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1 Introduction

The evolution of physical quantities with energy in quantum and statistical field theories
is described by the renormalization group (RG). According to the Wilsonian picture, the
RG flow from the ultraviolet (UV) to the infrared (IR) corresponds to a coarse-graining of
degrees of freedom, and should therefore be irreversible. It is interesting to ask whether
there is any physical observable in quantum field theory (QFT) that can be understood as
the “number of degrees of freedom”, and which decreases along the RG flow.

This intuition has been beautifully borne out in d = 2 spacetime dimensions by
Zamolodchikov [1], who established that a certain combination of two-point functions of
the stress-energy tensor, called C', monotonically decreases in the flow to the IR in unitary
QFTs. This so called C-function is stationary at fixed points of the RG, where conformal
field theories (CFTs) live, and is equal to the central charge of the corresponding CFT there.

Soon after Zamolodchikov’s work, Cardy attempted a generalization to d = 4 [2],
where he suggested that a, the coefficient of the Euler term in the four-dimensional trace
anomaly, plays the role of the monotonically decreasing quantity. Although a general proof
of the monotonicity of a, commonly referred to as the a-theorem, was not obtained in [2],
significant differences with the d = 2 case were elucidated, and further support was given
to the intuition that results similar to Zamolodchikov’s should hold in any even spacetime
dimension.

Osborn [3] later analyzed the case of a unitary CFTs in d = 4 deformed by a set of
marginally relevant operators. By studying the Wess-Zumino consistency conditions for
the anomalous Ward indentity of Weyl rescalings, within the formalism of the local Callan-
Symankzik (CS) equation, Osborn derived a perturbative proof of the a-theorem, using



also results of [4].12 More specifically, an equation of the form

88)\1@ = (x17 +&0)87 (1.1)

was derived in [3, 4], where a is a local function of the coupling constants M of the the-
ory, which reduces to a at fixed points, y7s and £;; are symmetric and antisymmetric
tensors respectively, defined also in terms of A\, and 3! is the beta function associated
with A/, By unitarity, x7s is positive-definite at leading order in perturbation theory, as
it can be related to the two-point function (O;(x)O;(0)) of marginal operators. Upon
contracting (1.1) with 87, one gets

ui& =xB'87 >0, (1.2)
thereby establishing the monotonicity of @ along perturbative RG flows. The inequality is
saturated only if ! = 0.

Recently, Komargodski and Schwimmer [9] demonstrated that a-theorem holds true
beyond perturbation theory in d = 4, more specifically that ayy — ajr must be positive
in unitary theories. Their argument relies on dispersion relations for four-point scattering
amplitudes for the dilaton, i.e. the background source for the trace of the stress-energy
tensor. The connection between the non-perturbative and perturbative arguments was
made in [5], where it was shown how equation (1.1) can be extended beyond leading order
by employing the dilaton effective action.

A question closely related to the a-theorem is that of the relation between scale and
conformal invariance, in particular whether scale invariant field theories (SFTs) enjoy the
full conformal symmetry under the assumptions of locality and unitarity. Polchinski proved
the equivalence SFT = CFT in d = 2 [10]. In d = 4, perturbative checks were performed
in [10] as well as [11], and general perturbative arguments were later given in [12, 13].
Beyond perturbation theory in d = 4 conditions for the equivalence of scale and conformal
invariance have been analysed in [14].

Due to the importance of the a-theorem and its consequences for the structure of QFTs,
it is of great interest to continue the exploration of these ideas to higher spacetime dimen-
sions, in particular d = 6. Some important results have been obtained in [15, 16], but in
this work we will focus on the approach pioneered by Osborn in [3], which relies on the local
CS equation. This formalism was recently generalized to d = 6 [17], where complications
arise due to the large number of terms that have to be considered in the Weyl anomaly.

