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1 Introduction

The evolution of physical quantities with energy in quantum and statistical field theories

is described by the renormalization group (RG). According to the Wilsonian picture, the

RG flow from the ultraviolet (UV) to the infrared (IR) corresponds to a coarse-graining of

degrees of freedom, and should therefore be irreversible. It is interesting to ask whether

there is any physical observable in quantum field theory (QFT) that can be understood as

the “number of degrees of freedom”, and which decreases along the RG flow.

This intuition has been beautifully borne out in d = 2 spacetime dimensions by

Zamolodchikov [1], who established that a certain combination of two-point functions of

the stress-energy tensor, called C, monotonically decreases in the flow to the IR in unitary

QFTs. This so called C-function is stationary at fixed points of the RG, where conformal

field theories (CFTs) live, and is equal to the central charge of the corresponding CFT there.

Soon after Zamolodchikov’s work, Cardy attempted a generalization to d = 4 [2],

where he suggested that a, the coefficient of the Euler term in the four-dimensional trace

anomaly, plays the role of the monotonically decreasing quantity. Although a general proof

of the monotonicity of a, commonly referred to as the a-theorem, was not obtained in [2],

significant differences with the d = 2 case were elucidated, and further support was given

to the intuition that results similar to Zamolodchikov’s should hold in any even spacetime

dimension.

Osborn [3] later analyzed the case of a unitary CFTs in d = 4 deformed by a set of

marginally relevant operators. By studying the Wess-Zumino consistency conditions for

the anomalous Ward indentity of Weyl rescalings, within the formalism of the local Callan-

Symankzik (CS) equation, Osborn derived a perturbative proof of the a-theorem, using
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also results of [4].1,2 More specifically, an equation of the form

∂

∂λI
â = (χIJ + ξIJ)β

J (1.1)

was derived in [3, 4], where â is a local function of the coupling constants λI of the the-

ory, which reduces to a at fixed points, χIJ and ξIJ are symmetric and antisymmetric

tensors respectively, defined also in terms of λI , and βI is the beta function associated

with λI . By unitarity, χIJ is positive-definite at leading order in perturbation theory, as

it can be related to the two-point function 〈OI(x)OJ(0)〉 of marginal operators. Upon

contracting (1.1) with βI , one gets

µ
d

dµ
â = χIJβ

IβJ ≥ 0 , (1.2)

thereby establishing the monotonicity of â along perturbative RG flows. The inequality is

saturated only if βI = 0.

Recently, Komargodski and Schwimmer [9] demonstrated that a-theorem holds true

beyond perturbation theory in d = 4, more specifically that aUV − aIR must be positive

in unitary theories. Their argument relies on dispersion relations for four-point scattering

amplitudes for the dilaton, i.e. the background source for the trace of the stress-energy

tensor. The connection between the non-perturbative and perturbative arguments was

made in [5], where it was shown how equation (1.1) can be extended beyond leading order

by employing the dilaton effective action.

A question closely related to the a-theorem is that of the relation between scale and

conformal invariance, in particular whether scale invariant field theories (SFTs) enjoy the

full conformal symmetry under the assumptions of locality and unitarity. Polchinski proved

the equivalence SFT = CFT in d = 2 [10]. In d = 4, perturbative checks were performed

in [10] as well as [11], and general perturbative arguments were later given in [12, 13].

Beyond perturbation theory in d = 4 conditions for the equivalence of scale and conformal

invariance have been analysed in [14].

Due to the importance of the a-theorem and its consequences for the structure of QFTs,

it is of great interest to continue the exploration of these ideas to higher spacetime dimen-

sions, in particular d = 6. Some important results have been obtained in [15, 16], but in

this work we will focus on the approach pioneered by Osborn in [3], which relies on the local

CS equation. This formalism was recently generalized to d = 6 [17], where complications

arise due to the large number of terms that have to be considered in the Weyl anomaly.

In the present work we study the RG flow in the proximity of a six-dimensional CFT

by deforming it by a set of marginally relevant operators OI ,

S[Φ, λ] = SCFT[Φ] +

∫

d6xλIOI(x) . (1.3)

1Although the arguments in [3, 4] rely on perturbative computations around the free theory, they can

be generalized to the case where the RG flow lies perturbatively close to any interacting CFT, weakly or

strongly coupled [5–7]. In fact, the CFT need not even have a Lagrangian description.
2A recent review of this approach to the a-theorem can be found in [8].
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For simplicity, we assume that relevant operators of dimension two and four are absent

from the theory. We plan to include their contributions in future work.

By analyzing the Wess-Zumino consistency conditions in the context of the local CS

equation, we will be able to identify a function of the coupling constants, â, satisfying an

equation analogous to (1.1), thereby proving the a-theorem in perturbation theory. In fact,

we find a one-parameter family of functions, â+ λb̂, satisfying an equation of the form

µ
d

dµ

(

â+ λb̂
)

= χIJβ
IβJ +O(β3, β2∂β) . (1.4)

This result dispels the concerns on the validity of the perturbative a-theorem in d = 6

raised by [18], where a different function of the coupling constants was proposed as the

monotonically decreasing quantity. As a direct consequence of the a-theorem we prove the

equivalence SFT = CFT in our setup.

