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Abstract: One of the methods to calculate tree-level multi-gluon scattering amplitudes

is to use the Berends-Giele recursion relation involving off-shell currents or off-shell ampli-

tudes, if working in the light cone gauge. As shown in recent works using the light-front

perturbation theory, solutions to these recursions naturally collapse into gauge invariant

and gauge-dependent components, at least for some helicity configurations. In this work,

we show that such structure is helicity independent and emerges from analytic properties

of matrix elements of Wilson line operators, where the slope of the straight gauge path

is shifted in a certain complex direction. This is similar to the procedure leading to the

Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the

Wilson line slope instead of the external momenta. While in the original BCFW procedure

the boundary integrals over the complex shift vanish for certain deformations, here they are

non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized

as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invari-

ant component given by a matrix element of a straight Wilson line plus a reminder given by

a sum of products of gauge invariant and gauge dependent quantities. We give several ex-

amples realizing this relation, including the five-point next-to-MHV helicity configuration.
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1 Introduction

In applications of perturbative Quantum Chromodynamics one faces the challenge of cal-

culating parton-level scattering amplitudes, defined as the on-shell limit of amputated mo-

mentum space Green’s functions of quarks, gluons and possibly other colorless particles.

There has been an impressive progress in calculating loop corrections (see e.g. [1, 2]) as well

as tree-level amplitudes with many external lines. In fact, using sophisticated computer

codes, the latter can be calculated automatically for any Standard Model process and large

number of external legs [3–6]. For the purpose of the ongoing discussion, let us concentrate

on the pure Yang-Mills section of the Standard Model. The main issue here is efficiency:

due to the gluon self interactions, the number of Feynman diagrams grows extremely fast

with the order of the strong coupling and for many external legs the expressions that have

to be evaluated are enormous. Fortunately, there are alternative methods to represent

amplitudes and simplify their structure. The so-called color or dual decomposition [7, 8]

is one of the essential examples. It reduces the problem to evaluating the color-ordered
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amplitudes, consisting of planar diagrams with a fixed order of the external legs. Further

improvement of the calculation is achieved by means of recursion relations, for instance the

so-called Berends-Giele recursion relation [9]. It relates a N -leg off-shell current JµN to the

off-shell currents with a smaller number of legs, Jµi , i < N . The lower-order currents are

used multiple times in the recursion but need to be evaluated only once. The N -leg on-shell

scattering amplitude is obtained by simply taking the on-shell limit of the current JµN .

Using the Berends-Giele recursion relation together with the helicity spinor formal-

ism [8], certain amplitudes have been shown to have an extremely simple form for an

arbitrary number of legs. In particular, the famous Maximally Helicity Violating (MHV)

amplitudes are expressed by just one single term [10]. The reason that an enormous num-

ber of terms collapses into a single one can be attributed to gauge invariance. Clearly, the

ordinary gauge non-invariant Feynman diagrams are not the most efficient way of calcu-

lating the gauge invariant on-shell amplitudes. The beautiful illustration to this issue is

provided by the Britto-Cachazo-Feng-Witten (BCFW) recursion relation [11, 12]. We shall

recall it in some detail later on. Here, let us only remind that the on-shell amplitude can

be expressed as a sum of contributions consisting of products of two lower order on-shell

amplitudes after shifting two external momenta by a proper complex vector, while preserv-

ing both on-shellness and momentum conservation. This highly non trivial relation has its

roots in the fact that gluon amplitudes vanish when two external momenta tend to infinity

in certain complex directions [13]. The important fact here is that the BCFW decomposi-

tion involves on-shell amplitudes, which are gauge invariant objects. Such a decomposition

proves to be very efficient. Another more efficient way to construct amplitudes, instead of

using ordinary Feynman diagrams, is the decomposition by means of the MHV scattering

amplitudes themselves, which are continued analytically off-shell in a special way [14].

The on-shell scattering amplitudes have some limitations though, as gluons and quarks

are never free and cannot be directly observed in an experiment. Therefore there has

been considerable interest in the systematic computation of more general objects, off-shell

matrix elements, which of course can be reduced to the on-shell amplitudes. Such objects

have a wider range of applicability, for example they can be also used in the Berends-

Giele relations. In addition, the off-shell matrix elements are important ingredients for

the so-called kT (or high energy) factorization [15–17], which is recently gaining more

attention in the context of phenomenology of hadronic collisions. The reason is that such

generalized factorization theorems, together with off-shell matrix elements and the so-called

unintegrated parton densities, allow for a more accurate description of the kinematics of

different processes, in particular in cases with more exclusive final states. The off-shell

scattering amplitudes, however, must be computed with a method that guarantees their

gauge invariance. A systematic way of constructing off-shell gauge invariant amplitudes

for high energy scattering was constructed in [18] and later on more efficient methods to

calculate such amplitudes were developed [19–21]. Let us note that the high energy off-

shell amplitudes are different from the ones used in the Berends-Giele relation. Namely, in

the former case the off-shell gluons have longitudinal polarization, while in the Berends-

Giele relation also physical transverse polarizations are involved. It turns out that off-

shell currents with any polarization can be extended to be gauge invariant using matrix

– 2 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
6

elements of straight Wilson lines [20], with the slope of the Wilson line corresponding to

the polarization vector of the off-shell gluon. This construction guarantees that the Ward

identities are satisfied with respect to the on-shell legs.

A parallel approach to the computation of amplitudes is realized by the light-front

quantization formalism [22, 23]. The corresponding light-front Feynman rules involve by

construction only on-shell lines (the off-shell propagators are traded for energy denomina-

tors). In refs. [24, 25] the light-front techniques were used to solve the light-front equivalent

of the Berends-Giele relation (the so-called cluster decomposition [26]) for certain helic-

ity configurations (see also [27] for a review of the light-front methods for amplitudes).

As a result, off-shell amplitudes with one off-shell leg and in the MHV-like configuration

were obtained. Curiously, the solutions for these off-shell scattering amplitudes obtained

in refs. [25] using the light-front methods feature a structure which resembles the BCFW

recursion.

In the present paper we shall elaborate on the solutions and recursions obtained in

refs. [25] and demonstrate that they are indeed of BCFW type, but in a more general

sense. Here comes the main and novel result of the present work: we discover that it is

a complex shift of the Wilson line slope in the matrix element that renders the relations

previously found using light-front techniques in [25], in a similar way as the complex shift of

the particle momenta renders the BCFW relations for the on-shell case. This method allows

for further generalizations of the results of [24, 25] to the case of different helicities. The

similarity to BCFW is structural, since the objects involved in this recursion are different:

the recursion includes both gauge dependent and gauge invariant off-shell objects, as we

shall elaborate later on. Another major difference of the derived relations with respect

to the usual BCFW recursion is the presence of additional terms, which are due to the

boundary contour integral and are not vanishing in the present case.

The issue of boundary terms in BCFW has received significant attention since the

inception of the result for pure Yang-Mills, particularly by Feng and collaborators. For

instance, [28] provides a nice conceptual interpretation of boundary contributions in the

BCFW recursion in terms of form factors of composite operators appearing in the operator

product expansion of the deformed amplitude. Also interesting recursive algorithms have

been obtained for the computation of boundary terms for on-shell scattering amplitudes [29,

30]: the idea is to exploit the same philosophy of the BCFW recursion relation, by studying

the pole structure of boundary terms and then pinning them down by additional complex

shifts. Neither algorithm works for the most general field theory, especially if negative

coupling constants are present, as for example in effective field theories, but as far as

Standard Model-type theories are concerned, they work fine. Neither of these algorithms,

however, can be applied to scattering amplitudes with off-shell legs. Concerning this issue,

we must mention the results in [31], where BCFW was studied for gluon off-shell currents

with and without an on-shell fermion pair, addressing the issue of gauge-dependence of the

results and the kind of boundary terms which show up in case the fermion pair is deformed.

