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1 Introduction

Reggeon Field Theory (RFT) is an effective theory for description of hadronic scattering in

QCD at asymptotically high energies. The basic ideas of RFT go back to Gribov [1], and

have been developed over the years in the context of QCD [2–34]. In its modern form, the

QCD RFT in a certain limit has been identified [35] with the so called JIMWLK evolution

equation [36–41], or Color Glass Condensate (CGC) [42–44]. The relevant limit is when a

perturbative dilute projectile scatters on a dense target.

Subsequently further relation between the CGC based approach and the RFT was

explored. In particular recently we have shown that one can generalize the JIMWLK

Hamiltonian consistently in the regime where large Pomeron Loops are important [45].

This regime includes the evolution of an initial dilute-dilute scattering to large rapidities,
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where at any given intermediate rapidity at most one of the evolved systems is dense. In this

regime only Pomeron (Reggeon) splittings are important close to either one of the colliding

objects, and one can write down a Hamiltonian, which encompasses both JIMWLK, and

its dual (KLWMIJ [46]) evolution. The Hamiltonian in this regime contains the two triple

Pomeron vertices, and (in the large NC limit) is the CGC equivalent of the Pomeron

Lagrangian proposed by Braun [30–32] for description of the problem of scattering of large

(but dilute) nuclei. So far, neither CGC nor RFT has been formulated in the most general

case of scattering of two dense objects, although some work in this direction has been

done [47–52].

There are some significant differences between the original Gribov RFT framework and

its QCD incarnation. The original reggeons in Gribov’s RFT are colorless, whereas the

effective high energy degrees of freedom in QCD are frequently colored, such as reggeized

gluons [53–55] or Wilson lines. It must be possible “to integrate over the color” and

reformulate QCD RFT in terms of color neutral exchange amplitudes, such as BFKL

Pomeron [2, 3], however this has not yet been done explicitly. QCD RFT in addition to

the Pomeron contains higher order colorless Reggeons, such as quadrupoles and higher

multipoles. Whether these higher Reggeons significantly affect high energy behavior of

QCD amplitudes is not known at present. Finally, even if the higher Reggeons can be

discarded, it is not known whether the effective Pomeron Field Theory has a finite number

of transition vertices. The large NC limit of high energy QCD is a convenient setup for

the study of these questions. In this paper we stick to the large Nc limit and in fact

restrict ourselves even further by considering the dipole model approach [7–9], in which

the Pomeron is the only relevant degree of freedom at high energy.

It is clear by now that the CGC formalism conceptually provides a direct route to

derive the Reggeon Field Theory from the underlying QCD. Due to this direct connection,

one expects that it should be possible to understand some general features of RFT that

are required by QCD. The current paper is devoted to discussion of how the unitarity of

QCD as a fundamental field theory exhibits itself in the RFT framework. To be precise we

will be discussing the s-channel unitarity.

Our motivation to consider this question largely comes from earlier studies of Pomeron

Lagrangian proposed by Braun [30–32] for scattering of large (but dilute) nuclei. The La-

grangian incorporates the BFKL dynamics in the linear regime and contains two symmetric

triple Pomeron vertices. When the scattering amplitude is evolved within this framework

to high enough rapidity, it exhibits paradoxical behavior: classical solutions to the equa-

tions of motion bifurcate beyond some critical rapidity Yc [56] and the dependence of the

Pomeron amplitude on rapidity becomes unphysical. One is then left to wonder whether

this peculiarity is a consequence of a possible non-unitarity of the Braun evolution.

The aim of this paper is to formulate the requirements of QCD (s-channel) unitarity

in the (Pomeron) RFT language. In short, the basic requirement of unitarity in RFT can

be formulated as a certain property of the action of the RFT Hamiltonian on the projectile

and target wave functions.

Both these wave functions are constructed as superpositions of (appropriate) multi-

dipole “Fock” states, the structure directly inherited from QCD. The coefficients of the
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multi- dipole states, both in the projectile and target have the meaning of probabilities and

hence each has to be positive and smaller than one. When acting on eitherthe projectile

or the target, a unitary RFT Hamiltonian has to preserve this property. This has to hold

for all projectile/target states belonging to the corresponding Hilbert spaces.

We will show that the above requirement of unitarity is not satisfied by the action of

the Braun Hamiltonian on either the projectile or the target wave function. The Balitsky-

Kovchegov (BK) evolution [33, 34] is partly unitary, in the sense that it unitarily evolves the

projectile wave function. However its action on the target wave function strongly violates

unitarity. While we will not discuss this in any detail, it is clear that the same conclusions

hold beyond the large NC approximation, and thus both the JIMWLK [36–44] and the

KLWMIJ [46] Hamiltonians violate unitarity as well.

Certain problems with t-channel unitarity in the BK evolution have been already

noticed a while ago in [57]. Those were believed to have been cured by inclusion of Pomeron

loops along the lines of Braun’s construction [30–32, 49, 58–66]. Our present analysis

shows that problems with unitarity in the current RFT approaches run deeper. Although

the simple prescription a la Braun is likely sufficient to restore the t-channel untarity

of the BK evolution, the s-channel unitarity is violated to some degree by all currrently

available implementations of high energy evolution, including the Braun version of the

BFKL Pomeron calculus.

We have made an attempt to find a modified RFT Hamiltonian which implements

the unitarity conditions, and also reproduces the JIMWLK and KLWMIJ evolution in

appropriate limits. This attempt was so far unsuccessful in the context of the realistic

2+1 dimensional RFT. An analogous program however can be explicitly followed through

in a toy model with zero transverse dimensions [67–79]. The standard zero dimensional

toy model with triple Pomeron vertex shares the paradoxical features of the Braun theory.

In the context of a zero dimensional toy model we were able to construct a modified

Lagrangian, which satisfies the zero dimensional analog of the QCD unitarity conditions.

This model also has the JIMWLK (or rather its BK limit [33, 34]) in the appropriate

kinematics.We were also able to find explicit solutions for the evolution generated by this

theory, and verify that it is free from paradoxes mentioned above.

The plan of this paper is the following. In section 2 we recap the formulation of high

energy evolution in the CGC approach. We also provide a path integral formulation of

the calculation of the scattering amplitude, and demonstrate that in the appropriate limit

it reproduces the Braun Lagrangian. We also recap the peculiarities of the high energy

evolution generated by this Lagrangian.

In section 3 we confirm this strange behavior by considering small fluctuation analysis

around fixed points of the Braun Lagrangian.

In section 4 we shift our attention to the zero dimensional model [67–73, 75–77, 79]

in order to demonstrate explicitly that it exhibits a similar paradoxical behavior. In this

context we also demonstrate in a simple and straightforward way that the evolution of the

zero dimensional analog of the Braun model as well as the JIMWLK model is not unitary.

Of course this statement has to be taken with a grain of salt. There is no fundamental

field theory for which this model can serve as an effective high energy limit. However the

– 3 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
1

formal structure of the model is very similar to that of a realistic high energy QCD RFT.

Thus in this context we can explore the formal analog of the QCD unitarity requirement

in order to understand later its implementation in the realistic QCD RFT.

In section 5 we construct a modification of the zero dimensional toy model which sat-

isfies the unitarity requirements. We show that this model agrees with the JIMWLK and

Braun Lagrangians in appropriate limits. We provide analytic solutions for the modified

unitary model, and show that this evolution is devoid of the worrisome features men-

tioned above.

In section 6 we return to the 2+1 dimensional QCD RFT. We show that the Braun and

JIMWLK evolutions are non-unitary in this realistic context. We also discuss difficulties

we face in trying to follow through the program of constructing a unitary evolution in

this dimensionality.

Finally section 7 contains a short discussion of our results.

2 Pomeron path integral from the CGC formalism

Our goal in this section is to derive a path integral representation for the scattering am-

plitude starting with the expressions derived in the CGC formalism in [80]. The main

motivation for this reformulation is to make direct contact with the formulation of the

RFT by Braun [30–32].

2.1 The scattering amplitude

In the CGC formalism the scattering of a fast moving projectile on a hadronic target is

given by the expression

S =

∫
dρdαT δ(ρ)WP [R]ei

∫
z g

2ρa(z)αaT (z)W̃T [αT ] =

∫
dρδ(ρ)WP [R]WT [S] (2.1)

Here ρa(x) is the color charge density of the projectile, αaT (x) is the color field of the

target, and R and S are defined as

Rx = e
ta δ
δρax ; Sx = eig

2taαax (2.2)

with the projectile color field αa(x) determined by the projectile color charge density ρa(x)

via solution of the static Yang-Mills equations. The operator R is the “dual Wilson line”.

An insertion of a factor R in the amplitude eq. (2.1) is equivalent to appearance of an extra

eikonal scattering factor associated with an additional parton. In this sense R creates an

additional parton in the projectile wave function. The Wilson line S involves the projectile

color field and has the meaning of the eikonal s-matrix of a target parton that scatters on

the projectile. Here we have denoted the functional Fourier transform of W̃T [αT ] by WT [S].