2 The local Callan-Symanzik equation

In this section we review briefly the local CS equation formalism, which we will use to

derive constraints on the RG flow. The local CS equation was first derived in the seminal

work [3]. We refer the reader to [5] and [6] for a detailed and thorough analysis of this

technology in four dimensions.

The RG flow is equivalent to a global rescaling of distances, which is controlled by

the properties of the trace of the stress-energy tensor, T . In perturbation theory, the

stress-energy tensor can be expanded in a basis of operators of the CFT. Schematically,

T ∼ βIOI + SA∇µJ
µ
A − ηa∇2Oa + Cα∇2∇2ϕα , (2.1)

where OI are marginal scalar operators of dimension six, Jµ
A are currents of dimension five

generating an exact flavor symmetry GF at the fixed point λI = 0, while Oa and ϕα are

scalar operators of dimensions four and two.3

For simplicity, in this work we will assume that the lower-dimensional scalar operators

Oa and ϕα are absent. It would be interesting to include them in the future, also to further

test results in the perturbative φ3 theory [19].

To express the response of the theory (1.3) under local changes of the renormalization

scale, it is necessary to turn on sources for the renormalized operators in (2.1). We lift the

theory to curved spacetime, such that the metric gµν(x) sources the stress-energy tensor

Tµν . In addition, we promote the couplings λI(x) to spacetime dependent sources of the

marginal operators OI , and we introduce the background gauge fields AA
µ (x) sourcing the

currents Jµ
A. The GF symmetry is thus gauged and λI transform under the symmetry. The

quantum effective action then reads

W[J ] = −i log

∫

DΦ eiS[Φ,J ] , (2.2)

where we collectively denote the sources as J ≡ (gµν(x), λI(x), Aµ
A(x)).

3By the unitarity bound ϕα can only be free fields satisfying ∇2ϕα = 0 at the fixed point.
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The connected correlation functions can be expressed as functional derivatives with

respect to the J ’s,

2√−g

δ

δgµν(x)
→ [Tµν(x)] ,

1√−g

δ

δλI(x)
→ [OI(x)] ,

1√−g

δ

δAA
µ (x)

→
[

J
µ
A(x)

]

,

(2.3)

where the square brackets denote the operator insertion inside a renormalized correlation

function. For instance, the time-ordered renormalized correlators of the scalar marginal

operators are obtained as

〈T {OI1(x1) · · · OIn(xn)}〉 =
(−i)n−1

√

−g(x1) · · ·
√

−g(xn)

δ

δλI1(x1)
· · · δ

δλIn(xn)
W . (2.4)

To evaluate these correlation functions in the perturbed theory (1.3) in flat space, one has

to take gµν(x) → ηµν , λI(x) → λI = const, AA
µ (x) → 0 after the variation.

To derive constraints on the RG flow we will consider the response of the quantum ef-

fective action to a local change of the renormalization scale. The local CS equation [3] reads

∆σW ≡
∫

d6x
√−g

(

2σgµν
δ

δgµν
+ δσλ

I δ

δλI
+ δσA

A
µ · δ

δAA
µ

)

W =

∫

d6x
√−gAσ ,

δσλ
I = −σβI , δσA

A
µ = −σρAI ∇µλ

I + ∂µσS
A ,

(2.5)

where ∆σ contains the most general terms allowed by covariance and power counting, ∇ is

a gauge covariant derivative, and the anomaly Aσ is a local functional of the sources, whose

form is constrained by diff-invariance and power counting. The Wess-Zumino consistency

conditions,

∆σAσ′ −∆σ′Aσ = 0 , (2.6)

expressing the commutativity of Weyl rescalings, impose further constraints among the

coefficients of the various terms that appear in Aσ. At the fixed point, i.e. for λI = const,

βI = SA = 0 and A
µ
A = 0, Aσ reduces to the usual conformal anomaly [20],

Aσ = σ (−aE6 + c1I1 + c2I2 + c3I3) , (2.7)

up to six contributions (trivial anomalies) that can be eliminated by adding local coun-

terterms to the effective action. In (2.7) E6 is the Euler term while I1, I2, I3 are Weyl

invariant tensors. Their explicit form can be found in appendix B. The condition (2.6) at

the fixed point imposes the vanishing of seven other possible anomalies (analogous to the

R2 anomaly in d = 4).

In the next section we are going to derive constraints on the RG flow implied by the

consistency conditions for the anomaly outside the fixed point.

