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1 Introduction

The puzzle of dark matter remains an outstanding problem of particle physics. One of the

more attractive approaches to this problem exploits the fact that weakly interacting massive

particles (WIMPs) in thermal equilibrium produce the relic dark matter abundance in the

right ballpark. Particles of this type appear in many extensions of the Standard Model.

In this work, we explore the possibility that the Standard Model is connected to the dark

sector through the Higgs portal [1–3],

Vportal = λhφH
†Hφ†φ , (1.1)

where H is the Higgs field and φ is the “hidden Higgs”, that is, the field responsible for

breaking the gauge symmetry of the hidden sector. We assume the dark sector to be

endowed with U(1) or SU(N) gauge symmetry. In that case, the massive gauge fields can
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play the role of WIMP-type dark matter quite naturally. Indeed, they are weakly coupled

to the Standard Model and, owing to inherent discrete symmetries, can be stable.

The U(1) case was considered in ref. [4] where the stabilising Z2 symmetry was found

to be related to charge conjugation. The SU(2) example was worked out in ref. [5] and

the DM stability was attributed to a custodial SO(3). In this work, we extend these ideas

to larger SU(N) Lie groups and uncover the nature of the underlying discrete symmetries.

We focus on weakly coupled theories, although confining hidden sectors represent a viable

alternative [6, 7]. Finally, we perform a comprehensive study of DM phenomenology in all

of these cases, which includes direct and indirect DM detection as well as an analysis of

the DM relic abundance. Our main conclusion is that massive hidden gauge fields serve as

viable and attractive DM candidates.

2 Massive U(1) and SU(2) gauge fields as vector DM

In this section, we review the cases of massive U(1) and SU(2) gauge fields as vector

DM and identify the underlying symmetries leading to stability of vector dark matter. In

what follows we assume that the hidden sector consists only of gauge fields and of scalar

multiplets which are necessary to make these gauge fields massive.

2.1 Hidden U(1)

An Abelian gauge sector provides the simplest example of the vector DM model endowed

with a natural Z2 symmetry [4]. In this case, the Z2 corresponds to the charge conjugation

symmetry.

Consider a U(1) gauge theory with a single charged scalar φ,

Lhidden = −1

4
FµνF

µν + (Dµφ)†Dµφ− V (φ) , (2.1)

where Fµν is the field strength tensor of the gauge field Aµ and V (φ) is the scalar potential.

For easier comparison to the non-Abelian case, we take the charge of φ to be +1/2. Suppose

at the minimum of the scalar potential φ develops a VEV, 〈φ〉 = 1/
√

2 ṽ. The imaginary

part of φ gets eaten by the gauge field which now acquires the mass mA = g̃ṽ/2, where

g̃ is the gauge coupling. The real part of φ remains as a degree of freedom. Denoting it

by ρ and normalising it canonically, φ = 1/
√

2 (ρ + ṽ), we get the following gauge-scalar

interactions:

∆Ls−g =
g̃2

4
ṽρ AµA

µ +
g̃2

8
ρ2 AµA

µ . (2.2)

The system possesses the Z2 symmetry

Aµ → −Aµ , (2.3)

which is the usual charge conjugation symmetry. In terms of the original scalar field, this

symmetry acts as φ→ φ∗ and Aµ → −Aµ, which is preserved by both the Lagrangian and

the vacuum. The Z2 makes the massive gauge field stable. Note that this symmetry applies
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to a sequestered U(1) which has no tree level mixing with the hypercharge, in which case

no mixing is generated radiatively either.

Interactions with the visible sector proceed through the Higgs portal coupling

Lportal = −λhφ|H|2|φ|2 , (2.4)

which also leads to the Higgs mixing with ρ. In the unitary gauge, the Higgs field is given

by HT = (0, v + h)/
√

2. The fields ρ and h are then to be expressed in terms of the mass

eigenstates h1,2 as follows:

ρ = −h1 sin θ + h2 cos θ ,

h = h1 cos θ + h2 sin θ , (2.5)

where the mixing angle θ is constrained by various experiments, most notably, by LEP and

LHC. The upper bound on sin θ depends on the mass of the heavier state h2 and is around

0.3 for mh2 of the order of a TeV, see e.g. figure 3 of ref. [8] for details. The lighter state

h1 is identified with the 125 GeV Higgs, while the mass of the second state can vary in a

wide range.

As the Higgs portal necessarily preserves the Z2 symmetry, Aµ is a viable DM can-

didate. All the relevant scattering processes proceed through an exchange of h1 and h2,

which include DM annihilation into the SM particles as well as DM scattering on nucleons.

2.2 Hidden SU(2)

The U(1) considerations can easily be extended to SU(2), albeit with a modification of the

stabilising symmetry. Consider an SU(2) gauge theory with one doublet φ,

Lhidden = −1

4
F aµνF

a µν + (Dµφ)†Dµφ− V (φ) , (2.6)

where a = 1, 2, 3. The potential is assumed to have a minimum at a nonzero VEV of φ. In

the unitary gauge, φ takes the form

φ =
1√
2

(
0

ρ+ ṽ

)
, (2.7)

with ρ being a real field and ṽ being the VEV. Denoting the gauge coupling by g̃, this leads

to the gauge boson mass mA = g̃ṽ/2. The scalar-gauge and gauge-gauge field interactions

are given by

∆Ls−g =
g̃2

4
ṽρ AaµA

a µ +
g̃2

8
ρ2 AaµA

a µ ,

∆Lg−g = −g̃εabc(∂µAaν)Aµ bAν c − g̃2

4

(
(AaµA

µ a)2 −AaµAaν Aµ bAν b
)
. (2.8)

Although the triple gauge vertex breaks the parity of the previous section, it follows that

the system possesses a Z2 × Z ′2 symmetry,

Z2 : A1
µ → −A1

µ , A
2
µ → −A2

µ ,

Z ′2 : A1
µ → −A1

µ , A
3
µ → −A3

µ . (2.9)
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As a result, all three Aaµ fields are stable and can play the role of dark matter. While the

above symmetry is sufficient to ensure stability of DM, it actually generalises in this simple

case to a custodial SO(3) [5]. As we will see, for larger SU(N) groups, it is the discrete

symmetry that plays a crucial role. The first Z2 is associated with a gauge transformation,

while the Z ′2 generalises the charge conjugation symmetry, i.e. it corresponds to complex

conjugation of the group elements.