In this paper we will adhere to the dipole model framework [7–9]. We therefore assume,

that all the observables can be written in terms of dipoles only, in which case, neglecting

the possible contribution of Odderon, the two basic elements of our calculation are the

Pomeron and its dual,

P (x, y) = 1− 1

Nc
tr[RxR

†
y]; P̄ (x, y) = 1− 1

Nc
tr[SxS

†
y] (2.3)
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The integral over the charge density ρ in eq. (2.1) can be replaced by the integral over

P̄ . In principle this change of variables involves a Jacobian, but it is inessential to our

discussion and we will neglect it in the following. Thus in the dipole model limit we have

S =

∫
dP̄ δ(P̄ )WP [P ]WT [P̄ ] (2.4)

The structure of the weight functions WP and WT is crucially important for the sub-

sequent discussion of unitarity. This structure has been discussed in detail [80]. The pres-

ence of a physical dipole in the projectile wave function corresponds to a factor d(x, y) ≡
1− P (x, y) in WP . Thus for a wave function that contains a distribution of dipole config-

urations (numbers and positions), the projectile weight function has the form

WP =
∑

n,{x,x̄}

Fn({x, x̄})
n∏
i=1

[1− P (xi, x̄i)] (2.5)

The functions Fn({x, x̄}) are probability densities, and therefore are nonnegative definite

Fn({x, x̄}) ≥ 0. Similarly, a dipole in the target wave function carries a factor d̄(x, y) ≡
1− P̄ (x, y) in WT , so

WT =
∑

n,{x,x̄}

F̄n({x, x̄})
n∏
i=1

[1− P̄ (xi, x̄i)] (2.6)

with F̄n({x, x̄}) ≥ 0. Furthermore, the weight functions WP and WT are normalized as:∫
dP̄ δ(P̄ )WP [P ] = 1 ; WT [0] = 1 (2.7)

which is equivalent to the proper normalization of the total probability∑
n

∫
{x,x̄}

Fn({x, x̄}) = 1;
∑
n

∫
{x,x̄}

F̄n({x, x̄}) = 1 (2.8)

Considered as operators on the space of functionals W , the objects P and P̄ have nontriv-

ial commutation relations. In principle those are directly calculable from the definitions

eq. (2.2), but this is not a trivial calculation. In the literature these commutation rela-

tions are usually approximated by those calculated in the dilute regime. In this regime,

where any projectile dipole scatters only on a single target dipole (and vice versa), we can

approximate P̄ by [35]

P †(x, y) =
N2
c

4π4ᾱ2
s

∇2
x∇2

yP̄ (x, y) (2.9)

where ᾱs = αsNC/π and

[P †(x, y), P (u, v)] = δ2(x− u)δ2(y − v) + δ2(x− v)δ2(y − u) (2.10)

Equivalently

P̄ (x, y) ≈ Φ̄(x, y) ≡
∫
u,v
γ(x, y;u, v)P †(u, v) (2.11)
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where γ(x, y;u, v) is the Born level scattering amplitude of a dipole (x, y) on the dipole (u, v)

γ(xy, uv) =
α2
s

8
ln2 (x− u)2(y − v)2

(x− v)2(y − u)2
(2.12)

The function γ satisfies

∇2
x∇2

yγ(xy, uv) = 2π2 α2
s [δ2(x− u)δ2(y − v) + δ2(x− v)δ2(y − u)] (2.13)

With these commutation relations eqs. (2.10), (2.11) the interpretation of the calcu-

lation of the scattering amplitude in eq. (2.4) is rather neat and intuitive. Moving one

operator P̄ (x, y) from WT through WP one kills one of the operators P (u, v) and instead

acquires a factor −γ(x, y;u, v), which is the dipole-dipole scattering amplitude. The orig-

inal Pomeron P (x, y) vanishes once it arrives next to the δ(ρ). The net result is that the

Pomerons P (x, y) and P̄ (u, v) leave behind a factor −γ(x, y;u, v) and disappear from the

rest of the calculation, in accordance with the approximation that any dipole of the target

can only scatter on one dipole of the projectile, and after doing so does not participate in

any further scatterings. This clearly corresponds to dilute limit where a given projectile

dipole can meet at most one target dipole while traversing the target.

In sections 5 and 6 we will discuss the modification of the commutation relation between

P and P̄ and an associated interpretation in terms of dipole-dipole scattering.

Eq. (2.4) defines the scattering matrix at some initial rapidity. The S-matrix evolved

by the rapidity Y is given by

S =

∫
dP̄ δ(P̄ )WP [P ] e−HRFT [P,P̄ ]Y WT [P̄ ] (2.14)

Eq. (2.14), does not presuppose the commutation relation eq. (2.9) and remains valid if

P̄ is a more complicated function of the conjugate Pomeron P †, e.g. of the type we will

discuss in subsequent sections. The Hamiltonian HRFT is known in two limits - for dilute-

dense [46] and dense-dilute [36–44] situation. Another version of HRFT was suggested by

Braun [30–32] as appropriate to description of scattering of two nuclei. We will discuss

explicitly these Hamiltonians later, but for now our goal is to derive a general path integral

representation for the S-matrix eq. (2.14).

2.2 The path integral representation

First let us note that the expression eq. (2.14) is a multidimensional generalization of a

“quantum mechanical” amplitude of the general form

X =

∫
dxδ(x)W1(p̂)e−Ĥ(p̂,x)YW2(x) (2.15)

Using the exponential representation of the δ-function, and the fact that the only

non-vanishing contributions come from terms where all derivatives in W1(p̂) act on this

exponential, we can write

X =

∫
dxdpeipxW1(p)e−Ĥ(p̂,x)YW2(x) =

∫
dxdpW1(p)W2(x)〈x|e−Ĥ(p̂,x)Y |p〉 (2.16)

– 6 –
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With the usual trick of inserting resolution of identity at intermediate “times” (a.k.a.

“rapidities), this can be written as the integral over trajectories with somewhat unusual

boundary conditions

X =

∫
dxdpW1(p)W2(x)

∫
x(Y )=x; p(0)=p

dx(η)dp(η)e−S ;

S =

∫ Y

0
dη

[
ip
dx

dη
−H

] (2.17)

Returning to the RFT, and using the correspondence

x→ P (u, v); p̂→ −iP †(u, v) (2.18)

which follows from the commutation relation eq. (2.10), we can write1

S =

∫
dP †dPWP [P ]WT [P †]

∫
P (Y )=P ; P †(0)=P †

DP (η)DP †(η)e
∫ Y
0 dη

[
P † ∂P

∂η
−H(P,P †)

]
(2.19)

Throughout this paper, we will be focussing on several Pomeron Hamiltonians. The

first one is the BK Hamiltonian, which is a dipole/large NC version of the KLWMIJ

Hamiltonian:

HBK =
ᾱs
2π

∫
K(x, y|z)P †(x, y) [P (x, z) + P (z, y)− P (x, y)− P (x, z)P (z, y)] (2.20)

where K(x, y|z) = (x−y)2

(x−z)2(y−z)2 is the BFKL kernel in the dipole form. The dual version

of this Hamiltonian, which we will refer to as the KB Hamiltonian, is a dipole/large NC

version of the JIMWLK

HKB =
ᾱs
2π

∫
K(x, y|z)

[
P̄ †(x, z) + P̄ †(z, y)− P̄ †(x, y)− P̄ †(x, z)P̄ †(z, y)

]
P̄ (x, y) (2.21)

Note that to write eqs. (2.20), (2.21) we did not have to assume a specific relation between

P̄ and P † (or P and P̄ †).

The third interesting Hamiltonian was written by Braun in [30–32], and it explicitly

assumes the dilute regime commutation relations eq. (2.9).

In order to write (2.19) in the form presented in [30–32], we introduce a “linearized”

version of the Pomeron by

d(x, y) = exp[−Φ(x, y)]; P (x, y) ≈ Φ(x, y) (2.22)

where the last approximate equality holds for small P , or dilute projectile limit. In the

same approximation

[Φ̄(x, y),Φ(u, v)] = γ(x, y;u, v) (2.23)

1Strictly speaking WT [P †] 6= WT [P̄ ] and has to be renamed. Same remark applies to the Hamiltonian

H. We will ignore these semantic differences.
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We then have

S '
∫
dΦ̄dΦWP [Φ]WT [Φ̄]

×
∫

Φ(Y )=Φ; Φ̄(0)=Φ̄
DΦ(η)DΦ̄(η)e

∫ Y
0 dη

[
N2
c

4π4ᾱ2
s

[∇2
x∇2

yΦ̄(x,y)] ∂
∂η

Φ(x,y)−H(Φ,Φ̄)

] (2.24)

As for the weight functions W , it follows from our previous discussion and in particular

eqs. (2.5), (2.6) that they can be expressed in term of Φ and Φ̄. For a projectile and a

target with fixed numbers of dipoles at given coordinates we have

WP = exp[−
∫
JP (x, y)Φ(x, y)]; WT = exp[−

∫
JT (x, y)Φ̄(x, y)] (2.25)

where we have assumed that P and P̄ are both small at initial rapidity. The “currents”

JP (x, y) and JT (x, y) are simply the number density of the dipole in the projectile and

target at points (x, y) respectively.

These weight functions can be traded for fixed boundary conditions on the Pomeron

fields. Differentiating the action with respect to Φ gives the equation of motion for Φ̄ with

the source term JP (x, y)δ(η − Y ). Similarly the equation of motion for Φ acquires the

source term JT (x, y)δ(η). Integrating as usual the appropriate equation of motion across

the appropriate boundary one finds that the presence of the source terms is equivalent to

imposing the boundary conditions

Φη=0(x, y) = φ(x, y) ≡
∫
u,v
γ(x, y;u, v)JT (u, v);

Φ̄η=Y (x, y) = φ̄(x, y) ≡
∫
u,v
γ(x, y;u, v)JP (u, v)

(2.26)

These boundary conditions are equivalent to specifying the Born amplitude for the dipole

scattering on the target and the projectile prior to rapidity evolution.

Eq. (2.24) is the path integral representation considered by Braun [30–32] if the Hamil-

tonian is taken as

HB =
N2
c

2πᾱs

∫
Φ̄(x, y)∇2

x∇2
y [K(x, y|z)[Φ(x, z) + Φ(z, y)− Φ(x, y)− Φ(x, z)Φ(z, y)]

− Φ(x, y)∇2
x∇2

y

[
K(x, y|z)Φ̄(x, z)Φ̄(z, y)

]
(2.27)

3 Peculiarities of the Braun evolution

In this section we discuss qualitatively the nature of solutions to the equations of motion

generated by the Braun Hamiltonian. The classical equations of motion are given by

∂Φ(x, y; η)

∂η
= (3.1)

=
ᾱS
2π

∫
d2zK (x, y|z)

{
Φ(x, z; η)+Φ(z, y; η)−Φ(x, y; η)−Φ(z, y; η)Φ(x, z; η)

}
− ᾱS

2π

∫
z,x′,y′

L−1
xy;x′y′K

(
x′, y′|z

)[{
Lzy′Φ

(
z, y′, η

)}
Φ̄(x′, z; η)+

{
Lzx′Φ

(
z, x′, η

)}
Φ̄(y′, z; η)

]

– 8 –
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− ∂Φ̄(x, y; η)

∂η
= (3.2)

=
ᾱS
2π

∫
d2zK (x, y|z)

{
Φ̄(x, z; η)+Φ̄(z, y; η)−Φ̄(x, y; η)−Φ̄(z, y; η)Φ̄(x, z; η)

}
− ᾱS

2π

∫
z,x′,y′

L−1
xy;x′y′K

(
x′, y′|z

)[{
Lzy′Φ̄

(
z, y′, η

)}
Φ(x′, z; η)+

{
Lzx′Φ̄

(
z, x′, η

)}
Φ(y′, z; η)

]
The operator Lxy = (x− y)4∇2

x∇2
y.

These equations of motion are solved subject to boundary conditions Φ(η = 0) =

φ; Φ̄(η = Y ) = φ̄, where φ and φ̄ are given finctions of the dipole sizes. The equations

have four fixed point (Φ, Φ̄) = (0, 0), (0, 1), (1, 0) and (1, 1).