3 Constraints on RG flows

Consistency conditions that follow from the commutativity of Weyl rescalings impose con-

straints among the various terms that appear in the anomaly Aσ. In d = 2, 4 these
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conditions were originally considered in [3], and were recently also studied in detail in [5,

6, 12, 13], and holographically in [21, 22]. The consistency conditions were also studied in

supersymmetric theories in [23, 24]. In d = 6 they were first considered in [17]. Here we

derive the consistency conditions from the results of (2.6), as obtained in [17], and perform

a detailed analysis of those. We find that some consistency conditions obtained in [17] were

incomplete.

For the moment, we will neglect the contributions to equation (2.5) related to the

gauge fields AA
µ sourcing the currents J

µ
A. However, as will be shown in section 4, this

will not change our conclusions. The complete form of Aσ can be found in appendix B.

After decomposing (2.6) in a linearly-independent basis, it is possible to read off constraint

equations for the anomaly coefficients. This is technically challenging, particularly due

to difficulties related to integration by parts and Bianchi identities.4 The consistency

conditions obtained here were checked at two loops in the φ3 theory against the results

of [19].5 We have also checked that they are satisfied by the general form of the trace

anomaly on the conformal manifold as constucted in [7].

In this work we exploit all constraints imposed on anomaly coefficients with up to two

indices. This requires us to decompose the consistency conditions and isolate the ones that

stem from terms involving up to two couplings λ. For example, we are interested in the

consistency condition arising from contributions to the left-hand side of (2.6) proportional

to (σ∂µσ
′−σ′∂µσ)∇2λI ∂µ∇2λJ , but not in the one arising from contributions proportional

to (σ∂µσ
′ − σ′∂µσ)∂

µλI∇2λJ∇2λK .

A particularly important equation contained in (2.6) is obtained from terms propor-

tional to (σ∂µσ
′ − σ′∂µσ)H1

µν∂νλ
I , where H1

µν is a generalization of the Einstein tensor

in d = 6 [25] (see (B.4) for its explicit form), namely

∂I ǎ =
1

6
HIJβ

J +
1

6
HI , (3.1)

where

ǎ = a+
1

6
b1 −

1

90
b3 +

1

6
b11 +

1

12
AJβ

J +
1

6
H1

Jβ
J ,

HI = −H5
I −

1

2
H6

I −
1

2
I7
I , HIJ =

1

4
AJI +H1

IJ + ∂IAJ + ∂[IH1
J ] ,

(3.2)

with the definition

∂[IXJ ] = ∂IXJ − ∂JXI . (3.3)

All tensors appearing above are local functions of the couplings, and their definition can

be found in appendix B. Use of the consistency condition arising from (σ∇µ∇ν∂ρσ′ −
4All our computations were performed in Mathematica using the package xAct, and details on the

derivation of the consistency conditions can be found in appendix A. Due to the large number of terms

appearing in (2.6) and related consistency conditions, we do not report most of them in the text. The

interested reader can find them in a separate Mathematica file attached to the submission.
5To extend the check to higher loops it will be necessary to include the effects of the operators of

dimension two and four.

– 5 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
0

σ′∇µ∇ν∂ρσ)∇µ∇ν∂ρλ
I allows us to put (3.1) in the form

∂I ã =
1

6

(

H1
IJ − 1

4
Â′′

IJ

)

βJ+
1

6
∂[IH1

J ]β
J− 1

12
I7
I , ã = a+

1

6
b1−

1

90
b3+

1

6
H1

Iβ
I , (3.4)

which contains fewer anomaly coefficients than (3.1) with (3.2). Unlike in the two and four-

dimensional cases, (3.4) does not present itself in the form of (1.1), due to the presence

of the vector anomaly I7
I . Notice that this contribution was missed in [17], which led to

consider ã as the candidate for a monotonically-decreasing function in [18]. However, ã

cannot be such a candidate, even more so because it is scheme-dependent6 at order β.7

In this work we consider linear combinations of the consistency conditions in order to

find all independent equations having the form of (1.1). Most importantly, we find the

equation8

∂I â = (χIJ + ξIJ)β
J , (3.5)

where

â = a− 5

6
b1 +

1

10
b2 +

1

45
b3 +

1

10
b4

+

(

1

10
BI +

1

24
CI +

1

20
EI +

1

24
FI +

1

6
H1

I +
1

20
H2

I +
1

12
H3

I +
1

8
H4

I −
1

40
H6

I

)

βI ,

χIJ =
1

20
∂(IBJ) −

1

40
B̂′
IJ +

1

48
Ĉ′
IJ +

1

20
Ê(IJ) +

1

24
F(IJ) +

1

6
H1

IJ

+
1

20
H2

IJ +
1

12
H3

IJ +
1

8
H4

IJ − 1

40
H6

IJ ,

ξIJ =
1

20
∂[IBJ ] +

1

48
C[IJ ] +

1

40
Ê[IJ ] +

1

48
F[IJ ] +

1

48
F ′
[IJ ]

+
1

6
∂[IH1

J ] +
1

20
∂[IH2

J ] +
1

12
∂[IH3

J ] +
1

8
∂[IH4

J ] −
1

40
∂[IH6

J ] , (3.6)

and we use (3.3) and

∂(IXJ) = ∂IXJ + ∂JXI , X(IJ) = XIJ +XJI , X[IJ ] = XIJ −XJI . (3.7)

â equals a at the fixed point, for the anomalies b1,...,7 are all proportional to β. χIJ

and ξIJ are symmetric and antisymmetric tensors, respectively.9 Note that, by virtue

of equation (3.5), â is scheme independent at order β, while χIJ and ξIJ are scheme-

independent at order β0, i.e. they are not affected to that order by adding local counterterms

to the effective action.

