (2.43)

Restricting to branch 1, for negative ẽ1 the potential has three turning points at the

supersymmetric value for ρ′ = 0, only one of which is the supersymmetric minimum.7 We

will restrict to studying excursions away from this minimum. The value of s̃ as a function

of ρ′ is shown in figure 2. Contrary to the previous case, s̃ is not an even function of ρ′

and exhibits a second minimum. Studying this for different flux values we find that the

second minimum is at positive values of ρ′ for positive values of l̃ and vice versa. We also

find that outside the region between the two minima s̃ enters quite quickly a linear scaling

regime asymptoting to s̃ = αρ′ as in (2.8). Inside the region s̃ remains approximately

constant. We find that a good fit for the length of the approximately constant region is

7We have also studied branch 2 in (2.43) and find that it behaves similarly to branch 2 in the model of

section 2.1.1, which is shown in figure 1, but with the behaviour of t̃ and ũ exchanged.
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∆ρ′ ' 2
(
− ẽ1
l̃2

) 3
4
. We can thus approximate the proper field excursion length by taking

s̃ to be approximately constant along ∆ρ′. Therefore the value of s̃ is approximately its

value at the supersymmetric minimum. This can be easily solved for analytically and we

find that indeed s̃0 '
(
− ẽ1
l̃2

) 3
4
. The result is therefore that to a good approximation ∆φ is

flux independent. As a measure of this we scanned over flux ranges −100 ≤ ẽ1 ≤ −3 and

1 ≤ l̃ ≤ 100 finding 2 ≤ ∆φ ≤ 3.5. Such a small variation over such a large variation in

∆ρ′ presents good evidence that ∆φ is flux independent also for this setting.8

2.2 Neveu-Schwarz axions

In the previous section we studied the displacement of the massive RR axions combination

from the minimum of the potential. In this section we consider a different direction in field

space away from the minima where we displace a massive combination of Neveu-Schwarz

(NS) axions. Unlike the RR axions, where there is only a single combination which is

perturbatively massive, generically all the NS axions will gain a mass from the fluxes in

the compactification. There is therefore no distinguished direction in the NS axions field

space to displace along with the exception of the case where all the moduli and axions are

set to equal values and the displacement is then along this universal value. In this section

we will study this case which is also the simplest setting. We leave a more complete study of

various more complicated directions in a richer multiple NS axions setting for future work.

The theory we study is therefore the one in (2.11), but we now impose

∂tV = ∂UV = ∂SV = 0 , (2.44)

while keeping the NS axion v free to displace from the minimum. A large portion of the

analysis of the previous section follows through for this case also. In particular the minima

of the potential are the same, the factorisation into two branches in (2.20) continues to

hold, the scaling symmetry (2.10) still holds, and we can still write the potential as a

one-parameter model (2.17).

Unlike the case for RR axions, both the branches in (2.20) support physical solutions

for f = 0 which read

Branch 1: s̃ = 0.36v′3 , ũ = 1.07v′3 , t̃ = 1.57v′ , ρ′ = −0.17v′3 ,

Branch 2: s̃ = 0.26v′3 , ũ = 1.19v′3 , t̃ = 1.58v′ , ρ′ = −0.17v′3 . (2.45)

As before, these do not flow to a physical minimum due to the restriction f = 0. However,

as expected, they show the same logarithmic behaviour of the proper field distance in the

axion v′ distance.

Once we turn on f 6= 0 the solutions become more complicated, but are still simpler

than the RR axion case such that we can obtain an analytic expression for them. We find

that t̃ as a function of v′ is given by the solution of the following equations, depending on

8Note that the fact that it is possible to reach values such as ∆φ ' 3.5 does not imply super-Planckian

excursions since these are approximate values and are not reliable up to order one factors.
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Figure 3. Plots showing the moduli t̃ as a function of v′ = v−v0 for displacement of v′ along both

branches (2.20). They are given for flux value f = 6. The range is chosen such that it is possible

to see the asymptotic linear behaviour is reached after v′ reaches its critical value (2.47).

the branch:

Branch 1: 25v′6 + 35t̃2v′4 + 8f(33t̃4v′2) + 8f2(33t̃4 + 35t̃2v′2 + 75v′4)

+25v′8 + 70t̃2v′6 + 115t̃4v′4 + 6t̃6v′2 + 800f3v′2 − 27t̃8 + 400f4 = 0

Branch 2: 25v′8 + 10(20f + 7t̃2)v′6 + (600f2 + 280f t̃2 + 43t̃4)v′4

+2(400f3 + 140f2t̃2 − 12f t̃4 − 15t̃6)v′2 + 8f2(50f2 − 3t̃4) = 0 .