The present paper is organized as follows. First, we shall review the Berends-Giele

and BCFW recursion relations (section 2), as well as the definition of the off-shell gauge

invariant amplitudes using Wilson lines (section 3) as these are the starting points for
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the derivation of our main result. In section 4 we show how to implement the complex

shift of the Wilson line slope and we derive the relations connecting off-shell currents with

fixed helicities with corresponding gauge invariant off-shell amplitudes. Next, in section 5

we apply the formulae to certain specific helicity configurations and demonstrate how the

relations previously obtained on the light-front can be recovered. Finally, in section 6 we

shall discuss more generally the meaning of the relations obtained in the present work.

2 Recursion relations

In order to set up the notation and set the stage for the main results of the paper, we shall

review in this section a few key results.

Let us start by recalling the Berends-Giele recursion relation for gluons. For a detailed

review we refer to [8]. For a color-ordered off-shell current (see figure 1, left) with gluon

polarization vectors ελii (λi = ±) and subject to the momentum conservation k1...N =

k1 + · · ·+ kN ,

Jµ
(
k1...N ; ελ11 , . . . , ε

λN
N

)
≡ Jµ (λ1...λN ) (k1...N ) , (2.1)

the recursion relation reads

Jµ (λ1...λN ) (k1...N ) =
−i
k21...N

{
N−1∑
i=1

V µαβ
3

(
k1...i, k(i+1)...N

)
J (λ1...λi)
α (k1...i) J

(λi+1...λN )
β

(
k(i+1)...N

)
+

N−2∑
i=1

N−1∑
j=i+1

V µαβγ
4

(
k1...i, k(i+1)...j , k(j+1)...N

)
× J (λ1...λi)

α (k1...i)J
(λi+1...λj)
β

(
k(i+1)...j

)
J
(λj+1...λN )
γ

(
k(j+1)...N

)}
. (2.2)

Here V3 and V4 are three-point and four-point gluon color-ordered vertices; the independent

momenta provided as arguments are outgoing, the remaining one incoming,

V µαβ
3 (k, p) = ig

[
gµα (−2k − p)β + gαβ (k − p)µ + gµβ (2p+ k)α

]
, (2.3)

V µαβγ
4 (k, p, q) = ig2

(
2gµβgαγ − gµαgβγ − gµγgαβ

)
. (2.4)

The one-leg currents are defined as Jµ
(
ki; ε

λi
i

)
= ελiµi . This recursion relation is schemat-

ically illustrated in figure 1 (right). The on-shell amplitude with all outgoing momenta is

obtained from (2.2) by means of the following reduction formula,

M(λ0λ1...λN ) (k0, k1, . . . , kN ) = ik21...N ε
λ0
0 · J (λ1...λN ) (k1...N )

∣∣∣
k1...N=−k0

, (2.5)

where k20 = 0.

In order to make contact with the previous works [24, 25, 32] which use the light-front

quantization techniques, let us consider the recursion (2.2) in the light-cone gauge. To this

end we introduce the light cone variables by defining two null vectors

η = (1, 0, 0,−1) , (2.6)

η̃ = (1, 0, 0, 1) , (2.7)
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i = 1

N − 1

N−i

=...N +

i=1 j= i+1

N−2 N−1

...

...

...i

j−i

N−j

Figure 1. Left: off-shell color-ordered current Jµ (k1...N ). Right: the Berends-Giele recursion

relation for off-shell currents.

which allow to decompose any four vector u as

uµ =
1

2
u+η̃µ +

1

2
u−ηµ + uµ⊥ , (2.8)

with uµ⊥ =
(
0, u1, u2, 0

)
≡ (0, ~u⊥, 0). In the chosen gauge, the polarization vectors have

the form

ε±µi = ε±µ⊥ +
~ε ±⊥ · ~ki⊥
ki · η

ηµ , (2.9)

where

ε±µ⊥ =
1√
2

(0, 1,±i, 0) . (2.10)

They satisfy the conditions ki · ε±i = η · ε±i = ε±i · ε±i = 0 and ε±i · ε∓i = −1. Let us note

that these relations hold irrespectively whether the momentum ki is on-shell or off-shell.

In the gauge we are using, the numerator of a propagator is

∑
λ=±

ελiµε
λ∗
iν = dµν (ki, η) = −gµν +

kµi η
ν + ηµkνi
ki · η

− ηµην

(ki · η)2
k2i . (2.11)

We may write a light-cone gauge analog of (2.2) as follows (for similar approach

see [33]). For any off-shell current Jµ we change the propagators to the light-cone gauge

propagators (2.11). This obviously changes the currents, as they are not gauge invariant,

but does not change the form of (2.2). In what follows, we will refer to these new currents

with the same symbol, as we will be dealing with them all through the rest of the paper.

For the new light-cone gauge currents we may write

J (λ1...λi)µ (k1...i) =
∑

λ1...i=±
ελ1...i µ1...i J (λ1...i→λ1...λi) (k1...i) . (2.12)

Above, the off-shell current with fixed external helicity projections is defined as

J (λ1...i→λ1...λi) (k1...i) = ελ1...i ∗ ν1...i

−i
k21...i

J
(λ1...λi)
(amp) ν (k1...i) , (2.13)

where J(amp) is the amputated current in the light-cone gauge. When the off-shell propaga-

tor k21...i is amputated in J (λ1...i→λ1...λi), the resulting object is called an off-shell amplitude.
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Contracting (2.2) with the polarization vector ε∗1...N , we finally get the following light-

cone analog of the Berends-Giele recursion for fixed helicities:

J (λ1...N→λ1...λN ) (k1...N ) =
−i
k21...N{ ∑

λ,λ′=±

N−1∑
i=1

V
(λ1...N→λλ′)
3

(
k1...i, k(i+1)...N

)
J (λ→λ1...λi) (k1...i) J

(λ′→λi+1...λN )
(
k(i+1)...N

)
+

∑
λ,λ′,λ′′=±

N−2∑
i=1

N−1∑
j=i+1

V
(λ1...N→λλ′λ′′)
4(LC)

(
k1...i, k(i+1)...j , k(j+1)...N

)
× J (λ→λ1...λi) (k1...i) J

(λ′→λi+1...λj)
(
k(i+1)...j

)
J (λ′′→λj+1...λN )

(
k(j+1)...N

)}
. (2.14)

The polarization-fixed gluon vertices in (2.14) are defined by contracting the three-

gluon (2.3) and four-gluon (2.4) vertices with the polarization vectors, the incoming leg

being contracted with a complex conjugated one. In addition, the four-gluon vertex has

to be modified due to the third term of (2.11). This term is proportional to k2, thus it

effectively gives the instantaneous interaction terms known from the light-front quantiza-

tion. These terms can be conveniently combined with four-gluon vertices. Such vertices

were also used in [33], although with a different momentum flow. We shall give the precise

form of V4(LC) in section 5, where we use it in an actual computation. As we mentioned,

the off-shell currents defined above are not gauge invariant. This manifests itself as the

lack of the Ward identities for on-shell legs,

J (λ→λ1...λi) (k1...i)
∣∣∣
ε
λj
j →kj

6= 0, j = 1, . . . , i . (2.15)

Obviously these Ward identities are restored in the on-shell limit (2.5).

Let us now consider two particular helicity configurations for which there exist a few

interesting results in the literature. For example, consider the + → + · · ·+ off-shell current.

While the on-shell scattering amplitudes with the ± → + · · ·+ helicity configurations

vanish [8], in the off-shell case only − → + · · ·+ is zero, whereas the other, + → + · · ·+,

does not vanish. For this helicity configuration the recursion (2.14) reduces to

J (+→+···+) (k1...N ) =
−i
k21...N

N−1∑
i=1

V
(+→++)
3

(
k1...i, k(i+1)...N

)
× J (+→+···+) (k1...i) J

(+→+···+)
(
k(i+1)...N

)
. (2.16)

It follows from V
(+→+++)
4 = 0 (see e.g. table 2 of [27]) and J (−→+···+) = 0, as mentioned

above. This recursion was solved in [24] using the light-front quantization approach. Earlier

the solution had been found in [9] and in [34, 35] as a solution to the self-dual Yang-Mills

theory. The solution turns out to be very compact and reads

J (+→+···+) (k1...N ) = − (−g)N−1
ṽ(1...N)1

ṽ1(1...N)

1

ṽN(N−1) . . . ṽ32 ṽ21
, (2.17)
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where we have defined the following convenient notation

ṽ(p)(r) = p · ε−r , (2.18)

for any two momenta p, r (for example ṽij = ki · ε−j , ṽ(1...i)(1...j) = k1...i · ε−1...j etc.).