First let us clarify what we mean by the term “fixed point”. The evolution equations

are solved with boundary conditions on φ(0) and φ̄(Y ). If the values of φ(0) and φ̄(Y ) are

chosen to be exactly the fixed point values, the solution of the equations of motion is equal

to these values for all η; Φ(η) = φ(0); Φ̄(η) = φ̄(Y ). If the values of φ and φ̄ are not chosen

to be exactly the “fixed point” values it is obviously impossible for the solution to reach

any of the fixed points at all rapidities. However one might expect that if the evolution

interval in rapidity is very large, Y → ∞, the solution will be arbitrarily close to one of

the fixed point values for large interval of intermediate rapidities η of the length of order Y

away from the end points. This expectation may be too naive, and in fact we will see that

in the zero dimensional toy model it is not strictly satisfied. However one certainly does

expect that starting from the end points and moving towards the midpoint of the rapidity

interval, the solution will develop towards one of the attractive fixed points, even though

it may not quite reach it.

Since the interpretation of Φ and Φ̄ is that of the scattering amplitude of an external

dipole on the target and the projectile respectively, the point (0, 0) is the vacuum fixed

point, where the scattering amplitude on both the target and the projectile vanishes. It is

a repulsive fixed point, meaning that the solution of equations of motion departs from it

with rapidity, given an initial condition which is not exactly zero.

The point (1, 1) corresponds to the dense-dense limit, where both the target and the

projectile are black. Since one expects both the target and the projectile states to become

dense as a result of the evolution, one expects this to be an attractive fixed point. In other

words we expect that for boundary conditions φ 6= 0 and φ̄ 6= 0 and for a very large rapidity

interval Y , the solution will be approaching the point Φ(η) = 1 and Φ̄(η) = 1 towards the

middle of the rapidity interval 0 < η < Y .

Finally we will refer to the points (0, 1) and (1, 0) as the “BK” fixed points, since they

correspond to the situation where one of the colliding objects is dense and one is dilute.

Naively we expect these two fixed points to be repulsive, albeit not as strongly repulsive

as (0, 0). In other words, if the boundary conditions are not too far from these values, e.g.

Φ(0) = ε, Φ̄(Y ) = 1 − ε′, for an intermediate range of Y the solution will be close to the

point (0, 1) for most intermediate rapidities η. However if Y is increased to sufficiently

large value, the solution for these boundary conditions will eventually flow towards (1, 1)

at intermediate values of Y � η � 0.
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Our goal in this section is to determine whether our intuitive expectation on the

nature of the fixed points is born out by the equations of motion of the Braun model. In

the following we concentrate on the points A = (1, 1) and B = (1, 0).

3.1 Point A

First, let us take φ and φ̄ both close to unity, which means that already at initial rapidity

both the projectile and the target are dense objects (nuclei). It is then reasonable to expect

that Φ and Φ̄ stay close to unity in the whole rapidity interval 0 < η < Y .

We can then write down the linear equation for the deviation of Φ and Φ̄ from unity,

∆ ≡ 1− Φ, ∆̄ ≡ 1− Φ̄.

∂∆(x, y; η)

∂η
=
ᾱS
2π

∫
z
K (x, y|z)

{
∆(x, z; η)+∆(z, y; η)−∆(x, y; η)−∆(z, y; η)−∆(x, z; η)

}
− ᾱS

2π

∫
zx′y′

L−1
xy;x′y′K

(
x′, y′|z

) {
Lzy′∆

(
z, y′, η

)
+Lzx′∆

(
z, x′, η

)}
(3.3)

−∂∆̄(x, y; η)

∂η
=
ᾱS
2π

∫
z
K (x, y|z)

{
∆̄(x, z; η)+∆̄(z, y; η)−∆̄(x, y; η)−∆̄(z, y; η)−∆̄(x, z; η)

}
− ᾱS

2π

∫
z
L−1
xy;x′y′K

(
x′, y′|z

) {
Lzy′∆̄

(
z, y′, η

)
+Lzx′∆̄

(
z, x′, η

)}
(3.4)

or after obvious cancellations

∂∆(x, y; η)

∂η
= − ᾱS

2π

{∫
z
K (x, y|z) ∆(x, y; η) (3.5)

+

∫
zx′η

L−1
xy;x′y′K

(
x′, y′|z

) {
Lzy′∆

(
z, y′, η

)
+ Lzx′∆

(
z, x′, η

)}}
−∂∆̄(x, y; η)

∂η
= − ᾱS

2π

{∫
z
K (x, y|z) ∆̄(x, y; η) (3.6)

+

∫
z
L−1
xy;x′y′K

(
x′, y′|z

) {
Lzy′∆̄

(
z, y′, η

)
+ Lzx′∆̄

(
z, x′, η

)}}
It is more transparent to multiply these equations by the operator L and write them as

equations for n(xy) = L(xy)∆(xy) and n̄(xy) = L(xy)∆̄(xy). The physical meaning of n

(similarly n̄) is that of the logarithmic dipole density. Using the fact that the BFKL kernel

commutes with the operator L we obtain:

∂n(x, y; η)

∂η
= − ᾱS

2π

{∫
z
K (x, y|z)n(x, y; η)+

∫
z
K (x, y|z) {n (z, y, η)+n (z, x, η)}

}
(3.7)

−∂n̄(x, y; η)

∂η
= − ᾱS

2π

{∫
z
K (x, y|z) n̄(x, y; η)+

∫
z
K (x, y|z) {n̄ (z, y, η)+n̄ (z, x, η)}

}
(3.8)

All the kernels on the r.h.s. of these equations are positive, and thus we conclude that
∂
∂ ηn(x, y; η) < 0 and ∂

∂ η n̄(x, y; η) > 0. This means that Φ approaches unity as the rapidity

η increases, while Φ̄ approaches unity as η decreases. Thus the fixed point A is attractive,

namely if we start with initial conditions where Φ is close to unity at η = 0 and Φ̄ is close

to unity at η = Y , and Y is large enough, then at all values of η the solution will be close

to the fixed point. This is in accordance with our naive expectation.

– 10 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
1

3.2 Point B

Now consider point B. Assume that our initial conditions fix Φ to be close to one at η = 0,

but fix Φ̄ to be small at η = Y . Denoting 1−Φ ≡ ∆, Φ̄ ≡ ∆̄, we have the small fluctuation

equations as

∂∆(x, y; η)

∂η
= − ᾱS

2π

∫
z
K (x, y|z) ∆(x, y; η) (3.9)

−∂∆̄(x, y; η)

∂η
=
ᾱS
2π

∫
z
K (x, y|z)

{
∆̄(x, z; η) + ∆̄(z, y; η)− ∆̄(x, y; η)

}
(3.10)

− ᾱS
2π

∫
z
L−1
xy;x′ηK

(
x′, η|z

) {
Lzη∆̄ (z, η, η) + Lzx′∆̄

(
z, x′, η

)}
The first equation, as before says that Φ approaches unity at Y > 0.

The second equation when rewritten in terms of n̄ reads

− ∂n̄(x, y; η)

∂ η
= − ᾱS

2π

∫
z
K (x, y|z) n̄(x, y; η) (3.11)

This shows that n̄ increases towards positive rapidities. If it starts off as small at η = Y it

becomes even smaller at η < Y and thus this fixed point also is attractive.

This simplified analysis suggests that both A and B are attractive fixed points, and thus

depending on the initial conditions, the system flows to one or the other at intermediate

rapidities. This result is surprising and goes against our intuition. It suggests that for a

physical situation where the dense-dilute scattering process is evolved to large rapidities,

the dilute object never gets dense.

This interpretation of the behavior we have just found is not quite adequate, as we

will discuss in the next sections. Nevertheless this behavior is counter intuitive. However

our analysis is incomplete, since we have been a little cavalier about the dependence of the

Pomerons on transverse coordinates. Although in the strict sense the points A and B are

indeed all the fixed points of the flow, one never starts with initial condition which is close

to saturation at all values of dipole size. A more careful analysis should allow for existence

of a finite saturation momentum. It is logically possible that accounting for finite Qs will

change the attractive nature of the point B. We will now perform this analysis.

3.3 Point B — finite Qs

Let us consider again vicinity of the point B. Let us assume that at any rapidity η,

Φ(x − y) = 1 for |x − y| > Q−1
s (η), but Φ(x − y) is small for |x − y| < Q−1

s (η). We

will still assume that Φ̄ is small for all dipole sizes. The value of the saturation scale Qs
depends on η.

Consider eq. (3.1) for the Pomeron Φ. Here the contribution of the second line in

eq. (3.1) is always second order in smallness, since Φ̄ is small and L annihilates the constant

part of Φ. Thus the equation of motion in this approximation becomes the BK equation

whose behavior is well understood.

Consider first small external dipole sizes x − y < Q−1
s (η). The contribution of the

nonlinear term from large emitted dipole sizes z > Q−1
s cancels half of the contribution of
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the real part of the BFKL kernel, while the region of small z leaves the contribution of full

BFKL equation

∂Φ(x, y; η)

∂η
||x−y|<Q−1

s (η) =
ᾱS
2π

∫
|z|<Q−1

s

K (x, y|z)
{

Φ(x, z; η) + Φ(z, y; η)− Φ(x, y; η)
}

+
ᾱS
2π

∫
|z|>Q−1

s

K (x, y|z) [1− Φ(x, y; η)] (3.12)

If we were to neglect the last term, the solution would be just that of the BFKL equation,

namely exponentially growing with rapidity. The last term is also positive, and thus speeds

up the evolution slightly. This term however is only important when the Pomeron is in the

color transparency regime. Recall that the BFKL kernel decreases as z−4 at large z. Thus

the contribution of the last term is proportional to αs|x− y|2Q2
s = α3

s|x− y|2µ2, where µ2

is the gluon density. The first term is the BFKL equation with gluon emissions limited to

the short distance. Its contribution can be estimated approximately as∫
|z|<Q−1

s

K (x, y|z)
{

Φ(x, z; η) + Φ(z, y; η) − Φ(x, y; η)
}
∼ ωΦ(x, y; η) (3.13)

with ω a number of order unity. Eq. (3.12) then effectively reads

∂Φ(x, y; η)

∂ η
∼ ᾱS

2π
[ωΦ(x, y; η) + α2

s|x− y|2µ2] (3.14)

Thus once the Pomeron surpasses its color transparency limit, the second term is negligible

and the evolution is dominated by the first term which is just the BFKL evolution.