As before, the dark sector couples to the visible one through the Higgs portal,

λhφ|H|2|φ|2. The discussion of the Higgs mixing with ρ of the previous section applies

here as well. Clearly, the Z2 × Z ′2 symmetry is preserved by the Higgs portal and the

hidden gauge fields couple to the visible sector only in pairs.

3 Extension to SU(3)

While the SU(2) case is straightforward, larger SU(N) groups exhibit more complicated

breaking patterns. In a phenomenologically viable set-up, the symmetry must be broken

completely to avoid the existence of massless fields (barring confinement). One possibil-

ity would be to break SU(3) by two scalar multiplets in the fundamental representation,

i.e. triplets. One may also explore other options involving SU(3) tensors. As we detail

below, our conclusion is that a single irreducible representation with two indices cannot

break SU(3) completely, which leaves the two triplet option as the minimal one.

3.1 Breaking SU(3) by tensor fields

The lowest order SU(3) tensor whose generic VEV can break SU(3) completely is the

symmetric tensor φij , that is 6 of SU(3). Gauge transformations act on φij as

φ→ UφUT . (3.1)

By virtue of Takagi’s matrix decomposition, this allows one to bring φij to the diago-

nal form,

φ =

φ1 0 0

0 φ2 0

0 0 φ3

 , (3.2)

where φ1, φ2, φ3 are real up to an overall complex phase. If the VEVs of φ1, φ2 and φ3
are all different, SU(3) is broken completely. However, when some of them coincide, the

residual gauge group is at least SO(2).

In order to determine what VEVs are possible, let us write down the most general

gauge invariant potential for φij . It is easy to convince oneself that the potential has

the form

V = m2 Trφ†φ+ λ1Tr(φ†φ)2 + λ2

(
Trφ†φ

)2
+ (µ Detφ+ h.c.) , (3.3)

where m2 can be negative. The minima of this potential determine the φi VEVs. Acting

upon V with the operator φi∂/∂φi (no summation over i), one finds that all nonzero 〈φi〉
satisfy the same equation. This implies that 〈φi〉 are either degenerate or zero. For the case
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µ = 0, such behaviour has been noticed in [9, 10]. We find (analytically and numerically)

that it persists in the case of nonzero µ as well. As a result, the residual gauge symmetry

is at least SO(2) and the corresponding gauge bosons remain massless.1 Thus, the model

with a single symmetric tensor is unrealistic.

One may also consider the possibility of breaking SU(3) by an antisymmetric tensor.

By virtue of Youla’s decomposition, it can be gauge-transformed to the block-diagonal form

φ =

 0 φ1 0

−φ1 0 0

0 0 0

 . (3.4)

Therefore, the residual gauge symmetry is at least Sp(1)=SU(2), which can also be un-

derstood via the equivalence between the antisymmetric tensor and the (anti)fundamental

representation. Again we find that the model is unrealistic.

Similarly, complete SU(3) breaking cannot be achieved by a VEV of an adjoint scalar.

In this case, the group rank is preserved and thus there are massless gauge fields.

The next simplest option is to combine the symmetric and antisymmetric tensors. This

system would have 9 complex degrees of freedom, while two SU(3) triplets only have 6.

Thus SU(3) breaking with two triplets is minimal and sufficient for our purposes.

3.2 Breaking SU(3) by triplets and Z2 × Z′
2

Misaligned VEVs of two triplets break SU(3) completely. This breaking pattern can be

understood in stages: the first triplet VEV reduces the symmetry to SU(2), while the

second breaks the remaining SU(2). VEVs misaligned in SU(3) space represent a generic

situation, that is, they result from the minimisation of a general scalar potential consistent

with SU(3) symmetry. Therefore, such a breaking pattern is phenomenologically viable.

Before going into details, let us identify the Lie group discrete symmetries which even-

tually lead to DM stability. One way to find them is to analyse the SU(3) structure

constants (using the usual Gell-Mann basis),

f123 = 1 ,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
. (3.5)

Identifying the transformation properties of the generators with those of the gauge fields,

we define the “parity” transformation as

Aaµ → η(a)Aaµ . (3.6)

It is easy to see that the structure constants are invariant if the parities are

Z2 : η(a) = −1 for a = 1, 2, 4, 5 ,

η(a) = +1 for a = 3, 6, 7, 8 , (3.7)

1Ref. [11] has considered 〈φ〉 proportional to the unit matrix, which entails unbroken SO(3). The

corresponding gauge bosons may be confined in glueballs.
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and also

Z ′2 : η(a) = −1 for a = 1, 3, 4, 6, 8 ,

η(a) = +1 for a = 2, 5, 7 . (3.8)

One may notice that the first Z2 acts on the off-diagonal generators with nonzero entries

in the first row, while the second reflects the real SU(3) generators. In section 4, we will

show that these symmetries generalise to arbitrary SU(N) and that the first Z2 is a gauge

transformation, whereas the second corresponds to an outer automorphism of the group,

i.e. complex conjugation of the group elements.

These symmetries are inherited by the Yang-Mills Lagrangian. If CP is conserved,

they are also preserved in the matter sector leading to stable dark matter. Below we study

the relevant interactions in detail.

3.3 Explicit example

Consider an SM extension by two complex fields φ1 and φ2 transforming as triplets of

hidden gauge SU(3). The Lagrangian of the model is

LSM + Lportal + Lhidden , (3.9)

where

−LSM ⊃ VSM =
λH
2
|H|4 +m2

H |H|2 , (3.10a)

−Lportal = Vportal = λH11 |H|2|φ1|2 + λH22 |H|2|φ2|2 − (λH12 |H|2φ†1φ2 + h.c.) , (3.10b)

Lhidden = −1

2
tr{GµνGµν}+ |Dµφ1|2 + |Dµφ2|2 − Vhidden . (3.10c)

Here, Gµν = ∂µAν −∂νAµ+ ig̃[Aµ, Aν ] is the field strength tensor of the SU(3) gauge fields

Aaµ, Dµφi = ∂µφi + ig̃Aµφi is the covariant derivative of φi, H is the Higgs doublet, and

the most general renormalisable hidden sector scalar potential is given by

Vhidden(φ1, φ2) = m2
11|φ1|2 +m2

22|φ2|2 − (m2
12φ
†
1φ2 + h.c.)