(2.46)

The relevant solution for each branch is a known complicated function of v′ and f and will

not be explicitly shown. Instead we show their behaviour in figure 3. One can see that for

large values of v′, we get back to the behaviour of equation (2.45). This happens after a

critical value

v′crit '
√

2f . (2.47)

Again, in complete analogy with the RR axions, we can find the proper distance

traveled by the NS axions up to that critical value. Because of the symmetry (2.10), we

expect it to be independent of flux values. This is indeed the case, as one gets:

∆φ =

√
3

2

∫ v′crit

0

dv′

t̃
'

{
0.57 Branch 1

0.55 Branch 2
. (2.48)

As before, any further excursion will add only logarithmic corrections to those values.

With regards to the stability analysis of the potential. Moving away from the turning

points at v′ = ρ′ = 0 discussed in section 2.1.1, an analysis of the Hessian matrix with

respect to the other directions shows that despite one of the eigenvalues picking up a

negative sign for some values of v′, it always lies above the BF bound. This stability

holds for both branches, as well as both signs of f . Moreover plugging back the fields

satisfying (2.44) in the potential such that it only depends on v′ and the flux numbers, this
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expression has a local minimum at v′ = 0 for both signs of f in branch 2. For branch 1, it

has a global minimum for positive f and local maximum for negative f .

Finally we also studied excursions along the NS axions in the twisted torus setting of

section 2.1.3. We find a similar structure to the RR axion case with a range over which t̃

is approximately constant bounded by linear scaling regimes. We find that a good fit for

the length of the approximately constant region is ∆v′ ' 3
(
− ẽ1

l̃

) 1
3
. This seems to be a

good fit to the supersymmetric value t̃0. Scanning over the flux ranges −100 ≤ ẽ1 ≤ −3

and 1 ≤ l̃ ≤ 100 we find 1.8 ≤ ∆φ ≤ 2.0, which presents good evidence that it is flux

independent.

3 Axion alignment and backreaction

In the previous section we studied the backreaction of the axion vev on the axion field-space

metric in an axion monodromy scenario. In this section we consider an axion alignment

scenario, as in [21] but where the alignment is induced through fluxes [24, 27]. From a field

theory approach, where we can choose the axion field space metric freely, such a setup leads

to an effective super-Planckian decay constant for the axions combination which remains

massless after the mixing. In [27] an analysis of this scenario in type IIA string theory

concluded that, for all the classes of CY spaces studied, the large parameter N responsible

for the mixing backreacts on the axion periods in such a way as to censure this super-

Planckian enhancement. It was found that this occurs in two qualitatively different ways

depending on the structure of the Kahler potential for the geometric moduli. For ‘toroidal-

like’ Kahler potentials it was shown that there is a scaling of the fundamental axion decay

constants in such a way as to cancel any enhancement of the effective axion decay constant.

For other types of Kahler potentials it was shown that this cancellation does not occur

however there was always a sub-Planckian period instanton which dominated in magnitude

over the enhanced period instanton. The analysis performed in [27] was primarily of two

fundamental axions mixing to form an effective massless axion combination. Some analysis

of three axions mixing was performed and there it was shown that while for type IIA

CY compactifications this does not lead to an effective super-Planckian decay constant,

in principle if the superpotential was modified such that there was a new mass term to

fix certain axion combinations then the possibility of super-Planckian enhancement was

not ruled out. It was suggested that such an additional superpotential contribution could

arise in type IIB compactifications on a CY or in type IIA compactifications on a twisted

torus (or more generally a manifold with torsion). In this section we will therefore analyse

such a setup with more than two axions (more precisely four axions) mixing and additional

superpotential contributions for type IIA compactifications on a twisted torus.

3.1 Three axion alignment toy model

We have presented some motivation for considering mixing between more than two fun-

damental axions. Before proceeding to a detailed analysis of a full model let us present

a toy model which captures the effect that we are interested in. First recall the setting
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of two axions mixing in a toroidal-like model. We have a setup with two complex scalar

fields, Ui = ui + iνi with i = 1, 2, whose imaginary components are axions in that they

do not appear in the Kahler potential. We would like to induce alignment between these

axions by lifting one combination of them through a superpotential W = W (q1U1 − q2U2).

Consider a supersymmetric minimum of this system, the F-terms then imply

Ku1

Ku2

=
q1

q2
, (3.1)

where Kui = ∂K
∂ui

. We take the toy toroidal-like Kahler potential

K = − lnu1 − lnu2 . (3.2)

Then if we fix the moduli supersymmetrically we can consider the F-terms ratio giving

Ku1

Ku2

=
fu1
fu2

=
u2

u1
=
q1

q2
. (3.3)

Now if we take q1 � q2 we have two options, either to keep u2 and therefore fu2 constant

and take u1 � 1 or to keep u1 > 1 and take u2 � 1 and therefore fu2 � 1. The former

option leads to a region in moduli space which is not under control. The latter option leads

to the effect that the axion decay constants scale with the flux precisely in such a way to

cancel the possible enhancement of an effective decay constant since the latter scales as

feff,1 ∼
q1fu2
q2

[27].

