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1 Introduction

The observed neutrino oscillation parameters [1–3] are consistent with a nearly tri-bi-

maximal (TBM) structure
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It has been observed that this simple form might be a hint of an underlying family sym-

metry. The observation of non-zero θ13 of comparable magnitude to the Cabibbo angle

excludes exact TBM, motivating the search for frameworks where θ13 is naturally of the

observed magnitude and the remaining angles are close to their TBM values.

The discrete non-Abelian group ∆(27) is an interesting candidate family symmetry

for such frameworks. It is a subgroup of SU(3) of order 27 with a triplet and anti-triplet

representation. After T7 (order 21) it is the smallest group with this appealing feature, and

the smallest in the series of groups ∆(3n2), which contains C3, A4 and ∆(27) for n = 1, 2, 3

respectively.
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In terms of use in particle physics ∆(27), has an interesting history. It was used over 50

years ago in hadron physics in [4], and over 30 years ago to obtain spontaneous geometrical

CP violation in [5], where the vacuum expectation values (VEVs) display a CP violating

phase that is related to the group structure and independent of arbitrary phases in the

Lagrangian. Interest in discrete groups was rekindled with neutrino oscillations providing

additional pieces of the flavour puzzle, and ∆(27) was rediscovered and used to describe

fermion masses and mixing, first by [6], followed closely by [7] — see also [8–13]. Although

the group details were included in [4], with the renewed interest in discrete groups the

group theoretical details were presented conveniently and in great detail in more recent

papers [14–16].

∆(27) (together with ∆(54), the n = 3 group in the series ∆(6n2) [17]) has received

additional interest due to its CP properties, that had been first explored in [5]. A more

systematic analysis was started by [18], and followed by a series of papers aiming to further

clarify or implement spontaneous geometrical CP violation [19–26]. Additionally, a model

based on ∆(27) obtaining maximal CP violation in the lepton sector was proposed in [27].

Still with respect to the CP properties of ∆(27), [28–30] explored the important role of

the group automorphisms, while [31] listed all CP transformations consistent with ∆(27)

triplets.

Recently, [32] proposed to use an invariant approach to CP in the presence of family

symmetries. Using it to analyse a ∆(27) model revealed the group featured also geometri-

cal CP violation without spontaneous symmetry breaking — explicit geometrical CP viola-

tion. A more complete analysis of ∆(27) Lagrangians with the invariant approach followed

in [33, 34].

While the CP properties of ∆(27) have clearly been the focus of recent attention, the

role of ∆(27) in explaining fermion mixing deserves further interest, particularly as it is a

small group with the potential to lead to models with viable leptonic mixing. While there

have been a few recent works based on ∆(27), the models with a dark matter candidate pre-

sented in [35] are simply based on [7, 9], whereas the novel proposals [36–38] have multiple

triplet familon VEVs and no clear mechanism for keeping the different VEV directions from

perturbing each other. Arguably, there have been no simple models demonstrating clearly

how ∆(27) would generate both the special VEVs and the associated leptonic mixing.

Although [8] showed 9 years ago how to obtain relevant familon VEVs in supersym-

metric (SUSY) frameworks with ∆(27) and similar groups, the mechanism referred to as

D-term alignment hasn’t been widely adopted, possibly due to its dependence on soft SUSY

breaking terms. D-term alignment was used also in the ∆(27) models of [12, 13] as well

as in the T7 model of [39] and the A4 model of [40]. Some strategies for making D-term

alignment less dependent on the relative magnitudes of familon VEVs were discussed in [41]

and [42].

The goal of this paper is to construct simple ∆(27) frameworks in analogy with [43–

47], which separately align multiple familons in SUSY frameworks. Simple framework are

well known for A4 [43–47] and S4 [48] (see also [49–51] for non-renormalisable alignment

terms in S4). ∆(27) is very distinct from the well known cases both in the alignment

of the familons and the construction of fermion invariants, due to its main advantages
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over those groups: the large number of singlet representations which is partly related to

its interesting CP properties, and its triplet and anti-triplet representations which make

the group particularly suited for grand unification. With separate triplet and anti-triplet,

groups like T7 [39, 52–55], ∆(27) and larger ∆(3n2) or ∆(6n2) groups [42, 56–61] forbid

the triplet-triplet invariant and naturally avoid a problematic contribution to triplet mass

terms (proportional to the identity matrix).

In section 2.1 the simplest options to align familon VEVs with F-terms are shown,

significantly improving the basic ideas proposed in [44], and providing an alternative to

the D-term alignment [8, 41, 42]. One of the possibilities found allows to obtain in SUSY

frameworks the (ω, 1, 1) class of VEV involved in spontaneous geometrical CP violation [5,

18]. Section 2.2 features several frameworks that couple the fermions to the familons. To

complete these frameworks, a method of safeguarding against terms that would invalidate

them is required. An auxiliary symmetry protecting a minimal framework is presented in

section 2.3, in order to show a specific example of a complete framework with ∆(27) family

symmetry and neutrino mixing. Finally in section 3 the conclusions are presented.

2 ∆(27) family symmetry

A complete family symmetry model is usually constituted by alignment of familon VEVs

(section 2.1), the coupling of the familons to fermions (section 2.2), and methods to elim-

inate terms that would invalidate the model (section 2.3). Appendix A contains the rel-

evant details about ∆(27), namely product rules for the representations in the notation

used throughout the paper to build invariants.

2.1 Aligning the familons

An important advantage of building family symmetry models in SUSY frameworks is the

holomorphic superpotential. This facilitates the separation of distinct familons as noted

in [43, 44], through F-term alignment involving alignment superfields (often referred to

as driving fields). Although D-term alignment can be more minimal in the sense that

it dispenses the introduction of alignment fields [8, 41, 42], F-term alignment can often

proceed through simpler invariants.

