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simulation results, respectively. Our analysis of the theoretical uncertainties is based on

different implementations of the perturbative series and on independent variations of the

renormalization scales for the mass and the strong coupling. Taking into account the

resulting set of series to estimate perturbative uncertainties is crucial, since some ways

to treat the perturbative expansion can exhibit extraordinarily small scale dependence

when the two scales are set equal. As an additional refinement, we address the issue that

double scale variation could overestimate the perturbative uncertainties. We supplement

the analysis with a test that quantifies the convergence rate of each perturbative series by

a single number. We find that this convergence test allows to determine an overall and

average convergence rate that is characteristic for the series expansions of each moment,

and to discard those series for which the convergence rate is significantly worse. We obtain

mc(mc) = 1.288 ± 0.020 GeV from the vector correlator. The method is also applied to

the extraction of the MS bottom quark mass from the vector correlator. We compute

the experimental moments including a modeling uncertainty associated to the continuum

region where no data is available. We obtain mb(mb) = 4.176 ± 0.023 GeV.
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1 Introduction

Precise and reliable determinations of the charm and bottom quark masses are an important

input for a number of theoretical predictions, such as Higgs branching ratios to charm and

bottom quarks or for the corresponding Yukawa couplings [1, 2]. They also affect the

theoretical predictions of radiative and inclusive B decays, as well as rare kaon decays. For

example, the inclusive semileptonic decay rate of B mesons depends on the fifth power of

the bottom quark mass. These weak decays provide crucial methods to determine elements

of the CKM matrix, which in turn are important for testing the validity of the Standard

Model, as well as for indirect searches of new physics. In this context, having a reliable

estimate of uncertainties for the quark masses is as important as knowing their precise

values [3]. Due to confinement quark masses are not physical observables. Rather, they

are scheme-dependent parameters of the QCD Lagrangian which have to be determined

from quantities that strongly depend on them.

One of the most precise tools to determine the charm and bottom quark masses

is the QCD sum rule method, where weighted averages of the normalized cross section

Re+e−→ qq̄+X , with q = c, b,

MV
n =

∫
ds

sn+1
Re+e−→ qq̄+X(s) , Re+e−→ qq̄+X(s) =

σe+e−→ qq̄+X(s)

σe+e−→µ+µ−(s)
, (1.1)

can be related to moments of the quark vector current correlator ΠV [4, 5]:

MV, th
n =

12π2Q2
q

n!

dn

dsn
ΠV (s)

∣∣∣
s=0

, jµ(x) = q̄(x)γµq(x) ,(
gµν s− qµqν

)
ΠV (s) = − i

∫
dx eiqx 〈 0 |T jµ(x)jν(0)| 0 〉 . (1.2)

Here Qq is the quark electric charge and
√
s =

√
q2 is the e+e− center-of-mass en-

ergy. Given that the integration over the experimental R-ratio extends from the quark

pair threshold up to infinity but experimental measurements only exist for energies up to

around 11 GeV, one relies on using theory input for energies above that scale (which we

call the “continuum” region). For the charm moments, the combination of all available

measurements is actually sufficient to render the experimental moments essentially inde-

pendent of uncertainties one may assign to the theory input for the continuum region [6].

For the bottom moments, the dependence on the continuum theory input is very large, and

the dependence of the low-n experimental moments on unavoidable assumptions about the

continuum uncertainty can be the most important component of the error budget, see

e.g. [7]. In fact, the use of the first moment MV
1 to determine the bottom mass appears to

be excluded until more experimental data becomes available for higher energies.

Alternatively one can also consider moments of the pseudoscalar current correlator to

extract the heavy quark masses. Experimental information on the pseudoscalar correlator

ΠP is not available in a form useful for quark mass determinations, but for the charm quark

very precise lattice calculations have become available recently [8]. For the pseudoscalar

correlator it turns out that the first two Taylor coefficients in the small-q2 expansion need
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to be regularized and defined in a given scheme, and that the third term (which we will

denote by MP
0 ) is hardly sensitive to mq. We adopt the definitions

ΠP (s) = i

∫
dx eiqx 〈 0 |T jP (x)jP (0)| 0 〉 , jP (x) = 2mq i q̄(x)γ5q(x) , (1.3)

MP, th
n =

12π2Q2
q

n!

dn

dsn
P (s)

∣∣∣
s=0

, P (s) =
ΠP (s)−ΠP (0)−Π′P (0) s

s2
,

where the explicit mass factor in the definition of the pseudoscalar current ensures it is

renormalization-scheme independent.

For small values of n such that mq/n & ΛQCD, the theoretical moments for the vector

and pseudoscalar correlators can be computed in the framework of the OPE, i.e. as an

expansion in vacuum matrix elements involving operators of increasing dimension [4, 5].

The leading matrix element corresponds to the perturbative QCD computations, which

greatly dominates the series. Nonperturbative corrections are parametrized by vacuum

condensates, and we find that even the leading correction, given by the gluon condensate,

has a very small effect for low n, particularly so for the bottom correlator. For moments

at low values of n, it is mandatory to employ a short-distance mass scheme such as MS [9],

which renders the quark mass mq(µm) dependent on its renormalization scale µm, similar

to the strong coupling αs(µα), which depends on µα. This method of determining the heavy

quark masses with high precision is frequently called relativistic charmonium/bottomonium

sum rules.

For the perturbative term, the exact analytic expressions for the Π functions are known

at O(α0
s) and O(αs), [10]. Therefore any moment can be obtained simply by Taylor ex-

panding around q2 = 0. At O(α2
s) moments are known to up to n = 30 [11–15]. At

O(α3
s) they are known analytically for n = 1 [16–18], n = 2 and n = 3 (and even n = 4

for the pseudoscalar correlator) [19, 20]. Higher moments at O(α3
s) have been determined

by a semi-analytical procedure [21–24]. The Wilson coefficient of the gluon condensate

contribution is known to O(αs) [25].

The most recent determinations of the MS charm mass from charmonium sum rules

for the vector correlator [6, 26, 27] obtain very accurate results, but differ in the way

they estimate theoretical uncertainties, and also in the computation of the moments from

experimental data. Concerning the estimate of the perturbative uncertainties, ref. [6]

obtained 19 MeV compared to 1 and 2 MeV obtained in refs. [26] and [27], respectively.

The discrepancy arises from two differences. First, in refs. [26, 27] the renormalization

scales µm, and µα were set equal, while in ref. [6] it was argued that they should be

varied independently. Second, in refs. [26, 27] the lowest renormalization scale was chosen

to be 2 GeV, while in ref. [6] variations down to the charm mass value were considered.

For the case of the pseudoscalar moments, the HPQCD collaboration has made a number

of very accurate predictions for charm and bottom masses [8, 28–30], the last of which

has the smallest uncertainty claimed so far for the charm mass. In all these analyses the

renormalization scales µm, and µα are set equal when estimating the truncation uncertainty.

A detailed discussion on the estimates of theoretical and experimental uncertainties can be

found in sections 3 and 10 of this article (see also ref. [6]).
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Similarly, bottomonium sum rules have been used to determine the bottom mass from

low-n moments. To the best of our knowledge, the most recent and precise determina-

tions are from refs. [27, 31]. These two analyses estimate their perturbative uncertainties

in the same way as the corresponding charm mass extractions from the same collabora-

tions [26, 27]. Furthermore, when it comes to compute the experimental moments, they

use theoretical input at O(α3
s) with perturbative uncertainties to model the high-energy

region (continuum region) of the spectrum. As we discuss in this work, similar caveats as

for their charm analyses can be argued to also affect their bottom quark results.

In this work we revisit the charmonium sum rules for the vector correlator, refining

our perturbative error estimate from ref. [6] by incorporating a convergence test. The

convergence test addresses the issue that the independent variation of µm and µα together

with the relatively large value of the αs close to the charm mass scale, might lead to an

overestimate of the perturbative uncertainty. The convergence test allows to quantify the

convergence property of each perturbative series with a single parameter and to discard

series for which the convergence is substantially worse then for the rest of the series. We

show that this procedure is meaningful, since the complete set of series for the moments

shows a strongly peaked distribution in these convergence values, which allows to define

an overall convergence for the set of perturbative series. This leads to a reduction of

the perturbative uncertainty from 19 to 14 MeV, and the corresponding result for the MS

charm mass supersedes the main result given in ref. [6]. We also apply this improved

method of estimating theory uncertainties to obtain a new charm mass determination from

the pseudoscalar correlator, and to extract the bottom mass from the vector correlator. For

the latter, we compute the bottom experimental moments by combining contributions from

narrow resonances, experimental data taken in the continuum, and a theoretical model

for the continuum region. We carefully study the assignment of adequate uncertainties

to this last contribution, to make sure that the the model dependence is reduced to an

acceptable level.

This paper is organized as follows: in section 2 we summarize the theoretical framework

introduced in [6], and adapt it to cover the case of the pseudoscalar moments. We also

introduce the ratios of moments, also used before in ref. [9], and the perturbative expansions

associated to them. Section 3 contains a brief summary of the results obtained in [6],

and the discussion is extended to the case of the pseudoscalar correlator and the bottom

mass. In section 4 we introduce the convergence test, and discuss how it allows to identify

and discard series with a bad convergence. Section 5 contains a discussion on the lattice

simulation results we use for our analysis. In section 6 we present our computation of the

experimental moments for the bottom correlator. The results are compared to previous

determinations in section 7. The computation of the ratio of experimental moments is

presented in section 8. Our final results for the quark masses are given in section 9. The

results are compared to previous charm and bottom mass analyses in section 10. We present

our conclusions in section 11. In appendix A the numerical values of the perturbative

coefficients that enter into our analysis and are not yet provided by ref. [6] are collected

for the convenience of the reader.
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2 Theoretical input

2.1 Perturbative contribution

The moments of the vector and pseudoscalar current correlators are defined in eqs. (1.1)

and (1.3), respectively. In the OPE framework they are dominated by the perturbative

contribution (that is, a partonic computation), which exhibits a nonlinear dependence on

the mass. Within perturbation theory one can decide to manipulate the series expansion

to get a more linear dependence on the mass. Conceptually there is no preference. As

advocated in our previous analyses [6], one might consider various versions of the expansion

to reliably estimate the perturbative uncertainties. Four types of expansion were suggested

in ref. [6], which we briefly review below.

(a) Standard fixed-order expansion: we write the perturbative vacuum polarization

function as

Π̂X(s, nf , α
(nf )
s (µα),mq(µm), µα, µm) =

1

12π2Q2
q

∞∑
n=0

snM̂X
n , (2.1)

where X = V, P for vector and pseudoscalar currents, respectively. Note that for notation

reasons, in eqs. (2.1), (2.5), (2.7), (2.8) we use ΠP (q2) = P (q2), where P is the twice-

subtracted pseudoscalar correlator defined in eq. (1.3). Here Qq is the quark electric charge

with q = c, b, and nf = 4, 5 for charm and bottom, respectively. In full generality, the

perturbative moments M̂n can be expressed as the following sum:

M̂X
n =

1

[4m 2
q (µm)]n

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[CX(nf )]a,bn,i lna

(
m 2
q (µm)

µ2
m

)
lnb
(
m 2
q (µm)

µ2
α

)
. (2.2)

This is the standard fixed-order expression for the perturbative moments. The numer-

ical values for the [CV (nf = 5)]a,bn,i coefficients are given in table 8 (for the vector current

with nf = 4, these coefficients can be found in table 1 of ref. [6]). Likewise, [CP (nf = 4)]a,bn,i
are collected in a numerical form in table 11.

The expression in eq. (2.2) is the common way to write the perturbative series of the

moments. However, as noted in ref. [6], the nonlinear dependence on mq of the standard

fixed-order expansion has the disadvantage that for charm (bottom) quarks there are fre-

quently no solutions for the mass in the sum rule mass determination, for moments higher

than the first (second), for some set of values of the renormalization scales.

(b) Linearized expansion: one can linearize the the fixed-order form expansion of

eq. (2.2) with respect to the exponent of the quark mass pre-factor by taking the 2n-th

root. This choice is e.g. made in ref. [28], and in general one can write:

(
M̂X
n

)1/2n
=

1

2mq(µm)

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[C̄X(nf )]a,bn,i lna

(
m 2
q (µm)

µ2
m

)
lnb
(
m 2
q (µm)

µ2
α

)
.

(2.3)
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The coefficients [C̄V (nf = 5)]a,bn,i and [C̄P (nf = 4)]a,bn,i are given in tables 9 and 12,

respectively (for nf = 4 the coefficients for the vector current can be found in table 2 of

ref. [6]). Even though relation (2.3) still exhibits some nonlinear dependence on mq through

perturbative logarithms, we find that it always has a solution for the quark mass.