In the present work we study the RG flow in the proximity of a six-dimensional CF'T
by deforming it by a set of marginally relevant operators Oy,

S[®, \] = Scrr|®)] +/d6m Moy (z). (1.3)

! Although the arguments in [3, 4] rely on perturbative computations around the free theory, they can
be generalized to the case where the RG flow lies perturbatively close to any interacting CFT, weakly or
strongly coupled [5-7]. In fact, the CFT need not even have a Lagrangian description.

2A recent review of this approach to the a-theorem can be found in [8].



For simplicity, we assume that relevant operators of dimension two and four are absent
from the theory. We plan to include their contributions in future work.

By analyzing the Wess-Zumino consistency conditions in the context of the local CS
equation, we will be able to identify a function of the coupling constants, a, satisfying an
equation analogous to (1.1), thereby proving the a-theorem in perturbation theory. In fact,
we find a one-parameter family of functions, a + b, satisfying an equation of the form

ui (a+Xb) = xrsB8'87 + 0(8%,8298) . (1.4)

This result dispels the concerns on the validity of the perturbative a-theorem in d = 6
raised by [18], where a different function of the coupling constants was proposed as the
monotonically decreasing quantity. As a direct consequence of the a-theorem we prove the
equivalence SFT = CFT in our setup.

2 The local Callan-Symanzik equation

In this section we review briefly the local CS equation formalism, which we will use to
derive constraints on the RG flow. The local CS equation was first derived in the seminal
work [3]. We refer the reader to [5] and [6] for a detailed and thorough analysis of this
technology in four dimensions.

The RG flow is equivalent to a global rescaling of distances, which is controlled by
the properties of the trace of the stress-energy tensor, T. In perturbation theory, the
stress-energy tensor can be expanded in a basis of operators of the CFT. Schematically,

T ~ B0 + 84V, JY — 1° V20, + COV*V2p, , (2.1)

where Of are marginal scalar operators of dimension six, J ﬁ are currents of dimension five
generating an exact flavor symmetry G at the fixed point Al = 0, while O, and ¢, are
scalar operators of dimensions four and two.?

For simplicity, in this work we will assume that the lower-dimensional scalar operators
O, and ¢, are absent. It would be interesting to include them in the future, also to further
test results in the perturbative ¢ theory [19].

To express the response of the theory (1.3) under local changes of the renormalization
scale, it is necessary to turn on sources for the renormalized operators in (2.1). We lift the
theory to curved spacetime, such that the metric g, (z) sources the stress-energy tensor
TH. In addition, we promote the couplings A (z) to spacetime dependent sources of the
marginal operators Or, and we introduce the background gauge fields Af}(a;) sourcing the
currents J. The Gp symmetry is thus gauged and M transform under the symmetry. The
quantum effective action then reads

WIJ] = —ilog/D@ S T] (2.2)

where we collectively denote the sources as J = (" (z), M (z), A4 ().

3By the unitarity bound ¢, can only be free fields satisfying V¢, = 0 at the fixed point.



The connected correlation functions can be expressed as functional derivatives with
respect to the J’s,

2 0 1 0 1 0
—— s 2 Tw@)] . =g 2 0i@)] . = o a@)]
Va5 el =g 7 Ol ey ae)
(2.3)
where the square brackets denote the operator insertion inside a renormalized correlation
function. For instance, the time-ordered renormalized correlators of the scalar marginal

operators are obtained as
(=)t ) §
/_g(xl) ey /_g(xn) oI (I’l) IAIn (l’n)

To evaluate these correlation functions in the perturbed theory (1.3) in flat space, one has
to take g"’(z) — n**, M(x) — M = const, Aﬁ(m) — 0 after the variation.
To derive constraints on the RG flow we will consider the response of the quantum ef-

(T{On (1) Or,(xn)}) = w. (24)

fective action to a local change of the renormalization scale. The local CS equation [3] reads

. 5 ) 0
A = 6pv/—aq | 20g* I = AL 2 :/ 6,. /—
WV /d /—g ( og Sgi + 05\ Y + 6,4, 6Af}> w d°x/—g Ay,