Although there are some interesting non-renormalisable alignment terms including

the one introduced in [44], here the focus is exclusively on renormalisable F-term options.

These are preferred in particular because in standard UV completions of non-renormalisable

alignment terms some messengers act as additional alignment fields and usually spoil the

desired alignment, as pointed out in [47].

The simplest possibilities for aligning the familon VEVs used throughout the paper

are described in this section: triplet alignment fields ϕ and specific singlet familons align

anti-triplet familons φ̄, similarly anti-triplet alignment fields ϕ̄ align triplet familons φ,

and singlet alignment fields ς lead to relative alignment between triplet and anti-triplet

familons. Appendix B discusses these and other options in more detail, as well as their

applicability to other discrete non-Abelian groups that have similar product rules and

representations.

– 3 –
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Triplet alignment field ϕ1 combined with 1i0 singlet familons leads to VEVs with two

zeros:

a00[ϕ1φ̄1]00σ00 + a10[ϕ1φ̄1]20σ10 (2.1)

the F-term with respect to the ϕ1i components giving conditions on the components φ̄i
1 of

the familon φ̄1

a00φ̄
1
1σ00 + a10φ̄

1
1σ10 = 0 (2.2)

a00φ̄
2
1σ00 + a10ωφ̄

2
1σ10 = 0 (2.3)

a00φ̄
3
1σ00 + a10ω

2φ̄3
1σ10 = 0 (2.4)

which force two entries of the VEV to vanish, depending on the singlet familon VEVs one

solution is

〈φ̄1〉 = (ā1, 0, 0) ,
〈σ10〉
〈σ00〉

= −a00

a10
. (2.5)

Triplet alignment field ϕ123 combined with 10i singlet familons leads instead to VEVs

with equal entries:

c00[ϕ123φ̄123]00σ00 + c01[ϕ123φ̄123]02σ01 (2.6)

the F-term with respect to the ϕ123i components giving conditions on the components φ̄i
123

of the familon φ̄123

c00φ̄
1
123σ00 + c01φ̄

2
123σ01 = 0 (2.7)

c00φ̄
2
123σ00 + c01φ̄

3
123σ01 = 0 (2.8)

c00φ̄
3
123σ00 + c01φ̄

1
123σ01 = 0 (2.9)

one solution forces the 3 entries of the VEV to be equal

〈φ̄123〉 = (c̄, c̄, c̄) ,
〈σ01〉
〈σ00〉

= −c00

c01
. (2.10)

Although it isn’t used further in this paper, it is relevant to note that using singlet

familons 1ij with i, j 6= 0 in this type of term enables the alignment of directions such as

(ω, 1, 1) in a SUSY framework. This class of VEV is relevant in that it leads to spontaneous

geometrical CP violation [5, 18]. While the VEV has clearly been obtained in non-SUSY

frameworks, a way to align this direction in a SUSY framework had not been presented

so far.

If aligning a single familon direction, the alignment field and familons can be neutral

under additional symmetries and the σ00 is superfluous. In order to have both alignments

simultaneously requires alignment fields and familons separated by some mechanism, usu-

ally auxiliary symmetries — see section 2.3 for a specific example.

Analogous terms relying on anti-triplet alignment fields can align triplet familons.
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Assuming 〈φ1〉, 〈φ123〉 triplet VEVs have been aligned, singlet alignment fields lead to

the orthogonal anti-triplet VEV

ς02[φ123φ̄23]01 (2.11)

of which one solution is

〈φ̄23〉 = (0,−b̄, b̄) (2.12)

where a trivial singlet alignment field ς00 imposing orthogonality with 〈φ1〉 can guarantee

〈φ̄1
23〉 = 0.1 The representation of ς02 can be any of the 10i due to the equal components of

〈φ123〉. Note that the orthogonality is between triplets and anti-triplet (or vice-versa).

Another relevant VEV direction is

〈φ̄3〉 = (0, 0, ā3) (2.13)

which can be obtained as another solution of eq. (2.1) or generalising it to use two non-

trivial singlets. If the anti-triplet familon is accompanied by a triplet familon, the direction

with two zeros for one of the familons can be obtained by combining 3 singlet alignment

fields, as discussed in more detail in appendix B see e.g. eqs. (B.25), (B.26), (B.27).

If required for contractions with a triplet into singlets, φ̄1 and φ̄3 can be used inter-

changeably if used in conjunction with 10i singlets e.g. [Lφ̄1]00σ00 ∼ [Lφ̄3]01σ02 as both

isolate L1, the first component of triplet L. In this sense, having both VEV directions

is often not necessary in ∆(27) frameworks, as demonstrated by the specific example in

section 2.3, featuring a minimal alignment superpotential SV .

2.2 Building the fermion mass terms

The Standard Model (SM) SU(2)L doublet leptons are contained in L, which is assigned

as a triplet of ∆(27) and ec, µc, τ c can be singlets. Hu, Hd are the two SU(2)L doublets

required in SUSY frameworks and are trivial singlets of ∆(27). The charged lepton mass

matrix can be made diagonal in the basis where the familon VEVs are presented, referred to

henceforth as the familon basis. One option is using an anti-triplet familon 〈φ̄3〉 = (0, 0, ā3)

together with trivial singlets ec, µc, τ c and a non-trivial 101 singlet familon σ01

SC = Hd

(

1

M
[Lφ̄3]00τ

c +
1

M2
[Lφ̄3]02σ01µ

c +
1

M3
[Lφ̄3]01σ

2
01e

c

)

(2.14)

where coefficients are implicit and M represents the masses of messenger fields which would

be specified in a specific UV completion of the family symmetry model [46, 47]. In the

remainder of the paper M is omitted in the non-renormalizable superpotential terms. If

σ01 in eq. (2.14) is not neutral under an additional auxiliary symmetry (as discussed in

more detail in section 2.3), the different powers of σ01 can match different charges of ec,

µc, τ c under the auxiliary symmetry in a version of the Froggatt-Nielsen mechanism [63].