The next less trivial example we want to discuss is the MHV helicity configuration

+→ −+ · · ·+. For that case, the recursion (2.14) reduces to

J (+→−+···+) (k1...N ) =
−i
k21...N{

N−1∑
i=1

V
(+→++)
3

(
k1...i, k(i+1)...N

)
J (+→−+···+) (k1...i) J

(+→+···+)
(
k(i+1)...N

)
+

N−1∑
i=1

V
(+→−+)
3

(
k1...i, k(i+1)...N

)
J (−→−+···+) (k1...i) J

(+→+···+)
(
k(i+1)...N

)
+
N−1∑
i=1

N−2∑
j=i+1

V
(+→−++)
4

(
k1...i, k(i+1)...j , k(j+1)...N

)
× J (−→−+···+) (k1...i) J

(+→+···+)
(
k(i+1)...j

)
J (+→+···+)

(
k(j+1)...N

)}
. (2.19)

Unlike for the helicity configurations considered before, this recursion is much more com-

plicated. Remarkably, the solution has been found using the light-front quantization tech-

niques [25] and is expressed by the following relation

J (+→−+···+) (k1...N ) = J̃ (+→−+···+) (k1...N )

− ig
N−1∑
i=2

J̃ (+→−+···+) (k1...i)
k+1...N

k+(i+1)...N ṽ(1...i)(i+1)

J (+→+···+)
(
k(i+1)...N

)
. (2.20)

The new object, J̃ , emerges in that expression due to successive resummations of the

light-front diagrams.1 It turns out that it has a simple one-term form

J̃ (+→−+···+) (k1...i) =
2gi−1

k21...i

(
k+1...i
k+1

)2 ṽ31(1...i)

ṽ(1...i)iṽi(i−1) . . . ṽ32 ṽ21
. (2.21)

Interestingly, the structure of (2.21) is the same (modulo the propagator) as the on-shell

MHV amplitude written in terms of products of helicity spinors [8]. This is apparent in

the light-front quantization formalism, where the variables ṽij are expressed by products of

massless helicity spinors 2 [24, 25]. One has to keep in mind that (2.21) is an off-shell object,

i.e. the momentum k21...i 6= 0. This remarkable fact was a trigger for further studies of the

gauge invariance properties of the relation (2.20). It was proved in [32] that the reason why

1The relation in [25] was actually obtained for slightly different objects, namely for amputated off-shell

currents (modulo a constant phase factor).
2Actually this connection holds here as well, but for ṽij involving on-shell particles only. In the light-front

quantization all lines are on-shell and this identification holds for any line.
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the auxiliary object (2.21) appearing in the solution to (2.19) has this extremely simple

form is that it is gauge invariant. More precisely, (2.21) turns out to be directly related to

the gauge invariant off-shell amplitude. These objects are commonly used in high energy

scattering processes [19, 21, 36, 37], but the idea can also be extended beyond the high-

energy limit of QCD. In ref. [20] a construction of tree-level gauge invariant amplitudes

with one or more off-shell legs was formulated in terms of matrix elements of straight

infinite Wilson line operators. In [32] it was shown that (2.21) originates in the gluonic

matrix elements of such Wilson line operators and thus is gauge invariant — which was

also demonstrated explicitly by verifying the Ward identities

J̃ (λ1...i→λ1...λi) (k1...i)
∣∣∣
ε
λj
j →kj

= 0, j = 1, . . . , i . (2.22)

The relation (2.20) has also one more intriguing property. Namely, when the sum on

the r.h.s. is moved to the l.h.s, the resulting recursion for J̃ has a similar structure to the

BCFW recursion. However, with respect to the latter it is modified by the presence of

another N -leg term, the current J . Actually, such terms are expected to show up in the

BCFW construction as boundary contributions, in the event that the amplitude does not

vanish for the complex auxiliary parameter z being taken to infinity.

To better understand the above statements, let us recall the derivation of the BCFW

recursion in some detail [11, 12]. In order to obtain the relation for an on-shell amplitude

M(λ1...λN ) (k1, . . . , kN ), one shifts two external on-shell momenta i, j by a complex four

vector z eµ, with eµ being a fixed four vector and z a complex number, such that they

remain on-shell and that total momentum conservation is preserved. Let us consider a

specific case where we shift the momenta 1 and N . We can construct a meromorphic

function

f (z) =
1

z
M(λ1...λN ) (k1 + ze, . . . , . . . , kN − ze) , (2.23)

which for |z| → ∞ vanishes like f (z) ∼ O
(
|z|−2

)
(or even faster) for a proper choices of

the shift vector eµ.

This fact is by no means obvious and was first proved in [12] for pure Yang-Mills

without and with fermions and more deeply explored in [13] also for more general theories.

Thanks to it, the integral of f (z) over a circle at infinity vanishes and the residue at

z = 0, which corresponds to the original (non-shifted) amplitude, can be expressed as the

sum over the remaining residues, which are relatively simple to calculate. The residues

are calculated at the poles zm originating in propagators which diverge when the shifted

momentum joining two sub-diagrams becomes on-shell. The scattering amplitude in the

BCFW decomposition can be then written as a sum over the residues as follows

M(λ1...λN ) (k1, . . . , kN ) =
N−3∑
m=2

∑
λm=±

M(λ1...λm) (k1 + zme, . . . , k1...m−1 + zme)

× 1

k21...m−1
M(−λm...λN ) (−k1...m−1 − zme, . . . , kN − zme) ,

(2.24)
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where the poles are equal to zm = k21...m−1/ (2e · k1...m−1). Here a few comments are in

order. The amplitudes on the r.h.s. of this relation involve complex momenta but are

on-shell and thus are gauge invariant. It is the most important difference between (2.2)

and (2.24). The former does not involve gauge invariant quantities and, thus, typically has

many more terms then appearing in (2.24). Let us stress that the relation (2.24) emerges

because the amplitude with shifted momenta vanishes at infinity; otherwise either a surface

term would be present or the integral over dz over the circle at infinity would be divergent.

Such a boundary term would have N legs, and — since the residue at z = 0 has N legs as

well — the recursion would not emerge. This looks like what happened in (2.20). However,

QCD amplitudes vanish for infinite momenta at some particular complex directions and

thus there are no boundary terms. This fact remains true for gauge invariant off-shell

amplitudes as well [21, 37].

Thus, the question we ask and answer in the present paper is: is it possible to re-

cover (2.20) by applying Cauchy’s theorem to a quantity depending on some variables

which get shifted into the complex plane? It turns out that it is possible and the quan-

tity undergoing the complex shift is the direction of the Wilson line used to define gauge

invariant off-shell amplitudes. We will elaborate on this in the following sections.

3 Gauge invariant off-shell currents

As we mentioned, the helicity-fixed off-shell currents appearing in the recursion rela-

tion (2.14) are not gauge invariant. One can however find a proper gauge invariant extension

using matrix elements of Wilson line operators [20]. We have already encountered such

object in eq. (2.20). Below we shall briefly recall the basic ideas more systematically.

Let us consider the following matrix element

M =

∫
d4x eik·x

〈
0
∣∣T {R a

e (x) eiSY-M
}∣∣ k1, λ1, a1; . . . ; kN , λN , aN〉c , (3.1)

where

R a
e (x) =

1

πg
Tr

[
taP exp

(
ig

∫ +∞

−∞
dsAbµ (x+ s e) eµtb

)]
, (3.2)

is the Wilson line operator. In the above definition, T is the time-ordering, P is the path-

ordering, SY-M is the Yang-Mills action, and |ki, λi, ai〉 are one-gluon on-shell states with

momentum ki, helicity λi and color ai. The subscript ‘c’ means that we take only connected

contributions. The path ordered exponential in the Wilson line operator is defined to

be an infinite straight line parametrized as zµ (s) = xµ + seµ with fixed four-vector e.