SN = —o BT, 5o Al = —op VN + 0,087

(2.5)

where A, contains the most general terms allowed by covariance and power counting, V is
a gauge covariant derivative, and the anomaly A, is a local functional of the sources, whose
form is constrained by diff-invariance and power counting. The Wess-Zumino consistency
conditions,

Ag Ay — Ay Ay =0, (2.6)

expressing the commutativity of Weyl rescalings, impose further constraints among the
coefficients of the various terms that appear in A,. At the fixed point, i.e. for Al = const,
pl =84 =0 and Ay =0, A, reduces to the usual conformal anomaly [20],

A, =0 (—aFEg+ c1lh + cala + c313) , (2.7)

up to six contributions (trivial anomalies) that can be eliminated by adding local coun-
terterms to the effective action. In (2.7) Eg is the Euler term while I, 5, I3 are Weyl
invariant tensors. Their explicit form can be found in appendix B. The condition (2.6) at
the fixed point imposes the vanishing of seven other possible anomalies (analogous to the
R? anomaly in d = 4).

In the next section we are going to derive constraints on the RG flow implied by the
consistency conditions for the anomaly outside the fixed point.

3 Constraints on RG flows

Consistency conditions that follow from the commutativity of Weyl rescalings impose con-
straints among the various terms that appear in the anomaly A,. In d = 2,4 these



conditions were originally considered in [3], and were recently also studied in detail in [5,
6, 12, 13|, and holographically in [21, 22]. The consistency conditions were also studied in
supersymmetric theories in [23, 24]. In d = 6 they were first considered in [17]. Here we
derive the consistency conditions from the results of (2.6), as obtained in [17], and perform
a detailed analysis of those. We find that some consistency conditions obtained in [17] were
incomplete.

For the moment, we will neglect the contributions to equation (2.5) related to the
gauge fields A/‘j‘ sourcing the currents J'. However, as will be shown in section 4, this
will not change our conclusions. The complete form of A, can be found in appendix B.
After decomposing (2.6) in a linearly-independent basis, it is possible to read off constraint
equations for the anomaly coefficients. This is technically challenging, particularly due

to difficulties related to integration by parts and Bianchi identities.?

The consistency
conditions obtained here were checked at two loops in the ¢3 theory against the results
of [19].> We have also checked that they are satisfied by the general form of the trace
anomaly on the conformal manifold as constucted in [7].

In this work we exploit all constraints imposed on anomaly coefficients with up to two
indices. This requires us to decompose the consistency conditions and isolate the ones that
stem from terms involving up to two couplings A. For example, we are interested in the
consistency condition arising from contributions to the left-hand side of (2.6) proportional
to (09,0’ —o’ GuU)VZ)\I O*V2\ but not in the one arising from contributions proportional
to (00,0’ — 0’ 0,0) N V2N V2K,

A particularly important equation contained in (2.6) is obtained from terms propor-
tional to (09,0’ — o' 0,0)H1" O, , where H* is a generalization of the Einstein tensor
in d = 6 [25] (see (B.4) for its explicit form), namely

1 1
ora = 6H1Jﬁj + 67'[1, (3.1)
where

1 1 1 1 1
a=a4+ —by — —bs+ —b11 + *AJ/BJ‘F *H55J7

6 90 6 12 6 (3.2)
1 1 1 :
Hp=—H>— 5%? - 51,7, Hiy= A+ Hig+OrA; + 9 MY,

with the definition
8[,XJ] =01 X;—05Xr. (33)

All tensors appearing above are local functions of the couplings, and their definition can
be found in appendix B. Use of the consistency condition arising from (o VAVYdPc’" —

4All our computations were performed in Mathematica using the package xAct, and details on the
derivation of the consistency conditions can be found in appendix A. Due to the large number of terms
appearing in (2.6) and related consistency conditions, we do not report most of them in the text. The
interested reader can find them in a separate Mathematica file attached to the submission.