1This 〈φ̄23〉 can play a relevant role in explaining lepton non-universality in models with leptoquarks,

see [62].
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In this way 〈σ01〉
M explains the hierarchy of the charged lepton masses, similarly to [45].

Another option is to have non-trivial singlets ec, µc, τ c similarly to [43], and either add a

separate Froggatt-Nielsen symmetry or leave the hierarchy unexplained as in the SM.

With the charged leptons diagonal in the familon basis, all the leptonic mixing is

present in the neutrino sector. It will be determined in particular by a familon VEV in the

(1, 1, 1) direction, which is an ingredient in all of the frameworks discussed here.

The effective neutrino terms can be obtained through a seesaw mechanism, such as

type I seesaw. In such a case one can include Dirac terms featuring explicit geometrical

CP violation [32–34]:

SD = Hu ([Lν
c]00σ00 + [Lνc]02σ01 + [Lνc]20σ10) . (2.15)

A simpler implementation would be to arrange instead that the Dirac neutrino matrix

is diagonal in the familon basis from SD ∼ Hu[Lν
c], and after the seesaw with Majorana

neutrino matrix from SM ∼ [[νcνc]φ̄123], the effective neutrinos inherit the eigenvectors

originating from the relevant VEVs aligned by the appropriate alignment SV ∼ [ϕφ̄123].
2

It could also be that there is more than one type of seesaw involved and related with

the deviations from TBM [64]. Here the analysis is performed at the level of the effective

neutrino terms Sν ∼ H2
u[φ123[LL]]. The frameworks presented here deviate from TBM

but often preserve one of the TBM eigenvectors, making an eigenvector based approach

particularly useful to study the mixing [65].

In the following, different types of frameworks are illustrated through simple invariants

for presentational purposes. These simpler examples can be the starting point to build

complete models, but it remains necessary to distinguish the familons, and to allow this

to be done through an auxiliary symmetry may require modifying the simpler terms for

example with additional familon insertions (this procedure is illustrated for one of the

examples in section 2.3).

2.2.1 Invariant frameworks

In terms of neutrino invariants, the simplest type of ∆(27) framework relies exclusively on

cubic invariants specific to ∆(27). They will be referred to as Invariant frameworks. One

example relies only on triplet familons φ1 and φ123:

Sν = H2
u (i1[φ1[LL]I ]00 + s1[φ1[LL]S ]00 + i123[φ123[LL]I ]00 + s123[φ123[LL]S ]00) (2.16)

where the coefficients are explicitly shown to be associated with the entries in the respective

mass matrix

Mν ∝ 2a1







i1 0 0

0 0 s1

0 s1 0






+ 2c







i123 s123 s123

s123 i123 s123

s123 s123 i123






. (2.17)

2Note that with L as a triplet and νc as an anti-triplet, the familon in the [[νcνc]φ̄123] invariant is also

an anti-triplet, so the specific alignment superpotential required can depend on the implementation.
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In this simple example the two familons couple in exactly the same way to the fermions,

which is not compatible with separating their alignments as described above. A complete

model requires some modification of the terms e.g. replacing the simpler [φ1[LL]I,S ]00
terms with [φ1[LL]I,S ]00σ00. The matrix structure is determined by the contractions and

the VEVs. In this simple framework it leads to TBM mixing in the limit i1 = s1, and

in general the corresponding mixing scheme can be denoted as TM3 as it preserves the

third TBM eigenvector (0, 1,−1). Like TBM, TM3 is not viable due to θ13 6= 0. An

alternative but less predictive Invariant framework introduces a deviation from TM3 by

using a non-trivial singlet familon such as σ01, with terms

Sν = H2
u ([φ123[LL]I ]00 + [φ123[LL]S ]00 + [φ1[LL]I ]00 + [φ1[LL]S ]00

+[φ1[LL]I ]02σ01 + [φ1[LL]S ]02σ01) (2.18)

where the coefficients corresponding to the 6 invariants were omitted. In order to make

this a complete model one could replace [φ1[LL]I,S ]00 with [φ1[LL]I,S ]00σ00, where σ00 and

σ01 would then have the same charge under an auxiliary symmetry and allow the triplet

familons to be distinguished.

Another simple Invariant framework uses only triplet familons φ123 and φ23:

Sν = H2
u (i123[φ123[LL]I ]00 + s123[φ123[LL]S ] + i23[φ23[LL]I ]00 + s23[φ23[LL]S ]00) (2.19)

Mν ∝ 2c







i123 s123 s123

s123 i123 s123

s123 s123 i123






+ 2b







0 s23 −s23

s23 −i23 0

−s23 0 i23






. (2.20)

Like the previous examples, in order to have a complete model some variation of the

terms is required in order to allow the two triplet familons to be distinguished. This simple

framework has a few interesting limits. For i23 = s23 it preserves the second TBM eigenvec-

tor (1, 1, 1), which corresponds to the tri-maximal mixing scheme TM2. For i23 = −2s23
it preserves the first TBM eigenvector (−2, 1, 1), which corresponds to the tri-maximal

mixing scheme TM1. In general if the TBM rotation is applied:

V
†
TBMMνVTBM ∝ 2c







i123 − s123 0 0

0 i123 0

0 0 i123 − s123







+ 2b









0 0 i23+2s23√
3

0 0
√

2
3(−i23 + s23)

i23+2s23√
3

√

2
3(−i23 + s23) 0









(2.21)

leaving the familon basis shows the particular TM2 and TM1 limits of this framework more

clearly.
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2.2.2 SU(3) frameworks

Similarly to the strategy described in [66] and implemented in the grand unification ∆(27)

model [6], this type of framework relies on invariants with anti-triplet familons e.g.