+
λ1
2
|φ1|4 +

λ2
2
|φ2|4 + λ3|φ1|2|φ2|2 + λ4|φ†1φ2|

2

+

[
λ5
2

(φ†1φ2)
2 + λ6|φ1|2(φ†1φ2) + λ7|φ2|2(φ†1φ2) + h.c.

]
. (3.11)

Using SU(3) gauge freedom, 5 real degrees of freedom of φ1 and 3 real degrees of freedom

of φ2 can be removed. Therefore, in the unitary gauge φ1, φ2 read

φ1 =
1√
2

 0

0

v1 + ϕ1

 , φ2 =
1√
2

 0

v2 + ϕ2

(v3 + ϕ3) + i(v4 + ϕ4)

 , (3.12)

where the vi are real VEVs and ϕ1−4 are real scalar fields. Analogously, we express the

Higgs field in the unitary gauge as HT = (0, v + h)/
√

2.
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fields Z2 × Z ′2
h, ϕ1, ϕ2, ϕ3, A7

µ (+,+)

A2
µ, A

5
µ (−,+)

A1
µ, A

4
µ (−,−)

ϕ4, A3
µ, A

6
µ, A

8
µ (+,−)

Table 1. Z2 × Z ′
2 parities of the scalars and dark gauge bosons.

In what follows, we make two assumptions which are crucial for stability of vector dark

matter:

• the scalar potential is CP invariant

• the VEVs of φ1, φ2 are real.

The first condition implies that the scalar couplings are real, while the second assumes that

no spontaneous CP violation occurs (v4 = 0). As a result, CP–even and CP–odd fields do

not mix.

In this case, the Z2×Z ′2 symmetry extends to the Higgs sector as well. Under the first

Z2 all ϕi are even, while the second Z ′2 reflects ϕ4 and leaves the other fields intact. As

we detail in section 4, this assignment follows from the explicit form of the first Z2 as a

gauge transformation and the fact that the second Z ′2 acts as complex conjugation. In any

case, these are explicit symmetries of the Lagrangian and the vacuum. The full list of the

parities is presented in table 1. Clearly, the lightest states with non-trivial parities cannot

decay to the Standard Model particles.

We now discuss the Lagrangian in more detail, starting with the covariant derivates of

φ1 and φ2,

|Dµφi|2 = |∂µφi|2 + ig̃Aaµ

(
(∂µφi)

†T aφi − h.c.
)

+ g̃2AaµA
µb φ†iT

aT bφi . (3.13)

Inserting the parametrization (3.12) with v4 = 0, we get the kinetic terms for the scalars

|∂µφ1|2 + |∂µφ2|2 =
1

2

4∑
i=1

(∂µϕi)
2 , (3.14)

the mass terms for the gauge fields, the mixing terms as well as the gauge-scalar interac-

tions. Let us first discuss the terms quadratic in the fields. The third term on the r.h.s. of

eq. (3.13) contains the mass terms for the gauge bosons,

L ⊃ 1

2

(
~AT(1,4)M(1,4)

~A(1,4) + ~AT(2,5)M(2,5)
~A(2,5) + ~AT(3,6,8)M(3,6,8)

~A(3,6,8) +M(7)A
7
µA

µ7
)
,

(3.15)

where we have used the shorthand notation ~AT(1,4) ≡ (A1
µ, A

4
µ) and similarly for the other

gauge bosons. The mass-squared matrices are

M(1,4) =M(2,5) =
g̃2

4

(
v22 v2v3
v2v3 v

2
1 + v23

)
,
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M(3,6,8) =
g̃2

4

 v22 −v2v3 −v22/
√

3

−v2v3 v21 + v22 + v23 −v2v3/
√

3

−v22/
√

3 −v2v3/
√

3 (4v21 + v22 + 4v23)/3

 ,

M(7) =
g̃2

4
(v21 + v22 + v23) . (3.16)

The second term on the r.h.s. of eq. (3.13) contains the Aµ∂
µϕ mixing terms

L ⊃ g̃v2
2
Aµ6∂µϕ4 −

g̃v3√
3
Aµ8∂µϕ4 +

g̃v3
2
Aµ7∂µϕ2 −

g̃v2
2
Aµ7∂µϕ3 . (3.17)

In general, terms of the type κaiA
a
µ∂

µϕi can be removed by the field redefinition

Ãaµ = Aaµ + ∂µY
a , where Y a ≡ (M−1)ab κbi ϕi . (3.18)

We then have

− 1

2
tr{GµνGµν}+

1

2
(∂µϕ

i)2 +
1

2
MabA

a
µA

µb + κaiA
a
µ∂

µϕi =

− 1

2
tr{G̃µνG̃µν}+

1

2
γij(∂µϕ

i)(∂µϕj) +
1

2
MabÃ

a
µÃ

µb , (3.19)

where

G̃µν = ∂µÃν − ∂νÃµ + ig̃[Ãµ − ∂µY, Ãν − ∂νY ] , (3.20a)

γij = δij − κTiaM−1ab κbj , (3.20b)

and we have defined Y = Y aT a. The kinetic terms for the vector fields are still canonically

normalised, unlike those for the scalar fields. The latter can be normalised canonically by

a further field redefinition

ϕ̃i = ωikϕ
k , where (ωTω)ij = γij . (3.21)

Note that the term −1
2tr{G̃µνG̃µν} includes additional couplings of the gauge fields to the

scalars. The resulting vertices are obtained by replacing Aaµ in the triple and quartic gauge

boson terms by −∂µY a such that interactions of the type (Ã)3∂Y, (Ã)2(∂Y )2, etc. arise.

The analysis of the general case is very cumbersome, so further we will focus on the simple

case of v3 = 0 which retains all the relevant physics. In that case, the couplings involving

∂Y play no role in the DM phenomenology.