Such operator is explicitly gauge invariant with respect to small gauge transformations

and consequently such is its matrix element involving on-shell external particles. The

interpretation of the operator R a
e is such that its Fourier transform creates a ‘physical’

dressed off-shell gluon state with color charge a, ‘polarization’ e and momentum k, k2 6= 0.

Consequently (3.1) is related to the scattering amplitude of such a state to produce N

on-shell gluon states, more precisely

M = δ4 (k − k1 − . . .− kN ) δ (e · k) J̃ (e→λ1...λN ) (k) , (3.3)
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where J̃ is the gauge invariant off-shell current3 for a transition of a ‘dressed’ gluon with

‘polarization’ vector e to N on-shell gluon states with polarization vectors ελ1 , . . . , ε
λ
N . It is

the same object appearing in the recursion (2.20) as demonstrated in [32]. It can be shown

that the Ward identity for the current J̃ is proportional to the product k · e,

J̃ (e→λ1...λN ) (k)
∣∣∣
εi→ki

∼ k · e, (3.4)

and thus vanishes if the ‘polarization’ vector e is transverse to k. This is assured for the

whole matrix element M by the Dirac delta δ (e · k). Let us note that the objects in (3.3)

actually carry color indices. They were omitted for brevity as in the present work we always

work with color stripped quantities. We also set k = k1...N = k1 + · · ·+ kN .

Diagrammatically, the color-ordered off-shell current J̃ can be expressed as

N

. . .
=

. . .

NigJ̃ =

k1kN

k1...N

+

. . .

N −m

. . .

m

m = 1

N − 1

+ . . .

. . .

N −m− k

. . .

k

. . .

m

k = 1

N −m− 1

+

m = 1

N − 2

(3.5)

The double line represents a propagation of the dressed off-shell gluon state (the Wilson

line). Its propagator has the eikonal form i/ (p·e + iε), with p being the momentum flowing

through the line. The gluons couple to the Wilson line (the double-line) via an igeµ vertex.

The blobs represent the standard QCD contributions with the numbers indicating how

many external on-shell legs each of them features; indeed, they are precisely the off-shell

currents J · e of figure 1. The ellipses after the last plus sign represent contributions with

more blobs connected to the double line. More details on the above construction can be

found in [20].

The gauge invariance condition for J̃ , k1...N · e = 0, is satisfied by the polarization

vector ελ1...N1...N defined in (2.9). Thus all the J̃ (+→−+···+) (k1...i) currents in (2.20) are gauge

invariant. Let us note that, while the whole matrix element M is rather ill-defined for

e = ελ1...N1...N (e should be a constant and momentum independent vector, so that M is a

generalized function in the component of the off-shell momentum along e), the quantity of

interest, i.e. J̃ , is a perfectly valid object.

We will often encounter yet another class of objects, superficially similar to the above

gauge invariant currents J̃ . Imagine the diagrams (3.5) with some e which does not satisfy

e · k1...N = 0; this is in principle possible, as the definition of J̃ via the diagrams (3.5) does

not require that e is transverse. Then, obviously, the Ward identity (3.4) will not be fulfilled

3We change the notation here comparing to refs. [20, 32] in order to avoid further proliferation of notation

when introducing new objects needed in the present work. In fact, in the present paper we use the more

precise term: ‘gauge invariant off-shell current’ instead of ‘gauge invariant off-shell amplitude’. The relation

of the new notation to the one in [32] is J̃ = (ig)−1M̃.
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and such J̃ will not be gauge invariant. For example, we shall encounter objects where

e = ε1...m, m > i. Then k1...i · ε1...m 6= 0 and J̃ (ε1...m→−+···+) (k1...i) is not gauge invariant.

For a latter purpose, we find it is convenient to re-define such non-gauge-invariant currents

to include the leftmost double-line propagator:

J̃ ′ (e→λ1...λN ) (k1...N ) =
i

−k1...N · e
J̃ (e→λ1...λN ) (k1...N ) . (3.6)

We note that it is possible to define the above quantity in terms of matrix elements of a

Wilson line operator, similar to (3.1), (3.2), but with the semi-infinite path, e.g. spanning

from 0 to ∞. However, since in the present work we actually never use the direct defi-

nitions but rather the diagrammatic expressions like (3.5), we will not go into a precise

definition here.

4 Derivations

4.1 Prerequisities and the basic idea

In the following subsections we will derive the BCFW-like recursion relations we mentioned

in section 2. The basic idea is to investigate the analytic structure of J̃ (or J̃ ′) when we

perform a complex shift of the Wilson line slope

eµ → eµ (z) = eµ + ze′µ , (4.1)

with a certain fixed four vector e′. To this end, let us put the diagrammatic expression

(3.5) into an algebraic form,

i gJ̃ (e(z)→λ1...λN ) (k1...N ) = ig e (z) · J (λ1...λN ) (k1...N )

+

N−1∑
i=1

(ig)2 e (z) · J (λi+1...λN )
(
k(i+1)...N

) i

−k1...i · e (z)
e (z) · J (λ1...λi) (k1...i)

+

N−2∑
i=1

N−1∑
j=i+1

(ig)3 e (z) · J (λj+1...λN )
(
k(j+1)...N

) i

−k1...j · e (z)
e (z) · J (λi+1...λj)

(
k(i+1)...j

)
× i

−k1...i · e (z)
e (z) · J (λ1...λi) (k1...i) + . . . (4.2)

We see that, superficially, J̃ (e(z)→λ1...λN ) is linear in e (z) and thus behaves like O
(
z1
)
,

whereas J̃ ′ would behave like O
(
z0
)
. However, this critically depends on the choice of the

vector e′, i.e. the direction of the shift. For example, let us consider a choice for which we

could have

e′ · J (λi...λi+p)
(
ki...(i+p)

)
= 0, i = 1, . . . , N, p = 0, . . . , N − i. (4.3)

Is that choice possible for a constant, momentum independent e′? The answer is positive,

but the choice is not universal. For example, if all the helicity projections are the same, e.g.

λ1 = · · · = λN = + and either the polarization vectors are chosen as in (2.9) or they have

the same reference momentum, we may choose e′ = ε+p where p is any momentum. This
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works in any gauge. A better choice, suitable for any helicity configuration but working

only in the light-cone gauge introduced in section 2 is

e′µ = ηµ , (4.4)

which satisfies (4.3) because dµν (p, η) ην = 0 (recall that the off-shell currents J include

propagators and thus the dµν projectors). For the choice (4.4) and in the light-cone gauge,

one finds

J̃ (e(z)→λ1...λN ) ∼ O
(
z0
)

and J̃ ′ (e(z)→λ1...λN ) ∼ O
(
z−1
)
.

We underline that they are gauge-dependent quantities, as discussed at the end of section 3.

4.2 The general relations

Let us define a meromorphic function

f (z) =
1

z
J̃ (e(z)→λ1...λN ) , (4.5)

with the choice of e (z) given in (4.1), (4.4), i.e.

eµ (z) = eµ + zηµ , (4.6)

and J̃ defined in the light-cone gauge. As discussed in the previous section, with that

choice the only z dependence is in the denominators, more precisely in the double-line

propagators of (3.5). Thus the analytic structure of f (z) is extremely simple: besides the

obvious pole at z = 0 we have N − 1 poles, z1...i, corresponding to vanishing of a Wilson

line (the double-line) propagators

k1...i · e (z) = 0 ⇒ z = − k1...i · e
k1...i · η

≡ z1...i . (4.7)

Let us now consider an integral over dz over a contour CR parametrized as z = Reiφ,

φ ∈ [0, 2π), R→∞, enclosing all the poles of f (z) (figure 2). The integral is non-zero and

can be simply evaluated. As the dependence on z appears only in the denominators and

the first term of (4.2) does not have any denominators, it is the only non-vanishing term

for |z| → ∞. Consequently the integral reads∫
CR

dz f (z) = e · J (λ1...λN ) (k1...N ) = J (e→λ1...λN ) (k1...N ) . (4.8)

On the other hand, this integral is given by the sum of the residues at the poles (4.7).