6In this paper, by “scheme-dependent” quantities we mean those which change under the addition of

purely background-dependent counterterms to the effective action.
7For example, the addition of a term

∫
d6x

√
γ XI ∂µλ

I ∇νH
µν
4 in W[J ], with XI arbitrary, induces,

among others, the shifts I7
I → I7

I + LβXI , where Lβ is the Lie derivative along the beta function, and

H1
I → H1

I − 1
2
XI . The shift of H1

I affects ã at order β.
8The linear combination of the consistency conditions leading to (3.5) is explicitly reported in the

Mathematica file attached to the submission.
9Using the consistency conditions we have checked that ξIJ cannot be written as ∂[IXJ] for some vector

XJ .
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Now we can show that the metric χIJ in (3.5) is positive-definite. Indeed, consider

the RG derivative of the two-point correlator of the marginal operators 〈OI(x)OJ(0)〉 (in
Euclidean signature). First notice that, since lengths are entirely controlled by gµν , this

operation can be expressed as a Weyl rescaling,

µ
∂

∂µ
W = −2

∫

d6x gµν
δ

δgµν
W . (3.8)

Then, neglecting terms involving the β function,

µ
∂

∂µ
〈OI(x)OJ(0)〉=−

∫

d6y
1

√

−g(x)
√

−g(0)

(

2gµν(y)
δ

δgµν(y)

)

δ

δλI(x)

δ

δλJ(0)
W (3.9)

= −
∫

d6y
√

−g(y)
1

√

−g(x)

δ

δλI(x)

1
√

−g(0)

δ

δλJ(0)
Aσ=1 (3.10)

= gIJ(∂
2)3δ(6)(x) , (3.11)

where in the last line we go to flat space, δ(6)(x) is the six-dimensional delta function, and

gIJ is evaluated via the anomaly in appendix B,

gIJ = −∂(IAJ) − Â(IJ) + Â′
IJ + Â′′

IJ . (3.12)

It can be shown that gIJ is proportional to the Zamolodchikov metric and is thus positive-

definite by unitarity [7]. Furthermore, the consistency conditions relate the tensors χIJ

and gIJ via

χIJ =
1

6
gIJ +O(β, ∂β) . (3.13)

With this result, and upon contracting equation (3.5) with βI , we get the desired mono-

tonicity constraint in perturbation theory for â,

µ
d

dµ
â = χIJβ

IβJ ≥ 0 , (3.14)

where the inequality is saturated only if βI = 0. This proves the a-theorem in perturbation

theory (in theories with no relevant scalar operators of dimension two and four).

Additionally, we find another, independent equation of the form10

∂I b̂ = (χ′
IJ + ξ′IJ)β

J , (3.15)

where

b̂ = 4b1 −
4

5
b2 −

4

15
b3 −

4

5
b4 −

(

4

5
BI +

1

2
CI +

2

5
EI +

2

5
H2

I +
2

3
H3

I +
2

3
H4

I −
1

5
H6

I

)

βI ,

χ′
IJ = −2

5
∂(IBJ) +

1

3
Â′′

IJ +
1

5
B̂′
IJ − 1

6
Ĉ′
IJ − 1

5
Ê(IJ) −

2

5
H2

IJ − 2

3
H3

IJ − 2

3
H4

IJ +
1

5
H6

IJ ,

ξ′IJ = −2

5
∂[IBJ ] −

1

5
Ê[IJ ] −

2

5
∂[IH2

J ] −
2

3
∂[IH3

J ] −
2

3
∂[IH4

J ] +
1

5
∂[IH6

J ] . (3.16)

10The linear combination of the consistency conditions leading to (3.15) is explicitly reported in the

Mathematica file attached to the submission.
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b̂ is of order β and so vanishes at fixed points, and χ′
IJ , ξ

′
IJ are symmetric and antisym-

metric respectively. The existence of the metric χ′
IJ is related to the fact that in d = 6

there are three rank-two conformally covariant operators one can define on the conformal

manifold [7], corresponding to just as many scheme-independent rank-two tensors at the

fixed point. This is in contrast with the two- and four-dimensional cases where there is

only a unique rank-two tensor related to the Zamolodchikov metric. Nevertheless, we found

that the consistency conditions impose an orthogonality constraint on χ′
IJ ,

χ′
IJβ

J = O(β2, β∂β) , (3.17)

even though, in general, χ′
IJ does not vanish at fixed points. Equations (3.5), (3.15), (3.17)

imply that there exists a one-parameter family of monotonically decreasing functions at

leading order in perturbation theory,

µ
d

dµ

(

â+ λb̂
)