(c) Iterative linearized expansion: for the expansion methods (a) and (b) shown in

eqs. (2.2) and (2.3), one solves for the quark masses mc,b(µm) numerically keeping the

exact mass dependence on the theory side of the equation. Alternatively, one can solve

for mc,b(µm) iteratively order by order, which is perturbatively equivalent to the exact

numerical solution, but gives different numerical results. The method consists of inserting

the lower order values for mc,b(µm) in the higher order perturbative coefficients, and re-

expanding consistently. This method has been explained in detail in section 2.1(c) of ref. [6],

and we only quote the final results here:

mq(µm) = m(0)
q

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[C̃X(nf )]a,bn,i lna

(
m

(0) 2
q

µ2
m

)
lnb
(
m

(0) 2
q

µ2
α

)
, (2.4)

m(0)
q (µm) =

1

2
(
MX
n

)1/2n [C̃X(nf )]0,0n,0 ,

where the numerical value of the coefficients [C̃V (nf = 5)]a,bn,i and [C̃P (nf = 4)]a,bn,i are

collected in tables 10 and 13, and the values for the vector current with nf = 4 can be

found in table 3 of ref. [6].

By construction, the iterative expansion always has a solution for the quark mass.

Accordingly, potential biases on the numerical analysis related to any possible nonlinear

dependence are eliminated.

(d) Contour-improved expansion: for the expansions (a), (b) and (c) the moments

and the quark masses are computed for a fixed value of the renormalization scale µα. Using

the analytic properties of the vacuum polarization function, one can rewrite the fixed-

order moments as integrals in the complex plane. This opens the possibility of making µα
dependent on the integration variable, in analogy to the contour-improved methods used

for τ -decays (see e.g. refs. [32–37]). Therefore we define the contour-improved moments [38]

as (see figure 1),

M̂X,C
n =

6πQ2
q

i

∫
C

ds

sn+1
Π̂X(s, nf , α

(nf )
s (µcα(s,m 2

q )),mq(µm), µqα(s,m 2
q ), µm) , (2.5)

and we employ the following path-dependent µcα, first used in ref. [38]

(µqα)2(s,m 2
q ) = µ2

α

(
1− s

4m 2
q (µm)

)
. (2.6)

It weights in a different way the threshold versus the high energy parts of the spectrum.

It was shown in ref. [6] that the resulting moments M̂X,C
n can be obtained analytically

– 6 –
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s

(1,0)

Figure 1. One possible integration path in the complex s̄-plane for the computation of the

contour-improved moments.

from the Taylor expansion around s = 0 of the vacuum polarization function using an

s-dependent µcα(s,m 2
q ):

Π̂MS
X

(
s, α

(nf )
s (µcα(s,m 2

q )),mq(µm), µcα(s,m 2
q ), µm

)
=
∞∑
n=0

sn M̂X,C
n . (2.7)

This trick works because αs(µ
c
α(s,m 2

q )) has the same cut as the fixed-order expression

for Π̂X . Other choices could spoil this property. Expanding the analytic expression for

M̂X,C
n on αs at a given finite order, one recovers the fixed-order moments M̂X

n . This shows

that the dependence on the contour is only residual and represents an effect from higher

order terms from beyond the order one employs for the calculation.

The contour-improved moments have a residual sensitivity to the value of the vacuum

polarization function at zero momentum transfer.1 For the case of the vector correlator

this value depends on the UV-subtraction scheme and corresponds to Π̂(0) = M̂V
0 . For

the case of the pseudoscalar correlator, M̂P
0 is scheme-independent, since P (q2) already

includes two UV subtractions. However, one could as well define a three-times-subtracted

pseudoscalar correlator of the form P (q2) = P (q2) − P (0). Slightly abusing notation, we

denote P as the “on-shell” scheme for P (q2), and the twice subtracted (original) definition

as the MS scheme for P (q2). Using the OS scheme with Π̂X(0) = 0 for either vector or

pseudoscalar correlator, we find that the first moment for the contour-improved expansion

gives exactly the first fixed-order moment, M̂X,C
1 = M̂X

1 . Thus, in order to implement

a non-trivial modification, and following ref. [6], we employ the MS scheme for Π̂V (0)

defined for µ = mq(mq), and the twice-subtracted expression for P (q2). Generically it can

be written as

Π̂MS
X (0, nf ) =

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[CX(nf )]a,b0,i lna

(
m 2
q (µm)

µ2
m

)
lnb
(
m 2
q (µm)

µ2
α

)
. (2.8)

The numerical values for the coefficients [CX ]a,b0,i are collected in table 7 for the vector

correlator with 5 flavors and the pseudoscalar correlator with 4 flavors. In table 4 or ref. [6]

one finds the the numerical values of [CV (nf = 4)]a,b0,i .

1This means that the dependence vanishes in the large-order limit.
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Figure 2. Contour plots for mc(mc) as obtained from the first moment of the pseudoscalar cor-

relator MP
1 , as a function of µα and µm at O(α3

s), for methods (a) – (d). The shaded areas rep-

resent regions with µm, µα < mc(mc), and are excluded of our analysis. For this plot we employ

αs(mZ) = 0.118.

2.2 Gluon condensate contribution

We estimate nonperturbative power corrections by including the gluon condensate contri-

bution. The gluon condensate is a dimension-4 matrix element and gives the leading power

correction in the OPE for the moments [39, 40]

MX
n = M̂X

n + ∆MX, 〈G2〉
n + . . . (2.9)

Here the ellipses represent higher-order power corrections of the OPE involving con-

densates with dimensions bigger than 4. The Wilson coefficients of the gluon condensate
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Figure 3. Contour plots for mb(mb) as obtained from the second moment of the vector correlator

MV
2 with nf = 5, as a function of µα and µm at O(α3

s), for methods (a) – (d). The shaded areas

represent regions with µm, µα < mb(mb), and are excluded of our analysis. For this plot we employ

αs(mZ) = 0.118.

corrections are known to O(αs) accuracy [25]. Following ref. [41], we express the Wilson

coefficient of the gluon condensate in terms of the pole mass, since in this way the correction

is numerically more stable for higher moments. However, as we did in ref. [6], we still write

the pole mass in terms of the MS quark mass at one loop. The resulting expression reads

∆MX, 〈G2〉
n =

1

(4M2
q )n+2

〈αs
π
G2
〉

RGI

[
[aX(nf )]0n +

α
(nf )
s (µα)

π
[aX(nf )]1n

]
, (2.10)

Mq = mq(µm)

{
1 +

α
(nf )
s (µα)

π

[
4

3
− ln

(
m 2
q (µm)

µ2
m

)]}
.
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We use the renormalization group invariant (RGI) scheme for the gluon condensate [42].

The numerical value of the [aV (nf = 5)]an and [aP (nf = 4)]an coefficients are collected in

table 6. The values for [aV (nf = 4)]an can be found in table 5 of ref. [6]. For methods (b)

and (c) one can obtain the gluon condensate contribution by performing simple algebra

operations and re-expansions in α
(nf )
s and 〈G2〉. For method (d) we employ eqs. (2.9)

and (2.10) as shown. For the RGI gluon condensate we adopt [43]

〈αs
π
G2
〉

RGI
= 0.006± 0.012 GeV4 . (2.11)

2.3 Ratios of moments

An alternative set of observables which are also highly sensitive to the quark masses are

the ratios of consecutive moments. To that end we define RXn (nf ) ≡ MX
n+1(nf )/MX

n (nf ).

Such ratios are proportional to the inverse square of the quark mass for any value of n.

Their perturbative series can be expressed as an expansion in powers of α
(nf )
s analogous to

eq. (2.2), with the replacements [4m 2
q (µm)]n → 4m 2

q (µm) and [CX(nf )]i,ja,b → [RX(nf )]i,ja,b.

Their computation is trivial, as one only needs to take the ratio of the two consecutive

theoretical moments and re-expand as a series in α
(nf )
s . We call this the standard fixed-

order expansion, analogous to the expansion (a) of section 2.1. The numerical expressions

for the [RX(nf )]i,ja,b coefficients for the vector correlator with nf = 4, 5 are given in table 14,

and for the pseudoscalar correlator with nf = 4 in table 15. As for the regular moments,

we find that the nonlinear dependence of RXn on the quark mass sometimes causes that

there is no numerical solution for mq.

By taking the square root of the ratio of two consecutive moments one gets a linear

dependence on the inverse of the quark mass. The corresponding theoretical expression is

obtained by re-expanding the perturbative expansion of
√
RXn (nf ) as a series in powers

of α
(nf )
s . Thus we obtain an expression of the form of eq. (2.3) with the replacement

[C̄X(nf )]i,ja,b → [R̄X(nf )]i,ja,b. This is referred to as the linearized expansion, in analogy to

the expansion (b) of section 2.1. The numerical values for the [R̄X(nf )]i,ja,b coefficients are

collected for the vector correlator with nf = 4, 5 in table 16, and for the pseudoscalar

correlator with nf = 4 in table 17.

Finally, one can use
√
RXn (nf ) to solve for mq(µm) in an iterative way, exactly as ex-

plained in section 2.1 for expansion (c). The theoretical expression is analogous to eq. (2.4)

with the replacement [C̃X(nf )]i,ja,b → [R̃X(nf )]i,ja,b. We collect the numerical values for the

[R̃X(nf )]i,ja,b coefficients, in tables 18 and 19 for the vector (nf = 4, 5) and pseudoscalar

(nf = 4) correlators, respectively. We call this the iterative linearized expansion.

One cannot implement a contour-improved expression for the ratios of moments, as

they cannot be computed as the contour integral of a correlator. For the ratios of moments,

in any of the three expansions, one can include non-perturbative corrections in the form of a

gluon condensate OPE term, just using eq. (2.10) and performing simple algebra operations

and re-expansions in α
(nf )
s and 〈G2〉.
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3 Previous results and scale variations

In a number of recent low-n sum rule analyses [8, 17, 26–29, 31, 44], which determined

the charm and bottom quark masses with very small uncertainties using O(α3
s) theoretical

computations for the moments [21–24], the theory uncertainties from the truncation of

the perturbative series have been estimated with the scale setting µm = µα based on

just one type of expansion, which was either the fixed-order [expansion (a)] for the vector

correlator, or the linearized [expansion (b)] for the pseudoscalar correlator. In ref. [6] we

analyzed the perturbative series for the moments MV
1,2,3,4 of the charm vector correlator at

O(α3
s) using an alternative way to estimate the perturbative uncertainties, based on the

four different expansion methods (a) – (d), as explained in section 2.1. We also focused

on the question whether renormalization scale variation restricted to µm = µα leads to a

compatible estimate of the perturbative uncertainties. From our analysis we found:

• The extractions for the MS charm mass using the expansions (a) – (d) with correlated

variations of µm and µα (e.g. µm = µα) for the vector correlator can lead to very small

scale variations, which can be very different depending on the method.2 Moreover,

for some expansions also the results from the different orders can be incompatible to

each other. It was therefore concluded that using correlated scale variation and one

type of expansion can lead to an underestimate of the perturbative uncertainty.

• Uncorrelated (i.e. independent) variation of µm and µα leads to charm mass extrac-

tions with perturbative uncertainty estimates that are in general larger, but fully

compatible among the expansions (a) – (d) and for the different orders. It was there-

fore concluded that µm and µα should be varied independently to obtain a reliable

estimate of the perturbative uncertainty.

• The size of the charm mass perturbative uncertainty has a significant dependence on

the value of the lower bound of the range of the scale variation. The choice of the

upper bound has a marginal impact.

• The pattern of size of the correlated scale variations for the different expansions can

be traced back to the form of the contours of constant charm mass in the µm –µα
plane, which happens to be located along the diagonal µm ∼ µα for expansions (a)

and (b), but roughly orthogonal for expansions (c) and (d), see figure 6 of ref. [6].

For example,3 in ref. [27] method (a) has been used for MV
1 with µm = µα varied

between 2 and 4 GeV, quoting a perturbative error estimate of 2 MeV. For the expansion

2We judge the compatibility of the perturbative error estimates based on the size of scale variations

alone, i.e. without accounting at the same time for other sources of uncertainties such as experimental

errors or the uncertainty in the value of the strong coupling.
3The size of the scale variations quoted in this paragraph applies to mc(mc) as well as to mc(3 GeV),

and all numerical results are obtained at O(α3
s). We also stress that there are no perturbative instabilities

concerning the use of the RGE down to the scale mc(mc).
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Figure 4. Charm and bottom mass values from the first [second] moment of the vector (a) for

charm [(c) for bottom] and pseudoscalar [(b), charm] currents at O(α3
s); and for the ratio of the

second over the first moment for the vector [(d) for charm, (g) for bottom] and pseudoscalar [(e),

charm] correlators. We show the outcome of various scale variations for the perturbative expansions

(a) – (d) [(a) – (c) for ratios], where green (rightmost) corresponds to 2 GeV ≤ µm = µα ≤ 4 GeV

[5 GeV ≤ µm = µα ≤ 15 GeV for bottom], blue (second from the left) 2 GeV ≤ µm, µα ≤ 4 GeV

[5 GeV ≤ µm, µα ≤ 15 GeV for bottom], purple (second from the right) mc(mc) ≤ µm, µα ≤ 4GeV

[mb(mb) ≤ µm, µα ≤ 15 GeV for bottom] and in red (rightmost) we supplement the latter variation

with a cut on the series with larger values of Vc.

methods4 (a) – (d) we obtain for the same scale variation 1.2893± 0.0007, 1.2904± 0.0004,

1.2963± 0.0045 and 1.3009± 0.0020 GeV, respectively, for mc(mc), which are inconsistent.