For large dipoles, |x−y| > Q−1
s (η) the nonlinear term in eq. (3.1) cancels the contribu-

tion form the real part of BFKL kernel in the region |z−x| > Q−1
s (η) and |z−y| > Q−1

s (η).

In this large z region we can write as before Φ(x, z) = 1−∆(x, z) etc. The only contribution

to the r.h.s. of eq. (3.1) in this region is then

∂∆(x, y; η)

∂ η
||x−y|>Q−1

s (η) = − ᾱS
2π

∫
{|z−x|>Q−1

s (η);|z−y|>Q−1
S (η)}

d2 z K (x, y|z) ∆(x, y; η)

(3.15)

The “small z” region is split in two: |z−x| < Q−1
s (η) and |z−y| < Q−1

S (η). In the first

one Φ(z − x) is small, but we can write Φ(z − y) = Φ(x− y) = 1−∆(x− y). Substituting

this into the r.h.s. of eq. (3.1) we find complete cancellation to linear order in ∆. The same

happens in the second region of small z. The only leftover is the virtual term integrated

over the remainder of the space |z − x| > Q−1
s (η), |z − y| > Q−1

s (η). Since the integral of

the virtual term is cut off in the infrared in the range |z − x| ∼ |x − y|, the equation for

small fluctuations in the saturation region becomes

∂∆(x, y; η)

∂ η
||x−y|>Q−1

s (η) = − ᾱS
π

ln[(x− y)2Q2
s(η)]∆(x, y; η) (3.16)

This is of course, the standard Levin-Tuchin argument [81]. It shows that as the rapidity

increases, the Pomeron approaches saturation. At small values it grows toward saturation
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according to BFKL, while close to saturation, it continues to grow albeit slowly. Since

Qs(η) grows with η, more and more dipole sizes are saturated as rapidity increases.

The more interesting and problematic equation is the one for ∆̄ ≡ Φ̄ (3.2). Our main

interest here is to see whether allowing for a finite saturation momentum can reverse the

flow of Φ̄ and somehow through a back door cause it to grow towards the smaller values of

rapidity η < Y .

We consider the initial condition where Φ̄ is small at η = Y . It’s saturation momentum

in this rapidity range is vanishing. However in the evolution we have to account for the

effect of the finite saturation momentum of Φ. Taking this into account we find that

the contribution to the last two terms in eq. (3.10) is restricted to the integration region

|z − x′| > Q−1
s (η) and |z − η| > Q−1

s (η) respectively, since in the rest of the domain this

contribution is quadratic in ∆∆̄.

Consider first large external dipoles |x−y| > Q−1
s . In this regime (commuting as before

the operator L−1 with the BFKL kernel), the non-linear term cancels the contribution of

the real BFKL kernel except in the region |z − y| < Q−1
s in the first term of eq. (3.10) and

|z− x| < Q−1
s in the second term of eq. (3.10). These leftovers are almost cancelled by the

appropriate part of the virtual integral. The remainder depends on the small size dipoles,

so that it plays the role of a source in the equation:

−∂n̄(x, y; η)

∂η
= − ᾱS

π

∫
|z−x|>Q−1

s ,|z−y|>Q−1
s

K (x, y|z) n̄(x, y; η) (3.17)

+
ᾱS
2π

[∫
|z−x|<Q−1

s

K (x, y|z) n̄(x, z; η) +

∫
|z−y|<Q−1

s

K (x, y|z) n̄(z, y; η)

]

The only difference between this equation and eq. (3.11) is the last line. Without this

term the density n̄ decreases towards small η, as discussed above. The source term itself is

positive and thus potentially could change this behavior. The equation can be re-written

in the form:

− ∂n̄(x, y; η)

∂ η
= −ᾱS ln

(
(x− y)2Q2

s (η)
)
n̄(x, y; η) + ᾱS

∫ Q−2
s (η)

0

d(x− z)2

(x− z)2
n̄(x− z; η)

(3.18)

To understand whether the source term can have an important effect, we have to consider

the evolution of small dipoles as well.

The evolution of the small dipoles |x− y| < Q−1
s (η) is given by

−∂n̄(x, y; η)

∂η
=
ᾱS
2π

∫
z
K (x, y|z)

{
n̄(x, z; η) + n̄(z, y; η)− n̄(x, y; η)

}
(3.19)

− ᾱS
2π

{∫
|z−x|>Q−1

s (η)
K (x, y|z) n̄ (x, z, η)+

∫
|z−y|>Q−1

s (η)
K (x, y|z) n̄ (z, y, η)

}

Here the last line appears as the source term due to coupling of large dipoles. The

contribution of large dipoles with sizes greater than the inverse saturation momentum is

absent in the r.h.s. of eq. (3.19), since the last two terms cancel the contribution of those
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dipoles to the BFKL kernel. The equation for n̄(x − y) for small dipoles therefore is not

sourced by large dipoles.

−∂n̄(x, y; η)

∂η
=
ᾱS
2π

∫
z
K (x, y|z) (3.20)

×
{
n̄(x, z; η)θ(Q−1

S (η)−|x−z|)+n̄(z, y; η)θ(Q−1
S (η)−|y−z|)−n̄(x, y; η)

}
It is simple to solve this equation for a certain set of initial conditions. Let us consider

a situation when the unevolved projectile is a single dipole of the size R1 while the target

is dense R1 > Q−1
s (0), so that the scattering amplitude on the target is close to unity at

all rapidities. For this situation the initial condition for eqs. (3.17), (3.19) is

n̄(x− y;Y ) = δ
(

ln(x− y)2/R2
1

)
(3.21)

Since the initial dipole size R1 never gets inside the saturation radius throughout the

evolution, the small dipole n̄ satisfies at all rapidities a homogeneous equation with the

vanishing initial condition. Thus n̄(x − y; η) = 0 as long as (x − y)2Q2
s < 1. This also

means that there is no source term coming from small dipoles in the equation for large

dipoles, and the solution for n̄(x− y) of arbitrary size is

n̄(x− y) = e−ᾱs
∫ Y
η dη ln[R2

1Q
2
s(η)]δ

(
ln(x− y)2/R2

1

)
(3.22)

Although the source term can be important for other initial conditions, it is obvious from

the previous discussion that at least for some physically reasonable initial conditions the

introduction of finite Qs does not change the results of the previous subsection. Namely,

it is indeed true that the BK fixed point (1, 0) is the attractive fixed point of the Braun

Hamiltonian [56].

In principle, one could perform a similar more refined analysis of the stability of the

point (1, 1) allowing for finite Qs of the projectile and the target. We will not do it

here, as the paradoxical nature of the evolution generated by the Braun Hamiltonian is

already clear.

3.4 What does it mean?

We have established that in the classical approximation to Braun evolution, the Pomeron

Φ̄(η) decreases towards small values of η, if Φ(η) is close to unity. This behavior is coun-

terintuitive. Naively Φ̄(η) has the meaning of the scattering amplitude of a dipole on the

projectile wave function at rapidity Y − η, and so this seems to suggest that the projectile

becomes more transparent to dipoles that have higher energy, if the target is black.

We would now like to be a little less naive and understand more formally what is the

meaning of this behavior. Solving the classical equations of motion for P̄ is the classical

approximation to calculating the rapidity dependent average 〈P̄ (η)〉. Consider again the

correspondence between the CGC expression eq. (2.14) and its path integral representation

eq. (2.24). It is clear from this correspondence that the rapidity dependent average of P̄
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in the CGC formulation is given by the expression

〈1− P̄ (η)〉 =

∫
dP̄ δ(P̄ )WP [P ]e−HRFT [P,P̄ ](Y−η)

(
1− P̄

)
e−HRFT [P,P̄ ]ηWT [P̄ ] (3.23)

=

∫
dP̄ δ(P̄ )WP [P ]e−HRFT [P,P̄ ](Y−η)

(
1− P̄

)
W η
T [P̄ ]

where W η
T [P̄ ] is the target wave function evolved through the rapidity interval η. This

is the scattering matrix of the projectile on an object which is obtained by evolving the

target by rapidity η, adding to it one extra dipole, and then evolving the resulting system

by rapidity Y − η. What does one expect the η dependence of such a scattering matrix to

be? Clearly, adding an extra dipole towards the end of the evolution of the target should

be less efficient in making the target black than adding it earlier in the evolution. If one

adds a dipole early on, it should contribute to subsequent evolution and lead eventually

to relatively more dipoles in the wave function, since the QCD evolution always increases

the number of physical dipoles. Thus we expect that 〈1 − P̄ (η)〉 should increase with η,

and therefore P̄ (η) should decrease with η, or equivalently P̄ (η) should increase to smaller

values of η.

As we saw earlier, the behavior of P̄ in the Braun evolution is opposite. There are two

possible interpretations of such behavior. One is that the target wave function becomes less

dense with evolution. In this case the additional dipole is “bleached” by further evolution

and contributes little to the scattering amplitude. Physically such behavior is of course

completely unacceptable. The other possibility is that the target does become denser,

but the evolution is so violent that dipoles disappear from its wave function by physically

merging with each other. This possibility may be more palatable a priori, however it

also is not a part of QCD dynamics. In the leading logarithmic approximation the QCD

evolution produces new gluons, and therefore dipoles and never annihilates partons that

already exist in the wave function. QCD saturation is the statement that the rate of

this growth decreases with the density of the target, but it never completely vanishes

and certainly does not become negative. Thus the behavior of the solutions of the Braun

equations indeed violates QCD expectations.

One could wonder if perhaps this means that the classical approximation to the path

integral, which yields this behavior is violated in the dense-dilute regime. It is in principle

possible, since the applicability of classical approximation is determined by the magnitude

of the sources JT and JP , and in the dense-dilute limit one of the sources JP is small. In

this case one should be able to see that the loop corrections to the classical approximation

are large. However it has been shown in [82, 83] that the presence of large Φ leads to

appearance of a kind of “mass” in the Pomeron propagator, and in fact suppresses the loop

corrections. The culprit therefore seems to be the Braun Hamiltonian itself, rather that

the classical approximation to the evolution.

We note that this behavior is not unique to the Braun Hamiltonian. In particular we

can repeat the same analysis in the framework of the Balitsky-Kovchegov equation, or the

dipole model approximation to the JIMWLK Hamiltonian. The result is exactly the same.

The evolution of a dense target seems to “bleach” the scattering amplitude of an extra
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dipole that is added to it. The BK (and JIMWLK) evolution leads to the fixed point (1, 0)

at large rapidities.