In order to understand the structure of a residue, say at some pole z1...i, let us refer to the

expansion (3.5). We pick up the double-line propagator giving rise to the pole (denoted

by the shaded line in the figure below) and observe that the terms can be resummed into

individual blobs to the left and to the right of the propagator; graphically:

. . . =. . .

. . . . . .

k1...i

. . .

. . . . . .

k1...i

. . . . . .

1ii + 1N

(4.9)
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z

C∞

J

J̃

Figure 2. Analytic structure of the matrix element of the straight infinite Wilson line operator

with the slope shifted by a complex four-vector zη. The residue at z = 0 gives the gauge invariant

off-shell current J̃ , whereas the integral over the circle at infinity gives the off-shell current J .

where the multiple sum on the left expresses all the contributions containing the singular

double-line propagator. The above identity is most easily proved by expanding the r.h.s.

using (3.5) and comparing with the l.h.s. The blobs on the r.h.s. correspond to J̃ with the

Wilson line slope

e1...i = e + z1...i η . (4.10)

Thus, the residue reads

resz1...if(z) = ig

[
z − z1...i

z
J̃ (e(z)→λi+1...λN )

(
k(i+1)...N

)
× −i
k1...i · (e + zη)

J̃ (e(z)→λ1...λi) (k1...i)

]
z=z1...i

= ig J̃ (e1...i→λi+1...λN )
(
k(i+1)...N

) i

k1...i · e
J̃ (e1...i→λ1...λi) (k1...i) . (4.11)

Let us note that the rightmost J̃ is gauge invariant, as the condition k1...i · e1...i = 0 holds.

This is not the case for the leftmost J̃ current, however. The residue at z = 0 is obviously

the ‘unshifted’ current

resz=0 f (z) = J̃ (e→λ1...λN ) (k1...N ) . (4.12)

Having computed the residues and the boundary term, we can write the final relation

(figure 2):

J (e→λ1...λN ) (k1...N ) = J̃ (e→λ1...λN ) (k1...N )

+ ig

N−1∑
i=1

J̃ (e1...i→λi+1...λN )
(
k(i+1)...N

) i

k1...i · e
J̃ (e1...i→λ1...λi) (k1...i) . (4.13)

In respect of the general structure, this relation resembles the light-front eq. (2.20). Indeed,

as we shall see later on, when we specify the e vector and the helicities, it reproduces

the latter.

The relation (4.13) expresses the off-shell current J (e→λ1...λN ) in terms of matrix ele-

ments of Wilson line operators and is the central result of this paper. The off-shell current

emerged here as the boundary integral of the matrix element with shifted Wilson line slope.
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In a similar manner we can construct the relation for the amplitude with an additional

double-line propagator J̃ ′ defined in (3.6). For this case, however, the integral over the

contour C∞ vanishes. The price we pay for the vanishing of the boundary term is that now

we have an additional pole coming from the additional leftmost propagator that we have

included. Following the exact same procedure as before, we obtain the following relation

J̃ ′ (e→λ1...λN ) (k1...N ) = ig
N∑
i=1

J̃ ′ (e1...i→λi+1...λN )
(
k(i+1)...N

) i

k1...i · e
J̃ (e1...i→λ1...λi) (k1...i) ,

(4.14)

with J̃ ′
(
k(i+1)...N

)
= (ig)−1 for i = N .

We can provide an important interpretation of eq. (4.14) when we pull out the N -th

residue explicitly and multiply the equation by ik1...N · e:

J̃ (e→λ1...λN ) (k1...N ) = J̃ (e1...i→λ1...λN ) (k1...N )

+ ig
N−1∑
i=1

J̃ (e1...i→λi+1...λN )
(
k(i+1)...N

) ik1...N · e
k(i+1)...N · e1...i k1...i · e

J̃ (e1...i→λ1...λi) (k1...i) . (4.15)

Essentially, this equation gives a prescription to change the Wilson line slope from an

arbitrary vector e to a slope which assures that J̃ , the first term on the r.h.s., is gauge

invariant. A prescription of this type has been previously found for the MHV helicity

configuration in [32], but it had a much more complicated form, with multiple sums.

Let us close this section by summarizing the essential features of and the differences

between the two relations derived here, eqs. (4.13) and (4.15):

1. the first relation (4.13) expresses the current J̃ (e→λ1...λN ) as the off-shell current

(boundary term) J (e→λ1...λN ) plus a BCFW-type sum. This holds irrespectively of

gauge invariance, i.e. both whether e · k1...N = 0 or e · k1...N 6= 0.

2. the second relation (4.15), instead, holds only for e · k1...N 6= 0 and expresses

J̃ (e→λ1...λN ) as the gauge invariant off-shell current J̃ (e1...N→λ1...λN ) and the BCFW-

type sum similar to the one in (4.13), the only difference being in the intermediate

propagator.

These relations can be applied in different situations, as we illustrate below.

5 Applications

5.1 The off-shell current (+→ + · · ·+)

As a first straightforward application of the new relations, we consider the off-shell current

with helicity configuration + → + · · ·+. We have already discussed this case in section 2

and the solution was given in eq. (2.17). Here we will show how this solution can be simply

obtained using new relations (4.15) and (4.13).

First we shall solve (4.15) for a certain choice of e and use that solution inside (4.13)

to find the final answer. To this end, let us define a polarization vector for incoming
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‘plus’-helicity gluon

ε+ ∗ (p) = ε− (p) = ε−⊥ +
~ε −⊥ · ~p⊥
p · η η , (5.1)

for some auxiliary off-shell four-momentum p 6= k1...N . Let us now substitute e = ε− (p)

in (4.15). As with this choice we have

e1...i = ε− (p) + z1...iη = ε−⊥ +
~ε −⊥ · ~k⊥1...i
k1...i · η

η = ε−1...i , (5.2)

we get from (4.15)

J̃ (ε−(p)→+···+) (k1...N ) = J̃ (ε−1...N→+···+) (k1...N )

+ ig
N−1∑
i=1

J̃ (ε−1...i→+···+) (k(i+1)...N

) ik1...N · ε− (p)

k(i+1)...N · ε−1...i k1...i · ε− (p)
J̃ (ε−1...i→+···+) (k1...i) .

(5.3)

The gauge invariant off-shell current for the present helicity configuration is zero, as proved

in [32],

J̃ (ε−1...i→+···+) (k1...i) = J̃ (+→+···+) (k1...i) = 0, for i = 2, . . . , N . (5.4)

Therefore we are left with only one non-vanishing term on the r.h.s. of (5.3). For i = 1 we

have

J̃ (ε−1 →+) (k1) = ε−1 · ε+1 = −1 . (5.5)

Thus (5.3) becomes

J̃ (ε−(p)→+···+) (k1...N ) = g
ṽ(1...N)(p)

ṽ1(p)ṽ(2...N)1
J̃ (ε−1 →+···+) (k2...N ) , (5.6)

where ṽ has been defined in (2.18). This is a simple recursion relation which can be readily

solved by iteration. Evaluating a few first terms,4 it is easy to see that the candidate for

a solution is

J̃ (ε−(p)→+···+) (k1...N ) = − (−g)N−1
ṽ(1...N)(p)

ṽ1(p)

1

ṽN(N−1) . . . ṽ32ṽ21
. (5.7)

The fact that the above expression is indeed the solution can be promptly checked by

inserting this into (5.6). To this end, let us evaluate the (N − 2)-th order object appearing

on the r.h.s. of (5.6) using (5.7). We have

J̃ (ε−1 →+···+) (k2...N ) = − (−g)N−2
ṽ(2...N)1

ṽ21

1

ṽN(N−1) . . . ṽ32
. (5.8)

Inserting this back into (5.6) and noting that5 ṽ(2...N)1 = ṽ(1...N)1 we indeed obtain (5.7).

The expression in equation (5.7) is not gauge-invariant — and thus non-zero with the

present helicity configuration.