[Lφ̄123]00[Lφ̄123]00 (2.22)

which are invariant under SU(3). They will be referred to as SU(3) frameworks.3 Justifying

the absence of the additional invariants allowed by ∆(27) like [Lφ̄123]10[Lφ̄123]20 requires

underlying assumptions about the messenger sector acting as the UV completion of the

family symmetry model [46, 47]. In this case a possibility would be that the messengers

in the neutrino sector are exclusively ∆(27) trivial singlets. An advantage of SU(3) frame-

works is that they can be rather predictive, with only one effective invariant for each set

of familons.

In order to illustrate the mass terms, one example relies on anti-triplet familons φ̄123

and φ̄23:

Sν = H2
u

(

[Lφ̄123]00[Lφ̄123]00 + [Lφ̄23]00[Lφ̄23]00 + [Lφ̄123]00[Lφ̄23]00
)

(2.23)

Mν ∝ 2c̄2







1 1 1

1 1 1

1 1 1






+ 2b̄2







0 0 0

0 1 −1

0 −1 1






+ ac̄b̄







0 −1 1

−1 −2 0

1 0 2






(2.24)

where the coefficients of two terms were absorbed into the VEVs and a third effective

parameter is chosen as the coefficient a controlling the last term. A complete model using

the same anti-triplet familons would require additional insertion of familons in some of the

terms. With a = 0, this type of model leads to TBM [6] (see also [67]). The last term

deviates TBM preserving the (2,−1,−1) eigenvector which makes this an SU(3) framework

for the TM1 mixing scheme. This can be confirmed by leaving the familon basis through

the TBM rotation to the mass matrix:

V
†
TBMMνVTBM ∝ c̄2







0 0 0

0 6 0

0 0 0






+ b̄2







0 0 0

0 0 0

0 0 4






+ ac̄b̄







0 0 0

0 0 −
√
6

0 −
√
6 0






. (2.25)

The consequences in terms of mixing angles are the same for any TM1 models and can

be found in [48] and references therein. In this case the effective parameter a is fixed by

the observed value of θ13, which consequently predicts the deviations of the other angles

from the TBM values. With only two other effective parameters, this TM1 framework

is particularly predictive. It is clear that the lightest neutrino is massless, and on closer

inspection the squared mass differences ∆m2
a, ∆m2

s are controlled mostly by b̄2 and c̄2

respectively, requiring a mild hierarchy in the VEVs.

Alternatives to deviate from TBM in SU(3) frameworks include replacing the [Lφ̄123]00
· [Lφ̄23]00 invariant with either [Lφ̄123]00[Lφ̄3]00 or [Lφ̄23]00[Lφ̄3]00.

3As ∆(27) is only providing the VEVs in SU(3) frameworks, they can be used for other subgroups of

SU(3) like T7 or ∆(6n2) [42].
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2.2.3 Alignment frameworks

Although the Invariant frameworks are minimal in terms of messengers and the SU(3)

frameworks are minimal in terms of effective parameters, as all the frameworks rely on

familon VEVs it is also interesting to consider frameworks with minimal requirements in

terms of alignment fields and familons. They will be referred to as Alignment frameworks.

An interesting possibility to dispense with some alignments is to use effective familons.

The contraction of triplet familons φ123 and φ1 into anti-triplets leads to effective anti-

triplet familons

[φ123φ123]I,S ∼ φ̄123 (2.26)

[φ1φ1]I ∼ φ̄1 , [φ1φ123]I ∼ φ̄1 (2.27)

[φ1φ123]S ∼ φ̄+ , [φ1φ123]A ∼ φ̄23 (2.28)

where the anti-symmetric contraction is particularly interesting as it leads to φ̄23. There-

fore, an Alignment framework could rely on the effective anti-triplet familons e.g.

[L[φ1φ123]A]00[L[φ1φ123]A]00 ∼ [Lφ̄23]00[Lφ̄23]00 (2.29)

but unfortunately, the orthogonal direction 〈φ̄+〉 ∝ (0, 1, 1) arises from the symmetric

contraction [φ1φ123]S ∼ φ̄+ and in ∆(27) the I, S,A contractions transform in the same

way. The possibility to select only anti-symmetric contractions exists in ∆(6n2) groups

and was exploited in [42]. For completeness, [φ23φ23]I ∼ φ̄+ also features this direction,

whereas [φ23φ23]S ∼ φ̄1.

A more promising strategy is to combine terms from the Invariant framework (triplet

familons) with terms from the SU(3) framework (anti-triplet familons) to obtain Alignment

frameworks with φ̄123 and φ23, or with φ123 and φ̄23. These Alignment frameworks have

simpler requirements in terms of VEV alignment (because orthogonality conditions are

between triplet and anti-triplet).

Alignment frameworks with φ̄123 and φ23 could appear as

Sν = H2
u

(

s123[Lφ̄123]00[Lφ̄123]00 + i23[φ23[LL]I ]00 + s23[φ23[LL]S ]00

+aI,S [Lφ̄123]00[L[φ23φ23]I,S ]00
)

(2.30)

where if the [Lφ̄123]00[L[φ23φ23]I,S ]00 terms are absent, leads to models similar to those

of eq. (2.19) with TM2 and TM1 as limits, and one less parameter as here the term

[Lφ̄123]00[Lφ̄123]00 corresponds to i123 = s123. With the terms governed by aI,S present,

the mixing scheme depends on many parameters although the simpler TM2 and TM1 limits

could still be obtained by additionally imposing aI = −2aS , which is naturally verified if

both vanish due to a specific UV completion or auxiliary symmetry.