3.4 Detailed study for v3,4 = 0

As long as v1 and v2 are nonzero, SU(3) is broken completely. Hence it suffices to consider

the case v3 = 0, which simplifies the analysis. Then the only mixing term among the gauge

bosons is A3
µA

µ8 and the only gauge-scalar mixing terms are A6
µ∂

µϕ4, A
7
µ∂

µϕ3.

In what follows, we restrict ourselves to the case v3 = 0.

– 8 –
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3.4.1 Masses

Gauge boson masses. The gauge boson mass eigenstates are(
A′3µ
A′8µ

)
=

(
cosαA3

µ + sinαA8
µ

cosαA8
µ − sinαA3

µ

)
, where tan 2α =

√
3v22

2v21 − v22
, (3.22)

and the masses are2

m2
A′3 =

g̃2v22
4

(
1− tanα√

3

)
, m2

A′8 =
g̃2v21

3

1

1− tanα√
3

, (3.23)

while the other gauge boson masses can be read off directly from eq. (3.16) for v3 = 0:

m2
A1 = m2

A2 =
g̃2

4
v22 , m2

A4 = m2
A5 =

g̃2

4
v21 , m2

A6 = m2
A7 =

g̃2

4
(v21 + v22) . (3.24)

For v2 < v1, the light fields are A1,2
µ and A′3µ , with the latter being the lightest. It is

instructive to consider the case v22 � v21, so that tanα is small and positive. Then A′3µ is

slightly lighter than A1
µ and A2

µ by a factor of (1− tanα√
3

)1/2, while the other five dark gauge

bosons are all much heavier, by a factor of order v1/v2. The mass degeneracy between A1
µ

and A2
µ persists at loop level by symmetry arguments (see section 4).

One can easily verify that the heavier states A4−7
µ and A′8µ all decay into the light states

and the SM particles. The decay proceeds via emission (off-shell or on-shell) of the CP

even scalars which couple to the SM Higgs and thus to all other SM fields.

The 3 lightest states all have different Z2×Z ′2 parities such that they cannot decay into

each other by emitting SM particles. The only scalar with negative parity is ϕ4, however

it is generally heavy (see below) and does not contribute to the above decay. Hence, A1,2
µ

and A′3µ are stable.3

Gauge boson – scalar mixing. According to eq. (3.18), the Aµ∂
µϕ mixing terms are

removed by the redefinition (which does not affect the gauge boson masses)

Ã6
µ = A6

µ + ∂µY
6 , where Y 6 =

2

g̃

v2
v21 + v22

ϕ4 ,

Ã7
µ = A7

µ + ∂µY
7 , where Y 7 = −2

g̃

v2
v21 + v22

ϕ3 , (3.25)

while, according to eq. (3.21), the canonically normalised scalars are

ϕ̃3 =
v1√
v21 + v22

ϕ3 , ϕ̃4 =
v1√
v21 + v22

ϕ4 . (3.26)

2Note that tanα√
3

=
v22
4v21

+O
(
v62
v61

)
, cosα = 1− 3v42

32v41
+O

(
v82
v81

)
and sinα =

√
3v22

4v21
+O

(
v62
v61

)
.

3The parities allow for a decay of one DM component into two others, however this is forbidden kine-

matically.
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Scalar masses. The general scalar potential has many parameters. To make our dis-

cussion more transparent, let us assume the symmetry φ2 → −φ2 which does not affect

the essence of our considerations and requires m2
12 = λH12 = λ6 = λ7 = 0. In this case,

it turns out that the potential has no local minima with all of v, v1, v2, v3 being nonzero

such that setting v3 = 0 is actually required. It should be noted that in practice we are

considering the limit in which the above quantities are very small but nonzero such that

the decay channels for heavy particles, e.g. ϕ̃3, into the SM fields are open.

The VEVs v, v1, v2 can be expressed in a compact form using the matrix

Λ ≡

 λH λH11 λH22

λH11 λ1 λ3
λH22 λ3 λ2

 (3.27)

as well as the matrices Λij defined as (−1)i+j times the matrix obtained by deleting the

i-th row and j-th column of Λ, i.e. det Λij is the (i, j)-cofactor of Λ. One finds

v2 = −2(m2
H det Λ11 +m2

11 det Λ21 +m2
22 det Λ31)/ det Λ ,

v21 = −2(m2
H det Λ12 +m2

11 det Λ22 +m2
22 det Λ32)/ det Λ ,

v22 = −2(m2
H det Λ13 +m2

11 det Λ23 +m2
22 det Λ33)/ det Λ . (3.28)

The mass terms for the scalars are

− L ⊃ 1

2
ΦTm2Φ +

1

4
(λ4 + λ5)(v

2
1 + v22) ϕ̃2

3 +
1

4
(λ4 − λ5)(v21 + v22) ϕ̃2

4 , (3.29)

where ΦT ≡ (h, ϕ1, ϕ2) and

m2 =

 λHv
2 λH11vv1 λH22vv2

λH11vv1 λ1v
2
1 λ3v1v2

λH22vv2 λ3v1v2 λ2v
2
2

 . (3.30)

Note that ϕ̃3 and ϕ̃4 are generally heavier than A1, A2, A′3 since their masses involve v1
(unless λ4,5 are very small).

The matrix m2 is positive definite if and only if det Λ > 0, det Λ33 ≡ λHλ1 − λ2H11 >

0 and λH > 0. It can be diagonalised by an orthogonal transformation OTm2O =

diag(m2
H1
,m2

H2
,m2

H3
), where

O =

 c12c13 s12 c12s13
−c13c23s12 − s13s23 c12c23 −c23s12s13 + c13s23
−c23s13 + c13s12s23 −c12s23 c13c23 + s12s13s23

 (3.31)

and we have used the abbreviation sij ≡ sin θij , cij ≡ cos θij . Instead of providing the most

general formulae, let us focus on a simplified case. Suppose that the (12) and (23) entries

of m2 are much smaller than the other matrix elements, in other words, that λH11 and λ3
are very small. In this case, the Higgs mixing with ϕ2 is the dominant one. The reason

behind this choice is that the DM constituents A1, A2 and A′3 all have a significant coupling

– 10 –
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to ϕ2, see table 3. Given that the mixing between the Higgs and ϕ2 is substantial, this

facilitates DM annihilation into the SM fields. Clearly, similar considerations also apply to

the general case with all the angles θij being significant.