5To extend the check to higher loops it will be necessary to include the effects of the operators of
dimension two and four.



o' VIV 0P )V, V,0,AT allows us to put (3.1) in the form

afa:é<H}J—i )5J+ oMYy B7 - if a= a—&—Gbl—%bg—i— Hfﬁf (3.4)
which contains fewer anomaly coefficients than (3.1) with (3.2). Unlike in the two and four-
dimensional cases, (3.4) does not present itself in the form of (1.1), due to the presence
of the vector anomaly Z7. Notice that this contribution was missed in [17], which led to
consider @ as the candidate for a monotonically-decreasing function in [18]. However, a
cannot be such a candidate, even more so because it is scheme-dependent® at order 3.7

In this work we consider linear combinations of the consistency conditions in order to
find all independent equations having the form of (1.1). Most importantly, we find the
equation®

dra = (x17 +&15)87, (3.5)
where
a=a —fb —b —b —b
a 1+ 2+45 3 + 4
_ = 6 I
+<1OBI+ CI+205[+ .FI+ H1+2OH[+ HI_'_ 7‘[] OH[)B 5
- 1
X[J—ia(IBJ) B/IJ+4SCIJ+205(]J)+ f([J)-I- ,HIJ

+7,HIJ+ HJ+ HIJ HIJ7
1
§1y = *5[15J1 + 8C[IJ] + ZOE[IJ] + ng[u] + @ffm
+ éa[IHJ] + %8[[7{]] + ﬁ&[[?‘[ﬂ + ga[[HJ} - Zoa[[HJ] 5 (36)
and we use (3.3) and
ouXpn=0Xy+0;X1, Xupn=Xpy+Xy,  Xypp=X—Xyr. (3.7)

a equals a at the fixed point, for the anomalies by 7 are all proportional to 5. xrs
and &7 are symmetric and antisymmetric tensors, respectively.” Note that, by virtue
of equation (3.5), @ is scheme independent at order 3, while y;; and £;; are scheme-
independent at order 3°, i.e. they are not affected to that order by adding local counterterms
to the effective action.

In this paper, by “scheme-dependent” quantities we mean those which change under the addition of
purely background-dependent counterterms to the effective action.

"For example, the addition of a term [ d®z,/y X;9,\' V., H}" in W[J], with X; arbitrary, induces,
among others, the shifts 7 — Z7 + %3 X, where %5 is the Lie derivative along the beta function, and
Hy — Hi — %XIA The shift of H} affects @ at order .

8The linear combination of the consistency conditions leading to (3.5) is explicitly reported in the
Mathematica file attached to the submission.

9Using the consistency conditions we have checked that ;7 cannot be written as Oy X j) for some vector
X.



Now we can show that the metric x;; in (3.5) is positive-definite. Indeed, consider
the RG derivative of the two-point correlator of the marginal operators (Or(x)O;(0)) (in
Euclidean signature). First notice that, since lengths are entirely controlled by g, this
operation can be expressed as a Weyl rescaling,

0 )
—W=-2[dzg"”—W. :
'u('?,uw /d xyg 5gWW (3.8)

Then, neglecting terms involving the 8 function,

9 " __ {46 1 Y 5 5 5
o, (O1(2)05(0)) =~ [d o s W) (29“ (y)égw(y)> 53 ) (3.9)
1 5 1 5
= _/d6y —9(y) T V@) \/T(O)MJ(O)AUZI (3.10)
= 91?69 (), (3.11)

where in the last line we go to flat space, 6(6) (x) is the six-dimensional delta function, and
g1y is evaluated via the anomaly in appendix B,

915 = —0u Ay — Ay + Ay + Al (3.12)

It can be shown that g7 s is proportional to the Zamolodchikov metric and is thus positive-
definite by unitarity [7]. Furthermore, the consistency conditions relate the tensors xrs
and gy via

X1s = £ 910 +O(8,5). (3.13)

With this result, and upon contracting equation (3.5) with 8!, we get the desired mono-
tonicity constraint in perturbation theory for a,

d .
M@a = xB'p’ >0, (3.14)

where the inequality is saturated only if 5/ = 0. This proves the a-theorem in perturbation
theory (in theories with no relevant scalar operators of dimension two and four).