This can be compared to the corresponding results using independent variations as sug-

gested in ref. [6]. Using 2 GeV ≤ µα, µm ≤ 4 GeV we obtain 1.291 ± 0.003, 1.291 ± 0.003,

1.296 ± 0.005 and 1.302 ± 0.003 GeV, respectively, for expansions (a) – (d). These results

are not consistent either. It was furthermore argued in ref. [6] that an adequate variation

range should include the charm mass itself (after all, that is the scale that governs the

series), motivated by the range 2mc ± mc around the pair production threshold. Thus,

adopting independent scale variation in the range mc(mc) ≤ µm, µα ≤ 4 GeV one obtains

1.287 ± 0.018, 1.287 ± 0.015, 1.282 ± 0.019 and 1.291 ± 0.014 GeV respectively. The re-

sults show consistency and demonstrate the strong dependence on the lower bound of the

renormalization scale variation. The outcome is illustrated graphically in figure 4(a), and

the order-by-order dependence in figure 1 of ref. [45]. In ref. [6] we also explored scale

setting in which µm was fixed to mc(mc) and only µα was varied. The outcome is shown

4To compute the charm and bottom masses in this section we use MV, exp
1 = 0.2121 GeV−2 for the charm

vector correlator, result obtained in ref. [6], MP, latt
1 = 0.1402 GeV−2 for the charm pseudoscalar correlator,

from ref. [8], and our own computation MV, exp
2 = 2.834× 10−5 GeV−4 for the bottom vector correlator, see

section 6. We also use αs(mZ) = 0.1184.
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in figures 4 and 5 of that reference. The contour lines in the µm –µα plane for the mass

extraction from the first moment of the vector correlator for all methods are shown in

figure 6 of ref. [6]. The final result quoted in ref. [6], using αs(mZ) = 0.1184 ± 0.0021, was

mc(mc) = 1.282 ± (0.006)stat ± (0.009)syst ± (0.019)pert ± (0.010)αs ± (0.002)〈GG〉GeV

based on the iterative expansion method (c).

We have repeated this analysis for the first moment of the pseudoscalar correlator

MP
1 . Ref. [8] uses method (b) with the same scale variation as ref. [27], quoting 4 MeV

for the truncation error. For methods (a) – (d) and using 2 GeV ≤ µm = µα ≤ 4 GeV

we obtain 1.276± 0.003, 1.277± 0.004, 1.275± 0.005 and 1.297± 0.004 GeV, respectively.

For independent double scale variation between 2 and 4 GeV we obtain, 1.276 ± 0.013,

1.277 ± 0.012, 1.271 ± 0.012 and 1.294 ± 0.012 GeV, and if we use mc(mc) as the lower

bound to we obtain 1.260 ± 0.039, 1.267 ± 0.037 GeV, 1.259 ± 0.041 and 1.272 ± 0.034.

These results are displayed graphically in figure 4(b). The contour lines for the mass

extraction from the first moment of the pseudoscalar correlator for all methods are shown

in figure 2. We see that the results show a qualitative agreement with the situation for the

vector current, but at a level of perturbative scale variations that are in general roughly

larger by a factor of two.

A similar study can be performed for the extraction of the bottom mass mb(mb) from

the second moment of the vector correlator MV
2 . Ref. [27] uses the fixed-order expansion

[method (a)] and correlated scale variation between 5 GeV ≤ µm = µα ≤ 15 GeV, quoting

a perturbative error of 3 MeV. For the same variation we obtain 4.1781± 0.0005, 4.1771±
0.0015, 4.1818± 0.0034 and 4.1792± 0.0044 GeV for methods (a) and (d), respectively. As

in the charm case the results are not consistent, but the variations of the results have a

much smaller size, as is expected from the fact that for the bottom the renormalization

scales are much larger. For independent variation between the same values we get 4.183±
0.008, 4.181± 0.006, 4.180± 0.006 and 4.186± 0.013 GeV. Finally, if the lower limit of the

double variation starts at mb(mb) we find 4.179 ± 0.011, 4.181 ± 0.011, 4.175 ± 0.011 and

4.184 ± 0.0015 GeV. These results are collected in figure 4(c). The corresponding mb(mb)

contours in the µm –µα plane are shown in figure 3. As for the charm case, we find fully

consistent results for the independent scale variation and using mb(mb) as the lower bound.

We have also studied the ratio of the first over the second moments for the three cases,

and observe a very similar pattern. We do not provide a detailed discussion in the text,

but display the outcome graphically in figures 4(d) to 4(f).

4 Convergence test

At this point it is useful to consider the perturbative series for all choices of µα and µm
as different perturbative expansions, which can have different convergence properties. To

estimate the perturbative uncertainties one analyzes the outcome of this set of (truncated)

series. While the uncorrelated scale variation certainly is a conservative method, one

possible concern is that it might lead to an overestimate of the size of the perturbative

error. For instance, this might arise for a non-vanishing value of ln(µm/µα) in connection

with sizeable values of αs(µα) for µα close to the charm mass scale, which might artificially

spoil the convergence of the expansion. One possible resolution might be to simply reduce
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the range of scale variation (such as increasing the lower bound). However, this does

not resolve the issue, since the resulting smaller variation merely represents a matter of

choice. Furthermore, there is in general no guarantee that the series which are left have a

better convergence despite the fact that the overall scale variation might become reduced.

Preferably, the issue should be fixed from inherent properties of the perturbative series

themselves. It is possible to address this issue by supplementing the uncorrelated scale

variation method with a convergence test constraint, which we explain in the following.

We implement a finite-order version of the root convergence test. Let us recall that in

mathematics, the root test (also known as Cauchy’s radical test) states that for a series of

terms an, S[a] =
∑

n an, if the quantity V∞ defined as

V∞ ≡ lim sup
n→∞

(an)1/n , (4.1)

is smaller (bigger) than 1, the sum is absolutely convergent (divergent). If V∞ approaches

1 from above then the series is still divergent, otherwise the test is not conclusive. In

eq. (4.1) lim sup stands for the superior limit, which essentially means that in case of

oscillating series, one takes the maximum value of the oscillation. In the context of our

analysis with truncated series the relevant property is that a smaller V∞ implies a better

convergent series. For the different expansion methods we use, it is simplest to apply

the method directly to the sequence of quark masses that are extracted order by order,

rewriting the results as a series expansion. Since we only know a finite number of coefficients

of the perturbative series, we need to adapt the test. We now introduce Vc and proceed

as follows:5

(a) For each pair of renormalization scales (µm, µα) we define the convergence parameter

Vc from the charm mass series mc(mc) = m(0) + δm(1) + δm(2) + δm(3) resulting from

the extractions at O(α0,1,2,3
s ):

Vc = max

[
δm(1)

m(0)
,

(
δm(2)

m(0)

)1/2

,

(
δm(3)

m(0)

)1/3
]
. (4.2)

(b) The resulting distribution for Vc values can be conveniently cast as a histogram, and

the resulting distribution is a measure for the overall convergence of the perturba-

tive expansion being employed. We apply the convergence analysis to the region

mc(mc) ≤ µα, µm ≤ 4 GeV for charm, and mb(mb) ≤ µα, µm ≤ 15 GeV for bottom. If

the distribution is peaked around the average 〈Vc〉 it has a well-defined convergence.

Hence discarding series with Vc � 〈Vc〉 (particularly if they significantly enlarge the

estimate of the perturbative error) is justified.

Figure 5(a) shows the Vc distributions for expansions (a) – (d) for the extraction of the

charm mass from the vector moment MV
1 . We find 〈Vc〉double = (0.15, 0.15, 0.17, 0.19),6

5One could think of implementing the ratio test as well. However, since we only known a small number

of terms, it is likely that one of them becomes close to zero, making one of the ratios blow up. This makes

this test very unstable.
6Interestingly, the same analysis for the correlated variation with 2 GeV ≤ µα = µm ≤ 4 GeV yields

〈Vc〉corr = (0.14, 0.16, 0.19, 0.19), which is similar to the outcome for the double variation. This same

observation can be made for the rest of the correlators.
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Figure 5. Vc distribution for mc(mc) from the first moment of the vector (a) and pseudoscalar

(b) correlator, and for mb(mb) for the second moment of the vector correlator (c), for expansions

(a) – (d). The three lower panels show the same for the ratio of the second over the first moment

for expansions (a) – (c).
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Figure 6. Half of the scale variation of mq(mq) at O(α3
s) as a function of the fraction of the

discarded series with highest Vc values for the first moment of the vector (a) and pseudoscalar (b)

correlators for charm, the second moment of the vector correlator for bottom (c); the ratio of the

second over the first moment for the vector [charm (d) and bottom (f)] and pseudoscalar [charm

(e)] correlators.
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and that the distributions are peaked around 〈Vc〉, indicating a very good overall conver-

gence. The scale variation error (defined as half the overall variation) as a function of the

fraction of the series (with the largest Vc values) that are being discarded is shown in fig-

ure 6(a). We see that only around 2% of the series with the highest Vc values by themselves

cause the increase of the scale variation from well below 15 MeV to up to 20 MeV. These

series are located at the upper-left and lower-right corners of figures 2 and 3, and figure 6

of ref. [6], corresponding to values of µm and µα far from each other. Given that these

series have very large Vc values and do not reflect the overall good convergence behavior

of the bulk of the series, it is justified to remove them from the analysis.

The Vc distributions for the pseudoscalar first moment MP
1 are shown in figure 5(b),

again showing a clear peak. However, with 〈Vc〉double = (0.24, 0.24, 0.25, 0.21) [for cor-

related variation 〈Vc〉corr = (0.22, 0.23, 0.22, 0.15) with 2 GeV as the lower bound], the

average Vc values are significantly larger than for the vector correlator, indicating that the

overall perturbative convergence for the pseudoscalar moment is still excellent but worse

than for the vector moment. This means that the vector correlator method is superior, and

we expect that the perturbative uncertainty in the charm mass from the pseudoscalar is

larger. This expectation is indeed confirmed as we discussed in section 3, see also section 9.

Figure 6(b) shows that the effect of discarding the series with the worst convergence is very

similar to that of the vector correlator.

For our determination of the bottom mass we use the second moment MV
2 (see sec-

tion 6 for a discussion on why we discard the first moment), and employ uncorrelated scale

variations in the range mb(mb) ≤ µm, µα ≤ 15 GeV. Figure 5(c) shows the corresponding

histograms, and we find that the convergence test yields 〈Vc〉double = (0.13, 0.11, 0.12, 0.15)

for expansions (a) – (d) [for the correlated variation with scales set equal and 5 GeV ≤ µα =

µm ≤ 15 GeV we find 〈Vc〉corr = (0.13, 0.09, 0.13, 0.15)]. As expected, the averages for the

bottom are much smaller than for the charm. We further find that discarding series with

the highest Vc values only has minor effects on the perturbative error estimate for fractions

up to 5%, see figure 6(c). This is a confirmation that the series for bottom moments over-

all are more stable, which is again expected from the fact that perturbation theory should

work better for the bottom than for the lighter charm.

The behavior of the ratios of moments is very similar as that for regular mo-

ments, as can be seen in figures 6 and 5, panels (d)–(f). We find the following aver-

age values for Vc for methods (a) – (d): ratios of charm vector moments 〈Vc〉double =

(0.19, 0.18, 0.19) [〈Vc〉corr = (0.16, 0.16, 0.23)]; ratios of charm pseudoscalar moments

〈Vc〉double = (0.25, 0.23, 0.18) [〈Vc〉corr = (0.25, 0.20, 0.16)]; ratios of bottom vector mo-

ments 〈Vc〉double = (0.13, 0.12, 0.13) [〈Vc〉corr = (0.13, 0.11, 0.14)]. Therefore we conclude

that the perturbative convergence of the ratios of moments is in general terms a bit worse

than that of regular moments, except for the linearized iterative method of the pseu-

doscalar ratios.

In our final numerical analyses we discard 3% of the series with the worst Vc values.