Assuming small m2
12,m

2
23, one finds

θ12 ≈ p32 m2
12 + qm2

23 , (3.32a)

θ23 ≈ p21 m2
23 + qm2

12 , (3.32b)

tan 2θ13 ≈
2λH22vv2

λ2v22 − λHv2
, (3.32c)

where pij = (m2
ii −m2

jj)/s, q = m2
13/s and s = (m2

13)
2 + (m2

11 −m2
22)(m

2
22 −m2

33). The

mass eigenstates are

 h1
H
h2

 ≡ OTΦ ≈

 c13h− s13ϕ2

ϕ1

c13ϕ2 + s13h

− θ12
 c13ϕ1

−h
s13ϕ1

− θ23
 s13ϕ1

ϕ2

−c13ϕ1

 . (3.33)

and the mass-squared eigenvalues are

m2
h1,h2 ≈

1

2
(λ2v

2
2 + λHv

2)∓ λ2v
2
2 − λHv2

2 cos 2θ13
(3.34a)

m2
H ≈ λ1v21 . (3.34b)

The eigenstates h1, h2 are typically the lighter ones, while H is heavy (unless λ1 is very

small). In our analysis of DM phenomenology, we retain only the former states. In sum-

mary, the relevant light fields are the DM components A1, A2 and A′3 as well as the

mediators h1, h2 which link the dark sector to the SM fermions and gauge bosons.

3.4.2 Couplings

The full list of the couplings is not necessary for our DM studies. The important couplings

are those with two gauge bosons and one or two scalars at the vertex. In terms of the

variables Ãaµ and ϕ̃i, most of these are listed in table 3 and table 2. For our applications,

the couplings of h1 and h2 are obtained from these tables using the relation (3.33), in which

one may neglect θ12 and θ23.

We focus on the case v1 � v2 so that DM consists of A1, A2 and A′3. Other fields

with non-trivial parities decay into these states and the SM particles. For instance, the

processes ϕ̃4 → A1A2 + SM and ϕ̃4 → A3′+ SM are allowed. (When v1 and v2 are close,

the composition of DM depends on the mass splittings.) DM annihilation and scattering

proceeds through an exchange of h1 and h2. Therefore, only the vertices involving these

fields play a significant role.
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4 Generalisation to arbitrary SU(N)

SU(N) is broken completely by generic VEVs of N − 1 fields φi in the fundamental repre-

sentation. The φi’s can be gauge-transformed to the form

φ1 =


0

0

. . .

0

ρ1

 , φ2 =


0

0

. . .

ρ
(1)
2

ρ
(2)
2 eiξ2

 , . . . , φN−1 =


0

ρ
(1)
N−1
. . .

ρ
(N−2)
N−1 eiξ

(N−3)
N−1

ρ
(N−1)
N−1 eiξ

(N−2)
N−1

 . (4.1)

Here the radial fields ρ
(j)
i and the phases ξ

(j)
i are real. We label the scalars such that the

lightest gauge fields are associated with the SU(2) subgroup which gets broken at the last

stage by a VEV of ρ
(1)
N−1. We assume that the VEVs as well as the couplings in the scalar

potential are all real so that CP is preserved in the hidden sector.

The generalisation of the Z2 × Z ′2 parity to SU(N) is as follows. The transforma-

tion properties of the gauge fields are identified with those of the corresponding SU(N)

generators. The basis of the N(N − 1) off-diagonal generators T ab, T̃ ab can be chosen as

(T ab)ij = δiaδjb + δibδja ,

(T̃ ab)ij = −iδiaδjb + iδibδja , (4.2)

where a = 1, . . . , N − 1 and b = 2, . . . , N . With the Cartan generators denoted by Hα, the

Z2 associated with complex conjugation of the group elements acts as

T ab → −T ab , T̃ ab → T̃ ab , Hα → −Hα . (4.3)

This is a well known outer automorphism of SU(N) which entails the corresponding sym-

metry of the Yang-Mills Lagrangian.

Another Z2 can be defined by reflecting the off-diagonal generators containing nonzero

elements in the first row:

T 1a → −T 1a, T̃ 1a → −T̃ 1a ,

T bc → T bc , T̃ bc → T̃ bc (b, c ≥ 2),

Hα → Hα . (4.4)

It is easy to show that this Z2 is an inner automorphism. Indeed, it corresponds to the

group transformation with

U = e
iπ
N diag(−1, 1, . . . 1) . (4.5)

The gauge fields A1−3
µ associated with the upper left SU(2) block

T 12, T̃ 12, H1 = diag(1,−1, 0, . . . , 0) (4.6)

transform under these parities the same way as did the SU(2) gauge fields under Z2 × Z ′2
of the previous section. The above gauge transformation of course leaves the Yang-Mills

Lagrangian invariant.

– 12 –



J
H
E
P
0
8
(
2
0
1
5
)
1
5
8

These symmetries are preserved by gauge interactions with scalars in our set-up. The

Z2 associated with complex conjugation acts on scalars by reflecting the complex phases,

which therefore correspond to odd fields under the transformation (4.3). This symmetry is

guaranteed by CP invariance of the Lagrangian and preserved by the vacuum (assuming

no spontaneous CP violation). The second Z2 is a gauge transformation. On vectors of the

form (0, a1, . . . , aN−1), it acts as multiplication by an overall constant phase which cancels

in all the Lagrangian terms. It is therefore a valid symmetry in the broken phase as well.

As long as the φi have a zero first component, the interaction vertices contain an even

number of T 1a and T̃ 1a. The gauge fields associated with a > 2 are heavier than those

corresponding to a = 2. By virtue of the vertices involving T 12T 1k (k > 2) and the matter

fields, they decay to the lighter fields such that only the final SU(2) block remains stable.