Alignment frameworks with φ123 and φ̄23 could appear as

Sν = H2
u

(

i123[φ123[LL]I ]00 + s123[φ123[LL]S ]00 + s[Lφ̄23]00[Lφ̄23]00

+a[Lφ̄23]00[L[φ123φ123]I,S ]00
)

(2.31)
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which is a very interesting Alignment framework. As [L[φ123φ123]I,S ]00 give the same

structure due to eq. (2.26), only the sum of the two contributions is relevant and denoted

through a. This framework leads to TM1 models similar to those of eq. (2.23), but with

4 relevant parameters. In comparison with the similar SU(3) framework (with only 3

parameters), it allows non-zero determinant for Mν and therefore a mass for the lightest

neutrino. θ13 is directly related with a which governs the TM1 deviations from TBM.

Additionally, within this Alignment framework (and the SU(3) framework of eq. (2.23))

one can naturally explain the hierarchy between neutrino mass eigenstates by having a mild

hierarchy in the VEVs of the two familons, which then establishes a relationship between

the size of θ13 and ∆m2
s

∆m2
a
.4

2.3 Adding auxiliary symmetries

A complete framework matches a set of familon alignments with a set of fermion mass

terms, without generating terms that invalidate the framework. Typically this is achieved

by adding an auxiliary symmetry which eliminates those terms, possibly in conjunction

with specific UV completions [46, 47].

The complete framework proposed here results from combining an auxiliary symmetry

with a variation of the Alignment framework in eq. (2.31) and a variation of the charged

lepton terms in eq. (2.14). The effective familons strategy is employed requiring a minimal

set of familons, φ3, σ01, φ123 and φ̄23:

SC=Hd

(

[L[φ3φ3]I ]00τ
c + [L[φ3φ3]I ]02σ01µ

c + [L[φ3φ3]I ]01σ
2
01e

c
)

(2.32)

Sν=H2
u(i123[φ123[LL]I ]00[φ123[φ123φ123]I,S ]00 + s123[φ123[LL]S ]00[φ123[φ123φ123]I,S ]00

+[L[φ123φ123]I,S ]00[L[φ123φ123]I,S ]00+s[Lφ̄23]00[Lφ̄23]00+a[Lφ̄23]00[L[φ123φ123]I,S ]00)

(2.33)

where the [L[φ123φ123]I,S ]00[L[φ123φ123]I,S ]00 term acts like an effective [Lφ̄123]00[Lφ̄123]00,

whose effect is absorbed by a suitable redefinition of the i123 and s123 couplings, and the

[φ123[φ123φ123]I,S ]00 contraction only affects the overall magnitude of the terms where it

appears.

In the alignment sector, the minimal field content consists of alignment fields ς01, ς11,

ς21 (the set Si1 resulting in eqs. (B.25), (B.26), (B.27) discussed in appendix B) together

with ϕ̄123 and a ς02:

SV = a00[φ123ϕ̄123]00σ00 + a01[φ123ϕ̄123]02σ01 + ςi1[φ3φ̄23](−i)(2) + ς02[φ123φ̄23]01 . (2.34)

Although a specific UV completion will not be considered in full detail here, this

framework relies on some underlying assumptions regarding the messengers. As mentioned

in section 2.2.2, neutrino messengers can avoid terms like [Lφ̄23]01[Lφ̄23]02. The absence

of [L[φ3φ3]I ]00σ00µ
c, [L[φ3φ3]I ]00σ

2
00e

c can be due to specific charged lepton messengers,

4Relations between θ13 and ∆m2
s/∆m2

a are particularly interesting in the context of unified models

like [42], where θ13 ∼
√

∆m2
s

∆m2
a

∼ 0.15 can be further related to the size of the Cabibbo angle and to the

hierarchy in quark masses (see also [66]).
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Field ∆(27) SU(2)L R U(1)a

L 3 2 1 −2{φ123}
τ c 100 1 1 −2{φ3}+ 2{φ123}
µc 100 1 1 −2{φ3}+ 2{φ123} − {σ00}
ec 100 1 1 −2{φ3}+ 2{φ123} − 2{σ00}
Hu 100 2 0 0

Hd 100 2 0 0

φ3 3 1 0 {φ3}
φ123 3 1 0 {φ123}
φ̄23 3̄ 1 0 2{φ123}
σ00 100 1 0 {σ00}
σ01 101 1 0 {σ00}
ϕ̄123 3̄ 1 2 −{φ123} − {σ00}
ς02 102 1 2 −3{φ123}
ςi1 1i1 1 2 −{φ3} − 2{φ123}

Table 1. Symmetries and Charges.

which could be in this case non-trivial ∆(27) 10i singlets. The charged lepton messengers

are distinct from neutrino messengers due to SM hypercharge.

The presence of the φ3 familon in Sν or conversely the presence of φ123, φ̄23 in SC

would invalidate the framework, and likewise for terms in SV . The familons need to be

separated to avoid this.