Additionally, we find another, independent equation of the form!©
01b = (Xry +&15)87 (3.15)
where
b=dby — by by~ sbi - <§‘BI bSO e S I H S - ;H?> 8,
X17 _ga(IBJ) + % A7y + éBIIJ - ééb - %é(u) - %H%J - ;H% - %Hj{] + éH?J,
€= —§ 0By — %ém - %amﬁ] - ;3[17-@] - %8[{%] + %8[17-[3] . (3.16)

The linear combination of the consistency conditions leading to (3.15) is explicitly reported in the
Mathematica file attached to the submission.



b is of order f and so vanishes at fixed points, and x’;, &7, are symmetric and antisym-
metric respectively. The existence of the metric x}; is related to the fact that in d = 6
there are three rank-two conformally covariant operators one can define on the conformal
manifold [7], corresponding to just as many scheme-independent rank-two tensors at the
fixed point. This is in contrast with the two- and four-dimensional cases where there is
only a unique rank-two tensor related to the Zamolodchikov metric. Nevertheless, we found
that the consistency conditions impose an orthogonality constraint on x4 ;,

X1,87 = O(8%, 9p), (3.17)

even though, in general, x’; does not vanish at fixed points. Equations (3.5), (3.15), (3.17)
imply that there exists a one-parameter family of monotonically decreasing functions at
leading order in perturbation theory,

ui(a + D) = éguﬁfﬁ‘] +0(B3,3%0p) . (3.18)

4 Scale versus conformal invariance

We could ask whether the theory (1.3) can flow to a nearby scale invariant field theory
without conformal invariance. This question becomes nontrivial in presence of dimension
five currents, as we see from equation (2.1). Indeed, at the fixed point it is 3/ =0, and T
has the operatorial form
T~ SV, Jh =V, VH, (4.1)

where V* is the so-called virial current. If S4 # 0 the theory is scale but not conformally
invariant, for 7" is a total divergence.

Before proceeding, it is useful to rewrite the Weyl operator in a more convenient form.
By making use of the Ward identities for the Gr symmetries represented by the broken
generators T4, it possible to redefine the Weyl operator in (2.5) to encapsulate both a
Weyl rescaling and a G transformation [3, 5, 6, 13],

5 5 b
/ _ 6 — pr Y pl Y pA r v — 6 —
AUW_/d @ ga<zg TR Ve A Mﬁ)W /d /=g A,, (4.2
Bl =gl —(sATy N, PP =pt + 0,84, (4.3)

with the constraint B/ P = 0 due to the commutativity of Weyl rescaling, [AL, A’,] = 0.
In this parametrization a scale invariant field theory corresponds to B! = —(SATy\)!,
while a conformal invariant field theory to B! = 0.

Now, let us generalize the equation (3.5) in the presence of dimension five currents.
By covariance, at leading order in B’ it takes the form

dra = (xr7 + &17)B? + P fa, (4.4)

where f4 is an generic combination of anomaly coefficients of terms involving the gauge
fields Aﬁ. Upon contracting (4.4) with B! and using the condition B’ PIA =0 we get

d 1
Bloja = u@& = 6gUBfBJ >0. (4.5)



Therefore, we reach the same conclusion we found in section 3. Furthermore, suppose
we are in a scale invariant field theory. Then, G p-invariance of @ implies that B10;a =
—(SATAN 076 = 0, so that (4.5) gives

gryB'B’ = 0. (4.6)

Due to the positive-definiteness of gr; this can only be true for B! = 0. This proves
that scale invariance implies conformal invariance in our setup, in analogy with the four-
dimensional case [12, 13]. Our proof here follows the logic of [13].

5 Conclusions

In this work we studied the properties of RG flows originating from marginal deformations
to unitary conformal field theories in six dimensions. For simplicity, we restricted the
analysis to a class of CFTs where relevant scalar operators of dimension two and four
are absent. Even though we work in perturbation theory, the UV CF'T can in general be
strongly coupled and may not admit a Lagrangian description.