Consider now a setting where we have three axions and two superpotential contribu-

tions

K = − lnu1− lnu2− lnu3 , W = W1 (q1U1 + q2U2 + q3U3)+W2 (q̄1U1 + q̄2U2) . (3.4)

Now it is important that W1 and W2 are not just linearly added so that they fix two

combinations of axions. To illustrate the result we can take q1 = −q2 = q and q̄1 = q̄2 = 1

in which case we find from a similar analysis of the F-term ratios

Ku2 −Ku1

Ku3

=
fu2 − fu1
fu3

=
2q

q3
. (3.5)

Now taking q3 large does not imply a scaling of the axion decay constants to cancel it,

indeed it is compatible with having fu1 ∼ fu2 and free in magnitude. The conclusion

is that for more than two fundamental axions mixing the single constraint on the moduli

values coming from the ratio of the F-terms is not sufficient to show that no super-Planckian

enhancement is possible. Therefore if such a constraint emerges it must do so from a more

detailed analysis of moduli stabilisation.

3.2 Axion alignment on a twisted torus

In the previous subsection we showed that for more than two axions mixing any obstruction

from flux backreaction to an enhanced effective decay constant must manifest through a

more detailed analysis of moduli stabilisation, in this section we perform such an analysis
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for a compactification of type IIA string theory on a twisted torus. We will consider

the setup studied in [51]. The manifold has intrinsic torsion which means it has a set of

non-closed 1-forms

dηP = −1

2
wPMNη

M ∧ ηN , (3.6)

where M = 1, . . . , 6 are the six toroidal directions. The structure constants wPMN have the

following properties

wPMN = wP[MN ] , wPPN = 0 , wP[MNw
S
L]P = 0 . (3.7)

The last equation in (3.7) comes from the nilpotency of the exterior derivative applied

to (3.6). It is called the Jacobi identity and plays an analogous role to tadpole constraints.

It is convenient to introduce labels for the non-vanishing components of the torsion
a1

a2

a3

 =


ω1

56

ω2
64

ω3
45

 ,


b11 b12 b13

b21 b22 b23

b31 b32 b33

 =


−ω1

23 ω4
53 ω4

26

ω5
34 −ω2

31 ω5
61

ω6
42 ω6

15 −ω3
12

 . (3.8)

The Jacobi identities imply the twelve constraints

bijaj + bjjai = 0, i 6= j ,

bikbkj + bkkbij = 0, i 6= j 6= k , (3.9)

with indices i, j = {1, 2, 3}. The resulting superpotential takes the form [51]

W = e0 + ih0S +
3∑
i=1

iei − aiS − biiUi −∑
j 6=i

bijUj

Ti − ihiUi


−q1T2T3 − q2T1T3 − q3T1T2 + imT1T2T3 , (3.10)

and the Kahler potential is

K = − log s−
3∑
i=1

log ui −
3∑
i=1

log ti . (3.11)

Now we see that for general fluxes there are 4 complex-structure and dilaton axions {σ, νi}
and 4 combinations which appear in the F-terms:

ψ0 = −h0σ + h1ν1 + h2ν2 + h3ν3 ,

ψ1 = a1σ + b11ν1 + b12ν2 + b13ν3 ,

ψ2 = a2σ + b21ν1 + b22ν2 + b23ν3 ,

ψ3 = a3σ + b31ν1 + b32ν2 + b33ν3 . (3.12)

Note that the superpotential appears in the F-terms as

Re(W ) ⊃ ψ0 + ψ1b1 + ψ2b2 + ψ3b3 ,

Im(W ) ⊃ −ψ1t1 − ψ2t2 − ψ3t3 . (3.13)

– 21 –



J
H
E
P
0
8
(
2
0
1
6
)
0
4
3

We can write 
−h0 h1 h2 h3

a1 b11 b12 b13

a2 b21 b22 b23

a3 b31 b32 b33



σ

ν1

ν2

ν3

 =


ψ0

ψ1

ψ2

ψ3

 . (3.14)

We are interested in configurations which keep 1 unfixed axion direction, for which

we would like to study the resulting effective decay constant. In [51] the solution for the

Jacobi identity used was

bji = bi , bii = −bi , ai = a . (3.15)

Adopting this solution the flux matrix in (3.14) becomes9
−h0 h1 h2 h3

a −b1 b2 b3
a b1 −b2 b3
a b1 b2 −b3

 . (3.16)