Table 1 lists the field content together with symmetries and assignments for the set

SC in eq. (2.32), Sν in eq. (2.33) and SV in eq. (2.34), including an auxiliary U(1)a that

eliminates terms that would invalidate the framework. The charges of alignment fields and

fermions are expressed in terms of the familon charges, which are denoted by curly brackets

(e.g. {φ3} is the U(1)a charge of φ3). Specific models correspond to a choice of the familon

charges, and the existence of choices with U(1)a integer charges was explicitly verified: 2

(equivalent) choices remain for familon triplet charges {φ3} = {σ00} = −{φ123} = ±1, 20

choices for integer charges ranging between −2 and +2 and many more for charges between

−3 and +3. For each viable choice of charges it is possible to replace the continuous U(1)a
symmetry with a sufficiently large cyclic subgroup Cn without invalidating the model.

Similarly the R-symmetry can be discrete [68, 69]. Table 1 corresponds to a subset of

models where Hu, Hd are neutral under U(1)a, for the sake of simplicity.

3 Conclusion

In this paper ∆(27) is studied as a promising candidate for a family symmetry. The group

has triplet and anti-triplet representations which makes it particularly suitable for grand

unification, and has interesting CP properties.

Different options can provide the vacuum alignment of multiple family symmetry

breaking familons. In supersymmetric frameworks there is D-term and F-term alignment.
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The latter was explored in section 2.1 to obtain vacuum alignment in directions (0, 0, 1),

(0,−1, 1), (1, 1, 1) and also (ω, 1, 1).

Many frameworks for obtaining neutrino mixing were suggested in section 2.2, including

a simple predictive framework with only 3 parameters controlling directly the squared mass

differences ∆m2
a, ∆m2

s and θ13.

Viable frameworks can be constructed by combining a set of alignment terms and

mass terms with an auxiliary symmetry. A minimal complete framework was presented in

section 2.3.
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A ∆(27)

∆(27) has generators c (for cyclic) and d (for diagonal) with c3 = d3 = 1.

The irreducible representations are 9 singlets and 2 triplets. The singlets 1ij have

c1ij = ωi and d1ij = ωj , where ω ≡ ei2π/3. The two triplets can be denoted 301 and 302.

The generator c is represented equally for both and d is represented as a diagonal matrix

with entries that are powers of ω related to the subscripts of the triplet representation:

c3ij =







0 1 0

0 0 1

1 0 0






, d3ij =







ωi 0 0

0 ωj 0

0 0 ω−i−j






. (A.1)

301 and 302 act as triplet and anti-triplet and are referred to as 3 and 3̄ outside this

appendix. Singlets are obtained from 301⊗302 =
∑

i,j 1ij . 2 triplets result in 3 anti-triplets

and vice-versa: 301⊗301 = [302]I+[302]S+[302]A, 302⊗302 = [301]I+[301]S+[301]A. Taking

A = (a1, a2, a3)01 transforming as triplet 301 (with lower indices) and B̄ = (b̄1, b̄2, b̄3)02
transforming as anti-triplet 302 (with upper indices), the trivial singlet is

[AB̄]00 ≡ (a1b̄
1 + a2b̄

2 + a3b̄
3)00 (A.2)

i.e. the SU(3) invariant contraction. The non-trivial singlets can be built as

[AB̄]01 ≡ (a1b̄
3 + a2b̄

1 + a3b̄
2)01 (A.3)

[AB̄]02 ≡ (a1b̄
2 + a2b̄

3 + a3b̄
1)02 (A.4)

[AB̄]10 ≡ (a1b̄
1 + ω2a2b̄

2 + ωa3b̄
3)10 (A.5)

[AB̄]11 ≡ (ωa1b̄
3 + a2b̄

1 + ω2a3b̄
2)11 (A.6)

[AB̄]12 ≡ (ω2a1b̄
2 + ωa2b̄

3 + a3b̄
1)12 (A.7)

[AB̄]20 ≡ (a1b̄
1 + ωa2b̄

2 + ω2a3b̄
3)20 (A.8)
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[AB̄]21 ≡ (ω2a1b̄
3 + a2b̄

1 + ωa3b̄
2)21 (A.9)

[AB̄]22 ≡ (ωa1b̄
2 + ω2a2b̄

3 + a3b̄
1)22 . (A.10)

The I, S, A rules are the same for triplets and anti-triplets. The combination I involves

only aibi or ā
ib̄i:

[AB]I ≡ (a1b1, a2b2, a3b3)02 (A.11)

[ĀB̄]I ≡ (ā1b̄1, ā2b̄2, ā3b̄3)01 . (A.12)

The symmetric S and anti-symmetric A combinations are:

[AB]S ≡ (a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1)02 (A.13)

[ĀB̄]S ≡ (ā2b̄3 + ā3b̄2, ā3b̄1 + ā1b̄3, ā1b̄2 + ā2b̄1)01 (A.14)

[AB]A ≡ (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)02 (A.15)

[ĀB̄]A ≡ (ā2b̄3 − ā3b̄2, ā3b̄1 − ā1b̄3, ā1b̄2 − ā2b̄1)01 . (A.16)

The transformation properties of all combinations can be checked by acting on A, B̄

with the generators.

More details about ∆(27) and other ∆(3n2) groups can be found in [14–16].

B F-term alignments in ∆(27) and similar groups

To discuss alignment options in more detail, in this appendix triplet alignment fields are

referred as A, anti-triplet alignment fields as B̄, triplet familons are θ, and anti-triplet

familons are α (with no bar, but upper indices). Singlets have labels of their representation,

ςij for alignment fields and σij for familons. The 〈〉 notation for VEVs is dropped such

that e.g. φ̄1
23 = 0 implicitly refers to 〈φ̄1

23〉 = 0.

Some of the best alignment options were already introduced in section 2.1 and used

in eq. (2.34) of section 2.3. Proceeding in a systematic fashion, one can start with the

simplest renormalisable superpotentials.