The results obtained here can be summarized as follows:

e We derived all the consistency conditions with up to two powers of the coupling
outside the fixed point. We solved those to find all the constraints among the anomaly
coefficients which can be put in the form of a flow equation.

e We identified a one-parameter family of scheme-independent functions of the coupling
constants of the theory, a + Ab with A € R, equal to the a-anomaly coefficient plus
O(p) corrections, which flow monotonically in the proximity of a fixed point thanks
to unitarity. There is no parameter A for which the combination @ + b, agrees with
the quantity analyzed in [18] in the context of ¢? theory, therefore we dispel the
doubts cast on the perturbative a-theorem in six dimensions.

e As a direct consequence of the a-theorem we proved, using standard arguments, that
scale implies conformal invariance in our setup.

The dynamics of perturbative QFTs in six dimensions appears structurally differ-
ent with respect to the four-dimensional case, due to the presence of multiple scheme-
independent rank two tensors at the fixed point. Nevertheless, we were able to find a class
of physical quantity whose RG flow is governed uniquely by the positive definite Zamolod-
chikov metric. We presume that extending our argument beyond perturbation theory would
single out the monotonically-decreasing function in the one-parameter family that we found.

In the future, it will be interesting to extend our results in the presence of scalar op-
erators of dimension two and four. First, that could highlight possible differences with
the lower spacetime dimensional cases, where relevant operators do not affect the mono-
tonicity constraints [3, 5, 6].1' Second, that will be necessary to test our results in the

111 four dimensions that is made clear by the argument employing the on-shell dilaton amplitude, which
is manifestly insensitive to those effects [5].



¢ theory, which is the only perturbatively calculable theory in six dimensions. It should
be straightforward to generalize our computations to include those contributions, with the
only difficulties arising due to the proliferation of terms in the anomaly functional and in
the Weyl operator.

It would also be of interest to analyze a and bto higher-loop orders in ¢ theory with the
use of the consistency conditions, along the lines of [26]. The effects of dimension two and
four operators as described in the previous paragraph may be necessary for such an analysis.

The question stands whether the a-theorem and the equivalence of scale and conformal
invariance is valid beyond perturbation theory in six dimensions. So far no counterexamples
are known. In four dimensions, certain dilaton scattering amplitudes provide a powerful
tool to address these questions [9, 14]. Attempts were made to use dilaton scattering
amplitudes [15] in six dimensions, but it is not clear what the right approach would be.
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A Derivation of the consistency conditions

In this work, in order to derive the consistency conditions it was necessary to write the
variation 2.6 in a linearly independent basis. This was technically nontrivial due to the
large number of terms (~ O(100)) and redundancies related to integration by parts. Our
approach is outlined in this appendix. First, by integrating by parts, we took all the
derivatives off either o or o’. As a result, we ended up with terms such as

(00,0" — o' 8,0) fr(\) "N R?, (oV,0y0' — o'V ,0,0) F(N) HI™ . (A1)

However, there are still redundancies related to antisymmetrization with respect to o,o’.
For example, consider the trivial equation

(0,00,0" — 0,0' 0y0) FIN)HY =0, (A.2)

where H}" is symmetric. Upon integrating by parts and writing this equation in the same
basis as (A.1), we get

(oY, 0,0 — 'V, 0,0) FN)HY + (00,0’ — ' 9,0) 0rf(\) O N HIY =0, (A.3)

,10,


http://www.xact.es/

since V,H}"” = 0 in this example. This allows to eliminate the second term in (A.1).
Similarly one can get rid of all the terms with an even number of derivatives on o, ¢’. This
prescription fixes unambiguously a complete basis for (2.6).