This strange behavior leads one to suspect that not all is right with unitarity in the

Braun and BK evolution. In particular the evolution of the dense state in any of these

frameworks may be violating the QCD unitarity. In the next section we will consider this

question in the context of a toy model with no transverse dimensions. We will return to

the realistic case later.

4 Playing with toys I: trouble in the toy world

In this section we consider a set of toy models in the framework of the zero transverse

dimensional reduction of the RFT [67–79]. Such models have long been used as a simplified

setup for qualitatively understanding of the high energy behavior of QCD. Like in the

previous sections we first formulate these models in the framework of the zero dimensional

analog of the CGC formalism, and explore their properties. The scattering matrix of the

projectile consisting of m dipoles on the target consisting of n̄ dipoles is given in analogy

with the real QCD case by

〈m|n̄〉 =

∫
dP̄ δ(P̄ )(1− P )m(1− P̄ )n̄ (4.1)

This amplitude is evolved in energy according to

〈m|n̄〉Y =

∫
dP̄ δ(P̄ )(1− P )meHY (1− P̄ )n̄ (4.2)

In the following we will consider several toy Hamiltonians.

4.1 The BK evolution

The zero dimensional analog of the BK evolution [33, 34] is given by the Hamiltonian2

HBK = −1

γ

[
P̄P − P̄P 2

]
(4.3)

As before we take P and P̄ to have the dilute limit algebra, such that

P = −γ d

dP̄
; γ ∼ α2

s > 0 (4.4)

The constant γ is the zero dimensional proxy for the dipole-dipole scattering probability.

The scattering matrix can be calculated explicitly (we assume m+ 1 < n̄)

〈m|n̄〉 =

m∑
l=0

m!n̄!

(m− l)!(n̄− l)!l!
(−γ)l (4.5)

In particular

〈1|n̄〉 = 1− n̄γ (4.6)

2Compared to previous sections, here we rescale the rapidity variable by the factor
√
γ ∼ αs.
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It is clear from eq. (4.6) that our current formulation is restricted to number of dipoles

n̄ < 1/γ, since otherwise the single dipole S-matrix becomes negative. The reason for

this unphysical behavior is the dilute limit commutation relation we adopted for P and

P̄ . As we will see later, with correct commutation relation the problem does not arise.

Nevertheless as long as n̄ < 1/γ we can continue the present analysis.

Our aim now is to compare 〈P̄ (η)〉 for two different values of rapidity. For simplicity

we will take the rapidity interval to be infinitesimally small, and will simply insert P̄ into

the matrix element either before or after this short evolution interval. Also for simplicity

we take the projectile to contain a single dipole, although the calculation can be easily

generalized. Thus we are interested in

〈1− P̄ 〉P ≡ 〈1|(1− P̄ )eH∆|n̄〉; 〈1− P̄ 〉T ≡ 〈1|eH∆(1− P̄ )|n̄〉 (4.7)

As discussed in the previous section, the two quantities have simple physical meaning. The

first one corresponds to the evolution of the target wave function with subsequent insertion

of an additional dipole, prior to scattering on the projectile. In the second one we insert an

extra dipole into the target wave function, then evolve the combined target+dipole, and

then scatter it on the projectile. The physical expectation is that inserting the extra dipole

closer to the target will produce a blacker target. Thus we expect

〈1− P̄ 〉P > 〈1− P̄ 〉T ? (4.8)

As we will see, this expectation is fulfilled when n̄ ∼ 1. However the evolution produces

the opposite result when n̄γ ∼ 1, that is for dense target.

For comparison we will also calculate an analogous quantity for the pomeron P

〈1− P 〉P ≡ 〈1|(1− P )eH∆|n̄〉; 〈1− P 〉T ≡ 〈1|eH∆(1− P )|n̄〉 (4.9)

The interpretation of these quantities is the dual of those discussed above. Therefore

we expect

〈1− P 〉P < 〈1− P 〉T ? (4.10)

For the pomeron P we obtain

〈1− P 〉P =
[
1− 2n̄γ + n̄(n̄− 1)γ2

]
+ 2∆

[
−n̄γ + 2n̄(n̄− 1)γ2 − n̄(n̄− 1)(n̄− 2)γ3

]
(4.11)

〈1− P 〉T =
[
1− 2n̄γ + n̄(n̄− 1)γ2

]
+ ∆

[
−n̄γ + 2n̄(n̄− 1)γ2 − n̄(n̄− 1)(n̄− 2)γ3

]
(4.12)

〈1− P 〉P − 〈1− P 〉T = −∆n̄γ
{

[1− (n̄− 1)γ]2 − (n̄− 1)γ2
}
< 0 (4.13)

where the last equality holds for n̄ < 1/γ. Thus the behavior of P conforms with our

expectations. The same calculation for the conjugate Pomeron P̄ yields

〈1− P̄ 〉P = 1− (n̄+ 1)γ −∆n̄γ
[
1− (n̄− 1)γ

]
(4.14)

〈1− P̄ 〉T = 1− (n̄+ 1)γ −∆(n̄+ 1)γ
[
1− n̄γ

]
〈1− P̄ 〉P − 〈1− P̄ 〉T = ∆γ

[
1− 2n̄γ

]
(4.15)

– 17 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
1

Thus for small n̄ eq. (4.8) is satisfied, however for n̄ > 1
2γ the situation is reversed. The

toy model thus behaves in the similar way to the model with two transverse dimensions.

To understand the origin of this behavior consider the infinitesimal evolution of the

projectile and target wave functions with the Hamiltonian H:

〈m|e∆H ≈ (1−∆m)〈m|+ ∆m〈m+ 1| (4.16)

e∆H |n̄〉 = (1 + ∆n̄)|n̄〉 −∆n̄[1 + γ(n̄− 1)]|n̄− 1〉+ ∆γn̄(n̄− 1)|n̄− 2〉 (4.17)

Note the sea of difference between the two expressions. Recall that the coefficient in front

of an n-dipole state has the meaning of probability to find this number of dipoles in the the

wave function. The projectile evolution is unitary: all the probabilities in the evolved state

remain positive and smaller than unity, and the sum of the probabilities adds up to unity.

On the other hand the target evolution is non-unitary. The probability to find the

initial state |n̄〉 after a short interval of evolution exceeds unity, while the probability to

find a state with one less particle is negative. The coefficients still sum to unity like for

the projectile, but clearly the target evolution violates unitarity.

We stress that the probabilities in question are probabilitites to find physical dipoles

in the wave function of the evolved hadronic state. Thus the negativity of probabilities

violates the s - channnel unitarity. This violation is not directly seen in the calculation

of the diagonal matrix element of the S-matrix, since by construction this matrix element

is a real number smaller than one. However it is clear that if we were to consider more

exclusive observabes, the negativity of probabilities would show up as unphysical values

for some observable. Although a detailed study of this question is outside the scope of this

paper, it is easy to give an example of such an observable. Consider a target containing n

dipoles, which scatters on a dense projectile. If the projectile is very dense, all the dipoles

in the target wave function will be scattered into the final state. Thus the probability for

producing n dipoles in the final state will be equal to the probability of finding n dipoles

in the wave function. At a slightly higher energy than the initial one, the probability of

producing n − 1 dipoles in the final state will be negative. Strictly speaking those are of

course “toy dipoles” in the “toy hadron”, but the essence of the argument is the same in

real QCD.

It is interesting to examine more carefully the evolved target side wave functions that

enter in the calculations in eq. (4.14) at the rapidity they scatter on the projectile dipole.

e∆H(1−P̄ )|n̄〉 =
[
1+∆(n̄+1)

]
|n̄+1〉−∆(n̄+1)[1+γn̄]|n̄〉+∆γ(n̄+1)n̄|n̄−1〉 (4.18)

(1−P̄ )e∆H |n̄〉 =
[
1+∆n̄

]
|n̄+1〉−∆n̄[1+γ(n̄−1)]|n̄〉+∆γn̄(n̄−1)|n̄−1〉 (4.19)

Calculating the average number of dipoles in the two wave function we find

〈N〉T = n̄+ 1 + ∆(n̄+ 1)−∆γ(n̄+ 1)n̄ (4.20)

〈N〉P = n̄+ 1 + ∆n̄−∆γ(n̄− 1)n̄ (4.21)

〈N〉T − 〈N〉P = ∆
[
1− 2γn̄

]
(4.22)
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This indeed displays the poignant feature discussed above, namely at small n̄ the average

number of dipoles in the wave function is larger if an extra dipole is added before evolution,

while at large n̄ > 1/2γ the situation is reversed. The reason for negative difference in

eq. (4.20) is obvious. It appears because the negative probability of the |n̄−1〉 contribution

in eq. (4.17) grows with n̄ faster than the positive probability of the |n̄〉 contribution.

Thus we see that the nonunitarity of the BK evolution of the target wave function is

indeed the reason for the counter intuitive behavior of P̄ with rapidity.

To summarize, we have shown that although the (zero dimensional) BK-JIMWLK

evolution of the projectile wave function preserves QCD unitarity, the same evolution

when viewed as evolution of the target wave function is non-unitary.

4.2 The Braun Hamiltonian

Next consider the analog of the Braun Hamiltonian

HB = −1

γ

[
P̄P − P̄P 2 − P̄ 2P

]
(4.23)

We pose the same question: does this Hamiltonian generate a unitary evolution? To answer

this we consider, as before

e∆HB |n̄〉 ≈ (1+∆H)|n̄〉 = (1−∆n̄)|n̄〉+∆n̄|n̄+1〉−∆γn̄(n̄−1)]|n̄−1〉+∆γn̄(n̄−1)|n̄−2〉
(4.24)

This is somewhat more satisfactory than eq. (4.17), since the violation of unitarity is O(γ)

and is small for small n̄ . However the coefficient of the term |n̄〉 is still negative, and

becomes large parametrically long before the saturation limit is reached. Alarmingly, since

the Braun evolution is symmetric between the target and the projectile, the projectile

evolution now is also non-unitary and involves negative probabilities.

We note, that the Braun eq. (4.23) has been considered in the past from the point of

view of the reaction-diffusion process (RDP) [84]. Ref. [84] indeed made it explicit that this

evolution corresponds to a non-unitary RDP that involves negative emission probabilities.

The RDP emission probabilities are however distinct from the QCD probabilities and in

fact not related to them in a simple obvious way. Thus the violation of unitary we discuss

here is distinct from, and not obviously related to the nonunitarity of the appropriate RDP.

There may be more than one problem in the previous models. In particular we have

seen that the commutator we have postulated between P and P̄ can only be used for a

target with small enough number of dipoles, otherwise even without any evolution the

S-matrix is non-unitary. In particular 〈1|n̄〉 < 0 for large enough n̄ > 1/γ. One could

perhaps wonder if this deficiency is to blame for the nonunitarity of the evolution as well.