To keep a massless axion we need to reduce the rank of the flux matrix. For general hi
we can do this by setting two fluxes from the set {a, b1, b2, b3} to zero. However then the

mixing arises between only two fundamental axions, ie. the eigenvector of the flux matrix

with zero eigenvalue only has two non-vanishing components. Since we are interested in

mixing more than two axions we take instead the restriction

h0 = −3la , hi = lbi , (3.17)

with l an arbitrary constant (up to quantisation requirements). This leaves a massless

axion because then the first row in the flux matrix (3.16) is proportional to the sum of the

last three. The remaining massless combination is

ψ = ψv · νv ≡ (b1b2b3,−ab2b3,−ab1b3,−ab1b2) · (σ, ν1, ν2, ν3) . (3.18)

It is therefore a mixture of all of the fundamental axions. The superpotential with this

restriction takes the form

W = e0−3ilaS−ilb1U1−ilb2U2−ilb3U3

−aS(T1+T2+T3)+b1U1(T1−T2−T3)+b2U2(−T1+T2−T3)+b3U3(−T1−T2+T3)

+ie1T1+ie2T2+ie3T3−q1T2T3−q2T1T3−q3T1T2+imT1T2T3 . (3.19)

The perturbatively massless axion ψ appears in four instantons associated to s and the ui.

The effective axion decay constants for ψ in the four instantons are given by
f sψ
fu1ψ
fu2ψ
fu3ψ

 = f


−a
b1
b2
b3

 , (3.20)

9There are other solutions possible which lead directly to a massless axions without further restriction

on the fluxes. For example bji = bi, bii = −bi, ai = a, i = 2, 3, a1 = b1i = 0. However the resulting system

is more difficult to solve and so we leave a study of such possibilities for future work.
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with

f2 =
1

a2s2
+

1

b21u
2
1

+
1

b22u
2
2

+
1

b23u
2
3

. (3.21)

Now for constant values of the moduli we can induce a parameterically large effective axion

decay constant by taking any of {a, b1, b2, b3} large. In the case of two fundamental axions

mixing we could show an obstruction to this by using the vanishing F-term combination

associated to the massless axion. Here this implies the relation

ψv · (Ks,Ku1 ,Ku2 ,Ku3) = 0 , (3.22)

which gives
1

as
− 1

b1u1
− 1

b2u2
− 1

b3u3
= 0 . (3.23)

If we restrict this to only two axions we obtain the familiar relation between ratios of decay

constants and this leads to the usual cancellation [27]. However in this more general case

this particular formulation of the obstruction is absent.

We therefore need to study the full moduli stabilisation scenario in more detail. Before

doing so let us discuss the tadpole constraints which for general fluxes read

ND6 +
1

2
(h0m+ a1q1 + a2q2 + a3q3) = 16 ,

ND6 +
1

2
(him− b1iq1 − b2iq2 − b3iq3) = 0 . (3.24)

Imposing the constraints on the fluxes (3.15) and (3.17) gives

ND6 +
1

2
a (−3lm+ q1 + q2 + q3) = 16 ,

ND6 +
1

2
b1 (lm+ q1 − q2 − q3) = 0 ,

ND6 +
1

2
b2 (lm− q1 + q2 − q3) = 0 ,

ND6 +
1

2
b3 (lm− q1 − q2 + q3) = 0 . (3.25)

The parameters which we need to dial up to enhance the axion decay constant are a and

the bi. In the case of a CY compactification [27] these were restricted by the tadpole

constraints. Here they are unconstrained by tadpoles if we choose

q1 = q2 = q3 ≡ q = lm . (3.26)

This shows that an obstruction to arbitrarily large axion alignment need not arise from the

tadpole constraints. Apart from allowing for arbitrarily large alignment parameters the

flux restriction (3.26) is also special in terms of uplifting the four-dimensional vacuum to a

ten-dimensional one. The tadpoles are topological charge cancellation conditions where in

general flux contributions can cancel against localised sources. However they originate as

the integration of the ten-dimensional Bianchi identity which is instead a local equation.
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The fluxes are taken to be smoothly distributed throughout certain cycles in the space

and therefore cannot pointwise cancel against localised sources in the Bianchi identity.

This usually leads to the approach of smearing the localised sources. This condition (3.26)

implies that localised sources and fluxes can cancel separately in the Bianchi identity leading

to a better controlled ten-dimensional solution.

We now consider the most general solution for the F-terms of the superpotential (3.19).