=
1

6
gIJβ

IβJ +O(β3, β2∂β) . (3.18)

4 Scale versus conformal invariance

We could ask whether the theory (1.3) can flow to a nearby scale invariant field theory

without conformal invariance. This question becomes nontrivial in presence of dimension

five currents, as we see from equation (2.1). Indeed, at the fixed point it is βI = 0, and T

has the operatorial form

T ∼ SA∇µJ
µ
A ≡ ∇µV

µ , (4.1)

where V µ is the so-called virial current. If SA 6= 0 the theory is scale but not conformally

invariant, for T is a total divergence.

Before proceeding, it is useful to rewrite the Weyl operator in a more convenient form.

By making use of the Ward identities for the GF symmetries represented by the broken

generators TA, it possible to redefine the Weyl operator in (2.5) to encapsulate both a

Weyl rescaling and a GF transformation [3, 5, 6, 13],

∆′
σW ≡

∫

d6x
√−g σ

(

2gµν
δ

δgµν
−BI δ

δλI
−PA

I ∇µλ
I · δ

δAA
µ

)

W=

∫

d6x
√−gAσ , (4.2)

BI = βI − (SATAλ)
I , PA

I = ρAI + ∂IS
A , (4.3)

with the constraint BIPA
I = 0 due to the commutativity of Weyl rescaling, [∆′

σ,∆
′
σ′ ] = 0.

In this parametrization a scale invariant field theory corresponds to BI = −(SATAλ)
I ,

while a conformal invariant field theory to BI = 0.

Now, let us generalize the equation (3.5) in the presence of dimension five currents.

By covariance, at leading order in BI it takes the form

∂I â = (χIJ + ξIJ)B
J + PA

I fA , (4.4)

where fA is an generic combination of anomaly coefficients of terms involving the gauge

fields AA
µ . Upon contracting (4.4) with BI and using the condition BIPA

I = 0 we get

BI∂I â = µ
d

dµ
â =

1

6
gIJB

IBJ ≥ 0 . (4.5)
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Therefore, we reach the same conclusion we found in section 3. Furthermore, suppose

we are in a scale invariant field theory. Then, GF -invariance of â implies that BI∂I â =

−(SATAλ)
I∂I â = 0, so that (4.5) gives

gIJB
IBJ = 0 . (4.6)

Due to the positive-definiteness of gIJ this can only be true for BI = 0. This proves

that scale invariance implies conformal invariance in our setup, in analogy with the four-

dimensional case [12, 13]. Our proof here follows the logic of [13].

5 Conclusions

In this work we studied the properties of RG flows originating from marginal deformations

to unitary conformal field theories in six dimensions. For simplicity, we restricted the

analysis to a class of CFTs where relevant scalar operators of dimension two and four

are absent. Even though we work in perturbation theory, the UV CFT can in general be

strongly coupled and may not admit a Lagrangian description.

The results obtained here can be summarized as follows:

• We derived all the consistency conditions with up to two powers of the coupling

outside the fixed point. We solved those to find all the constraints among the anomaly

coefficients which can be put in the form of a flow equation.

• We identified a one-parameter family of scheme-independent functions of the coupling

constants of the theory, â + λb̂ with λ ∈ R, equal to the a-anomaly coefficient plus

O(β) corrections, which flow monotonically in the proximity of a fixed point thanks

to unitarity. There is no parameter λ for which the combination â+ λb̂, agrees with

the quantity analyzed in [18] in the context of φ3 theory, therefore we dispel the

doubts cast on the perturbative a-theorem in six dimensions.

• As a direct consequence of the a-theorem we proved, using standard arguments, that

scale implies conformal invariance in our setup.

The dynamics of perturbative QFTs in six dimensions appears structurally differ-

ent with respect to the four-dimensional case, due to the presence of multiple scheme-

independent rank two tensors at the fixed point. Nevertheless, we were able to find a class

of physical quantity whose RG flow is governed uniquely by the positive definite Zamolod-

chikov metric. We presume that extending our argument beyond perturbation theory would

single out the monotonically-decreasing function in the one-parameter family that we found.

In the future, it will be interesting to extend our results in the presence of scalar op-

erators of dimension two and four. First, that could highlight possible differences with

the lower spacetime dimensional cases, where relevant operators do not affect the mono-

tonicity constraints [3, 5, 6].11 Second, that will be necessary to test our results in the

11In four dimensions that is made clear by the argument employing the on-shell dilaton amplitude, which

is manifestly insensitive to those effects [5].
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φ3 theory, which is the only perturbatively calculable theory in six dimensions. It should

be straightforward to generalize our computations to include those contributions, with the

only difficulties arising due to the proliferation of terms in the anomaly functional and in

the Weyl operator.