B.1 Triplet alignment field with familon triplet and familon singlets

In terms of alignment fields, the choice is A, B̄, or one of nine singlets ςij . The basic

invariant for triplet familon θ is then

[θB̄]00 (B.1)

which would simply force the VEV to vanish. The other renormalisable invariants involving

only one alignment field and one familon θ are

aI [A[θθ]I ]00 + aS [A[θθ]S ]00 (B.2)

giving

aIθ1θ1 + 2aSθ2θ3 = 0 (B.3)

aIθ2θ2 + 2aSθ3θ1 = 0 (B.4)

aIθ3θ3 + 2aSθ1θ2 = 0 (B.5)
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which leads to non-vanishing VEVs only for a special relation between the arbitrary cou-

plings aI and aS . Somewhat similar relations without this issue are obtained by adding

one singlet familon σij

a00[θB̄]00 + aij [θB̄](−i)(−j)σij (B.6)

allowing VEV directions that depend on the representation of the singlet σij (cf. eq. (2.34)

which employed this type of invariants). As discussed in section 2.1, for familons σi0 the

possibilities include θ ∝ (1, 0, 0) and similar VEVs (i.e. those related by action of ∆(27)

group elements, like the cyclic permutations (0, 1, 0) and (0, 0, 1)). For familons σ0i the

possibilities include θ ∝ (1, 1, 1), (1, ω, ω2) and similar VEVs. For familons σij with i, j 6= 0

the possibilities include θ ∝ (ω, 1, 1) and similar VEVs. Although this last class of VEVs

was not used in this paper, it is particularly relevant due to spontaneous geometrical CP

violation [5, 18], and had not been obtained previously in SUSY frameworks.

B.2 Triplet alignment fields with familon triplet and anti-triplet

If an anti-triplet α is present together with the triplet θ, it can contribute to both the A

and B̄ terms:

aI [A[θθ]I ]00 + aS [A[θθ]S ]00 + a[Aα]00 (B.7)

bI [[αα]IB̄]00 + bS [[αα]SB̄]00 + b[θB̄]00 (B.8)

the F-terms with respect to the alignment field triplet components Ai would then give

aIθ1θ1 + 2aSθ2θ3 + aα1 = 0 (B.9)

aIθ2θ2 + 2aSθ3θ1 + aα2 = 0 (B.10)

aIθ3θ3 + 2aSθ1θ2 + aα3 = 0 (B.11)

which can relate the alignment between an anti-triplet familon α and triplet familon θ, but

is not sufficient to constrain the direction of either. Nevertheless, if one of the familons is

separately aligned in a direction in the class (1, 0, 0) or (1, 1, 1), that special direction is

passed into the other familon through this type of term, but this doesn’t apply to other

directions. Similarly from the F-terms with respect to the alignment field anti-triplet

components B̄i

bIα
1α1 + 2bSα

2α3 + bθ1 = 0 (B.12)

bIα
2α2 + 2bSα

3α1 + bθ2 = 0 (B.13)

bIα
3α3 + 2bSα

1α2 + bθ3 = 0 . (B.14)

As the directions passed between familons only remain invariant for special directions,

combining the triplet alignment field and the anti-triplet alignment field with arbitrary

parameters should only allow special solutions. In addition this fixes the absolute magni-

tude of both VEVs. A simple example of this occurs for the solution where both familons
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mutually align in the (1, 0, 0) direction:

θ1 = −bI

b
(α1)2 , α1 = −aI

a
(θ1)

2 (B.15)

(θ1)
3 = − ba2

bIa
2
I

, (α1)3 = − ab2

aIb
2
I

(B.16)

and similarly for the (1, 1, 1) direction where the symmetric coefficients are involved e.g.

θ1 = θ2 = θ3 = − bI+2bS
b (α1)

2.

B.3 Singlet alignment fields with familon triplet and anti-triplet

Without an anti-triplet familon to couple to, there is no renormalisable coupling of θ to

any singlet alignment field ςij . But with an anti-triplet familon α:

ςij [θα](−i)(−j) (B.17)

which enforces a relation between the triplet and anti-triplet components which is a kind

of singlet specific orthogonality condition between θ, α (cf. eq. (2.34) which employed this

type of invariants).

If there are multiple alignment field singlets it is possible to restrict the possible direc-

tions. One example is

Si0 = a00ς00[θα]00 + a10ς10[θα]20 + a20ς20[θα]10 (B.18)

where the label of the coefficients corresponds to the alignment field singlet. The F-

terms give

a00(θ1α
1 + θ2α

2 + θ3α
3) = 0 (B.19)

a10(θ1α
1 + ωθ2α

2 + ω2θ3α
3) = 0 (B.20)

a20(θ1α
1 + ω2θ2α

2 + ωθ3α
3) = 0 (B.21)

and summing the 3 equations leads to

(θ1α
1) = 0 (B.22)

but one can also sum the 3 while multiplying specific powers of ω to isolate:

(θ2α
2) = 0 (B.23)

(θ3α
3) = 0 (B.24)

meaning this set of 3 alignment fields enforces one of the two familons to have two van-

ishing entries, while the other familon must have the other one vanishing. This is a very

interesting option to simultaneously obtain a φ1 familon with φ12 = φ13 = 0 while guaran-

teeing φ̄1
23 = 0.
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Similarly, ς01, ς11, ς21 (note the second label is the same on all three, as in Si0) consti-

tuting Si1 would lead to

(θ3α
1) = 0 (B.25)

(θ1α
2) = 0 (B.26)

(θ2α
3) = 0 (B.27)

which is particulary interesting for a φ33 6= 0, φ̄1
23 = 0 solution. The set ς02, ς12, ς22

constituting Si2 leads to

(θ2α
1) = 0 (B.28)

(θ3α
2) = 0 (B.29)

(θ1α
3) = 0 . (B.30)

Combining two of these 3 singlet sets (a total of 6 singlet alignment fields for the same

pair of triplet and anti-triplet familons) restricts the directions such that both familons

have 2 zero entries: the same non-zero entry for Si1 + Si2 and either the cyclic pairs for

Si0 + Si2 (from triplet to anti-triplet, e.g. θ1 6= 0 together with α2 6= 0) or the anti-cyclic

pairs for Si0 + Si1 (from triplet to anti-triplet, e.g. θ1 6= 0 together with α3 6= 0). Adding

another singlet alignment field to one of these sets of 6 makes one of the familon VEVs

vanish.