(Similar considerations also apply to other heavy gauge fields.) Then DM is composed

mostly of the aforementioned A1−3
µ whose stability is enforced by Z2 × Z ′2.4

As in the SU(3) case, DM consists of three components, two of which are degenerate

in mass,

mA1′ = mA2′ 6= mA3′ , (4.7)

where A1′−3′
µ are the mass eigenstates consisting mostly of A1−3

µ with some admixture of

other gauge fields (see the SU(3) example). The degeneracy persists at loop level. This can

be seen as follows. The SU(N) Lie algebra possesses a discrete symmetry which interchanges

the real and imaginary generators with nonzero entries in the first row,

T 1a → T̃ 1a , T̃ 1a → −T 1a , (4.8)

while all the other generators remain intact. This is achieved by the group transformation

U ′ = e
−iπ
2N diag(i, 1, . . . 1) , (4.9)

which can be recognised as the square root of U in (4.5). This gauge transformation acts

on φi with a zero first entry as an overall constant phase multiplication. Since such a

phase cancels in all of the Lagrangian terms, (4.8) remains a valid symmetry even in the

broken phase.

Consider now the mass matrix for the gauge fields associated with T 1a and T̃ 1a. By

virtue of (4.4), only fields corresponding to T 1a and T̃ 1a can mix, while (4.3) forbids a

mixing between the tilded and untilded fields. The resulting mass matrix for T 1a is then

identical to that of T̃ 1a according to (4.8). Analogous considerations apply to the kinetic

terms. Hence the lightest eigenstates have the same mass.

The resulting DM phenomenology is analogous to that for the SU(3) case.

5 Dark matter phenomenology

In what follows, we consider direct and indirect detection as well as relic abundance con-

straints on vector DM. In the U(1) and SU(2) cases, all the scattering processes are

4As before, we take the “phase” fields to be heavy since they get their masses from large VEVs 〈φi〉,
unlike A1−3

µ . In the presence of more than N − 1 fundamentals, this logic no longer applies and the light

phase fields can constitute DM.
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mediated by h1 and h2. For SU(3) and larger groups, further states can contribute. How-

ever, we make the simplifying assumption that the Higgs mixing with those states is small

and/or such states are heavy. In that case, it suffices to consider an exchange of h1 and h2
only. We note that earlier phenomenological analyses of vector dark matter have appeared

in various contexts [12]–[21]. The current collider searches for dark matter, e.g. in the form

of a monojet plus missing energy, do not set further useful constraints on the model, see

e.g. ref. [22].

5.1 U(1) dark matter

Let us start with the U(1) case. The relevant terms in the Lagrangian are

L ⊃ 1

2
m2
AAµA

µ +
g̃ mA

2
(−h1 sin θ + h2 cos θ)AµA

µ

+
g̃2

8

(
h21 sin2 θ − 2h1h2 sin θ cos θ + h22 cos2 θ

)
AµA

µ . (5.1)

The couplings of h1 and h2 to the SM fields are those of the SM Higgs up to the suppression

factors of cos θ and sin θ, respectively. A phenomenological analysis of this model in the

decoupling limit mh2 � mh1 , sin θ → 0 can be found in [12] and [4, 13]. Related studies

have also appeared in [14, 15].

The DM scattering on nucleons proceeds through the t-channel exchange of h1,2 and

leads to the following spin-independent cross section (see e.g. [4]),

σSIA−N =
g2g̃2

16π

m4
Nf

2
N

m2
W

(m2
h2
−m2

h1
)2 sin2 θ cos2 θ

m4
h1
m4
h2

, (5.2)

where mN is the nucleon mass and fN ' 0.3 parametrizes the Higgs-nucleon coupling. One

should keep in mind that there is significant uncertainty in fN and here we use the value

somewhat smaller than the one assumed in [4]. As expected, h1 and h2 contribute with

opposite signs. Since m2
h2
� m2

h1
in realistic cases, the cancellation is not very significant.

The calculation of the DM annihilation cross section is more involved due to a few

contributing diagrams (figure 1). To compute the DM relic abundance, we use the soft-

ware package micrOMEGAs 4.1.8 [23]. It is important to note that the leading s-channel

annihilation amplitude due to the h1,2-exchange is proportional to the factor

Aannih ∝ sin θ cos θ

(
1

s−m2
h1

− 1

s−m2
h2

)
, (5.3)

where the s-parameter can be approximated by s ' 4m2
A. Therefore, the amplitude is

highly suppressed at mA � mh2 . Although other annihilation channels remain available,

this makes DM annihilation inefficient for heavy masses and the corresponding parameter

space is challenged by the direct detection constraint.

Clearly, the s-channel annihilation becomes very efficient around the resonances, mA '
mh1/2 and mA ' mh2/2. In this case, a very small gauge coupling is sufficient to obtain the

right relic abundance. The first resonance is quite narrow due to the small width of the SM
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Figure 1. Leading diagrams for vector DM annihilation.

Higgs, whereas the second resonance is broad since many decay channels are available to

h2. For mh2 > 2mh1 , the decay h2 → h1h1 becomes important. Its significance depends on

λhφ of eq. (1.1) with BRh2→h1h1 increasing for larger λhφ (see the explicit formulae in [8]).

The resonance is widened further by the thermal averaging over the DM momentum.

The most important features of DM annihilation are associated with the s-channel.

Other channels play a less significant role. Similar considerations apply to the indi-

rect detection constraint due to the gamma ray emission in the process of DM annihi-

lation (FERMI).

The last constraint we impose is of theoretical nature. We require that the theory be

perturbative at the TeV scale. One way to enforce it is to demand perturbative unitarity at

tree level, for instance, in the process hihi → hjhj . The resulting constraint was estimated

in [24] to be

λi < O(4π/3) , (5.4)

where λi are the scalar quartic couplings. We define the quartic couplings involving φ by

∆Vquart = λhφ|H|2|φ|2 + 1
2λφ|φ|

4. They can be expressed in terms of the masses, the gauge

coupling and the mixing angle as (see e.g. [8])

λhφ = g̃ sin 2θ
m2
h2
−m2

h1

4vmA
,

λφ =
4λ2hφ

sin2 2θ

v2

m2
h2
−m2

h1

(
m2
h2

m2
h2
−m2

h1

− sin2 θ

)
, (5.5)

where we have used ṽ = 2mA/g̃. This implies that both λhφ and λφ become large for heavy

h2 or for light dark matter. As a result, eq. (5.4) imposes an important constraint on our

model. We further require the standard perturbativity constraint

g̃2

4π
< 1 , (5.6)

which we find less significant for our purposes.