In the rest of this this section we will rectify this deficiency and show how to define the

correct commutation relation. We will also show that even with the redefined commutation

relation, the BK and Braun Hamiltonians lead to non-unitary evolution.

4.3 Are the commutators to blame?

Our postulated commutation relation does not allow for multiple scattering corrections

when a single dipole of the projectile scatters on several dipoles of the target. Clearly the
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correct formula for scattering of one dipole on n̄ dipoles should be

〈1|n̄〉 =
n̄∑
k=0

n̄!

(n̄− k)!k!
(−γ)k (4.25)

since this expression correctly accounts for multiple scattering corrections. The algebra of P

and P̄ should be such that this result follows from the definition of the amplitude eq. (4.1).

A simple way to achieve this is to modify the relation between P and P̄ as follows

P = 1− eγ
d
dP̄ ? (4.26)

This is better, but still not good enough. In particular it does not allow two dipoles of

the projectile to scatter on the same dipole of the target, since the first factor 1 − P by

differentiation simply kills the particular target dipole, and subsequent scatterings on it

are not possible. The propagation of the projectile dipole should be “non demolition”, in

the sense that after moving the factor 1−P through P̄ , the factor P̄ should not disappear

from the wave function WT . Therefore a more reasonable representation is

1− P =

∞∑
k=0

1

k!
γk(1− P̄ )k

dk

dP̄ k
? (4.27)

However eq. (4.27) is not quite adequate either. According to it the propagation of the pro-

jectile dipole does not destroy any target dipoles, but the projectile dipole itself disappears

after propagation, and this is not right.

None of the above problems arise if the P and P̄ algebra is taken to be the following

(1− P )(1− P̄ ) = [1− γ](1− P̄ )(1− P ) (4.28)

This ensures that moving one projectile dipole through n̄ target dipoles give the correct

factor (1−γ)n̄ that includes all multiple scattering corrections, while all the dipoles remain

intact, and can subsequently scatter on additional projectile or target dipoles. For small γ

and in the regime where P and P̄ are small themselves, we obtain

[P, P̄ ] = −γ + . . . (4.29)

consistently with our original expression (2.10), (2.11).

Note that the algebra eq. (4.28) is equivalent to the following representation

1− P̄ = e− ln(1−γ) d
dΦ , ; 1− P = e−Φ (4.30)

In the calculation of an amplitude of the type of eq. (4.1), once all the factors of 1 − P̄
are commuted through to the left, in any matrix element P̄ hits the δ-function and thus

vanishes. The remaining factors of (1−P ) also turn to unity, since a factor of Φ is equivalent

to a derivative acting on the δ-function, and when integrated over P̄ vanishes.

With the new algebra we have

〈m|n̄〉 = (1− γ)mn̄ (4.31)

which is a simple and intuitive result: the s-matrix of dipole-dipole scattering to the power

of the number of dipole pairs that scatter.
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We stress that the modification of the Pomeron algebra is not a matter of choice, but

is necessary to obtain the amplitude eq. (4.31), which is unitary for arbitrary numbers of

colliding dipoles. However the question of the unitarity of the evolution is a completely

separate one. We will now reexamine the BK and Braun evolutions with the modified

Pomeron algebra.

4.4 BK evolution revisited: the Hamiltonian with modified commutators

We start with the BK Hamiltonian defined in eq. (4.3). As before we ask if evolution by

the infinitesimal rapidity interval preserves the probabilistic interpretation of the initial

wave function.

e∆HBK |n̄〉 =
[
1−∆

γ

[
1−(1−γ)n̄

]
(1−γ)n̄

]
|n̄〉+ ∆

γ

[
1−(1−γ)n̄

]
(1−γ)n̄|n̄+1〉 (4.32)

〈m|e∆HBK = 〈m|−∆

γ
[1−(1−γ)m] 〈m+1|+ ∆

γ
[1−(1−γ)m] 〈m+2| (4.33)

This result is surprising: the evolution of the target is now unitary, but of the projectile

is not. The evolution on the target wave function looks reasonable. When n̄ is small, it is

identical with the BFKL evolution. For large n̄ it exhibits very strong saturation due to

suppression with the factor (1−γ)n̄, so that at large n̄ the evolution is super slow. This is a

little disturbing, but does not seem fatal. However the projectile now evolves nonunitarity,

and thus we expect the same type of trouble as found in the previous subsection.

Let us see how this reflects on the behavior of P and P̄ . Calculating 〈P 〉 we find

〈1− P 〉P = (1− γ)2n̄ − ∆

γ

[
1− (1− γ)2

]
(1− γ)3n̄ +

∆

γ

[
1− (1− γ)2

]
(1− γ)4n̄ (4.34)

〈1− P 〉T = (1− γ)2n̄ − ∆

γ
[1− (1− γ)] (1− γ)3n̄ +

∆

γ
[1− (1− γ)] (1− γ)4n̄

So that

〈1− P 〉P − 〈1− P 〉T = −∆(1− γ)3n̄+1
[
1− (1− γ)n̄

]
< 0 (4.35)

This difference is always negative, consistently with our logic, even though the evolution

as we saw is nonunitary.

Now for 〈P̄ 〉:

〈1− P̄ 〉P =

[
1− ∆

γ

[
1− (1− γ)n̄

]
(1− γ)n̄

]
(1− γ)n̄+1

+
∆

γ

[
1− (1− γ)n̄

]
(1− γ)n̄(1− γ)n̄+2

〈1− P̄ 〉T =

[
1− ∆

γ

[
1− (1− γ)n̄+1

]
(1− γ)n̄+1

]
(1− γ)n̄+1

+
∆

γ

[
1− (1− γ)n̄+1

]
(1− γ)n̄+1(1− γ)n̄+2

So that

〈1− P̄ 〉P − 〈1− P̄ 〉T = ∆γ(1− γ)2n̄+1
[
(2− γ)(1− γ)n̄ − 1

]
This has the same behavior as before. For small n̄ this difference is positive, while for

n̄ > − ln(2−γ)
ln(1−γ) it changes sign, and thus it again manifests nonunitarity of the evolution.
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4.5 The Braun Hamiltonian with modified commutators

Next let us examine the evolution generated by the Braun Hamiltonian. The analog of the

original Braun Hamiltonian eq. (2.27) is

H̃B = −1

γ

[
Φ̄Φ− Φ̄Φ2 − Φ̄2Φ

]
(4.36)

with Φ = ln(1−P ); Φ̄ = ln(1− P̄ ). The variables Φ and Φ̄ are canonically conjugate. The

modified commutation relation between P and P̄ however enters in the calculation of matrix

elements, as the projectile and target wave functios carry factors of (1 − P )n; (1 − P̄ )n̄,

see eqs. (2.5), (2.6). The action of this Hamiltonian is obviously nonunitary, since a basic

necessary condition is that the coefficients in the expansion of H in powers of (1 − P ) be

finite. The logarithmic factors in eq. (4.36) obviously yield infinite expasion coefficients.

However using instead the form eq. (4.23), which is self dual and reduces to eq. (4.36) in

the dilute limit solves this problem. This form of the Braun Hamiltonian has a chance to

be unitary, and we will concentrate on this question.

We rewrite the Braun Hamiltonian eq. (4.23) in a more convenient form:

HB = −1

γ

[
(1− P̄ )P − (1− P̄ )2P + (1− P̄ )P 2 − P 2

]
(4.37)

The action on the projectile and the target is obviously symmetric, as the Hamiltonian is

self dual under the transformation P → P̄ .

e∆HB |n̄〉 =

[
1 +

∆

γ

[
1− (1− γ)n̄

]2] |n̄〉 − ∆

γ

[
1− (1− γ)n̄

] [
2− (1− γ)n̄

]
|n̄+ 1〉

+
∆

γ

[
1− (1− γ)n̄

]
|n̄+ 2〉 (4.38)

〈m|e∆HB =

[
1 +

∆

γ
[1− (1− γ)m]2

]
〈m| − ∆

γ
[1− (1− γ)m] [2− (1− γ)m] 〈m+ 1|

+
∆

γ
[1− (1− γ)m] 〈m+ 2| (4.39)

This is a nasty surprise. Now the evolution of both, projectile and target is non-unitary.

In fact the lack of unitarity is there for arbitrary number of dipoles m and n̄.

We may hope that modifying the Braun Hamiltonian with an extra P̄ 2P 2 term could

improve the situation. However, it does not bring about complete redemption. Consider

H̄B = HB −
1

γ
P̄ 2P 2 = −1

γ

[
P̄P−P̄P 2−P̄ 2P+P̄ 2P 2

]
= −1

γ

[
(1−P̄ )−(1−P̄ )2

]
[P−P 2]

(4.40)

Now we obtain:

e∆H̄B |n̄〉 = |n̄〉 − ∆

γ

[
1− (1− γ)n̄

]
(1− γ)n̄

{
|n̄+ 1〉 − |n̄+ 2〉

}
(4.41)

〈m|e∆H̄B = 〈m| − ∆

γ
[1− (1− γ)m] (1− γ)m

{
〈m+ 1| − 〈m+ 2|

}
(4.42)

Unfortunately this is as non-unitary as the BK evolution with the slight modification of the

approach to saturation. It is not difficult to show that the nonunitarity cannot be cured

by adding the four Pomeron vertex with any coefficient.
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5 Playing with toys II: making the toy world a better place

It may seem that our modification of the commutation relations was in vain as it did not

solve the problem of non-unitary evolution. However, as it happens often, good deeds get

rewarded. In this section using the correct commutation relations we will be able to find

a Hamiltonian which has the correct dense-dilute limit, is self dual and produces unitary

evolution of both, the projectile and the target.

5.1 Unitarity regained

The discussion of the previous section does not necessarily mean that we are doomed to

live with non-unitary evolution. There is one thing that we have so far implicitly accepted,

namely the form of the BK/Braun hamiltonian in terms of the Pomeron operators. This

is so even though we have not derived it directly. What is derivable from QCD is the

Hamiltonian in terms of P and P †, rather than P and P̄ . Since P † and P̄ are only

proportional to each other in the dilute limit, our use of the BK and Braun Hamiltonians

away from this limit is not justifiable. We do know however, that the correct unitary

Hamiltonian (if it exists) has to reduce to the HBK in the limit of small P̄ . We will now

attempt to modify the BK Hamiltonian in a way that makes it unitary, but still reduces

to the original HBK when expanded to linear order in P̄ .