As can be seen from figure 5, this only affects series with Vc values much larger than the

average values for the whole set of series. It is our intention to keep the fraction of dis-

carded series as small as possible, since it is our aim to remove only series with convergence
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Figure 7. Charm and bottom mass values from the first [second] moment of the vector (a) for

charm [(c) for bottom] and pseudoscalar [(b), charm] currents at O(α1,2,3
s ); and for the ratio of

the second over the first moment for the vector [(d) for charm, (g) for bottom] and pseudoscalar

[(e), charm] correlators for expansions (a) – (d) [(a) – (c) for ratios], in red, blue, green and purple,

respectively.

properties that are obviously much worse than those of the bulk of the series. We call this

procedure trimming in the following. As we see in figures 7, the results including the

trimming show a very good order-by-order convergence for the heavy quark mass determi-

nations, and at each order every expansion method gives consistent results for the central

values as well as for the estimate of the perturbative uncertainties. Figures 7(a) and 7(b)

show the results for mc(mc) from the vector and pseudoscalar correlators, respectively, for

expansions (a) – (d) at O(α1,2,3
s ) and with mc(mc) ≤ µm, µα ≤ 4 GeV, using the first mo-

ment. Figures 7(d) and 7(e) show results for methods (a) – (c), using the ratio of the second

over the first moment. Analogously, figures 7(c) and 7(f) show the results for mb(mb) for

the second moment, and the ratio of the second over the first moment, respectively, with

the uncorrelated variation mb(mb) ≤ µm, µα ≤ 15 GeV.

5 Lattice simulation data

The pseudoscalar current is not realized in nature in a way which is useful to compute the

moments of the corresponding correlator from experimental data. Results for the moments

of the pseudoscalar current correlator can, however, be obtained from simulations on the

lattice. The strategy of these numerical simulations is to tune the lattice parameters (such

as bare coupling constant and masses) to a selected number of observables (e.g. the energy

splitting of Υ resonances). Once this tuning is performed, the lattice action is fully specified

and no further changes are implemented. The tuned lattice action can then be used to
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perform all sorts of predictions, moments of correlators among them. Lattice simulations

have to face a number of challenges, which usually translate into sizeable uncertainties.

Among those are the extrapolations to the infinite volume and the zero lattice spacing (the

latter being much harder), as well as the extrapolation to physical quark masses. On top of

these systematic uncertainties, there are also statistical ones, which are related to the finite

sampling used to perform the path integrations. On the other hand there are also concerns

on the type of lattice action which is being used for the fermions. According to ref. [8], the

moments of the pseudoscalar correlator are least affected by systematic uncertainties, and

so HPQCD has focused on those for their subsequent high-precision analyses.

To the best of our knowledge, HPQCD is the only lattice collaboration which has

published results on QCD correlators. They have used the staggered-quarks lattice action,

and MILC configurations for gluons. These results have been used to determine the charm

mass and the strong coupling constant [8, 28, 29] with high accuracy, as well as the bottom

mass [28, 30], with smaller precision. We will use the simulation results as given in ref. [8],

even if the results quoted in of [28, 29] are a bit more precise. The reason for this choice is

that while [8] makes a straightforward extrapolation to the continuum, which is independent

of the charm mass and αs extractions, in [28, 29] the fit for the quark masses, the strong

coupling constant and the extrapolation to the continuum is performed all at once, in a

single fit. Furthermore that fits contains a lot of priors for the parameters one is interested

in fitting. In any case, as we have seen, the charm mass extraction from the pseudoscalar

correlator is dominated by perturbative uncertainties, as a result of the bad convergence

of the series expansion for its moments.

Ref. [8] provides simulation results for the so-called reduced moments Rk, which are

collected in their table II. The index k takes only even values, and starts with the value

k = 4, which is fairly insensitive to the charm mass. Hence the lowest moment we consider

is R6. Reduced moments are defined as (up to a global power) the full moment divided

by the tree-level result. By taking this ratio, the authors of ref. [8] claim that large

cancellations between systematic errors take place. The reduced moments are scaleless,

and the mass-dimension that one obviously needs to determinate the charm quark mass is

regained by dividing with the mass of the ηc pseudoscalar particle. Thus one can easily

translate the reduced moments into the more familiar correlator moments MP
n with the

following relation:

MP
n = [CP (nf = 4)]0,0n,0

(
R2n+4

mηc

)2n

, (5.1)

where the CP coefficients correspond to the tree-level terms of the standard fixed-order

expansion of eq. (2.2). Although the experimental value for ηc is 2.9836(7) GeV, we use

the value mηc = 2.980 GeV given in ref. [8], in order to ease comparison with that analysis.

In ref. [29] the value mηc = 2.9863(27) GeV is used. It is claimed that (as for the lattice

action) it has no QED effects, and the error accounts for cc̄ annihilation. Using the quote

in ref. [29] changes MP
1 by 0.4% and the effect on the charm mass is of the order of 2 MeV.

The uncertainty in the ηc mass has no effect on the MP
n errors. In table 1 we quote the

lattice simulation results written as regular moments MP
n .
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MP
1 MP

2 MP
3 MP

4

1.402(20) 1.361(40) 1.426(59) 1.558(89)

Table 1. Lattice simulation results for the moments of the twice-subtracted pseudoscalar correlator

P (q2) for nf = 4. Moments given in units of 10−n×GeV−2n.

6 Computation of the experimental moments for the bottom correlator

In this section we present our computation of the moments for the bottom vector current

correlator from experimental data. These are made of three distinct contributions: the nar-

row resonances below threshold, the region of broader resonances, explored by BABAR [46],

and the continuum region, where no data has been taken and some modeling is required.

The BABAR data has to be corrected for initial-state radiation and vacuum polarization

effects. In the continuum region we use a model which consists of a combination of a linear

fit to the BaBar experimental points with energy larger than 11.05 GeV, and perturbation

theory as a model for missing experimental data, which are joined smoothly by a cubic

interpolation. We assign a conservative uncertainty guided by the error function of the

linear fit to the BABAR data in the region with measurements with the highest energy.

Our determination of the experimental bottom moments differs from ref. [27] in the way we

model the uncertainties for the hadronic cross section in the continuum region, plus other

minor differences in the contributions from the narrow widths and the threshold region, see

discussion in section 7. We also provide the correlation matrix among different moments,

which cannot be found in the literature. Therefore, even though there are some similarities

with the computations outlined in [27], we find it justified to discuss our computation of

the experimental moments in some detail.

We note that our results for the moments of the bottom vector current correlator

have already been used in the analyses of high-n moments of ref. [47], in the context of

nonrelativistic large-n sum rules.

6.1 Narrow resonances

The contribution of resonances below the open bottom threshold
√
s = 10.62 GeV includes

Υ(1S) up to Υ(4S). We use the narrow width approximation to compute their contribution

to the experimental moments, finding

M res
n =

9πΓee

α(MΥ)2M2n+1
Υ

. (6.1)

The masses and electronic widths of these four resonances are taken from the PDG [48],

and the values of the effective electromagnetic coupling constant evaluated at the Υ masses

are taken from ref. [44]. This information is collected in table 2. We have also checked that

if one uses a Breit-Wigner instead of the narrow width approximation the results change

by an amount well within the error due to the uncertainty in the electronic width.

In analogy to what we found in our study of the charm moments [6], the effect of the

mass uncertainty in the moments is negligible. Therefore one only needs to consider the
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Υ(1S) Υ(2S) Υ(3S) Υ(4S)

MΥ(GeV) 9.46030(26) 10.02326(31) 10.3552(5) 10.5794(12)

Γee(KeV) 1.340(18) 0.612(11) 0.443(8) 0.272(29)(
αQED

α(MΥ)

)2
0.932069 0.93099 0.930811 0.930093

Table 2. Masses and electronic widths of narrow Υ resonances [48] and effective electromagnetic

coupling constant [44]. αQED = 1/137.035999084(51) represents the fine structure constant.

experimental uncertainty in the electronic widths. There is no information on the corre-

lation between the measurements of these widths. The PDG averages of the electronic

partial widths for the first three resonances is dominated by the CLEO measurement [49].7

Therefore we take the approach that half of the width’s uncertainty (in quadrature) is un-

correlated (therefore mainly of statistical origin), whereas the other half is correlated among

the various resonances (therefore coming from common systematics in the measurements).

6.2 Threshold region

The region between the open bottom threshold and the experimental measurement of the

Rb-ratio at the highest energy, 10.62 GeV ≤
√

s ≤ 11.2062 GeV, is referred to as the thresh-

old region. The region above the last experimental measurement will be collectively denoted

as the continuum region. The first experimental data close to the B meson threshold were

taken by the CLEO [50–52] and CUSB [53] collaborations. The measurements at each c.m.

energy have a 6% systematic uncertainty. More recently the BABAR collaboration [46]

has measured the Rb-ratio in the energy region between 10.54 GeV and 11.20 GeV, with

significantly higher statistics and better control of systematic uncertainties (of the order of

3%). These measurements are taken in small energy bins, densely populating the thresh-

old region. The BABAR data supersedes the older data of CLEO and CUSB, and it has

already been used in refs. [27, 31, 41], in which the bottom mass was also determined.

This BABAR data for the Rb-ratio has not been corrected for initial-state radiation

and vacuum polarization effects. Moreover, the effect of the Υ(4S) resonance has not

been subtracted,8 so we have performed the subtraction ourselves, using the Breit-Wigner

approximation and using for the total width the PDG value Γ4S = 20.5 MeV:

RBW(s) =
9M2

4S Γ4S
ee

α(M4S)2

Γ4S

(s−M2
4S)2 + Γ2

4SM
2
4S

. (6.2)

For the subtraction of the Υ(4S) resonance and the correction for the initial state

radiation we take an approach similar to ref. [27].

7Refs. [27, 44] assume that the error of the electronic width for the first three narrow resonances is 100%

correlated, and uncorrelated to that of the Υ(4S).
8The radiative tails of the first three resonances are provided by BABAR, so they can be subtracted at

the data level, before correcting for vacuum polarization effects.
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6.2.1 Subtraction of the Υ(4S) radiative tail

Before subtracting the radiative tail of the Υ(4S) resonance one has to account for vacuum

polarization effects. BaBar experimental data has been normalized to the theoretical Born

level dimuon cross section (using the fine structure constant rather than the running effec-

tive electromagnetic coupling), instead of normalizing to the number of events with muons

in the final state. Therefore one has to multiply the BaBar data with [α(s)/αem]2, which

we take as constant with value 0.93.

The contribution to be subtracted from the BABAR data (already corrected for vac-

uum polarization effects) is the ISR-distorted tail of the Υ(4S), which reaches to energies

above its mass. The cross section R and the ISR-distorted cross-section R̂ are related by

a convolution relation

R̂(s) =

∫ 1

z0

dz

z
G(z, s) R(s z) , (6.3)

which can be used to determine the ISR effects on the Υ(4S) resonance given in eq. (6.2).

Here the lower integration bound is z0 = (10 GeV)2/s. This value is not fully fixed by

theoretical arguments, and it is chosen such that it excludes the narrow resonances, but

keeps the major part of the Υ(4S) line shape. The radiator function G is given as [54, 55]

G(z, s) = (1− z)β(s)− 1 G̃(z, s) , (6.4)

G̃(z, s) = β(s) eδyfs(s) F (s)
[
δV+S
C (s) + δHC (s, z)

]
,

where the specific form of β, F and the two δ’s can be found in eq. (7) of [27]. Note that

the function G(z, s) is divergent as z → 1, but since 0 < β − 1 < −1, it is integrable. The

divergent behavior is absent in G̃, which in the limit z → 1 reduces to

G̃(1, s) = β(s) eδyfs(s) F (s) δV+S
C (s) . (6.5)

After subtracting the radiative tail of the Υ(4S) we find that to a good approximation

the cross section vanishes for energies below 10.62 GeV. Therefore we add an additional

point to our BABAR dataset: Rb(10.62 GeV) = 0 and take Rb = 0 for energies below

10.62 GeV. Since the subtracted cross section does not exactly vanish between 10.5408 GeV

and 10.62 GeV, we take the (small) contribution of the subtracted cross section in that

region to the moments as an additional source of systematic correlated uncertainty.