4See the appendix of [32].
5See the appendix of [32] also for many useful relations for ṽ quantities.
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The off-shell current (2.17) can be now easily recovered using (4.13) with e = ε−1...N
and the expression (5.8). Using again (5.4) and (5.5) we get

J (+→+···+) (k1...N ) = g
1

ṽ1(1...N)
J̃ (ε−1 →+···+) (k2...N ) = − (−g)N−1

ṽ(1...N)1

ṽ1(1...N)

1

ṽN(N−1) . . . ṽ32ṽ21
(5.9)

which agrees with (2.17). Note that in the two previous works [24] and [32] this result was

obtained with much more effort.

5.2 The off-shell current (+→ −+ · · ·+)

Let us now look at the next non-trivial off-shell current, that is the MHV configuration.

We set λ1 = − and the remaining helicities are all positive as before; remember that the

incoming gluon with + helicity involves ε−1...N polarization vector.

For the present case it is not possible to derive the form of the gauge invariant off-shell

current (2.21) from the relations (4.13) or (4.15) alone, as we shall explain in more detail

in section 6. However, we will show that the relation (2.20) obtained previously in [25, 32]

emerges from (4.13).

For the present helicity configuration the relation in eq. (4.13) reads

J (+→−+···+) (k1...N ) = J̃ (+→−+···+) (k1...N )

− ig
N−1∑
i=1

J̃ (ε−1...i→+···+) (k(i+1)...N

) i

ṽ(1...i)(1...N)
J̃ (+→−+···+) (k1...i) . (5.10)

Above we have shortened the notation for the gauge invariant off-shell currents by writing

J̃ (ε−1...i→−+···+) (k1...i) ≡ J̃ (+→−+···+) (k1...i) . (5.11)

Using the result (5.7) let us write

J̃ (ε−1...i→+···+) (k(i+1)...N

) 1

ṽ(1...i)(1...N)
=

(−g)N−i−1

ṽ(1...i)(1...N)

ṽ(i+1...N)(1...i)

ṽ(i+1)(1...i)

1

ṽN(N−1) . . . ṽ(i+2)(i+1)

= −KiN J
(+→+···+)

(
k(i+1)...N

)
, (5.12)

where

KiN =
k+1...N
k+i+1...N

1

ṽ(1...i+1)(i+1)
, (5.13)

and J is given in (5.9). In order to obtain the above relation we have used some of the

aforementioned properties of the ṽ quantities, in particular

ṽij = −k
+
i

k+j
ṽji . (5.14)

Plugging (5.12) into (5.10) and noticing that J̃ (ε−1 →−) (k1) = J̃ (+→−) (k1) = 0 we get

J̃ (+→−+···+) (k1...N ) = J (−→+···+) (k1...N )

+ g

N−1∑
i=2

J̃ (+→−+···+) (k1...i) KiN J
(+→+···+)

(
k(i+1)...N

)
, (5.15)
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V
(+→++)
3 (p, q) 2ig

k+p+q
k+p

ṽ∗pq

V
(−→−−)
3 (p, q) 2ig

k+p+q
k+p

ṽpq

V
(+→−+)
3 (p, q) −2ig

k+q
k+p+q

ṽqp

V
(−→−+)
3 (p, q) 2ig

k+p
k+p+q

ṽ∗pq

Table 1. Triple gluon vertices for some helicity configuration in the notation of the present paper.

V
(+→−++)
4(LC) (k, p, q) −ig2

(
1− (2q++k++p+)(k+−p+)

(k++p+)2

)

V
(−→−−+)
4(LC) (k, p, q) −ig2

(
1− (−q+−p+−2k+)(p+−q+)

(p++q+)2

)

Table 2. Four-gluon vertices appearing in the light cone Berends-Giele relation for helicity config-

urations used in the paper.

which is precisely (2.20) — the relation obtained in [25, 32], after taking into account the

different normalizations used here and in these references (see footnote 3).

5.3 Explicit calculations of lower order currents

In this subsection we present some explicit calculations of off-shell currents J and their

gauge invariant relatives J̃ . The choice of the currents is such that they constitute building

blocks which will allow to calculate the five-point off-shell next-to-MHV (NMHV) currents.

As we have already mentioned (see more extensive discussion in section 6.2), in general

it is not possible to calculate J or J̃ from our relations (4.13) itself. In what follows we shall

calculate the off-shell currents J using the Berends-Giele recursion and then we will find

J̃ from (4.13). For the lower order examples presented below this is actually an over-kill

as the same could be achieved by using directly (3.5). Nevertheless, this will provide a

consistency check. Moreover, some of the results for J̃ presented here are new.

Before we proceed, let us collect the triple and quartic gluon vertices in our notation

as needed in the calculations. They are gathered in table 1 and table 2.

5.3.1 (− → −−+)

Let us write (4.13) for this specific case. We get simply

J (−→−−+) (k123) = J̃(ε+123→−−+) (k123) + gJ̃(ε+1→−+) (k23)
1

k1 · ε+123
. (5.16)
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Let us calculate the off-shell current J first. Actually, it is more convenient to calculate

the off-shell amplitudes, i.e. to amputate the propagators. Thus we rewrite the formula

above as

M(−→−−+) (k123) = M̃(ε+123→−−+) (k123) + g
k2123
k223
M̃(ε+1→−+) (k23)

1

k1 · ε+123
, (5.17)

where

M (k) = ik2J (k) , (5.18)

and similar for M̃. Here M̃ in the second term is just

M̃(ε+1→−+) (k23) = ε+1µd
µν (k23, η)V3ναβ (k2, k3) ε

−α
2 ε+β3 = V

(−→−+)
3 (k2, k3) . (5.19)

Let us calculate M(−→−−+) (k123). There are four diagrams contributing

D1 = V
(−→−+)
3 (k12, k3)

−i
k212

V
(−→−−)
3 (k1, k2) , (5.20)

D2 = V
(−→−+)
3 (k1, k23)

−i
k223

V
(+→−+)
3 (k2, k3) , (5.21)

D3 = V
(−→−−)
3 (k1, k23)

−i
k223

V
(−→−+)
3 (k2, k3) , (5.22)

D4 = V
(−→−−+)
4(LC) (k1, k2, k3) . (5.23)

Using the expressions for the vertices and writing propagators as

k212 = −2ṽ12ṽ
∗
21 , (5.24)

k223 = −2ṽ23ṽ
∗
32 , (5.25)

we have

D1 = 2i
k+12
k+123

ṽ∗(12)3
−i

−2ṽ12ṽ∗21
2i
k+12
k+1

ṽ12 = −2ig2
(
k+12
)2

k+1 k
+
123

ṽ∗(12)3

ṽ∗21
, (5.26)

D2 = 2i
k+1
k+123

ṽ∗1(23)
−i

−2ṽ23ṽ∗32
(−2i)

k+3
k+23

ṽ32 = 2ig2
k+1 k

+
3

k+123k
+
23

ṽ∗1(23)

ṽ∗23
, (5.27)

D3 = 2i
k+123
k+1

ṽ1(23)
−i

−2ṽ32ṽ∗23
2i
k+2
k+23

ṽ∗23 = −2ig2
k+123k

+
2

k+1 k
+
23

ṽ1(23)

ṽ32
, (5.28)

D4 = −ig2
[

1 +

(
k+123 + k+1

) (
k+2 − k+3

)(
k+23
)2

]
. (5.29)

Adding the contributions we get nothing really illuminating. However, if we calculate

M̃(ε+123→−−+) (k123) = D1 +D2 +D3 +D4 +W, (5.30)

where W is the gauge term on the r.h.s. of (5.17)

W = −g k
2
123

k223
V

(−→−+)
3 (k2, k3)

1

k1 · ε+123
= −2ig2

ṽ12ṽ
∗
21 + ṽ13ṽ

∗
31 + ṽ23ṽ

∗
32

ṽ23ṽ∗32

k+2
k+23

ṽ∗23
ṽ∗1(123)

,

(5.31)
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we arrive at the following simple result

M̃(ε+123→−−+) (k123) = M̃(−→−−+) (k123) = 2ig2
(
k+3
k+123

)2 ṽ∗3(123)3

ṽ∗32ṽ
∗
21ṽ
∗
1(123)

. (5.32)

Let us note that this amplitude cannot be calculated as a ‘mostly plus’ amplitude, as

a naive analogy with the on-shell case would suggest. In that case, the result would read

2ig2
(
k+1
k+2

)2
ṽ321

ṽ(123)3ṽ32ṽ1(123)
, (5.33)

but (5.32) and (5.33) are not equal. They become equal in the on-shell limit k2123 → 0.