B Conventions and basis for the anomaly
We define the Riemann tensor via
[V,UJ VV]A’D — Rpo-l“/AU 5 (B.l)

and the Ricci tensor and Ricci scalar as R, = Rf,,, and R = g"”R,,,,. The Einstein tensor
is defined in d > 2 by

2 1
G/j,l/ - m(R/u/ - iguuR) 3 <B2)
while the Weyl tensor is defined in d > 3 by
2 2
Wiwpo = Ruvpo + ﬂ(gu[aRp]V + ujpRojp) + mgu[r)gvlvR' (B.3)

At dimension four we consider the tensors

Fa= W—;M(RMVMRWPU —4R"™ R, + R?), I=WHP"Wpo
Hi, = (d_z)z(d_?’)& Gy — 4(d — 1) Hapy + 8Hzyy + 8Hypy — AR, Rporyy B
Hoy = ﬁRRw, H3. = RFR, . Hiw = RRyu0, |
Hsp = VR,  Hew = ﬁv,@,R.

A complete basis of scalar dimension-six curvature terms consists of [20]

Ki1=R®, Ky=RR"R,., Ks=RR"""° Rypo , Ki=R"R,,R,,
Ks=R""R"’Rpov , K¢=R""Rupo-R,””", Ki=R""P"RyorR™“\v,
Ks=R""’R,,puR) %, Ko=RV’R, Kio=R"'V*R,., K11=R""" V*Rypo
Ki2=R""V,0.R, Ki3=V"R""V,R.,, Kiu=V"R""V,R,,,
K15:VHRVPUTVMRV;)J7'7 K16:V2R2’ K17:(v2)2R'
(B.5)
In d = 6 a convenient basis is given by
19 57 3 7 9 3
L=—K ——Ky+ K3+ —-K;,— -Ks— -Kg+ K B.6
P R0 T 160 2 g g TRt T g te T e (B:6)
9 27 3 5 3
ILh=—K ——Ky+ — -Ky— -K5—3K¢+ K B.7
22001402+103+4425 6+ L7, (B.7)
11 27 6
I3=——K +—=Ky—-K3— K, +6K5+2K; — 8Ky (B8)
50 10 5
3
+5K9*6K10+6K11+3K13*6K14+3K15, (Bg)
Feg=K; —12Ko +3K3+ 16Ky, — 24 K5 — 24 K¢ + 4 K7 4+ 8Ky, (Bl())
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J=6Kg—3K;+12Kg+ K19 — 7K1 — 11 K13+ 12K14 — 4K15, (B.ll)

1 9 3 4
J2:—5K9+K10+3K12+K13, J3:K4+K5_%K9+5K12+K14’ (B.12)
1 9

J4:_5K9+K11+5K12+K157 Js = Kig, Jo = Kz, (B.13)

= K4 2Ky — K, Lo —— K+ —K (B.14)
1 — 30 1 4 2 6 2 — 100 1 20 2 .

37 7 1 1 1 1 1

Ly=—— K+ —Ky— — K3+ —Ks + —K, L= ——K;+—Ks. (Bl

3% Tg000 T 150 T s T gt T g e 4 150 %1+ 5K, (BI5)
1 1 1

L= —K L¢=——K +—K L; =K B.16

5 30 1, 6 300 1+20 9, 7 15, ( )

where the first three transform covariantly under Weyl variations, and Fg is the Euler
term in d = 6. The J’s are trivial anomalies in a six-dimensional CFT defined in curved
space, and the first six L’s are constructed based on the relation d, fdGiU\/TQLl,...ﬁ =
fdﬁzr: —goJi,. 6.

In six spacetime dimensions there are ninety four independent terms that can con-
tribute to the anomaly [17]. In general, we can write

65 30
/d%x/—g.Aa = Z/de —ga%—i—Z/d%\/—gaﬁta zl, (B.17)
p=1 q=1

where 7, and 27" are dimension-six and dimension-five terms respectively, that can involve
curvatures as well as derivatives on the couplings A\!. In writing down the various terms
below, we neglect total derivatives.