Our results for U(1) DM are presented in figure 2, upper row. We include the con-

straints from PLANCK [25] (relic abundance), LUX [26] (direct detection), FERMI [27]

(indirect detection) and perturbativity of λi. The area between the red lines is consistent

with the thermal relic DM abundance measured by PLANCK. The LUX data provide the

strongest constraint on the allowed parameter space. The FERMI bound is typically rel-

evant for light DM, while the perturbativity bound becomes important for heavy h2. In

each panel, the mixing angle is chosen such that, for a given mh2 , it is consistent with the
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Figure 2. Constraints on the gauge coupling g̃ vs DM mass mA for U(1) and SU(2). The area

between the red lines is favoured by the DM relic abundance, while the regions above the dashed

blue, dotted black and green lines are ruled out by direct detection, indirect detection and per-

turbativity of λi, respectively. Upper row: U(1) dark matter with sin θ = 0.3,mh2 = 280 GeV

(left), sin θ = 0.3,mh2
= 1 TeV (center), sin θ = 0.2,mh2

= 3 TeV (right). Lower row:

SU(2) dark matter with sin θ = 0.3,mh2
= 280 GeV (left), sin θ = 0.3,mh2

= 1 TeV (center),

sin θ = 0.2,mh2
= 3 TeV (right).

LHC and EW precision data [8]. Heavier h2 imply smaller sin θ, so we take sin θ = 0.3 for

the left and center panels, and sin θ = 0.2 for the right panel.

The two dips are associated with the resonant annihilation through h1 and h2. The

second resonance gets broader with increasing h2 due to the increase in λhφ and availability

of the decay h2 → h1h1. The area around this resonance constitutes the largest parameter

space consistent with all of the constraints. For mh2 = 280 GeV, the allowed DM mass

range is about 100 GeV; for mh2 = 1 TeV, it widens to 1 TeV, and for mh2 = 3 TeV, it

reaches more than 3 TeV. The resonance is broadened by the thermal averaging over the

DM momentum, so even though it appears very broad for mh2 = 3 TeV, it is still consistent

with perturbativity.

The dip associated with the resonant annihilation through h1 is quite narrow and does

not open up further significant areas of parameter space. Other features of the PLANCK

curve are local peaks corresponding to the kinematic opening of additional annihilation
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Figure 3. Semiannihilation of vector DM.

channels. For instance, the peak at mA ∼ 80 GeV is associated with the W+W− final

state. There are further visible peaks at (mh2 +mh1)/2 and mh2 .

Away from the resonances, there appears to be a further allowed region at mA > mh2 .

Since the h2 production is not suppressed by sin θ, in this case the t-channel annihilation

AA→ h2h2 and the quartic interactions dominate. The Planck-allowed strip is dangerously

close to the LUX bound, so the conclusion depends strongly on the nucleon-Higgs coupling

fN ' 0.3, which suffers from substantial uncertainties.

5.2 SU(2) dark matter

Aside from the gauge self-interactions, the Lagrangian (5.1) applies to the SU(2) case as

well, up to the summation over the 3 species, AµA
µ → AaµA

aµ. The main change compared

to the U(1) case is that the annihilation cross section decreases since only the species with

the same group index can annihilate through the Higgs-like states. In order to keep the same

relic abundance, one needs to increase the gauge coupling. Since the s-channel annihilation

through h1,2 often dominates, this amounts approximately to

g̃ →
√

3g̃ , (5.7)

whereas if the t-channel and the quartic interactions dominate, the rescaling factor is closer

to 31/4. The direct detection constraint remains the same as in the U(1) case since particles

with different group indices scatter the same way on nucleons. This decreases somewhat

the allowed parameter space compared to the Abelian case (figure 2).

Non-Abelian DM features a semi-annihilation channel AA→ Ah1,2 (figure 3). In some

regimes, for example at large g̃ and small sin θ, it can even dominate [11] (see also [28, 29]).

Using the analytical results of [11], we find that DM semi-annihilation is insignificant in

the relevant parameter regions. For example, at mA > mh2 the sin θ-unsuppressed and

potentially important channel AA → Ah2 opens up, yet it is dominated by AA → h2h2.

Also, around the resonances the gauge coupling is rather small which diminishes the relative

importance of semi-annihilation.

No firm conclusion can be reached as to whether the region mA > mh2 is allowed. As

stated above, the uncertainties in fN play a critical role due to the proximity of the Planck

band and the LUX bound.

5.3 SU(3) dark matter

In the SU(3) case, DM is composed again of 3 species with two of them being degenerate

(A1
µ, A

2
µ) in mass and the third one being lighter (A3′

µ ). This is a result of the mixing
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between the gauge bosons corresponding to the Cartan generators of SU(3). Therefore,

while the couplings of A1
µ, A

2
µ to the Higgs like scalars remain the same as in the SU(2)

case, the coupling of A3′
µ changes. In terms of mA ≡ mA1,2 , the relevant Lagrangian reads

L ⊃ 1

2
m2
A

( ∑
a=1,2

AaµA
aµ +

(
1− tanα√

3

)
A′3µA

′3µ
)

(5.8)

+
g̃ mA

2
(−h1 sin θ + h2 cos θ)

( ∑
a=1,2

AaµA
aµ +

(
cosα− sinα√

3

)2
A′3µA

′3µ
)

+
g̃2

8
(h21 sin2 θ − 2h1h2 sin θ cos θ + h22 cos2 θ)

(∑
a=1,2

AaµA
aµ+

(
cosα− sinα√

3

)2
A′3µA

′3µ
)
.

The mass of the lighter DM component is reduced by the factor (1− 1√
3

tanα)1/2 compared

to that of A1
µ and A2

µ, while the gauge-scalar couplings decrease by a factor (cosα −
1√
3

sinα)2. Therefore, the lighter state has a smaller annihilation cross section. Note that

sinα '
√
3v22
4v21

and even a factor of two difference in the triplet VEVs leads to a rather

small α ∼ 10−1. In that case, there is no tangible difference between the SU(2) and the

SU(3) analyses.