First, we express the P † in terms of P̄ . To do this recall that P † should annihilate a

dipole when acting on the wave function. Using eq. (4.30) we can write

P † =
d

dΦ
eΦ =

1

γ
ln(1− P̄ )

1

1− P
; P̄ † = −1

γ
e−γ

d
dΦ Φ =

1

γ

1

1− P̄
ln(1− P ) (5.1)

Thus the BK Hamiltonian expressed in terms of P and P̄ is

HBK = P †
[
P − P 2

]
=

1

γ
ln(1− P̄ )P (5.2)

We can also conveniently write its dual (the mean field approximation to the KLWMIJ

Hamiltonian) as

HKB =
[
P̄ − P̄ 2

]
P̄ † =

1

γ
P̄ ln(1− P ) (5.3)

In the above equations for simplicity we have used ln(1 − γ) ≈ −γ, since γ ∼ α2
s � 1.

To define the Braun Hamiltonian we have to add these two and subtract the BFKL

limit. The simplest analog of the BFKL Hamiltonian is the leading order expansion of

either one of eq. (5.2) or eq. (5.3) in Φ and d/dΦ

H1
BFKL = − d

dΦ
Φ = −1

γ
ln(1− P̄ ) ln(1− P ); (5.4)

We thus can write an analog of Braun Hamiltonian as

H1
B =

1

γ

[
ln(1− P̄ )P + P̄ ln(1− P ) + ln(1− P̄ ) ln(1− P )

]
(5.5)
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This Hamiltonian is clearly non-unitary. One does not need to perform any calculation to

understand this. Our unitarity test of the projectile evolution amounts to the following

simple three step procedure:

1. Act with the Hamiltonian on a monomial (1 − P )n;

2. Expand the result in powers of (1 − P );

3. Check that the coefficients of all terms (1 − P )m; m 6= n are positive, and the

coefficient of (1− P )n is negative.

For the target the same procedure is applied to (1 − P̄ )n.

This set of conditions can be formulated as the following requirements on the Hamil-

tonian. Write the Hamiltonian as a function of d = 1− P and d̄ = 1− P̄ ; H(d, d̄). When

the hamiltonian is commuted through d̄n to the right, each operator d turns into one-on-n

scattering amplitude, a positive number smaller than one, which we can also denote as d.

Thus our requirements can be written as

H(d, d̄ = 0) < 0;
∂k

∂d̄k
H(d, d̄)|d̄=0 > 0 for any d : 0 < d < 1; k ≥ 1 (5.6)

H(d = 0; d̄ < 0);
∂k

∂dk
H(d, d̄)|d=0 > 0 for any d̄ : 0 < d̄ < 1; k ≥ 1

It is obvious that neither H1
B, nor HBK nor HKB is unitary, since they all contain

logarithmic factors. Thus step 2 in our procedure fails, as it gives infinite coefficients.

Equivalently, the derivatives of the Hamiltonian at d̄ = 0 diverge.

However the proposal eq. (5.5) for the Braun Hamiltonian is not unique. It was written

on the basis of two requirements: it should be self dual under P ↔ P̄ ; and for small P̄ (P )

it should reduce to HBK (HKB). It is in fact possible to write down a Hamiltonian that

satisfies these requirements, as well as the unitarity constraint:

HUTM = −1

γ
P̄P (5.7)

where UTM stands for “Unitarized Toy Model”. The fact that it is self-dual is evident.

Expanding P̄ to linear order in P †, using eq. (5.1) leads to the BK Hamiltonian, eq. (5.2).

To check the unitarity we consider:

e∆HUTM |n̄〉 =

[
1− ∆

γ
[1− (1− γ)n̄]

]
|n̄〉+

∆

γ
[1− (1− γ)n̄]|n̄+ 1〉 (5.8)

This evolution is clearly unitary. Due to self duality, it is clear that the evolution of the

projectile wave function is unitary as well. Interestingly it also exhibits the saturation

behavior very similar to the one that is expected from the real QCD evolution, namely at

large n̄, the change in the wave function is independent of the number of dipoles n̄. In

this respect it contrasts strongly with eqs. (4.16) and (4.32), which were also unitary. In

the standard BK evolution of the projectile eq. (4.16) the wave function never saturates,

meaning the rate of growth of number of dipoles is proportional to the number m of dipoles
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in the state even for very large m. This is of course the well known property of the BK

evolution, where the projectile state evolves according to the perturbative dipole model

and saturation of the scattering amplitude is only due to the multiple scattering effects.

Eq. (4.32) on the other hand is completely different. Its evolution is “oversaturated”, in

the sense that for large n̄, the wave function does not evolve at all. Clearly this cannot be

a reflection of a QCD-like dynamics.

An interesting and very appealing property of the UTM Hamiltonian, is that one can

arrive at it either from BK by expanding P † to leading order in P̄ , or from KB by expanding

P̄ † to leading order in P , or indeed from BFKL by using both expansions.

Having found a unitary evolution it is interesting to explore its properties. In the next

subsection we provide a solution of the classical equations that follow from HUTM .

5.2 Equations of motion and the scattering amplitude

The general form of equation of motion follows from

dP

dη
=
[
H,P

]
; and

dP̄

dη
=
[
H, P̄

]
(5.9)

With the Hamiltonian HB we get

dP

dη
=
(
1− P̄

)
(1− P ) P ;

dP̄

dη
= − (1− P )

(
1− P̄

)
P̄ ; (5.10)

Interestingly, although it is not obvious from the form of the Hamiltonian eq. (5.7), the evo-

lution has the same fixed points as in two transverse dimensions (0, 0), (1, 0), (0, 1), (1, 1).

Since the Hamiltonian is conserved, we have

P̄P = Const(η) ≡ α (5.11)

The general solution to eq. (5.10) takes the form:

P (η) =
α+ βe(1−α)η

1 + βe(1−α)η
; P̄ (η) =

α
(

1 + βe(1−α)η
)

α+ βe(1−α)η
; (5.12)

where the parameters β and α should be found from the boundary conditions:

P (η = 0) = p0; P̄ (η = Y ) =
α

P (η = Y )
= p̄0 (5.13)

One can see that for p0 > p̄0 and e(1−α)Y � 1, eq. (5.13) leads to

β =
p0 − α

1 − p0
=
p0 − p̄0

1− p0
; α = p̄0; (5.14)

For a symmetric boundary condition p0 = p̄0 eq. (5.13) give P (0) = P̄ (Y ) and the solution

takes the form

P (η) =
α+
√
αe(1−α)(η−Y/2)

1 +
√
αe(1−α)(η−Y/2)

(5.15)

P̄ (η) =
α
(
1 +
√
αe(1−α)(η−Y/2)

)
α+
√
αe(1−α)(η−Y/2)

P (η) = P̄ (Y − η)
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This solution has a distinct BFKL-like regime. Let us take α� 1 and e−Y/2 = a
√
α with

1/α� a� 1. We then have

P (η) ≈ aαeη (5.16)

The exponential “BFKL” growth continues until the Pomeron reaches the value P (Y ) =

1/(1 + a).

In figure 1 we have plotted numerical solutions to eq. (5.10) that correspond to different

initial conditions. The BFKL-like regime is clearly seen on figure 1-a. All the solutions

clearly show that P grows towards positive rapidities, while P̄ grows towards negative

rapidities. This is of course a direct consequence of the conservation of P̄P , and thus the

unitarized evolution indeed cures the peculiarity of the evolution of P̄ .

However we learn from these solutions that our initial expectation that for large Y at

intermediate rapidities the solution should be dominated by the fixed point (1, 1) is not

warranted. Although both P and P̄ grow towards midrapidity, there is no value of rapidity

at which they are simultaneously close to unity, unless it is forced by the initial conditions.

In fact, once we account for the conservation of P̄P , we get a very different view of

the fixed point structure of the evolution. Plugging the relation eq. (5.11) in eq. (5.10) we

obtain the following equations:

dP

dη
= (P − α) (1− P ) ;

dP̄

dη
= −

(
P̄ − α

) (
1− P̄

)
(5.17)

The fixed points (0, 0), (0, 1) and (1, 0) are not present in these equations, which means

that neither one of them is reachable at α 6= 0. The point (1, 1) is also unreachable by

the evolution for α 6= 1. Eq. (5.17) has only two interesting fixed points: (1, α) and (α, 1).

Since for any physical initial condition P (0) > α, the asymptotics at η → ∞ is always

dominated by the fixed point (P = 1, P̄ = α), while for η → 0 the point (P = α, P̄ = 1)

is approached. Whether either one of these points is reached during the evolution to finite

Y depends on the initial conditions. As illustrated on figure 1-a,b for symmetric initial

condition the solution approaches very close to the fixed points at both ends, while for

asymmetric initial conditions this is not the case, and only the vicinity of one fixed point

is reached. In figure 1-c–f this is the point (1, α) at η → Y . There are of course mirror

solutions where instead the point (α, 1) is approached at η → 0.

Another noteworthy property of the solution is, that for strongly asymmetric initial

conditions, the smaller of the two Pomerons remains small essentially over the whole evo-

lution. This is clearly seen in figure 1-d. The physical reason for that is the saturation

effects in the wave function. As we have seen in eq. (5.8), when the target wave function

contains many dipoles (P is close to unity), the rate of increase of the dipole number is

constant and independent on the number of dipoles . Consider the dependence of P̄ on η.

As we have discussed in detail in the previous sections, the classical solution for 1 − P̄ (η)

is the scattering amplitude on the projectile of the target with an extra dipole inserted

at rapidity η. Inserting an extra dipole at rapidities η into the target wave function in

principle affects the evolution of the target wave function between rapidity η and rapidity

Y , at which the target scatters on the projectile. However, since in the dense regime the
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rate of the evolution does not depend on the number of dipoles, there is in fact almost no

dependence on η as long as at that η the target is dense (P is close to unity). Thus P̄ is

a nontrivial function of η only in the rapidity interval in which P significantly differs form

unity. This is clearly illustrated on figure 1-d.