It would also be of interest to analyze â and b̂ to higher-loop orders in φ3 theory with the

use of the consistency conditions, along the lines of [26]. The effects of dimension two and

four operators as described in the previous paragraph may be necessary for such an analysis.

The question stands whether the a-theorem and the equivalence of scale and conformal

invariance is valid beyond perturbation theory in six dimensions. So far no counterexamples

are known. In four dimensions, certain dilaton scattering amplitudes provide a powerful

tool to address these questions [9, 14]. Attempts were made to use dilaton scattering

amplitudes [15] in six dimensions, but it is not clear what the right approach would be.
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A Derivation of the consistency conditions

In this work, in order to derive the consistency conditions it was necessary to write the

variation 2.6 in a linearly independent basis. This was technically nontrivial due to the

large number of terms (∼ O(100)) and redundancies related to integration by parts. Our

approach is outlined in this appendix. First, by integrating by parts, we took all the

derivatives off either σ or σ′. As a result, we ended up with terms such as

(σ∂µσ
′ − σ′∂µσ) fI(λ)∂

µλIR2 , (σ∇µ∂νσ
′ − σ′∇µ∂νσ) f(λ)H

µν
1 . (A.1)

However, there are still redundancies related to antisymmetrization with respect to σ, σ′.

For example, consider the trivial equation

(∂µσ∂νσ
′ − ∂µσ

′∂νσ) f(λ)H
µν
1 = 0 , (A.2)

where H
µν
1 is symmetric. Upon integrating by parts and writing this equation in the same

basis as (A.1), we get

(σ∇µ∂νσ
′ − σ′∇µ∂νσ) f(λ)H

µν
1 + (σ∂νσ

′ − σ′∂νσ) ∂If(λ)∂µλ
IH

µν
1 = 0 , (A.3)
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since ∇µH
µν
1 = 0 in this example. This allows to eliminate the second term in (A.1).

Similarly one can get rid of all the terms with an even number of derivatives on σ, σ′. This

prescription fixes unambiguously a complete basis for (2.6).

B Conventions and basis for the anomaly

We define the Riemann tensor via

[∇µ,∇ν ]A
ρ = Rρ

σµνA
σ , (B.1)

and the Ricci tensor and Ricci scalar as Rµν = Rρ
µρν and R = gµνRµν . The Einstein tensor

is defined in d ≥ 2 by

Gµν =
2

d− 2
(Rµν −

1

2
gµνR) , (B.2)

while the Weyl tensor is defined in d ≥ 3 by

Wµνρσ = Rµνρσ +
2

d− 2
(gµ[σRρ]ν + gν[ρRσ]µ) +

2

(d− 1)(d− 2)
gµ[ρgσ]νR . (B.3)

At dimension four we consider the tensors

E4 =
2

(d− 2)(d− 3)
(RµνρσRµνρσ − 4RµνRµν +R2) , I = WµνρσWµνρσ ,

H1µν =
(d− 2)(d− 3)

2
E4gµν − 4(d− 1)H2µν + 8H3µν + 8H4µν − 4Rρστ

µRρστν ,

H2µν =
1

d− 1
RRµν , H3µν = Rµ

ρRρν , H4µν = RρσRρµσν ,

H5µν = ∇2Rµν , H6µν =
1

d− 1
∇µ∂νR .

(B.4)

A complete basis of scalar dimension-six curvature terms consists of [20]

K1=R
3
, K2=RR

µν
Rµν , K3=RR

µνρσ
Rµνρσ , K4=R

µν
RνρR

ρ
µ ,

K5=R
µν

R
ρσ
Rµρσν , K6=R

µν
RµρστR

ρστ
ν , K7=R

µνρσ
RρστωR

τω
µν ,

K8=R
µνρσ

RτνρωRµ
τω

σ , K9=R∇2
R , K10=R

µν ∇2
Rµν , K11=R

µνρσ ∇2
Rµνρσ ,

K12=R
µν∇µ∂νR , K13=∇µ

R
νρ∇µRνρ , K14=∇µ

R
νρ∇νRµρ ,

K15=∇µ
R

νρστ ∇µRνρστ , K16=∇2
R

2
, K17=(∇2)2R .

(B.5)

In d = 6 a convenient basis is given by

I1 =
19

800
K1 −

57

160
K2 +

3

40
K3 +

7

16
K4 −

9

8
K5 −

3

4
K6 + K8 , (B.6)

I2 =
9

200
K1 −

27

40
K2 +

3

10
K3 +

5

4
K4 −

3

2
K5 − 3K6 + K7 , (B.7)

I3 = −11

50
K1 +

27

10
K2 −

6

5
K3 − K4 + 6K5 + 2K7 − 8K8 (B.8)

+
3

5
K9 − 6K10 + 6K11 + 3K13 − 6K14 + 3K15 , (B.9)

E6 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8 , (B.10)
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J1 = 6K6 − 3K7 + 12K8 + K10 − 7K11 − 11K13 + 12K14 − 4K15 , (B.11)