6.2.2 Deconvolution of initial-state radiation

After subtraction of the radiative tails and correcting for vacuum polarization effects, the

BABAR threshold data are corrected for ISR. The inversion of the convolution in eq. (6.3),

can be carried out in an iterative way [27]. Defining δG(z, s) = G(z, s) − δ(1− z) one can

use a successive series of approximations

Rj(s) = R0(s)−
∫ 1

z0

dz

z
δG(z, s)Rj−1(s z), (6.6)

where we denoted the j-th approximation of R(s) as Rj(s) and use as starting point

R0(s) = R̂(s), the BABAR data after correcting for vacuum polarization effects and sub-

tracting the radiative tails. In eq. (6.6) we take z0 = (10.62 GeV)2/s, using as a starting

– 21 –



J
H
E
P
0
8
(
2
0
1
5
)
1
5
5

point the energy value for which the cross section vanishes after the subtraction of the ra-

diative tails. To isolate the singularity at the higher endpoint one can perform a subtraction

at z = 1, resulting in:

Rj(s) = R0(s) +Rj−1(s)−
∫ 1

z0

dz

z

(
1− z

)β(s)− 1
[
G̃(z, s)Rj−1(s z)− z G̃(1, s)Rj−1(s)

]
− 1

β(s)
G̃(1, s)Rj−1(s)

(
1− z0

)β(s)
. (6.7)

We use the trapezoidal rule to evaluate the integration on the discrete set of experi-

mental data measurements labeled by the index i. Changing the integration variable from

z to energy we find

Rji = R0
i +Rj−1

i + G̃(1, E2
i )Rj−1

i

(
1− E2

1

E2
i

)β(E2
i )(

E1(E2 − E1)

E2
i − E2

1

− 1

β(E2
i )

)
(6.8)

−
i−1∑
k=2

(
1−

E2
k

E2
i

)β(E2
i )− 1

Ek

[
G̃

(
E2
k

E2
i

, E2
i

)
Rj−1
k

E2
k

− G̃(1, E2
i )
Rj−1
i

E2
i

]
(Ek+1 − Ek−1) ,

where we have used Rj1 = R(10.62 GeV) ≡ 0 for all iterations. After applying the procedure

as many times as necessary to obtain a stable solution, one obtains the ISR-corrected cross

section. Among the experimental measurements one finds two data points taken at very

similar values of the energy: 10.86 GeV and 10.8605 GeV. It turns out that the fact that

they lie very close makes the iterative procedure unstable. Therefore we drop the latter

point from our analysis.

In figure 8 we show the BABAR data after the subtraction of all radiative tails, before

(red) and after (blue) ISR and vacuum polarization corrections.

6.2.3 Determination of the unfolding error matrix

The BABAR collaboration splits the experimental uncertainties into statistical, systematic

uncorrelated, and systematic correlated. We add the two former in quadrature to obtain

the total uncorrelated uncertainty εuncor and rename the latter as the total correlated

uncertainty εcor. The removal of the radiative tails of the Υ mesons has no effect on these

uncertainties. Therefore, the correlation matrix for the BABAR data after the subtraction

of the radiative tails, before it is corrected for ISR effects, can be written as

M0 0
ij = (εuncor

i )2 δij + εcor
i εcor

j . (6.9)

One needs to compute a new correlation matrix after each iteration. In this way we

determine the unfolding error matrix.

The master formula in eq. (6.8) can be cast in a matrix form as follows:

Rji = R0
i +

i∑
k=2

GikR
j−1
k , (6.10)
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Figure 8. BABAR experimental data before (blue) and after (red) the ISR correction is applied.

The purple bar on the right refers to the pQCD prediction for the continuum region. We have

removed one data point at E = 10.8605 GeV.

where Rji is to be thought as the i-th component of the column vector Rj , andGik represents

the (i, k)-component of a matrix G. Here Rji depends only on the initial value R0
i and the

result of the previous iteration Rj−1
i . The Gik do not depend on Rjk or the iteration step

j. Therefore, for the error propagation one uses

∂Rji
∂R0

k

= δik ,
∂Rji
∂Rj−1

k

= Gik , (6.11)

both of them j-independent. We will denote with M j j the correlation matrix among the

entries of the vector Rj for a given iteration j. We also find it convenient to introduce

the correlation matrix among Rj and R0, referred to as M j 0. Finally we use the notation

M0 j ≡ (M j 0)T . We find for the correlation matrix after j iterations:

M j j = M0 0 +M0 j−1 GT +G M (j−1) 0 +G M (j−1) (j−1)GT , (6.12)

M j 0 = M0 0 +GM (j−1) 0,

where the elements of the matrix M0 0 are given in eq. (6.9). We find that after five itera-

tions the result has converged already to a level well below the experimental uncertainties.

Our unfolded BaBar data agrees well with that worked out in ref. [41].
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6.2.4 Contribution of the threshold region

After having corrected BABAR data for ISR and vacuum polarization effects, we use the

trapezoidal rule for integrating the threshold region between 10.62 GeV and 11.20 GeV:

M thr
n =

1

2n

[
N−1∑
i=2

Ri

(
1

E2n
i−1

− 1

E2n
i+1

)
+RN

(
1

EN−1
− 1

EN

)]
, (6.13)

where Ri has been already ISR corrected and N is the number of data points. We have

added the boundary condition point R1 = R(10.62) = 0. From eq. (6.13) one can compute

the correlation matrix among M thr
n for various n values, using the unfolding matrix among

the Ri computed in section 6.2.3.

6.3 Continuum region

For the determination of the experimental moments from the region above 11.2 GeV we

use pQCD (which has essentially negligible errors) supplemented by a modeling uncer-

tainty. Comparing pQCD (purple line in figure 9) to a linear fit to the BaBar data in

the region between 11.06 GeV and 11.2 GeV (red dotted line in figure 9) we find a 10%

discrepancy concerning the central values. The fit function has a roughly constant 4% rel-

ative uncertainty. The fit linear function shows a growing pattern such that it would meet

the pQCD prediction at around 11.5 GeV. This result is very robust, since a quadratic fit

yields the same meeting point. To model the continuum in the region between 11.2 GeV

and 11.52 GeV we patch together the linear fit function to the BaBar data and the result

of pQCD above 11.52 GeV using a cubic function, demanding continuity and smoothness

at 11.2 GeV and 11.52 GeV. The result is shown as the central red line in figure 9. Given

that the relative discrepancy between experiment and pQCD for Rb at the Z-pole is about

0.3% [56], we adopt a relative modeling error that decreases linearly from 4% at 11.2 GeV

to 0.3% at mZ , and stays constant for energies larger than mZ . This is shown as the

red band in figure 9. This uncertainty makes up for 96.9% of the total error for the first

moment MV
1 (which has an total 2.45% relative error), and 86.15% of the second moment

MV
2 (which has a total 1.85% relative error). Note that if we would adopt a constant

4% error for all energies above 11.2 GeV, this continuum uncertainty would make up for

97.24% of the total error for the first moment MV
1 (from a total 2.60% relative error), and

86.46% of the second moment MV
2 (from a total 1.87% relative error). The difference is

small because contributions from higher energies are suppressed. Following our procedure

in ref. [6] we consider this uncertainty as fully correlated for the various moments, but

without any correlation to the narrow resonances or the threshold region.

The perturbative QCD theoretical expression which we use to determine this contribu-

tion includes the non-singlet massless quark cross section supplemented with bottom mass

corrections up to O(m 4
b /s

2).9 It takes into account only contributions from the electro-

9We note that the double massive fermion bubble contribution to Rbb in eq. (6.15) includes both virtual

and real radiation terms in the large energy expansion. However, when this formula is used to compare

pQCD to the existing BABAR data, below the four-bottom-quarks threshold, the real radiation should be

excluded. We have checked that this inconsistency has an effect below 0.1%.
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Figure 9. Comparison of ISR-corrected BABAR data in the continuum region (black dots with

error bars) with pQCD (purple band). The red band shows our reconstruction of the continuum,

which includes a linear fit to the BaBar data, patched to the pQCD prediction in a smooth way

using a cubic polynomial in the energy.

magnetic current coupled to the bottom quark. It reads: [57–61]10

Rth
bb̄ (s) = NcQ

2
b R

ns(s,m 2
b (
√
s), nf = 5, α

(nf=5)
s (

√
s)) , (6.14)

where

Rns(s,m 2
b (µ), nf = 5, α

(nf=5)
s (µ), µ) (6.15)

= 1+
αs
π

+

(
αs
π

)2

(1.40923− 1.91667Ls)+

(
αs
π

)3

(− 12.7671− 7.81872Ls + 3.67361L2
s )

+
m 2
b (µ)

s

[
12
αs
π

+

(
αs
π

)2

(104.833− 47Ls)+

(
αs
π

)3

(541.753− 724.861Ls+137.083L2
s)

]
+
m4
b(µ)

s2

[
− 6+

(
αs
π

)
(−22+ 24Ls)+

(
αs
π

)2

(139.014− 4.83333Lm+ 214.5Ls− 71L2
s )

+

(
αs
π

)3

(3545.81− 158.311Lm + 9.66667L2
m − 538.813Ls + 37.8611Lm Ls

− 1037.79L2
s + 185.389L3

s )

]
,

with

Ls ≡ ln

(
s

µ2

)
, Lm ≡ ln

(
m 2
b (µ)

s

)
, αs = α

(nf=5)
s (µ) . (6.16)

We use the initial conditions mb(mb) = 4.2 GeV and αs(mZ) = 0.118.

10The authors of ref. [41] use the pole mass instead of the MS, and include α4
s and QED corrections. This

explains some numerical differences in the analyses.
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n Resonances 10.62− 11.2062 11.2062−∞ Total

1 1.394(12|22) 0.270(2|9) 2.862(0|108) 4.526(12|111)

2 1.459(12|22) 0.226(1|8) 1.148(0|45) 2.834(12|51)

3 1.538(12|22) 0.190(1|7) 0.611(0|24) 2.338(12|34)

4 1.630(13|22) 0.159(1|6) 0.365(0|15) 2.154(13|27)

Table 3. Results for our computations of the experimental moments. The second column collects

the contribution from the first four Υ resonances (using the narrow width approximation). The

third to fifth columns show the contributions from the threshold (using ISR-corrected BABAR

data) and continuum (using an interpolation between a linear fit to the BaBar data with highest

energy and pQCD as a model for the lack of data) regions, and the total moment determinations,

respectively. The two numbers quoted in parentheses correspond to the uncorrelated and correlated

experimental uncertainties, respectively. All numbers are given in units of 10−(2n+1) GeV−2n.

Therefore, for the continuum region we use the following expression,

MpQCD
n =

∫ s1

s0

ds
Rcubic
bb (s)

sn+1

[
1 + γ′

0.04(m2
Z − s) + 0.003(s− s0)

m2
Z − s0

]
(6.17)

+

∫ m2
Z

s1

ds
Rth
bb (s)

sn+1

[
1 + γ′

0.04(m2
Z − s) + 0.003(s− s0)

m2
Z − s0

]
+ (1 + 0.003 γ′)

∫ ∞
m2
Z

ds
Rth
bb (s)

sn+1
, γ′ = 0± 1 ,

with s0 = (11.2062 GeV)2, s1 = (11.52 GeV)2 and Rcubic
bb is a cubic function that smoothly

interpolates between the linear fit to BaBar data and pQCD. Here γ′ is the auxiliary

variable used to parametrize our uncertainty, which we consider as 100% correlated among

the various moments. The related entries of the correlation matrix are trivially computed as

CpQCD
nn′ =

∂MpQCD
n

∂γ′
∂MpQCD

n′

∂γ′
. (6.18)

6.4 Final results for the experimental moments

The full result for the experimental moments is obtained by summing up all the portions

described before,

M exp
n = M res

n +M thr
n +MpQCD

n . (6.19)

We determine two correlation matrices among the first four moments. One of them

comes from the various uncorrelated uncertainties, whereas the other encodes the system-

atic uncertainties. We denote them as the correlated and uncorrelated correlation matrices,

respectively. These are computed by summing up the respective individual matrices from

each region, and in the same way as we did for our charm analysis [6], we assume there is
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no region-to-region correlation. We find:

Cexp
uc =


0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0002 0.0002

, Cexp
cor =


0.0122 0.0055 0.0032 0.0021

0.0055 0.0026 0.0017 0.0012

0.0032 0.0017 0.0011 0.0009

0.0021 0.0012 0.0009 0.0007

,
(6.20)

where the (n,m) entry of each matrix is given in units of 10−2(n+m+1) GeV−2(n+m) , and

the total correlation matrix is the sum of Cexp
uc and Cexp

cor . The contribution of each region

to the final experimental moments and the corresponding uncertainties are presented in

table 3.