Other sets of alignment field singlets include:

S0i = a00ς00[θα]00 + a01ς01[θα]02 + a02ς02[θα]01 (B.31)

giving

a00(θ1α
1 + θ2α

2 + θ3α
3) = 0 (B.32)

a01(θ3α
1 + θ1α

2 + θ2α
3) = 0 (B.33)

a02(θ2α
1 + θ3α

2 + θ1α
3) = 0 (B.34)

from which one can sum the 3 to obtain

(θ1 + θ2 + θ3)(α
1 + α2 + α3) = 0 (B.35)

i.e. either one of the sums or both sums vanish in the complex plane. One can replace

one of these solutions in the original equations, or sum the 3 equations with appropriate

powers of ω to obtain equivalently

(θ1 + ωθ2 + ω2θ3)(α
1 + ω2α2 + ωα3) = 0 (B.36)

(θ1 + ω2θ2 + ωθ3)(α
1 + ωα2 + ω2α3) = 0 (B.37)

which makes it more evident that if the triplet components obey (θ1 + θ2 + θ3) = 0, then

the anti-triplet components obey both (α1 + ωα2 + ω2α3) = 0 and (α1 + ω2α2 + ωα3) = 0,

for example if the triplet VEV is (1, ω, ω2) the respective anti-triplet VEV is (1, 1, 1) (and
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Alignment fields Familon VEVs

Anti-triplet 1i0,1j0; Triplet (1, 0, 0) class

Anti-triplet 10i,10j ; Triplet (1, 1, 1) class

Anti-triplet 1ij ,1kl; Triplet (ω, 1, 1) class

Anti-triplet and triplet Triplet and anti-triplet (1, 0, 0) class

Anti-triplet and triplet Triplet and anti-triplet (1, 1, 1) class

3 Singlets 1i0 Triplet (1, 0, 0) and anti-triplet (0, y, z)

3 Singlets 10i Triplet (1, 1, 1) and anti-triplet (1, ω, ω2)

Table 2. Alignments in ∆(27).

vice-versa). Similarly, a different set of 3 alignment field singlets ς10, ς11, ς12 (note the first

label is the same on all three, as in S0i) constituting S1i would lead to

(θ1 + θ2 + θ3)(α
1 + ωα2 + ω2α3) = 0 (B.38)

(θ1 + ωθ2 + ω2θ3)(α
1 + α2 + α3) = 0 (B.39)

(θ1 + ω2θ2 + ωθ3)(α
1 + ω2α2 + ωα3) = 0 (B.40)

whereas the set of 3 alignment fields ς20, ς21, ς22 that would constitute S2i would lead to

(θ1 + θ2 + θ3)(α
1 + ω2α2 + ωα3) = 0 (B.41)

(θ1 + ω2θ2 + ωθ3)(α
1 + α2 + α3) = 0 (B.42)

(θ1 + ωθ2 + ω2θ3)(α
1 + ωα2 + ω2α3) = 0 (B.43)

and combining 6 alignment field singlets narrows down the solutions. Among the 3 remain-

ing solutions with both familons non-vanishing for S1i + S2i is the (1, 1, 1) VEV for both

triplet and anti-triplet.

Summary and applications for other groups. In order to align triplet or anti-triplet

familon VEVs with renormalisable superpotential terms in ∆(27), one must necessarily

have another anti-triplet or triplet field and there are three possibilities. The first is the

anti-triplet (or triplet) is an alignment field and one can obtain relevant VEVs in conjuction

with additional familons singlets. The second is both the alignment fields and the additional

familons are triplets. The third option is having singlet alignment fields, and one can obtain

relevant VEVs in conjuction with triplet and anti-triplet familons. The main results are

summarised in table 2 (where triplet and anti-triplets can be reversed).

The D-term alignments found in ∆(27) could be used in other groups, and the same

is true for the F-term alignments. Given that the product rules for T7 triplet, anti-triplet

and singlets are so similar to those of ∆(27), many of the F-term alignments discussed in

this appendix can be directly applied to T7 frameworks — namely, the options that do

not involve ∆(27) singlets other than the three 1i0. This includes some of the options in

eq. (B.6) leading to (1, 0, 0), the mutual alignment option which relies only on pairs of

triplet and anti-triplet leading to both being aligned as (1, 0, 0) or both being aligned as

(1, 1, 1), and the Si0 option which relies on 3 alignment field singlets to align a pair of
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triplet and anti-triplet where one of them has two zeros and the other is orthogonal, e.g.

(1, 0, 0) and (0, y, z).

The Si0 option is particularly versatile as it does not rely on the product of two triplets

or on the product of two anti-triplets, and as such can be used for ∆(3n2) and Σ(3n3) groups

in general. ∆(3n2) and Σ(3n3) groups with n multiple of 3 (e.g. Σ(81)) have 9 singlets like

∆(27). For such groups all options in eq. (B.6) and those involving sets of alignment field

singlets beyond Si0 are available to align all of the directions discussed here.
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