J2 = −1

5
K9 + K10 +

2

5
K12 + K13 , J3 = K4 + K5 −

3

20
K9 +

4

5
K12 + K14 , (B.12)

J4 = −1

5
K9 + K11 +

2

5
K12 + K15 , J5 = K16 , J6 = K17 , (B.13)

L1 = − 1

30
K1 +

1

4
K2 − K6 , L2 = − 1

100
K1 +

1

20
K2 , (B.14)

L3 = − 37

6000
K1 +

7

150
K2 −

1

75
K3 +

1

10
K5 +

1

15
K6 , L4 = − 1

150
K1 +

1

20
K3 , (B.15)

L5 =
1

30
K1 , L6 = − 1

300
K1 +

1

20
K9 , L7 = K15 , (B.16)

where the first three transform covariantly under Weyl variations, and E6 is the Euler

term in d = 6. The J ’s are trivial anomalies in a six-dimensional CFT defined in curved

space, and the first six L’s are constructed based on the relation δσ
∫

d6x
√−g L1,...,6 =

∫

d6x
√−g σJ1,...,6.

In six spacetime dimensions there are ninety four independent terms that can con-

tribute to the anomaly [17]. In general, we can write

∫

d6x
√−gAσ =

65
∑

p=1

∫

d6x
√−g σTp +

30
∑

q=1

∫

d6x
√−g ∂µσZ

µ
q , (B.17)

where Tp and Z
µ
q are dimension-six and dimension-five terms respectively, that can involve

curvatures as well as derivatives on the couplings λI . In writing down the various terms

below, we neglect total derivatives.

If only curvatures are included, then we have the terms

T1 = −c1I1 , T2 = −c2I2 , T3 = −c3I3 , T4 = −aE6 , T5,...,11 = −b1,...,7L1,...,7 .

(B.18)

We also have the terms

Z
µ
1 = −b8 ∂

µE4 , Z
µ
2 = −b9 ∂

µI , Z
µ
3 = − 1

25
b10R∂µR ,

Z
µ
4 = −1

5
b11 ∂

µ∇2R , Z
µ
5,6,7 = −b12,13,14∇νH

µν
2,3,4 .

(B.19)

Actually, the terms in (B.19) overcomplete the basis of trivial anomalies. This is because

there are six trivial anomalies, but seven terms in (B.19). If we integrate the (B.19) terms

by parts, then we may require that ∇µZ
µ
1,...,7 do not affect the coefficients of L1,...,7. This

forces us to impose

b13 = − 24

d2 − 5d+ 6
b8 +

4(d− 6)

d− 2
b9 −

5

d− 1
b12. (B.20)

With (B.20) it is guaranteed that L1,...,7 are vanishing anomalies, and we also see that the

coefficients of E6, I1,2,3 are unaffected by ∇µZ
µ
1,...,7. Thus, with the condition (B.20) the

terms Z
µ
1,...,7 substitute exactly the trivial anomalies J1,...,6.
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Next, we have

T12 = I1
I ∂µλ

I ∂µE4 , T13 = I2
I ∂µλ

I ∂µI , T14 =
1

25
I3
I ∂µλ

I R∂µR ,

T15 =
1

5
I4
I ∂µλ

I ∂µ∇2R , T16,17,18 = I5,6,7
I ∂µλ

I ∇νH
µν
2,3,4 ,

(B.21)

and

Z
µ
8 = G1

I ∂
µλI E4, Z

µ
9 = G2

I ∂
µλI I, Z

µ
10 =

1

25
G3
I ∂

µλI R2,

Z
µ
11 =

1

5
G4
I ∂

µλI ∇2R, Z
µ
12,...,17 = H1,...,6

I ∂νλ
IH

µν
1,...,6 ,

Z
µ
18 = FI ∇κ∂λλ

I ∇µGκλ , Z
µ
19 =

1

5
EI ∇2λI ∂µR .

(B.22)

With more ∂λ’s we have

T19 =
1

2
G1
IJ ∂µλ

I
∂
µ
λ
J
E4 , T20 =

1

2
G2
IJ ∂µλ

I
∂
µ
λ
J
I , T21 =

1

50
G3
IJ ∂µλ

I
∂
µ
λ
J
R

2
,

T22 =
1

10
G4
IJ ∂µλ

I
∂
µ
λ
J ∇2

R , T23,...,28 =
1

2
H1,...,6

IJ ∂µλ
I
∂νλ

J
H

µν
1,...,6 ,

T29 = FIJ ∂κλ
I∇λ∂µλ

J ∇κ
G

λµ
, T30 = F ′

IJ ∂κλ
I∇λ∂µλ

J ∇λ
G

κµ
,

(B.23)

and

Z
µ
20 =

1

5
EIJ ∂µλI∂νλ

J ∂νR , Z
µ
21 = DIJ ∂κλ

I∇λ∂νλ
J Rµλκν ,

Z
µ
22 = CI ∂ν∇2λI Gµν , Z

µ
23 = CIJ ∂κλI∇ν∂

κλJ Gµν , Z
µ
24 = C′

IJ ∂νλ
I∇2λJ Gµν ,

Z
µ
25 =

1

5
BIJ ∂

µλI∇2λJ R Z
µ
26 = AIJ ∂ν∇2λI∇µ∂νλJ , Z

µ
27 = A′

IJ ∂
µλI(∇2)2λJ .