7 Comparison to other determinations of the experimental moments

In this section we compare our result for the experimental moments for the bottom vector

current correlator with previous determinations. These are collected in table 4.11 The most

relevant comparison is between the second and third columns, where the most recent data

on the narrow resonances and the BABAR continuum data are used. For the contributions

from the narrow resonances we have a perfect agreement with [27], although slightly larger

errors. For the threshold region our results are slightly smaller, and our uncertainties are

almost identical; however, this is not a one-to-one comparison, since our integration region

is slightly smaller. Indeed if we consider their energy range we agree with their numbers

almost perfectly. The main difference between these two determinations is the estimate

of the uncertainties coming from the continuum region, where the pQCD prediction for

the Rb-ratio is employed. Whereas we adopt the more conservative approach described in

section 6.3, ref. [27] employs only the perturbative uncertainties related to the purple band

in figure 9. In ref. [41] the same collaboration presents a more critical analysis of their

errors. In particular they observe that the last experimental measurement of BABAR,

after being corrected for ISR, disagrees with the pQCD prediction at the 20% level (way

outside the corresponding uncertainties).12 To resolve this discrepancy they assume two

possible scenarios: a) pQCD starts being reliable at energies above 13 GeV (therefore

the authors interpolate between the last experimental point and pQCD at 13 GeV); b)

BABAR systematic errors have been underestimated (therefore the central values of the

experimental measurements are rescaled by a factor of 1.21). Ref. [41] quotes the values

of the experimental moments and the resulting values for the bottom mass for these two

scenarios. Since the effect of these differences of the two bottom masses obtained from MV
2

is only slightly larger than the size of the other uncertainties (that is, the uncertainties

11In the case of ref. [7], we reconstruct the experimental moments from their table 3, where the moments

are split in several different contributions. For the reconstructed uncertainty, we take one half of the error

of the narrow resonances correlated to each other, and the other half as uncorrelated. The errors from

patches where theory input is used are taken as fully correlated to one another. The total narrow-resonance

error, and the total “theory-patch” error are added in quadrature to get the final uncertainty.
12From our own computation of the ISR-corrected Rb-ratio, we only observe a 10% deviation between

the last data point and the pQCD prediction, see figure 9.
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n This work Chetyrkin et al. ’09 [27] Kuhn et al. ’07 [44] Corcella et al. ’03 [7]

1 4.526(12|111) 4.592(31)[67] 4.601(43) 4.46(17)

2 2.834(12|51) 2.872(28)[51] 2.881(37) 2.76(15)

3 2.338(12|34) 2.362(26)[40] 2.370(34) 2.26(13)

4 2.154(13|27) 2.170(26)[35] 2.178(32) 2.08(12)

Table 4. Comparison of our results for the experimental moments of the bottom vector correlator

(2nd column) to previous determinations (3rd to 5th columns). The 2nd and 3rd columns use

BABAR data from ref. [46], while 4th and 5th use older data from refs. [50, 51]. The 3rd and

4th columns use perturbative uncertainties in the continuum region, while 2nd and 5th use a more

conservative estimate based on the agreement of data and pQCD. In the 3rd column, we quote in

square brackets our own estimate of an additional systematic error from the considerations made

in ref. [41]. All numbers are given in units of 10−(2n+1) GeV−2n.

of the theoretical moments plus the other experimental errors) added quadratically, it is

argued that this issue can be ignored. We disagree with this argument, since the issue

constitutes an independent source of uncertainty not covered by the other errors and, in

particular, being unrelated to uncertainties in the theoretical moments. Therefore this shift

must be taken as an additional source of error on the experimental moments (and indeed

would then dominate the corresponding total error). The additional error (to be added in

quadrature to the one in round brackets) is quoted in square brackets in the third column

of table 4. It amounts to an additional error of 30, 18, 11 and 7 MeV for mb(mb) extracted

from moments MV
1 to MV

4 , respectively.

Refs. [7, 17, 44] have used the older CLEO and CUSB experimental measurements,

resulting in relatively large uncertainties. In ref. [44] the CLEO measurements are divided

by a factor of 1.28, and an error of 10% is assigned. It is argued that this procedure is

necessary to reconcile old and new CLEO measurements, as well as to improve the agree-

ment with pQCD predictions. Ref. [7] uses values for the Υ-states electronic partial widths

given by the PDG 2002, which have larger uncertainties. This makes their determination

of the experimental moments rather imprecise.

Concerning the continuum region where no measurements exist, while some previous

analyses have taken a less conservative approach than ours, in ref. [62] a much more con-

servative approach is adopted. In this region they consider the Rb-ratio as constant with

a 66% uncertainty. In ref. [7] also a more conservative approach is adopted. Between 11.1

and 12 GeV O(α2
s) pQCD errors are used, which are larger than 10%; for energies above

12 GeV a global 10% correlated error is assigned.

8 Computation of the experimental values for the ratios of moments

Once the experimental values for the moments of the vector and pseudoscalar correlators

have been computed, it is in principle a straightforward exercise to calculate ratios of them.

The central value is obtained by simply taking the ratio of the corresponding central values.

To obtain the uncertainties (or more generally, the correlation matrix among the different
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Figure 10. Comparison of various determinations of the experimental moments for the bottom

vector correlator. Results in blue correspond to analyses of the same collaboration. The green

result and the determination at the top do not use the new BABAR results.

ratios of moments), one needs to have access to the complete correlation matrix among

the moments. Our computation in ref. [6] [see eqs. (3.21) and (3.22)] for the charm experi-

mental moments, and the procedure presented in section 6 [see eq. (6.20)] to determine the

bottom experimental moments, yield the two desired correlation matrices, for statistical

and systematical correlations. For the pseudoscalar moments the information on corre-

lations is not provided in ref. [8]. Therefore we make the simplest possible assumption,

which is that the moments are fully uncorrelated. This will most certainly overestimate

the uncertainties for the ratios of moments, but given that we are anyway dominated by

perturbative uncertainties, our approach appears justified. We collect our results for the

computation of the ratios of experimental moments in table. 5. Readers interested in the

full correlation matrix among them can send a request to the authors.

9 Results

In this section we present the final results for our analyses at O(α3
s). We take method (c)

(linearized iterative expansion) as our default expansion. For the estimate of the perturba-

tive uncertainty, we perform double scale variation in the ranges mc(mc) ≤ µα, µm ≤ 4 GeV

for charm (either correlator), and mb(mb) ≤ µα, µm ≤ 15 GeV for bottom, and we discard
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n Vector nf = 4 Vector nf = 5 Pseudoscalar nf = 4

1 6.969(32|59) 6.262(10|53) 0.971(32)

2 8.807(23|26) 8.251(09|48) 1.048(53)

3 9.547(14|13) 9.212(08|35) 1.092(77)

Table 5. Ratios of experimental moments for the vector correlator with 4 and 5 flavors (second and

third column, respectively), and for the pseudoscalar correlator with 4 flavors (fourth column). For

the vector current, the first error in parenthesis corresponds to the statistical uncertainty, whereas

the second corresponds to the systematic one. For the pseudoscalar correlator we only quote the

lattice error. Moments given in units of 10−2 GeV−2, 10−3 GeV−2 and, 10−1 GeV−2 for the second,

third, and fourth column, respectively.

3% of the series with the worst convergence (that is, with highest values of the Vc con-

vergence parameter). For the charm mass determinations (either vector or pseudoscalar

correlator) we use the first moment as our default, given that it is theoretically more reli-

able than the higher moments. For the analysis of the bottom mass from regular moments,

we use MV
2 as our default, since it is less afflicted by systematic experimental errors than

the first moment, and is nevertheless theoretically sound. For the charm and the bottom

mass analyses we also examine the ratio of the second over the first moment as a cross

check and validation of the results from regular moments. The results for the experimental

moments are collected in: the last column of table 9 in ref. [6] (charm vector correlator

regular moments); the last column of table 3 (bottom vector correlator regular moments);

table 1 (lattice regular moments); and table 5 (all ratios of moments).

We also analyzed higher (and also lower for the case of bottom) moments and ratios of

moments for all correlator and quark species. Since, as already discussed, fixed-order and

contour-improved higher moments are particularly afflicted by their nonlinear dependence

on the quark mass, we only consider the linearized and iterative methods for this analysis.

In any case, since higher moments have a larger sensitivity to infrared effects and are

therefore theoretically less sound, the analysis involving higher moments mainly aims at

providing cross checks. The results are collected in a graphical form in figure 11, and the

numerical results can be obtained from the authors upon request.

Our final determinations include nonperturbative effects through the gluon condensate

including its Wilson coefficients at order O(αs). Furthermore, we assign as a conservative

estimate of the nonperturbative uncertainty twice the shift caused by including the gluon

condensate. In any case, this error is very small, particularly for the bottom mass determi-

nation. One source of uncertainty which we have not discussed so far is that coming from

the strong coupling constant. Although the world average αs(mZ) = 0.1185± 0.006 has a

very small error, see ref. [48], one cannot ignore the fact that it is fairly dominated by lattice

determinations, e.g. [29]. Furthermore, there are other precise determinations with lower

central values and in disagreement with the world average from event-shapes [63–66] and

DIS [67]. A review on recent αs determinations can be found in refs. [68–70]. Therefore, in

analogy with ref. [6], we perform our analyses for several values of αs(mZ) between 0.113
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Figure 11. Charm and bottom quark mass determinations for different moments (upper row) or

ratios of moments (lower row), for the linearized (in blue) and iterative (in red) methods. Panels

(a), (b) [(e), (f)] show the results for the charm mass from moments [ratios of moments] of the

vector and pseudoscalar correlator, respectively. Panels (c) and (g) show the results for the bottom

mass from the vector correlator, for moments and ratios of moments, respectively.

and 0.119, and provide the central values and perturbative errors as (approximate) linear

functions of αs(mZ). The other uncertainties are essentially αs-independent, so we just

provide the average. We also quote quark mass results for αs taken from the world average:

αs(mZ) = 0.1185± 0.0021 , (9.1)

where we adopt an uncertainty 3.5 times larger than the current world average [48]. We

note that in ref. [6] we have taken αs(mZ) = 0.1184 ± 0.0021 as an input which causes

only tiny sub-MeV differences in the quark masses. We refrain ourselves from presenting

the αs dependence of the higher-moment result, which the reader can get from the authors

upon request.

For the numerical analyses that we carry out in this article we have created two com-

pletely independent codes: one using Mathematica [71] and another using Fortran [72],

which is much faster and suitable for parallelized runs on computer clusters. The two

codes agree for the extracted quark masses at the level of 1 eV.

9.1 Results for the charm mass from the vector correlator

For the analysis using the first moment of the charm vector correlator we use the experimen-

tal value quoted in eq. (4.1) of ref. [6]: MV, exp
1 = (0.2121 ± 0.0020stat ± 0.0030syst) GeV−2.

The outcome of this analysis, and one of the main results of this paper, is:

mc(mc) = 1.288 ± (0.006)stat ± (0.009)syst ± (0.014)pert (9.2)

± (0.010)αs ± (0.002)〈GG〉GeV ,

– 31 –



J
H
E
P
0
8
(
2
0
1
5
)
1
5
5

0.113 0.114 0.115 0.116 0.117 0.118 0.119

1.265

1.270

1.275

1.280

1.285

1.290

ΑsHmZ L

Vector correlator, central value for mcHmcL @GeVD

(a)

0.113 0.114 0.115 0.116 0.117 0.118 0.119
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

ΑsHmZ L

Vector correlator, uncertainties for mcHmcL @GeVD

Perturbative

Systematic

Statistic

Non-Perturbative

(b)

0.113 0.114 0.115 0.116 0.117 0.118 0.119

1.264

1.266

1.268

1.270

1.272

ΑsHmZ L

cHmcL @GeVDM2
V �M1

V analysis, central value for m

(c)

0.113 0.114 0.115 0.116 0.117 0.118 0.119
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

ΑsHmZ L

cHmcL @GeVD

Perturbative

Systematic

Statistic

Non-Perturbative

M2
V �M1

V analysis, uncertainties for m

(d)

Figure 12. Dependence on αs(mZ) of the central values of mc(mc) and the corresponding per-

turbative (red), statistical (orange), systematical (blue) and nonperturbative uncertainties (green),

for the analysis of the first moment [panels (a) and (b)] and the ratio of the second over the first

moment, [panels (c) and (d)], corresponding to the vector correlator.

where the quoted errors are (from left to right) experimental uncorrelated, experimental

correlated, peturbative, due to the uncertainty in αs as given in eq. (9.1), and nonper-

turbative. If we adopt the correlated scale variation 2 GeV ≤ µα = µm ≤ 4 GeV, we

obtain for method (c) 1.297 ± (0.005)pert, with the other errors essentially unchanged. For

method (a) we would get 1.290 ± (0.0007)pert, with a scale variation even smaller than the

nonperturbative uncertainty, and 20 times smaller than our perturbative error estimate

with double scale variation [3 times for method (c)]. The dependence on αs(mZ) is shown

graphically in figures 12(a) and 12(b), and analytically the result reads:

mc(mc) = (1.288 + 4.40× [αs(mZ)− 0.1185]) ± (0.006)stat ± (0.009)syst (9.3)

± (0.014 + 0.95× [αs(mZ)− 0.1185])pert ± (0.002)〈GG〉 .

Eqs. (9.2) and (9.3) supersede the results given in eqs. (4.5) and (4.2) of ref. [6],

respectively.