Indeed, there are the following off-shell Schouten identities:

k2123 = −2
(
ṽ(123)3ṽ32 + ṽ(123)1ṽ

∗
12

)
, (5.34)

k2123 = −2
(
ṽ(123)1ṽ13 + ṽ(123)2ṽ

∗
23

)
, (5.35)

k2123 = −2
(
ṽ(123)2ṽ21 + ṽ(123)3ṽ

∗
31

)
. (5.36)

When k2123 = 0, these are direct relations between relevant ṽij (spinors in the on-shell case)

and (5.32) becomes (5.33), as expected.

The off-shell current can be now expressed via (5.17), (5.18) in a compact way, hardly

visible when calculating directly from Feynman diagrams

J (−→−−+) (k123) =
g2

ṽ∗1(123)

[ 2

k2123

(
k+3
k+123

)2 ṽ∗3(123)3

ṽ∗32ṽ
∗
21

− 1

ṽ32

k+2
k+23

]
. (5.37)

5.3.2 (+→ −−+)

The relation (4.13) adjusted to the present case reads

J (+→−−+) (k123) = J̃(ε−123→−−+) (k123) . (5.38)

We see that that there are no ‘gauge-restoring’ terms for this case. There are only two

diagrams contributing to the amplitude and, for the off-shell current, the k2123 propagator

has to be included according to eq. (5.18).

D1 = V
(+→−+)
3 (k12, k3)

−i
k212

V
(−→−−)
3 (k1, k2) , (5.39)

D2 = V
(+→−+)
3 (k1, k23)

−i
k223

V
(+→−+)
3 (k2, k3) . (5.40)

A similar calculation as before gives simply

J (+→−−+) (k123) = g2
k+3
k+123

1

ṽ∗12ṽ
∗
23

. (5.41)
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5.3.3 Five-point NMHV current (+→ −−++)

We are now ready to use the currents calculated above to obtain the five-point NMHV

current. We start by calculating the off-shell current J (+→−−++) using the light-cone

Berends-Giele recursion, which reads

ik21234 J
(+→−−++) (k1234) = V

(+→−+)
3 (k1, k234) J

(+→−++) (k234)

+ V
(+→−+)
3 (k12, k34) J

(−→−−) (k12) J
(+→++) (k34)

+ V
(+→−+)
3 (k123, k4) J

(−→−−+) (k123) + V
(+→++)
3 (k123, k4) J

(+→−−+) (k123)

+ V
(+→−++)
4(LC) (k12, k3, k4) J

(−→−−) (k12) + V
(+→−++)
4(LC) (k1, k23, k4) J

(+→−+) (k23) . (5.42)

Using the results from the previous subsections, we get explicitly

i2k21234 J
(+→−−++) (k1234) = 2

k+12
[
k+3 k

+
1234 − k+4 k+12

]
k+2
123k

+
2

1

ṽ∗12

+ 2
k+3
[
k+23k

+
1234 − k+1 k+4

]
k+123k

+
23

1

ṽ∗23
+ 2

k+12k
+2
34

k+1234k
+
2 k

+
4

ṽ(34)(12)

ṽ34ṽ∗12
+ 2

k+1234k
+
3

k+2
123

ṽ∗(123)4

ṽ∗12ṽ
∗
23

+
2k+4
k+1234

ṽ4(123)

k2123

{
1 +

(
k+2 − k+3

) (
k+1 + k+123

)
k+2
23

+
2k+2 k

+
123

k+1 k
+
23

ṽ1(23)

ṽ32
+

2k+12
k+123

ṽ∗(12)3

ṽ∗2(12)
− 2k+1 k

+
3

k+23k
+
123

ṽ∗1(23)

ṽ∗23

}

+
2k+234
k+1234

ṽ(234)1

k2234

{
1−

(
k+2 − k+3

) (
k+4 + k+234

)
k+2
23

− 2k+2 k
+
4

k+23k
+
234

ṽ4(23)

ṽ32
+

2k+2
34

k+234k
+
4

ṽ∗(34)2

ṽ∗34
− 2k+3 k

+
234

k+2
23

ṽ∗(23)4

ṽ∗23

}
(5.43)

This result can be greatly simplified when taking the on-shell limit. In that case, the

complex conjugate of the mostly minus MHV amplitude is obtained. However, this is not

our goal. For the off-shell case, unfortunately, not much can be done, due to ‘inhomoge-

neous’ Schouten identities like those in (5.34)–(5.36).

Having the off-shell current, we can use (4.13) to compute its gauge invariant relative.

Fixing the helicities to the NMHV configuration, we have

J (+→−−+···+) (k1...N ) = J̃(ε−1...N→−−+···+) (k1...N )

− ig
N−1∑
i=3

J̃(ε−1...i→−−+···+) (k(i+1)...N

) i

k1...i · ε−1...N
J̃(ε−1...i→−−+···+) (k1...i) . (5.44)

The sum runs now from i = 3 because

J̃(ε−1...i→−−+···+) (k1...i) = 0, i = 1, 2 . (5.45)

Let us now set N = 4. We have

J (+→−−++) (k1234) = J̃(ε−1234→−−++) (k1234)− g
1

ṽ(123)(1234)
J (+→−−+) (k123) , (5.46)

– 20 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
6

because

J̃(ε−123→−−+) (k123) = J (+→−−+) (k123) . (5.47)

Inserting the off-shell current (5.43) into (5.46) we obtain

J̃(ε−1234→−−++) (k1234) =
−g3
k21234

{
2
k+12
[
k+3 k

+
1234 − k+4 k+12

]
k+2
123k

+
2

1

ṽ∗12

+ 2
k+3
[
k+23k

+
1234 − k+1 k+4

]
k+123k

+
23

1

ṽ∗23
+ 2

k+12k
+2
34

k+1234k
+
2 k

+
4

ṽ(34)(12)

ṽ34ṽ∗12
+ 2

k+1234k
+
3

k+2
123

ṽ∗(123)4

ṽ∗12ṽ
∗
23

+
2k+4
k+1234

ṽ4(123)

k2123

[
1 +

(
k+2 − k+3

) (
k+1 + k+123

)
k+2
23

+
2k+2 k

+
123

k+1 k
+
23

ṽ1(23)

ṽ32
+

2k+12
k+123

ṽ∗(12)3

ṽ∗2(12)
− 2k+1 k

+
3

k+23k
+
123

ṽ∗1(23)

ṽ∗23

]

+
2k+234
k+1234

ṽ(234)1

k2234

[
1−

(
k+2 − k+3

) (
k+4 + k+234

)
k+2
23

− 2k+2 k
+
4

k+23k
+
234

ṽ4(23)

ṽ32
+

2k+2
34

k+234k
+
4

ṽ∗(34)2

ṽ∗34
− 2k+3 k

+
234

k+2
23

ṽ∗(23)4

ṽ∗23

]}

+ g3
1

ṽ(123)(1234)

k+3
k+123

1

ṽ∗12ṽ
∗
23

. (5.48)

Not much can be done with the above expression, even though it is gauge invariant.

This is very different from the MHV configuration, where the inclusion of the ‘gauge-

restoring’ terms cancel the inhomogeneous terms in the Schouten identities and allows to

obtain the result precisely in the form of the on-shell amplitude (see eq. (2.21)). This con-

firms that the MHV off-shell amplitudes are special. Indeed, it appears from the CSW con-

struction inspired by the twistor theory [14], that they are building blocks of any amplitude.