Note that we use the notation (2.5) for the superfield components. First we can solve for

s in terms of the ti and vi by considering

Re (FU1 + FU2 + FU3 − FT1 − FT2 − FT3) = 0 , (3.27)

which gives

as = −2 (v3mt1t2 + q3t1t2 + v2mt1t3 + q2t1t3 + v1mt2t3 + q1t2t3)

t1 + t2 + t3
. (3.28)

Now by considering

Re (FS − FUi) = 0 , (3.29)

we can deduce

b1u1 =
s (t1 + t2 + t3)

−t1 + t2 + t3
, b2u2 =

s (t1 + t2 + t3)

t1 − t2 + t3
, b3u3 =

s (t1 + t2 + t3)

t1 + t2 − t3
. (3.30)

Note that the precise locus where these expressions break down t1 = t2 + t3 is not a viable

solution since it implies a = b2 = b3 = 0 which leaves us with flat directions. However in

principle we may still approach this locus parametrically. This is important because the

expression for f can be written as

f2 =
4

(as)2

t21 + t22 + t23
(t1 + t2 + t3)2 =

4

(b1u1)2

t21 + t22 + t23
(−t1 + t2 + t3)2 . (3.31)

This shows that is not possible to obtain an enhancement of the decay constant by taking

a large for any value of the ti. However by taking b1 large we could in principle obtain an

enhancement if simultaneously we approach the limit t1 → t2 + t3.

Continuing with the solution analysis we consider the three combinations Im(FS−FUi),
these take the form A (ti, vi)Fi (ti, vi). It can be shown that imposing A (ti, vi) = 0 leads

to an unphysical solution ui = 0. While imposing Fi (ti, vi) = 0 leads to

v2 =
−lt1 + lt2 + v1t2

t1
, v3 =

−lt1 + lt3 + v1t3
t1

. (3.32)

We therefore arrive at a solution for s, ui, v2, v3 in terms of v1 and the ti.

Proceeding generally past this point is quite difficult. However recall that there was a

special choice of fluxes (3.26) which was required to be able to take the alignment a and

bi parameters large and unconstrained by the tadpoles. If we impose these restrictions

then it can be shown that the F-term combinations Re
(
FTi − FTj

)
lead to the constraint

t1 = t2 = t3. Using this in (3.30) then gives

3as = biui , (no sum over i) . (3.33)
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For completeness we present the full solution for the geometric moduli here

t =

√
35

1
6

(
e0 + l

(
e1 + e2 + e3 + 2ml2

)) 1
3

2
5
3m

1
3

, s =
2mt2√

15a
, ui =

3as

bi
. (3.34)

The important result is the expression (3.33) which is a significantly stronger constraint

on the moduli values than (3.23). Indeed using (3.33) in the expression for the effective

axion decay constants (3.20) leads to a cancellation of the fluxes in any enhancement.

Therefore the effective decay constant remains sub-Planckian for any flux values. We

therefore recover the same obstruction that we found in the two axion toroidal setting

also in this qualitatively more involved setting. It is important to note that due to the

complexity of the system we were only able to show this cancellation for the special flux

choice (3.26).

4 Summary

In this paper we studied axion monodromy scenarios in flux compactifications of type IIA

string theory on CY manifolds and a twisted torus. In particular we calculated the effect

that the backreaction of the axion vev has on the proper length in field space traversed by

the axion. We found universal behaviour in all the settings studied where the backreaction

is small up to some critical axion value. After this critical point the backreaction is strong

and cuts off the proper field distance so that it increases at best logarithmically with the

axion vev, with a proportionality factor between the proper field distance and the logarithm

which is flux independent. The critical axion value can be made arbitrarily large through

flux choices thereby allowing for arbitrarily large changes in the axion vev, however the

backreaction of the flux on the axion field space metric implies an exact cancellation of the

fluxes in the proper distance traversed by the axion up to its critical value such that the

result is flux independent and sub-Planckian.

In more detail, we first studied the case where the monodromy axion is the single linear

combination of RR axions which appears in the superpotential. Our starting point was the

simplified model studied in [27] where the moduli are restricted to only one variation in each

sector and some of the fluxes are turned off. In this model the axion vev backreacts strongly

and the proper field length is only logarithmic in the axion vev. We argued that this can be

attributed to a scaling symmetry of the fields, and in particular using this symmetry showed

that the logarithmic behaviour holds for any CY compactification, as long as the fluxes

which were turned off remain so. Next we considered turning the remaining fluxes, which

carried dimensions under the scaling symmetry and therefore served as order parameters

for its breaking, back on. We showed that in this case, for the single variation simplified

models, the logarithmic strong backreaction behaviour can be delayed arbitrarily far in

the axion value by breaking the scaling symmetry arbitrarily strongly using the fluxes.

However the same fluxes which shielded the moduli from the strong axion backreaction in

turn backreacted themselves on the axion field space metric such that a precise cancellation

occurred and the proper field distance up to the axion critical value was flux independent.