For the ratio of the second over the first moment of the vector correlator we use as the

experimental input RV, exp
1 = (6.969 ± 0.032stat ± 0.059syst) × 10−2 GeV−2, which yields
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the following result for the charm mass:

mc(mc) = 1.271 ± (0.003)stat ± (0.005)syst ± (0.016)pert (9.4)

± (0.004)αs ± (0.004)〈GG〉GeV .

With correlated variation 2 GeV ≤ µα = µm ≤ 4 GeV we get 1.258 ± (0.005)pert and

1.279 ± (0.007)pert for methods (a) and (c), respectively. In this case the scale variations

are a factor of 2 to 3 smaller than our perturbative error estimate.13 The αs dependence,

which can be seen in figures 12(c) and 12(d), has the form:

mc(mc) = (1.271 + 1.64× [αs(mZ)− 0.1185]) ± (0.003)stat ± (0.005)syst (9.5)

± (0.016 + 1.081× [αs(mZ)− 0.1185])pert ± (0.004)〈GG〉 .

We observe that the central value for the ratios of moments is 17 MeV smaller than

for the first moment analysis, but fully compatible within theoretical uncertainties. Fur-

thermore, the dependence on αs of the central value obtained from the regular moment

analysis is larger, which translates into a corresponding larger error due to the uncertainty

in αs. Both determinations have very similar perturbative uncertainties for any value of

αs. We also see that the charm mass from the ratio of moments has smaller experimental

uncertainties, as a result of cancellations between correlated errors. Moreover, the charm

mass result from RV1 has a nonperturbative error twice as large as that from MV
1 . The two

charm mass results from the first moment and the moment ratio are compared graphically

in figure 15(a).

9.2 Results for the charm mass from the pseudoscalar correlator

For the analysis of the first moment of the charm pseudoscalar correlator we em-

ploy MP, latt
1 = (0.1402 ± 0.0020latt) GeV−2 [8], which yields the following charm

mass determination:

mc(mc) = 1.267 ± (0.008)lat ± (0.035)pert ± (0.019)αs ± (0.002)〈GG〉GeV . (9.6)

With correlated scale variation 2 GeV ≤ µα = µm ≤ 4 GeV we obtain the central

values 1.278 and 1.276 GeV, for methods (b) and (c), respectively. In both cases the scale

variation is 4 MeV, 8 times smaller than our perturbative error estimate with double scale

variation. For the αs dependence, we find

mc(mc) = (1.267 + 8.36× [αs(mZ)− 0.1185]) ± (0.008)lat (9.7)

± (0.035 + 2.38× [αs(mZ)− 0.1185])pert ± (0.002)〈GG〉 ,

which is also displayed in figures 13(a) and 13(b). As expected, the perturbative error

is much larger than for the vector correlator, and has a stronger dependence on αs. We

13Had we taken the fixed-order expansion (a) and correlated scale variation 2 GeV ≤ µα = µm ≤ 4 GeV

as the estimate for the perturbative uncertainty, the result from RV1 with all errors added quadratically

would be 1.258±0.013 GeV, whereas the result from MV
1 would read 1.290±0.015 GeV. Both results would

not be consistent to each other.
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Figure 13. Dependence on αs(mZ) of the central values of mc(mc) and the corresponding pertur-

bative (red), lattice (blue) and nonperturbative uncertainties (green), for the analysis of the first

moment [panels (a) and (b)] and the ratio of the second over the first moment, [panels (c) and (d)],

corresponding to the pseudoscalar correlator.

see that the central value has a much stronger dependence on αs as well, which again

translates into a large error due to the uncertainty in the strong coupling. The central

value is 21 MeV lower than eq. (9.2), but fully compatible within errors [see figure 15(a)].

The nonperturbative uncertainties are identical to the vector current case.

For the ratio of second over the first moment of the pseudoscalar correlator we use

RP, latt
1 = (0.0971 ± 0.0032latt) GeV−2. We find for the charm mass

mc(mc) = 1.266 ± (0.020)latt ± (0.018)pert ± (0.006)αs ± (0.002)〈GG〉GeV . (9.8)

Using correlated variation 2 GeV ≤ µα = µm ≤ 4 GeV one obtains 1.270 ± (0.007)pert

and 1.278 ± (0.003)pert for methods (a) and (c), respectively. These scale variations are a

factor 3 and 6 smaller than our perturbative error estimate, respectively. The αs depen-

dence is

mc(mc) = (1.266 + 2.31× [αs(mZ)− 0.1185]) ± (0.020)latt (9.9)

± (0.018 + 1.25× [αs(mZ)− 0.1185])pert ± (0.002)〈GG〉 .

The central values for both MP
1 and RP1 are almost identical, but their αs dependence

is not: the latter is much smaller (even smaller than for MV
1 , but larger than for RV1 ). Note
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Figure 14. Dependence on αs(mZ) of the central values of mb(mb) and the corresponding pertur-

bative (red), statistical (orange), systematical (blue) and nonperturbative uncertainties (green), for

for the analysis of the second moment [panels (a) and (b)] and the ratio of the second over the the

first moment [panels (c) and (d)] of the vector correlator.

that the lattice error is larger for the ratio since we made the very conservative assumption

that they are fully uncorrelated. This is because the correlation matrix for various lattice

moments is unknown. The perturbative error reduces by a factor of two for any value

of αs when using the ratio, but we have checked that this only happens for the iterative

expansion. On the other hand, the αs dependence of the perturbative uncertainty is smaller

for the regular moment determination. The nonperturbative errors are identical.

All charm determinations are illustrated graphically in figure 15(a), where in red we

show our preferred determination from the first moment of the vector correlator.

9.3 Results for the bottom mass from the vector correlator

For our determination of the bottom quark mass from the second moment of the vector

correlator we use for the experimental moment MV, exp
2 = (2.834 ± 0.012stat ± 0.051syst)×

10−5 GeV−4, and we obtain

mb(mb) = 4.176 ± (0.004)stat ± (0.019)syst ± (0.010)pert (9.10)

± (0.007)αs ± (0.0001)〈GG〉GeV .
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The perturbative error is 30% smaller than for the charm vector correlator analysis,

as a result of the smaller value of αs at the scales close to the bottom mass. This is

consistent with our discussion on the convergence properties of perturbation series for the

bottom quark carried out in section 4. The total error is dominated by the experimental

systematic uncertainty, which in turn mainly comes from the continuum region where one

relies on modeling in the absence of any experimental measurements. The nonperturbative

error is completely negligible. This is expected since it is suppressed by two powers of

the bottom mass. Using the correlated scale variation 5 GeV ≤ µα = µm ≤ 15 GeV for

methods (a) and (c) we get 4.178 and 4.182 for the central values and scale variations which

are 20 and 3 times smaller, respectively. The αs dependence reads

mb(mb) = (4.176 + 3.22× [αs(mZ)− 0.1185]) ± (0.004)stat ± (0.019)syst (9.11)

± (0.010 + 0.472× [αs(mZ)− 0.1185])pert ± (0.0001)〈GG〉 .

For the analysis based on the ratio of the second moment over the first, we use RV, exp
2 =

(6.262± 0.010stat ± 0.053syst)×10−3 GeV−2, and with this value we obtain the bottom mass

mb(mb) = 4.179 ± (0.003)stat ± (0.017)syst ± (0.009)pert (9.12)

± (0.003)αs ± (0.0002)〈GG〉GeV .

With correlated scale variation 5 GeV ≤ µα = µm ≤ 15 GeV we obtain 4.175 ±
(0.003)pert and 4.182 ± (0.004)pert for methods (a) and (c), respectively. In this case

the scale variation is smaller by a factor 3 and 2, respectively. The αs dependence reads

as follows:

mb(mb) = (4.179 + 1.199× [αs(mZ)− 0.1185]) ± (0.003)stat ± (0.017)syst (9.13)

± (0.009 + 0.426× [αs(mZ)− 0.1185])pert ± (0.0002)〈GG〉 .

Although the central value for the ratio analysis is 3 MeV higher, this has no signif-

icance given the size of the uncertainties. The dependence of the central value on αs is

three times smaller for the ratio analysis. The perturbative error and its αs dependence

are roughly the same for the ratio and the single moment analysis. Moreover, the two ex-

perimental errors are very similar. This is because, even though there is some cancellation

of correlated errors in the ratio, a significant part of the huge systematic error of the first

moment remains uncanceled.

A graphical illustration of the two bottom mass determinations is shown in figure 15(b).

Both combined uncertainties and central values are rather similar, and we adopt the result

from the second moment (in red) as our default result.

10 Comparison to other determinations

In this section we make a comparison to previous analyses of our updated charm mass

determination from the vector correlator, our new results for the charm mass from the

pseudoscalar current correlator and of our bottom mass determination. We restrict our
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Figure 15. Charm (a) [bottom (b)] mass determinations from the first [second] moment of the

vector correlator (in red), the first moment of the pseudoscalar correlator (green, charm only),

and the ratio of the second over the first moment of the vector (blue) and pseudoscalar correlator

(purple, charm only).

discussion to determinations which use QCD sum rules with infinite as well as finite energy

range for the vector or pseudoscalar current correlators, and including relativistic and

nonrelativistic versions of the sum rules. We do not cover charm mass determinations from

DIS or bottom mass determinations from jets (which are in any case rather imprecise),

as well as determinations which are based on the mass of bound states (B mesons or

quarkonia) or B decays.

In figures 16(a) and 16(b) we present in a graphical form a compilation of recent sum

rule determinations of the charm and bottom masses, respectively. We have labeled them

from top to bottom with numbers from 1 to 14. We note that comparing these results,

one has to keep in mind that different analyses in general employed different values and

uncertainties for the strong coupling. Only the analyses in refs. [6, 27, 38, 47, 73] and ours

have provided the dependence of their results on the value of αs(mZ).

10.1 Charm mass

Let us first focus our attention on the charm mass, figure 16(a). Within each color, de-

terminations are ordered according to publication date. In red (determinations 12 to 14)

we show the results of our collaboration: 12 and 13 for the vector correlator, the former

(dashed) corresponding to ref. [6] without trimming procedure, and the latter (solid) cor-

responding to this work, which includes the trimming procedure. Determinations 12 to 14

are the only analyses using uncorrelated scale variation. Determination 6 (gray) [38] sets

µm = mc(mc), and all the other analyses have set µm = µα. Determinations in blue (1 [29],

2 [28] and 3 [8]) were performed by the HPQCD collaboration, which employ method (b)

for the pseudoscalar correlator moments used for the mass determination in their lattice

analyses. Only 1 to 3 and 14 use pseudoscalar moments, while all the other analyses use the

vector correlator. Among those 7 [26], 8 [27], 9 [44] and 10 [17] use data in the threshold

region only up to 4.8 GeV; analysis 6 uses two patches of data in the threshold region, one

from threshold to 4.7 GeV, and another between 7.2 and 11 GeV; analyses 12 and 13 use
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all available data (see ref. [6] for the complete bibliographic information on charm data).

The result in 6 uses only O(α2
s) perturbative input [all the other analyses utilize O(α3

s)

computations] and older information on the narrow resonances, from the PDG 2006. They

also study the fixed-order expansion and two methods of contour improvement. In black

(8 to 10) we display results using fixed order analyses at O(α3
s) from the Karlsruhe (8 and

9) and Würzburg (10) collaborations.

Analysis 7 (orange) corresponds to weighted finite-energy sum rules. They employ a

kernel which enhances the sensitivity to the charm mass, and at the same time reduces

the sensitivity to the continuum region. Green color analyses, collected in 4 [74, 75] and

5 [73], apply other kinds of sum rules. Analysis 5 uses a finite energy sum rule similar

to 7, but the kernel makes the sensitivity to the charm mass quite small. On the other

hand, the two determinations of 4 use shifted moments, ratios of shifted moments, and

exponential sum rules, and consider only the contributions from the first 6 vector reso-

nances in the narrow width approximation, and the pQCD prediction for the continuum.

The lower analysis of 4 [74] includes contributions from condensates up to dimension 6; the

higher [75] includes condensates up to dimension 8. In purple (11 [76]) we show the only

analysis which uses large-n moments for the charm mass fits, employing NRQCD methods

to sum up large logs and threshold enhanced perturbative corrections, supplemented with

fixed order predictions for the formally power suppressed terms. This analysis uses con-

tributions from narrow resonances, plus a crude model for the threshold and continuum

patches, for which a conservative uncertainty is assigned. We note, however, that this

analysis might be questioned since perturbative NRQCD is in general not applicable for

the charmonium states.

Our new vector correlator result agrees well with the world average, having a sim-

ilar uncertainty. Our result is fully compatible with the other determinations shown in

figure 16(a). As mentioned already before, we disagree with the small perturbative uncer-

tainties related to the scale variations of the vector and/or pseudoscalar moments adopted

in analyses 1 to 3 and 7 to 10.