If only curvatures are included, then we have the terms

N =—cli, S=—cly, F=—c3lz, Jy=—als, T5.11=—bi. 7L 7.
(B.18)

We also have the terms

1
FP = —bgO'E, Zf = by 01, 2y = —5zbi ROR,
25
1 (B.19)
o@zﬂ = —gbll éWVQR, %&6,7 = _b12,13,14 VI/HéLEA .

Actually, the terms in (B.19) overcomplete the basis of trivial anomalies. This is because
there are six trivial anomalies, but seven terms in (B.19). If we integrate the (B.19) terms
by parts, then we may require that V#Qﬁ’f_.ﬂ do not affect the coefficients of Ly 7. This
forces us to impose

24 A(d — 6) 5
b by —
25162 g9 P41

biz = — bi. (B.20)

With (B.20) it is guaranteed that L; 7 are vanishing anomalies, and we also see that the
coefficients of Eg, I1 23 are unaffected by VW@?"M?. Thus, with the condition (B.20) the
terms 5}”1“ .7 substitute exactly the trivial anomalies Ji,._¢.

— 12 —



Next, we have

1
Ty =T} O N OMEy, Tz =TFON O,  Fiy= %I? N RO'R, B
1 » ’
T5 = 51? N VPR, Figaris =IO 9N Vo HYS 4
and
1
2 =G1o"N Ey, Fl=giorN T, #l= %g§ N R?,
1 v
zh = 59?1 "N V2R, o o= H}MG 81,/\[[{{"___,67 (B.22)
1
k= Fr VN VIGRA Ay =& VAN MR
With more O\’'s we have
Tio = 3G1s 0N N i, Tio= 3G 0NN I, T = Gl 0N 0N B2,
T = 15Ol N PN VR, T = HE QNN HY
Tso = Fr1 0N Va0, X VG Tzo = F1 0N VA0 N VG
(B.23)
and
1
2 = €1 IMNON O'R, 2 = Drj 0NV N R
2y = Cro, VAN G, = Cry 0NV, N G 2l =) 0,N VAN G
1
235 = 2By MNVENT R 2 = Ay 0, VPN VHOVNT 2 = AL 0r N (VPPN
(B.24)
Furthermore, we have
1 14
Ti1 = S F i 0N N 9N VG, Tip = 21 N VN O R,
1
Tis = 15E1IK NN AN O'R, Ty = Dy 0N N VO NE REMY
1 .
Tss = {D1iKL OMN AN NN REMY - Fg = Cry V0, N VAN G
1., 1
Tir = 5C1y V0NV 9N G, Tas = 5CLiK QN O X VINE G,
1
Tag = Ch .y N 0N V9N G Tho = §c}ﬁ,K NNV Lo\ GH
1 1
Tin = JCLikL ON 0N 0N NG, Thy = 2B (VPPN R,
1 . 1 4
T3 = EBI TVINVANT R, Ty = Ezs”,(, V0N VRN R,
1 1
Tis = 1 B1iK NN VAR R, Tie = 1581 BN BN VN R,
1
Tir = 55 Brikp NN 9NN R,
(B.25)
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and

P = ALy 0N VRN VAR,

1

2y = SALKL AN N O NET2NE,

Finally, we also have the terms
Tis = Ar (V?)*\1,

_ L
2
T = %A’UK V0NV 0, V9 NE

Tho = Ary (V2)°AN'V2N,

Ts1 = Al Ve VAN VIV o\,

Tas = Arsx 0N VHO,N 9" VANE

m
Z59

Tsr = %A}’JK AN AN VO VENE

Ts9 = i/‘l”“ DN NV, 0, VAT,

Te1 = %AUKL AN NV O NEVENE

Tos = +Arsia NN 00N TN,

Tos = S Arswimn DN "N N A A AN

8
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= A 1 O M VEON VEMNE,
(B.26)

Fio = %A’,J 0, VA 9" V2 27
1

"8
Tsa = Al 9N VAN O VENE

T2 Arsr VAN VAT V2NE

56 = %A’UK BTN (V22 AT,

Tss

_ EAUKL BN N VA V2AL,
Tso = %A’,’JKL DN N VEO NV OMNE
Ts2

%A’”KL OIDNEC 0N P S VAR VAT L

Tss = iA’UKLM DN TN NN VAN

(B.27)

This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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