We then generalised these results to the case of multiple complex-structure moduli and
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studied example CY Kahler potentials. We showed that in this case the system becomes

more complicated and in particular depends on two combinations of flux parameters (rather

than one parameter for the single modulus case). However the fluxes again canceled out in

the proper field distance up to the critical value. Finally we studied compactifications on

a twisted torus which in particular introduces new interactions in the superpotential. This

setup can be reduced to a two flux parameters system. Solving for the backreacted moduli

behaviour as a function of the axion vev numerically we showed that they take the form

of an approximately constant region bounded by linear regimes for axion vev beyond some

critical value. By scanning over flux parameters we showed that the proper field distance

up to the critical axion value is again flux independent. After this we turned to excursion

distances for NS axions and showed that they have the same qualitative behaviour as the

RR axions described above.

We also studied an axion alignment model from compactifications of type IIA string

theory a twisted torus where up to four fundamental axions mix. Neglecting the flux

backreaction on moduli the resulting effective axion decay constant can be parametrically

enhanced through flux choices. There is a particular choice of fluxes which allows the

enhancement parameter to be arbitrarily large while remaining compatible with tadpole

constraints. We calculated the flux backreaction on the moduli for such fluxes and find

that the enhancement parameter cancels in the effective axion decay constant implying

that it remains sub-Planckian.

The cancellation of the flux parameters in the result for the proper length in field

space traversed by the axion in the axion monodromy scenarios and the cancellation of

the fluxes in the effective decay constant in the axion alignment scenarios (as studied in

more detail in [27]) are strikingly similar physics. Indeed we showed that the two can

be naturally related by zooming into the origin of the large effective axion period in an

axion alignment scenario where the potential looks approximately quadratic rather than

sinusoidal and therefore is similar to an axion monodromy scenario. On top of the quadratic

potential there are oscillations from the sub-leading instanton and after N such periods

we reach a critical axion value. In the alignment scenario this is where the quadratic

approximation breaks down and the periodic nature of the system kicks in to censure the

excursion distance, in the monodromy setting at the same axion value instead the strong

backreaction kicks in and serves as the cutoff mechanism. In both cases although there

are N oscillations before the cutoff mechanism the oscillation period scales as 1
N thereby

ensuring a cancellation in the proper excursion length.

The results of this work uncover new mechanisms in string theory which censure super-

Planckian axion excursions in axion monodromy and axion alignment scenarios. We did so

in the specific type IIA setting because it is the simplest and best understood framework to

calculate such effects since full moduli stabilisation can be realised by using only tree-level

expressions for the Kahler potential and superpotential. However it is not unreasonable

to expect that the mechanisms which operated in our settings could do so also in other

string theory setups. In particular it would be interesting to study how the axion vev

backreaction in axion monodromy scenarios affects its proper field distance in other string

theory constructions and work towards a general understanding of this effect. In particular
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the work presented in [63] and [34] suggests possible scenarios where a different type of

shielding from axion backreaction to the one studied in this paper is realised and it would

be interesting to see if similar effects to those observed in our work manifest in those

settings when realised in explicit compactifications.

The fact that in all the cases studied we find that the growth rate of the proper

field distance of the axion excursion beyond some critical point is at best logarithmic in

the axion vev matches the general conjecture made within the swampland context of a

maximum logarithmic growth for any field at field values asymptoting to infinity [64]. The

non-trivial cancellation of the fluxes in the proper field distance before the logarithmic

behaviour kicks in lends some weight to a sharpened swampland conjecture. At least at

the same evidence level of the original conjecture, as well as conjecturing that the growth

rate of the proper distance is at best logarithmic in a field for field values asymptoting

to infinity, we could conjecture that this logarithmic growth rate must set in at a sub-

Planckian proper path distance.10 The scenarios studied in this work present non-trivial

tests of such a sharpened statement.

Let us discuss two cases which are relevant for the possibility of such a conjecture.

First there is a simple case of fields where it can be understood through the WGC: moduli

with axion superpartners. Using the WGC applied to axions implies a relation between

the magnitude of the instanton, which is the modulus vev u, and the axion decay constant

fa [2, 5]

SInstfa = ufa ≤Mp . (4.1)

This is typically used to bound the axion decay constant because if fa ≥ Mp then u < 1

and therefore control over the instanton expansion is lost. However we can also use the

same relation to bound the magnitude of u. Supersymmetry implies that fa =
√
guu and

so is the measure on the modulus field space. We therefore have

√
guuu ≤Mp . (4.2)

Therefore for u > Mp we must have that
√
guu decays at least with a power of 1

u . This

establishes that the proper field distance enters (at best) logarithmic growth at this point.