(B.24)

Furthermore, we have

T31 =
1

2
FIJK ∂κλ

I∂λλ
J∂µλ

K ∇κGλµ, T32 =
1

5
ÊIJ ∂µλI∇2λJ ∂µR ,

T33 =
1

10
EIJK ∂µλ

I∂νλ
J∂νλK ∂µR , T34 = DIJK ∂κλ

I∂µλ
J∇λ∂νλ

K Rκλµν ,

T35 =
1

4
DIJKL ∂κλ

I∂λλ
J∂µλ

K∂νλ
LRκλµν , T36 = ĈIJ ∇µ∂νλ

I∇2λJ Gµν ,

T37 =
1

2
Ĉ′
IJ ∇κ∂µλ

I∇κ∂νλ
J Gµν , T38 =

1

2
CIJK ∂µλ

I∂νλ
J∇2λK Gµν ,

T39 = C′
IJK ∂µλ

I∂κλ
J∇κ∂νλ

K Gµν , T40 =
1

2
C′′
IJK ∂κλ

I∂κλJ∇µ∂νλ
K Gµν ,

T41 =
1

4
CIJKL ∂µλ

I∂νλ
J∂κλ

K∂κλLGµν , T42 =
1

5
BI (∇2)2λI R ,

T43 =
1

10
B̂IJ ∇2λI∇2λJ R , T44 =

1

10
B̂′
IJ ∇µ∂νλ

I∇µ∂νλJ R ,

T45 =
1

10
BIJK ∂µλ

I∂µλJ∇2λK R , T46 =
1

10
B′
IJK ∂µλ

I∂νλ
J∇µ∂νλK R ,

T47 =
1

20
BIJKL ∂µλ

I∂µλJ∂νλ
K∂νλLR ,

(B.25)
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and

Z
µ
28 = AIJK ∂νλ

I∇µ∂νλJ∇2λK , Z
µ
29 = A′

IJK ∂κλ
I∇µ∂λλ

J∇κ∂λλK ,

Z
µ
30 =

1

2
AIJKL ∂νλ

I∂νλJ∂µλK∇2λL.
(B.26)

Finally, we also have the terms

T48 = AI (∇2)3λI
, T49 = ÂIJ (∇2)2λI∇2

λ
J
, T50 =

1

2
Â′

IJ ∂µ∇2
λ
I
∂
µ∇2

λ
J
,

T51 =
1

2
Â′′

IJ ∇κ∇λ∂µλ
I∇κ∇λ

∂
µ
λ
J
, T52 =

1

8
ÂIJK ∇2

λ
I∇2

λ
J∇2

λ
K
,

T53 =
1

2
Â′

IJK ∇κ∂µλ
I∇κ

∂νλ
J∇µ

∂
ν
λ
K
, T54 = Â′′

IJK ∂µλ
I∇2

λ
J
∂
µ∇2

λ
K
,

T55 = ǍIJK ∂µλ
I∇µ

∂νλ
J
∂
ν∇2

λ
K
, T56 =

1

2
Ǎ′

IJK ∂µλ
I
∂
µ
λ
J(∇2)2λK

,

T57 =
1

2
Ǎ′′

IJK ∂µλ
I
∂νλ

J∇µ
∂
ν∇2

λ
K
, T58 =

1

4
ÂIJKL ∂µλ

I
∂
µ
λ
J∇2

λ
K∇2

λ
L
,

T59 =
1

4
Â′

IJKL ∂κλ
I
∂
κ
λ
J∇µ∂νλ

K∇µ
∂
ν
λ
L
, T60 =

1

2
Â′′

IJKL ∂κλ
I
∂λλ

J∇κ
∂µλ

K∇λ
∂
µ
λ
L
,

T61 =
1

2
ǍIJKL ∂µλ

I
∂νλ

J∇µ
∂
ν
λ
K∇2

λ
L
, T62 =

1

2
Ǎ′

IJKL ∂κλ
I
∂λλ

J
∂µλ

K∇κ∇λ
∂
µ
λ
L
,

T63 =
1

4
AIJKLM ∂µλ

I
∂
µ
λ
J
∂νλ

K
∂
ν
λ
L∇2

λ
M
, T64 =

1

4
A′

IJKLM ∂κλ
I
∂
κ
λ
J
∂λλ

K
∂µλ

L∇λ
∂
µ
λ
M
,

T65 =
1

8
AIJKLMN ∂κλ

I
∂
κ
λ
J
∂λλ

K
∂
λ
λ
L
∂µλ

M
∂
µ
λ
N
.

(B.27)
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