To understand where differences can appear, it is instructive to consider the limit

v1 ' v2. Although in this case there are further relatively light states that can medi-

ate DM annihilation (e.g. A8′
µ ), let us consider the simplified example in which only the

same states are allowed to contribute in the SU(2) and SU(3) set-ups. The main features

(figure 4) are that the gauge coupling must be larger in the SU(3) case in order to allow

for efficient annihilation of A3′
µ and that the resonant dips are slightly shifted due to a

different freeze-out temperature (see e.g. [30]). The DM density today is dominated by

the lighter component. Since it couples to nucleons weaker than A1,2
µ do, the direct detec-

tion constraint relaxes. Understanding further features of the model would require precise

knowledge of the spectrum and the couplings, which we relegate to future work [31].

Finally, one should keep in mind that there exists the coupling A3′
µ ϕ̃3 ϕ̃4, where A3′

and ϕ̃4 have the same parities. If ϕ̃4 were light, that is, λ4 − λ5 � 1 and/or v1 ∼ v2
(see eq. (3.29)), the decay A3′

µ → ϕ̃4 + SM would occur. In that case, DM would consist

of both the vector and scalar components. We defer a detailed study of this scenario to

future work [31].

6 Summary and conclusions

In this paper, we have considered the possibility that the hidden sector enjoys SU(N) gauge

symmetry and couples to the Standard Model through the Higgs portal. We find that when

endowed with a “minimal” matter content, such hidden sectors lead naturally to stable vec-

tor dark matter. The underlying Lie group symmetries which stabilise DM are associated

with complex conjugation of the group elements and discrete gauge transformations.

We require complete breaking of hidden SU(N) by scalar multiplets to avoid massless

states (barring confinement in some cases). That can be done in a minimal fashion by in-

troducing N−1 scalar multiplets in the fundamental representation, which develop generic
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Figure 4. Illustration of the main features of SU(3) vs SU(2) DM in the extreme case. Here

v1/v2 = 1.1 and sin θ = 0.3,mh2
= 280 GeV. In the SU(3) case, MDM stands for the mass of the

(dominant) lighter component A3′
µ . See figure 2 for further details.

VEVs. If the scalar sector preserves CP, the above-mentioned discrete symmetries of the

Lie group generalise to full-fledged symmetries of the model and lead to stable gauge fields.

When sufficiently light, they constitute all of dark matter. In this case, DM consists of 3

components associated with an SU(2) subgroup which hosts the lightest gauge fields A1′
µ ,

A2′
µ and A3′

µ . Two of them (A1′
µ , A

2′
µ ) are always degenerate in mass, while for N = 2 all 3

components have the same mass.

We have performed phenomenological analyses of U(1), SU(2) and SU(3) gauge field

dark matter. We find that there are vast regions of parameter space where all of the

relevant constraints are satisfied. In many of these regions, DM annihilation is facilitated

by the broad resonances associated with the Higgs-like scalars. We also find that the SU(3)

case appears very similar to that of SU(2), unless the scalar VEVs breaking SU(3) are close

in magnitude.
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A Hidden SU(3) vector-scalar couplings for v3 = 0

The tables below provide a list of most important gauge-scalar couplings. These are rele-

vant to DM phenomenology as well as to understanding the decay channels of the heavier

gauge fields.

a b i j coeff. of ÃaµÃ
µbϕ̃iϕ̃j

4 4 1 1

g̃2/8
5 5 1 1

6 6 1 1

7 7 1 1

8 8 1 1 g̃2/6

1 1 2 2

g̃2/8

2 2 2 2

3 3 2 2

6 6 2 2

7 7 2 2

8 8 2 2 g̃2/24

3 8 2 2 − 1
4
√
3
g̃2

a b i j coeff. of ÃaµÃ
µbϕ̃iϕ̃j

4 4 3 3

1
8 g̃

2 v
2
1+v

2
2

v21

5 5 3 3

6 6 3 3

7 7 3 3

8 8 3 3 1
6 g̃

2 v
2
1+v

2
2

v21

4 4 4 4

1
8 g̃

2 v
2
1+v

2
2

v21

5 5 4 4

6 6 4 4

7 7 4 4

8 8 4 4 1
6 g̃

2 v
2
1+v

2
2

v21

1 4 2 3
1
4 g̃

2
√
v21+v

2
2

v12 5 2 3

3 6 2 3 −1
4 g̃

2
√
v21+v

2
2

v1

6 8 2 3 − 1
4
√
3
g̃2
√
v21+v

2
2

v1

1 5 2 4 1
4 g̃

2
√
v21+v

2
2

v1

2 4 2 4
−1

4 g̃
2
√
v21+v

2
2

v13 7 2 4

7 8 2 4 − 1
4
√
3
g̃2
√
v21+v

2
2

v1

Table 2. Non-derivative couplings ÃaµÃ
µbϕ̃iϕ̃j .
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a b i coeff. of ÃaµÃ
µbϕ̃i

4 4 1

1
4 g̃

2v1
5 5 1

6 6 1

7 7 1

8 8 1 1
3 g̃

2v1

1 1 2

1
4 g̃

2v2

2 2 2

3 3 2

6 6 2

7 7 2

8 8 2 1
12 g̃

2v2

3 8 2 − 1
2
√
3
g̃2v2

a b i coeff. of ÃaµÃ
µbϕ̃i

1 4 3
1
4 g̃

2 v2
√
v21+v

2
2

v12 5 3

3 6 3 −1
4 g̃

2 v2
√
v21+v

2
2

v1

6 8 3 − 1
4
√
3
g̃2

v2
√
v21+v

2
2

v1

1 5 4 1
4 g̃

2 v2
√
v21+v

2
2

v1

2 4 4
−1

4 g̃
2 v2
√
v21+v

2
2

v13 7 4

7 8 4 − 1
4
√
3
g̃2

v2
√
v21+v

2
2

v1

Table 3. Non-derivative couplings ÃaµÃ
µbϕ̃i.
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