The second important case appears to present a counter example to at least a simple

version of the conjecture. In [27] an axion alignment model was found where one of the

instantons did indeed develop a parametrically large axion decay constant.11 However this

instanton was found to always be sub-dominant to an instanton with an un-enhanced decay

constant. This is consistent with the strong version of the WGC. While such a setup would

not lead to a viable large field inflation model, it nonetheless appears to present an example

where the axion displacement can be parametrically large while backreaction effects are

exponentially small (coming from an instanton energy density competing against tree-level

10There is a finite size transition region around the critical axion value between the small backreaction

region and the linear scaling strong backreaction regime. This is the transition region to the logarithmic

growth regime. The conjecture is that it begins at sub-Planckian values and that the point where logarithmic

growth is a better description than linear growth is also sub-Planckian.
11This is the model in section 3.2 of [27] with qs � q2 � q1 in which case the axion partner of the dilaton

can be integrated out and the model reduces to the one of section 3.1.
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effects). Therefore either there are some inconsistencies in this alignment setup or the

logarithmic behaviour conjecture must be refined appropriately, perhaps to account for the

relative magnitude of the potential contributions for the field analogously to the refinement

made in the strong WGC.
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[36] L.E. Ibáñez and I. Valenzuela, The inflaton as an MSSM Higgs and open string modulus

monodromy inflation, Phys. Lett. B 736 (2014) 226 [arXiv:1404.5235] [INSPIRE].

[37] R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann and E. Plauschinn, Towards Axionic

Starobinsky-like Inflation in String Theory, Phys. Lett. B 746 (2015) 217

[arXiv:1503.01607] [INSPIRE].

[38] R. Blumenhagen et al., A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String

Theory, Nucl. Phys. B 897 (2015) 500 [arXiv:1503.07634] [INSPIRE].

[39] R. Blumenhagen, D. Herschmann and E. Plauschinn, The Challenge of Realizing F-term

Axion Monodromy Inflation in String Theory, JHEP 01 (2015) 007 [arXiv:1409.7075]

[INSPIRE].

[40] H. Hayashi, R. Matsuda and T. Watari, Issues in Complex Structure Moduli Inflation,

arXiv:1410.7522 [INSPIRE].

[41] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and Backreaction in

F-term Axion Monodromy Inflation, Nucl. Phys. B 894 (2015) 456 [arXiv:1411.2032]

[INSPIRE].

[42] W. Buchmüller, E. Dudas, L. Heurtier, A. Westphal, C. Wieck and M.W. Winkler,

Challenges for Large-Field Inflation and Moduli Stabilization, JHEP 04 (2015) 058

[arXiv:1501.05812] [INSPIRE].

[43] R. Blumenhagen, C. Damian, A. Font, D. Herschmann and R. Sun, The Flux-Scaling

Scenario: de Sitter Uplift and Axion Inflation, Fortsch. Phys. 64 (2016) 536

[arXiv:1510.01522] [INSPIRE].

[44] D. Andriot, A no-go theorem for monodromy inflation, JCAP 03 (2016) 025

[arXiv:1510.02005] [INSPIRE].

[45] D. Escobar, A. Landete, F. Marchesano and D. Regalado, Large field inflation from

D-branes, Phys. Rev. D 93 (2016) 081301(R) [arXiv:1505.07871] [INSPIRE].

[46] A. Hebecker, J. Moritz, A. Westphal and L.T. Witkowski, Axion Monodromy Inflation with

Warped KK-Modes, Phys. Lett. B 754 (2016) 328 [arXiv:1512.04463] [INSPIRE].

[47] J.P. Conlon, Brane-Antibrane Backreaction in Axion Monodromy Inflation, JCAP 01 (2012)

033 [arXiv:1110.6454] [INSPIRE].

[48] T.W. Grimm and J. Louis, The Effective action of type IIA Calabi-Yau orientifolds, Nucl.

Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].

[49] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP

07 (2005) 066 [hep-th/0505160] [INSPIRE].

[50] G. Villadoro and F. Zwirner, N = 1 effective potential from dual type- IIA D6/O6

orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/j.physletb.2014.08.007
http://arxiv.org/abs/1404.3542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3542
http://dx.doi.org/10.1016/j.physletb.2014.08.028
http://dx.doi.org/10.1016/j.physletb.2014.08.028
http://arxiv.org/abs/1404.3711
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3711
http://dx.doi.org/10.1002/prop.201400045
http://arxiv.org/abs/1405.0283
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0283
http://dx.doi.org/10.1016/j.physletb.2014.07.020
http://arxiv.org/abs/1404.5235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5235
http://dx.doi.org/10.1016/j.physletb.2015.05.001
http://arxiv.org/abs/1503.01607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01607
http://dx.doi.org/10.1016/j.nuclphysb.2015.06.003
http://arxiv.org/abs/1503.07634
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07634
http://dx.doi.org/10.1007/JHEP01(2015)007
http://arxiv.org/abs/1409.7075
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7075
http://arxiv.org/abs/1410.7522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.7522
http://dx.doi.org/10.1016/j.nuclphysb.2015.03.015
http://arxiv.org/abs/1411.2032
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2032
http://dx.doi.org/10.1007/JHEP04(2015)058
http://arxiv.org/abs/1501.05812
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05812
http://dx.doi.org/10.1002/prop.201600030
http://arxiv.org/abs/1510.01522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01522
http://dx.doi.org/10.1088/1475-7516/2016/03/025
http://arxiv.org/abs/1510.02005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.02005
http://dx.doi.org/10.1103/PhysRevD.93.081301
http://arxiv.org/abs/1505.07871
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07871
http://dx.doi.org/10.1016/j.physletb.2016.01.030
http://arxiv.org/abs/1512.04463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04463
http://dx.doi.org/10.1088/1475-7516/2012/01/033
http://dx.doi.org/10.1088/1475-7516/2012/01/033
http://arxiv.org/abs/1110.6454
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6454
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.007
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.007
http://arxiv.org/abs/hep-th/0412277
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412277
http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://arxiv.org/abs/hep-th/0505160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505160
http://dx.doi.org/10.1088/1126-6708/2005/06/047
http://arxiv.org/abs/hep-th/0503169
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503169


J
H
E
P
0
8
(
2
0
1
6
)
0
4
3
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[56] S. Bielleman, L.E. Ibáñez, F.G. Pedro and I. Valenzuela, Multifield Dynamics in Higgs-otic

Inflation, JHEP 01 (2016) 128 [arXiv:1505.00221] [INSPIRE].

[57] L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic Inflation and String Theory, JHEP

01 (2015) 128 [arXiv:1411.5380] [INSPIRE].

[58] E. Dudas and C. Wieck, Moduli backreaction and supersymmetry breaking in string-inspired

inflation models, JHEP 10 (2015) 062 [arXiv:1506.01253] [INSPIRE].

[59] E. Dudas and C. Wieck, Inflation, the scale of supersymmetry breaking and moduli

stabilization, PoS(PLANCK 2015)038 [arXiv:1511.03413] [INSPIRE].

[60] P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for

two parameter models. 1., Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].

[61] P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter

models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].

[62] E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA Flux Compactifications, JHEP 06

(2008) 084 [arXiv:0804.1248] [INSPIRE].

[63] L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The Powers of Monodromy, JHEP

09 (2014) 123 [arXiv:1405.3652] [INSPIRE].

[64] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl.

Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

– 31 –

http://dx.doi.org/10.1088/1126-6708/2005/09/013
http://arxiv.org/abs/hep-th/0506066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506066
http://dx.doi.org/10.1103/PhysRevD.72.026004
http://arxiv.org/abs/hep-th/0505177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505177
http://dx.doi.org/10.1088/0264-9381/26/2/025014
http://dx.doi.org/10.1088/0264-9381/26/2/025014
http://arxiv.org/abs/0806.3458
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3458
http://dx.doi.org/10.1016/j.physrep.2005.10.008
http://dx.doi.org/10.1016/j.physrep.2005.10.008
http://arxiv.org/abs/hep-th/0509003
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509003
http://dx.doi.org/10.1103/PhysRevD.84.026011
http://arxiv.org/abs/1011.4521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4521
http://dx.doi.org/10.1007/JHEP01(2016)128
http://arxiv.org/abs/1505.00221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00221
http://dx.doi.org/10.1007/JHEP01(2015)128
http://dx.doi.org/10.1007/JHEP01(2015)128
http://arxiv.org/abs/1411.5380
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5380
http://dx.doi.org/10.1007/JHEP10(2015)062
http://arxiv.org/abs/1506.01253
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01253
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(PLANCK 2015)038
http://arxiv.org/abs/1511.03413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03413
http://dx.doi.org/10.1016/0550-3213(94)90322-0
http://arxiv.org/abs/hep-th/9308083
http://inspirehep.net/search?p=find+EPRINT+hep-th/9308083
http://dx.doi.org/10.1016/0550-3213(94)90155-4
http://arxiv.org/abs/hep-th/9403187
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403187
http://dx.doi.org/10.1088/1126-6708/2008/06/084
http://dx.doi.org/10.1088/1126-6708/2008/06/084
http://arxiv.org/abs/0804.1248
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1248
http://dx.doi.org/10.1007/JHEP09(2014)123
http://dx.doi.org/10.1007/JHEP09(2014)123
http://arxiv.org/abs/1405.3652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3652
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.033
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.033
http://arxiv.org/abs/hep-th/0605264
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605264

	Introduction
	Axion monodromy and backreaction
	Ramond-Ramond axions
	Single field models
	Calabi-Yau models
	Twisted torus models

	Neveu-Schwarz axions

	Axion alignment and backreaction
	Three axion alignment toy model
	Axion alignment on a twisted torus

	Summary