6 Discussion

6.1 Beyond the MHV configuration

It is known that the MHV on-shell amplitudes are special, both because they are expressed

by just one single term [10], and they are building blocks of any on-shell amplitude via the

CSW construction [14]. Of course, in order to compute a complete scattering process for N

gluons, one needs all helicity configurations, including next-to-MHV, next-to-next-to-MHV

and so on. These amplitudes will have a much more complicated structure than the MHVs,

even when the CSW construction is used. Similar statements are valid for gauge invariant

off-shell currents, as follows for example from our calculation presented in the previous sec-

tion. Here the situation is even more complicated: as we have seen in our five-point NMHV

example, the fact that we have an off-shell leg breaks the symmetry between the external

legs. Thus the five-point NMHV current is not equal to the complex conjugate of the

five-point MHV current with permuted legs, as this would be the case in the on-shell case.
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As discussed in section 2, the solution for the MHV off-shell current given in the

form (2.20) has been previously obtained using the light-front quantization [25] and Wil-

son line technique [32]. In both papers, however, the amount of algebra leading to the

expression (2.20) was large enough to suggest that it was extremely unlikely to find a

similar expression for amplitudes beyond MHV level, mostly because many algebraic ma-

nipulations were specific to the particular choice of the helicities.

However, our current analysis reveals that the generalization of (2.20) beyond MHV-

type helicity choice does exist and is equally simple in structure. It is given in eq. (4.13),

which is valid in light-cone gauge for any helicity configuration. As we discuss below,

unfortunately, this equation alone is not sufficient to calculate off-shell currents or gauge

invariant amplitudes beyond the MHV order. It however reflects the general structure of

the solution.

6.2 Non-closeness of the new relations

As we have already stated, the relation expressing off-shell currents in terms of matrix

elements of Wilson lines (4.13) is in general not sufficient to calculate amplitudes themselves

without an additional input. The basic reason is that they are not recursion relations in a

strict sense because of the presence of the boundary terms. That is, for an off-shell current

having N legs, the matrix element of the Wilson line on the r.h.s. has also N legs (the first

term on the r.h.s. of (4.13)). We shall refer to this property as non-closeness in what follows.

We have seen in section 5.1, how an additional information regarding the gauge invari-

ant off-shell current J̃ allowed to calculate the off-shell current J from (4.13)). Namely, for

that case this external information was that J̃ = 0 for the +→ + · · ·+ helicity configura-

tion. This case is however special and such property obviously does not hold for the other

helicity configurations.

The non-closeness property can be more intuitively described in yet another way. No-

tice that the relation (4.13) uses only information about eikonal propagators and couplings.

It does not ‘know’ anything about the internal structure of the interactions (i.e. triple or

quartic gluon vertices) as is the case for the Berends-Giele recursion. This is in analogy

to the soft gluon limit which does not allow to recover the full amplitude. Following this

intuition, one may wonder why it does work for the +→ + · · ·+ amplitude. The reason is

that, interestingly, for this case we have the following relation [32]

= − (6.1)

which expresses the triple gluon vertex by the eikonal diagram, allowing to calculate the

amplitude using the relation (4.13).

To summarize, in order to calculate amplitudes from (4.13) one needs to supplement

it with an additional information and thus to close the system of equations. Let us note

that the second equation can be always provided by the Berends-Giele recursion itself, i.e.

by (2.14); that is, one may successively trade off-shell currents in (2.14) for Wilson line
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matrix elements, and thus obtain a recursion. However, this task is difficult to accomplish

in general and is beyond the scope of the present work.

7 Summary and outlook

In this work we have investigated tree-level off-shell scattering amplitudes in pure Yang-

Mills theory. More precisely, we have considered off-shell currents contracted with suitable

polarization vectors, which are the building blocks for the scattering amplitudes. We have

shown that these off-shell currents can be expressed in terms of objects which can be

interpreted as matrix elements of Wilson line operators along a straight infinite path, with

the slope of the path corresponding to a certain polarization vector. This construction

emerges as a result of an integral over a complex shift of the Wilson line slope. More

precisely, in the light-cone gauge, we shift the Wilson line slope in the direction of the

light-cone gauge vector. Such a shift allows to analyze the singularities of the Wilson

line propagators in the defined complex plane and derive certain relations in the spirit of

the BCFW recursion relation. This result is given in eq. (4.13). The construction itself

is helicity independent and thus we were able to generalize a similar relation obtained

previously in [25, 32] for the case of the MHV configuration. Roughly half of the objects

emerging in the new relation (4.13) is gauge invariant, which accounts for the general

simplicity of this equation.

Another interesting result is given in eq. (4.15), which relates Wilson line matrix ele-

ments with two different slopes. This relation generalizes and simplifies a similar relation

found previously in [32], where it was used for several technical steps in formal derivations.

The derived relations are not closed, in the sense that they do not allow to compute

amplitudes unless additional input is given, as discussed in section 6.2. However, they

allow to trade an off-shell amplitude for matrix elements of Wilson lines.

Since in the present work we have studied a connection of Yang-Mills amplitudes and

matrix elements of Wilson line operators, it is in order to mention the existing relations

between QCD amplitudes and Wilson loops. First, there is a well known connection of this

type realized by the Makeenko-Migdal approach [38] (an example application to meson

scattering in the large Nc limit is given in [39]). Next, there is a famous duality between

the Wilson loops in the 4-dimensional Super Yang-Mills theory and the on-shell scattering

amplitudes (see [40] and also [41, 42] for a review). This duality is very powerful and allows

for calculating multi-loop correction (see for example [43]). It appears though that the

connection between the Wilson lines and the off-shell scattering amplitudes explored in the

present work has a completely different sense than the aforementioned duality. Namely, the

Wilson loops are used there to compute perturbative corrections to on-shell amplitudes, but

the spinor structure itself is not related to the Wilson loops. Here, the Wilson line operators

are used for gauge invariance reasons and are sensitive to the external polarizations.

It is interesting that the obtained relation (4.13) is valid directly in the light-front

quantization approach. This is because the Wilson line propagators do not involve the

‘minus’ components. Thus the energy denominators and generally all light-front features

would be hidden in the J , J̃ currents in (4.13). As showed in [25] for the MHV case, on the
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light-front the sum of diagrams naturally collapses into the structure of (4.13). Since we

have proved that (4.13) is valid for any helicity configuration, we may expect that similar

natural resummation of diagrams should occur in any amplitude calculation on the light-

front. It would be interesting to demonstrate this statement explicitly, although this would

be technically very demanding.

Numerous further avenues could be explored as possible applications of the results

presented in this work. One possibility is the improvement of the QCD evolution equations

for unintegrated gluon densities at high energy, by incorporating more accurate kinematics.

The famous Balitsky-Fadin-Kuraev-Lipatov (BFKL) [44, 45] evolution equation for the

unintegrated parton density and its nonlinear extensions, the Balitsky-Kovchegov (BK)

and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equations [46–

49], are currently known up to next-to-leading logarithmic order [50–52]. These equations

resum the cascade of multiple gluon emissions in QCD in the high energy limit. It is known

that the next-to-leading corrections to these evolution equations are numerically large and

they mostly originate from the kinematics. Resummation schemes have been proposed [53],

which contain more exact treatment of the kinematics along the cascade which goes be-

yond the high energy limit. It would be desirable to improve upon these approximate

resummation schemes and obtain the description of the gluon cascade which would include

complete kinematic information along the cascade. The information about the general

structure of the off-shell multi-gluon amplitudes could be very important in this case (for

preliminary work in this direction see [24]). The relations for the off-shell amplitudes

derived in this paper might be useful in constructing such improved evolution equations.

Another interesting line of research would be to generalize the BCFW recursion ob-

tained in [21, 37] for off-shell high-energy amplitudes used in kT factorization. In terms of

Wilson lines, these amplitudes correspond to the Wilson line slope given by the light-like

component of the off-shell momentum while in the present work the slope was set to the

transverse polarization vectors. We think that an extension of [21, 37] to account for arbi-

trary slope would be very desirable and would open new possibilities in the context of the

present paper.
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