Clearly the classical solutions of eq. (5.10) determine the scattering amplitude in the

semiclassical regime. To see this explicitly we employ the path integral representation for

the S-matrix. The UTM Pomeron Lagrangian is

LUTM =

∫ Y

0
dη

[
1

γ
ln(1−P )

∂

∂η
ln(1−P̄ )−H

]
=

1

γ

∫ Y

0
dη

[
ln(1−P )

∂

∂η
ln(1−P̄ )+P̄P

]
(5.18)

The S-matrix is then given by

SUTMmn̄ (Y ) =

∫
dP (η)dP̄ (η)e

1
γ

∫ Y
0 dη

[
ln(1−P ) ∂

∂η
ln(1−P̄ )+P̄P

]
(1− P (Y ))m(1− P̄ (0))n̄ (5.19)

In the classical approximation3

SUTMmn̄ (Y ) = e
1
γ

∫ Y
0 dη

[
ln(1−p) ∂

∂η
ln(1−p̄)+p̄p

]
[1− p(Y )]m[1− p̄(0)]n̄|p(0)=1−e−γn̄; p̄(Y )=1−e−γm

= [1− p(Y )]me
1
γ

∫ Y
0 dη[ln(1−p̄)+p̄]p

(5.20)

where p(η) and p̄(η) are solutions of the classical equations of motion with the boundary

conditions specified in eq. (5.20).

It is interesting to compare the scattering amplitude given by this expression to that

obtained from the BK equation. For the latter we have

SBKmn̄ (Y ) =

∫
dP (η)dP̄ (η)e

1
γ

∫ Y
0 dη

[
ln(1−P ) ∂

∂η
ln(1−P̄ )−ln(1−P̄ )PP

]
(1− P (Y ))m(1− P̄ (0))n̄

(5.21)

In the classical approximation

SBKmn̄ (Y ) = e
1
γ

∫ Y
0 dη

[
ln(1−p) ∂

∂η
ln(1−p̄)−ln(1−p̄)p

]
[1−p(Y )]m[1−p̄(0)]n̄|p(0)=1−e−γn̄; p̄(Y )=1−e−γm

= [1−p(Y )]m (5.22)

Note that the solution for P̄ is irrelevant for the BK amplitude, which is determined

entirely by P (Y ). On the other hand the scattering amplitude in UTM does depend on

P̄ . Nevertheless the two models should be close in the regime where the BK evolution

applies. An example of numerically computed amplitudes for BK and UTM with generic

initial conditions is presented on figure 2 for one projectile dipole (m = 1), A = 1− S1n̄.

The difference between the two amplitudes is indeed quite small, reaching the max-

imum of about ∼ 3.5% in the pre-saturation region. However, close to the saturation,

the difference between the S- matrices of BK and UTM are quite significant, since the

S-matrix itself is close to zero. In other words, unitarization significantly modifies the way

the S-matrix approaches zero, i.e. the zero dimensional “Levin-Tuchin law” [81].

To illustrate this fact we plot the relative difference of the S-matrix between the two

calculations in figure 3. We expect that the effect of the unitarization should be even more

pronounced in less inclusive observables like particle multiplicity.

3In principle, we might be able to also compute quantum corrections to the classical result.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of numerical solutions of eq. (5.10) for Y=10. Considering dipole-dipole

amplitude γ = 0.03 we can assign the following interpretation for these figures. Figure 1-a: dipole-

dipole scattering; figure 1-b: scattering of two identical heavy nuclei; figure 1-c: dipole-heavy

nucleus scattering; figure 1-d: light nucleus-heavy nucleus scattering; figure 1-e: scattering of two

heavy but different nuclei; and figure 1-f: very heavy - heavy nucleus scattering.
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(a) (b)

Figure 2. Scattering amplitude A = 1 − S1n̄ computed for the BK (solid line) and the UTM

(dotted line) evolutions for scattering of a single dipole an a large target (about ten dipoles) with

γ = 0.03. Figure 2-b zooms into the rapidity interval 2 < Y < 4.

Figure 3. Difference between the scattering matrices for the BK and the UTM evolutions normal-

ized to the BK evolution for scattering of a single dipole on a large target with γ = 0.03.

6 Two transverse dimensions?

The next natural step is to try and generalize the considerations of the previous section to

the real world of two transverse dimensions.

The logic of changing the commutation relations between P and P̄ is the same as in the

toy model. Thus the correct commutation relations between the Pomeron and its dual are

[1− P (x, y)][1− P̄ (u, v)] = (1− γ(xy, uv))[1− P̄ (u, v)][1− P (x, y)] (6.1)

In principle, the commutation relations (6.1) should be derivable in the large NC limit from

the definitions (2.3).

In the following we will assume that P (xy) = P (yx), and neglect the possible contri-

bution of Odderon to dipole scattering. This allows the following representation

P (x, y) = 1− exp{−Φ(x, y)}; P̄ (x, y) = 1− exp

{∫
u,v
γ(xy;uv)

δ

δΦ(u, v)

}
(6.2)
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Here like in the zero dimensional case we neglected the difference between γ and ln(1− γ),

since γ = O(α2
s) � 1. Now recall that the function γ satisfies (2.13). Therefore we

can write

P †(x, y) =
32π2

α2
s

1

d(x, y)
∇2
x∇2

y[ln d̄(x, y)] (6.3)

The BK hamiltonian thus can be written as

HBK =
16πNC

αs

∫
x,y,z
∇2
x∇2

y[ln d̄(x, y)]K(x, y, z)

[
1− d(x, z)d(z, y)

d(x, y)

]
(6.4)

This is the representation of the BK Hamiltonian in terms of d and d̄. We stress that

this is the original, unaltered BK Hamiltonian but written in terms of d̄ rather than P †.

When written in this form, it may seem that the action of this Hamiltonian is non-

unitary both on the projectile and the target, since it contains a logarithm of d̄ as well as

the factor 1/d, and both cannot be expanded in Taylor series. However a little reflection

shows that the action on the projectile is in fact unitary. This is because the operator

∇2
x∇2

y[ln d̄(x, y)] annihilates the projectile wave function unless it contains a dipole with

coordinates (x, y). In the latter case this dipole compensates the explicit factor 1/d(x, y)

and leads to an expression expandable in Taylor series in d, since the original wave function

itself is expandable. However the action of HBK on the target is indeed non-unitary due

to the logarithmic factor just like in the zero dimensional model.

From this point on one would like to modify this Hamiltonian in the same spirit as

done in the previous section. The result one aspires to is a Hamiltonian which is

A. Self dual under transformation d→ d̄;

B. Unitary — acting on either projectile or target wave function with fixed number of

dipoles it creates additional dipoles with positive probability, while the total proba-

bility does not change;

C. When expanded in P †(x, y) to linear order reproduces HBK .

We can satisfy conditions A and C by the following ansatz

HB =
16πNC

αs

∫
x,y,z,x̄,ȳ,z̄

K(x̄, ȳ, z̄)

[
1− d̄(x̄, z̄)d̄(z̄, ȳ)

d̄(x̄, ȳ)

]
× L(x̄ȳ, x, y)K(x, y, z)

[
1− d(x, z)d(z, y)

d(x, y)

] (6.5)

with the operator L chosen such that∫
x̄,ȳ,z̄

M(x̄, ȳ, z̄)
[
1− d̄(x̄, z̄)− d̄(z̄, ȳ) + d̄(x̄, ȳ)

]
L(x̄ȳ, xy) = ∇2

x∇2
yd̄(x, y) (6.6)

However we were unable to show that this Hamiltonian generates unitary evolution. The

difficulty resides in the non-locality of the relation between P̄ (x, y) and P †(x, y). A neces-

sary (although not sufficient) condition for unitarity is that after acting on the target wave

function, the coordinates (x̄, ȳ) should become equal to coordinates of one of the dipoles
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contained in the wave function. If this is the case, then the factor 1/d̄(x̄, ȳ) cancels, and

the result is expandable in Taylor series. However the mutual non-locality of P † and P̄

makes this very difficult to achieve. Perhaps some additional physical insight is needed to

resolve this question.

We are therefore forced to postpone this problem until better times.

7 Conclusions

In this paper we have examined the question of the s-channel unitarity of the QCD Reggeon

Field Theory. We have shown, starting from the QCD definition of scattering amplitudes,

how the requirement of unitarity of the QCD evolution should be reflected in the action of

RFT Hamiltonian on the projectile and target wave functions.

Our finding is that the action of the BK (and JIMWLK) Hamiltonian is unitary on

the projectile wave function, but violates unitarity of the target wave function. The Braun

Hamiltonian, which is a self dual extension of the BK Hamiltonian, turns out to violate

unitarity of both, the projectile and the target. This unitarity violation is small in the

regime where the respective Hamiltonians are applicable. However the peculiar behavior of

the solutions to Braun Hamiltonian at large rapidities is closely related to this violation of

unitarity. Recall that classical solutions to the Braun equations of motion bifurcate beyond

some critical rapidity Yc [56]. Starting at Yc, the dependence of either P̄ or P on η becomes

unphysical, indicating large unitarity violation. Therefore starting from this total rapidity

the Braun evolution is not trustworthy as unitarity violating effects are large.

To elucidate the unitarity considerations we have discussed toy models of RFT in zero

transverse dimensions. We have found that with correct commutation relations between

the Pomeron and its dual, P and P̄ it is possible to modify the Braun evolution to make

it unitary. This unitarized toy model (UTM) has many desirable properties. It is self

dual, just like the Braun Hamiltonian is, reduces to BK evolution in the limit of dilute

projectile and evolves both the projectile and the target wave functions in a unitary way.

It also exhibits approach to saturation similar to that we expect in QCD, namely for large

dipole density the rate of growth of the dipole number becomes independent of the dipole

number itself.

We found analytic solution of the classical equations of motion of UTM and compared

the scattering amplitude calculated in classical approximation to that of the BK model. As

expected, the evolution in UTM is somewhat slower, as it takes into account the saturation

effects in the projectile wave function. For dilute projectile the difference between the scat-

tering amplitude calculated in BK and UTM models is quite small, but the pre-asymptotic

behaviour differs significantly in the saturation regime.

In the two dimensional case we have provided the corrected commutation relations

between P and P̄ valid beyond the dilute limit. Unfortunately so far we were unable

to find a modified unitarized version of the Braun Hamiltonian in QCD. This is left for

future work.

Finally we stress that our focus in this paper was on the s-channel unitarity. For

the RFT to be fully consistent, it has to be t-channel unitary as well. The BFKL and

– 31 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
1

Braun Hamiltonians satisfy the t-channel unitarity constraints by construction, however

their applicability is limited to scattering of dilute systems. On the other hand the BK and

JIMWLK Hamiltonians are applicable to scattering processes involving one dilute and one

dense system, but they lack the t-channel unitarity as discussed in [57]. It appears that

self duality of a Hamiltonian ensures the t-channel unitarity of the RFT. Thus in order

to generalize the RFT approach to nucleus - nucleus collisions it is imperative to find a

s-channel unitary and self dual extension of the BK and Braun Hamiltonians.
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