10.2 Bottom mass

Let us now turn our attention to the bottom mass results, see figure 16(b). The coloring

and chronological conventions are analogous to figure 16(a), and we try to keep a similar

ordering. We show three nonrelativistic determinations (11 [47], 12 [62] and 13 [77]) in

purple; O(α2
s) fixed-order analyses are shown in gray (5 [7]), black (10 [78]) and green

(4 [79]); finite energy sum rules also based on fixed-order appear in orange (6 [31]) and

green (4); there are two lattice analyses in blue, collected in 1 [28, 30]. Analyses 3, 6, 7

and 11 to 13 use the new BABAR data, whereas the others use the older CLEO and CUSB

data. Analyses 4 and 11 include only the contributions of the first six vector resonances.

Analyses 4 and 5 use older measurements of the electronic width for the narrow resonances.

Analyses 3, 4, 6 to 9 use pQCD in the high-energy spectrum for the experimental moments.

The theoretical treatment of the bottom mass analyses in red, gray, black, blue and green

are in complete analogy to their charm mass analyses: 3 and 4 for bottom correspond to 4

and 5 for charm, respectively; 1 in bottom corresponds to 1 and 2 for charm.
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The upper analysis of 1 [30] uses a nonrelativistic lattice action to compute ratios

of large-n moments, which are later compared to relativistic continuum perturbation the-

ory. Because the continuum computation do not sum up Sommerfeld enhanced terms, this

procedure is questionable. The analysis 10 uses a combination of MV
6 with the infinite

momentum transfer moment, both in fixed-order, in order to constrain the continuum re-

gion. They only use experimental information on narrow resonances, and model the rest

of the spectrum with theory predictions. Finally, they make the following scale choice:

µα = µm = mb(mb) and estimate the truncation error from an ansatz for the O(α3
s)

term.14 Analyses 11 and 13 use large-n moments and NRQCD methods for their theoret-

ical moments. Analysis 12 uses NRQCD fixed-order perturbation theory at N3LO (which

accounts for the summation of the Coulomb singularities) and 13 uses renormalization

group improved perturbation theory in the framework of vNRQCD at N2LL order. Both

analyses employ low-scale short-distance masses to avoid ambiguities related to the pole

mass renormalon. Analysis 12 also uses N3LO NRQCD fixed-order input, but is incom-

plete concerning the contributions from the continuum region in the theoretical moments.

Moreover, they extract the pole mass which is then converted to the MS scheme.

Our result 14 is in full agreement with the world average, having a slightly smaller

uncertainty. It also agrees with the other analyses shown, with slightly smaller or compa-

rable uncertainties. We disagree with the small perturbative uncertainties related to scale

variations quoted in 6 to 10.

11 Conclusions

In this work we have determined the MS charm and bottom quark masses from quarko-

nium sum rules in the framework of the OPE, using O(α3
s) perturbative computations,

plus nonperturbative effects from the gluon condensate including its Wilson coefficient at

O(αs). For the determination of the perturbative uncertainties we independently varied

the renormalization scales of the strong coupling and the quark masses, in order to account

for the variations due to different possible types of αs expansions, as suggested earlier in

ref. [6].

In order to avoid a possible overestimate of the perturbative uncertainties, coming

from the double scale variation in connection with a low scale of αs and resulting in badly

convergent series, we have re-examined the charm mass determination from charmonium

sum rules (vector correlator) supplementing the analysis with a convergence test. The

convergence test is based on Cauchy’s radical test, which is adapted to the situation in

which only a few terms of the series are known, and quantifies the convergence rate of each

series by the parameter Vc. We find that the distribution of the convergence parameter Vc
coming from the complete set of series peaks around its mean value, and allows to quantify

the overall convergence rate of the set of series for each moment in a meaningful way. This

justifies discarding (or “trimming”) series with values of Vc much larger than the average.

For our analysis we discard 3% of the series having the highest Vc values, which results in

14Ref. [78] also makes a determination of the charm mass. We exclude it from our comparison since it is

not used in the PDG average.
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Figure 16. Comparison of recent determinations of charm (a) and bottom (b) quark masses from

sum rule analyses. Red results correspond to our determination. Black and gray correspond to

O(α2
s) and O(α3

s) analyses, respectively. Purple results use nonrelativistic sum rules. Orange use

weighted finite energy sum rules. Blue results are based on QCD sum rules using lattice simulation

results as experimental data. Green labels other kinds of sum rule analyses (FESR, Q2-dependent

moments, ratios of moments).

a reduction of the perturbative uncertainty for the MS charm mass mc(mc) from 19 MeV

in [6] to 14 MeV (which amounts to 26%), and a small shift of + 5 MeV in the central value.

Our new determination of the charm mass from the first moment (which is theoretically

the cleanest) of the vector correlator reads:

mc(mc) = 1.288 ± 0.020 GeV , [Vector Correlator] (11.1)

where all sources of uncertainty have been added in quadrature. This result supersedes our

corresponding earlier result from ref. [6], which was 1.282 ± 0.024 GeV. This makes it clear

that the trimming procedure discards series which produce small values of the charm mass.

We have applied the same method of theory uncertainty estimate to analyze the

HPQCD lattice simulation results for the pseudoscalar correlator. Our convergence test

signals that the pseudoscalar moments have far worse convergence than the corresponding

vector ones. This translates into an uncertainties of 35 MeV due to the truncation of the

perturbative series and the error in αs (roughly twice as big as for the vector determina-

tion). In contrast, using correlated scale variation (e.g. setting the scales in the mass and

the strong coupling equal) the scale variation can be smaller by a factor of 8. Our new

determination from the first moment (again being the most reliable theoretical prediction)

of the pseudoscalar correlator reads mc(mc) = 1.267± 0.041 GeV, where again all individ-

ual errors have been added in quadrature. The combined total error is twice as big as for

the vector correlator, and therefore we consider it as a validation of eq. (11.1) in connec-

tion with the convergence test. The result is in sharp contrast with the analyses carried

out by the HPQCD collaboration [8, 28, 29], where perturbative uncertainties of 4 MeV

– 40 –



J
H
E
P
0
8
(
2
0
1
5
)
1
5
5

are claimed. We have checked that, as for the vector correlator, for the different possible

types of αs-expansion the correlated variation in general leads to a bad order-by-order

convergence of the charm mass determination.

The second important result of this work is the determination of the bottom quark mass

from the vector correlator. We have reanalyzed the experimental moments by combining

experimental measurements of the first four narrow resonances, the threshold region covered

by BABAR, and a theoretical model for the continuum. This theoretical model is an

interpolation between a linear fit to the BaBar data points with highest energy and pQCD,

to which we assign a 4% systematic uncertainty which decreases linearly to reach 0.3% at

the Z-pole, and stays constant at 0.3% for higher energies. Our treatment is motivated

by the error function yielded by the fit to BaBar data in the energy range between 11.0

and 11.2 GeV and the discrepancy between pQCD and experimental measurements at the

Z-pole. This results into a large error for the first moment, and therefore we choose

the second moment (which is theoretically as clean as the first one for the case of the

bottom quark) for our final analysis, giving a total experimental uncertainty of 18 MeV.

Our treatment of the experimental continuum uncertainty is in contrast to ref. [27], where

instead the very small perturbative QCD uncertainties (less than 1%) are used, claiming an

experimental uncertainties of 6 MeV. In the light of the analysis carried out here, supported

by the observations made in ref. [41], we believe this is not justified. Our convergence test

reveals that, as expected for the heavier bottom quark, the perturbative series converge

faster than for the charm quark. Correspondingly, the perturbative and αs uncertainties

are ∼ 30% smaller than those for charm. Taking correlated scale variation as used in

refs. [27, 31] the perturbative error estimate can shrink up to a factor of 20. We also

find that correlated variation leads to incompatible results for the different types of αs-

expansions. Our final result for the bottom mass from the second moment, with all errors

added in quadrature, reads:

mb(mb) = 4.176 ± 0.023 GeV , [Vector Correlator] (11.2)

where the total error is fairly dominated by the systematic error, which comes from the

continuum region of the spectrum. Our uncertainty is very similar to the one obtained by

the HPQCD analysis, but 30% larger than the 16 MeV claimed by [27]. Our central value

is 13 MeV larger than the latter. This good agreement is a result of two effects that push

in opposite directions: smaller value of the second experimental moment, and different

perturbative analysis. Curiously enough, a similar accidental cancellation was observed for

the charm mass in [6].

In order to further validate the results discussed above, we have also analyzed the ratios

of consecutive moments of each one of the three correlators as alternative observables. In

all cases the results from the moment ratios agree very well the regular moment analyses.
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A Numerical values for the perturbative coefficients

In this appendix we succinctly collect the numerical values for all of the coefficients ap-

pearing in the perturbative series, such that our analysis can be reproduced. We organize

these values in tables, each of them corresponding to a different equation.

n = 1 n = 2 n = 3 n = 4

[aV (nf = 5)]0,0n − 4.011 − 6.6842 − 9.7224 − 13.0879

[aV (nf = 5)]1,0n − 36.9604 − 69.9123 − 112.669 − 165.326

[aP (nf = 4)]0,0n 8.02101 0 − 9.72244 − 20.9406

[aP (nf = 4)]1,0n 39.1439 − 36.3842 − 152.67 − 309.925

Table 6. Numerical values for the coefficients of eq. (2.10) for the vector correlator with nf = 5

(first two columns), and for the pseudoscalar correlator with nf = 4 (last two columns). (Gluon

condensate contribution).

[CV ]0,00,i [CV ]1,00,i [CV ]0,10,i [CV ]0,20,i [CP ]0,00,i [CP ]1,00,i [CP ]0,10,i [CP ]0,20,i

nf = 5 nf = 4

i = 0 0 0 0 0 1.33333 0 0 0

i = 1 1.44444 0 0 0 3.11111 0 0 0

i = 2 3.21052 0 − 2.76852 0 0.115353 0 − 6.48148 0

i = 3 − 6.28764 5.53704 − 15.7977 5.30633 − 1.22241 12.963 − 10.4621 13.5031

Table 7. Numerical values of the coefficients for eq. (2.8) for Π̂V (0) in the MS scheme and nf = 5,

and P (q2 = 0) for nf = 4.
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[CV ]0,0n,i [CV ]1,0n,i [CV ]2,0n,i [CV ]3,0n,i [CV ]0,1n,i [CV ]1,1n,i [CV ]2,1n,i [CV ]0,2n,i [CV ]1,2n,i

n = 1

i = 0 1.06667 0 0 0 0 0 0 0 0

i = 1 2.55473 2.13333 0 0 0 0 0 0 0

i = 2 3.15899 8.33909 4.17778 0 − 4.89657 − 4.08889 0 0 0

i = 3 − 7.76244 18.2235 29.3221 8.12346 − 18.2834 − 37.1221 −16.0148 9.38509 7.83704

n = 2

i = 0 0.457143 0 0 0 0 0 0 0 0

i = 1 1.10956 1.82857 0 0 0 0 0 0 0

i = 2 3.23193 7.20649 5.40952 0 − 2.12665 − 3.50476 0 0 0

i = 3 − 2.64381 19.0805 35.2229 14.1249 − 15.0705 − 32.0439 − 20.7365 4.07609 6.71746

n = 3

i = 0 0.270899 0 0 0 0 0 0 0 0

i = 1 0.519396 1.6254 0 0 0 0 0 0 0

i = 2 2.06768 5.57705 6.43386 0 − 0.995509 − 3.11534 0 0 0

i = 3 − 1.17449 14.8309 36.8953 21.0888 − 9.18132 − 25.3067 − 24.6631 1.90806 5.97108

n = 4

i = 0 0.184704 0 0 0 0 0 0 0 0

i = 1 0.203121 1.47763 0 0 0 0 0 0 0

i = 2 1.22039 3.86194 7.3266 0 − 0.389316, − 2.83213 0 0 0

i = 3 − 1.386 9.10716 34.8581 28.8994 − 5.16902 − 18.3751 − 28.0853 0.746189 5.42825

Table 8. Numerical values of the coefficients for eq. (2.2) for the vector current with nf = 5.

(Standard fixed-order expansion).

[C̄V ]0,0n,i [C̄V ]1,0n,i [C̄V ]2,0n,i [C̄V ]3,0n,i [C̄V ]0,1n,i [C̄V ]1,1n,i [C̄V ]2,1n,i [C̄V ]0,2n,i [C̄V ]1,2n,i

n = 1

i = 0 1.0328 0 0 0 0 0 0 0 0

i = 1 1.2368 1.0328 0 0 0 0 0 0 0

i = 2 0.788784 2.80034 1.50616 0 − 2.37054 − 1.97952 0 0 0

i = 3 − 4.70257 4.68012 9.59148 2.42659 − 6.01262 − 13.2306 − 5.77361 4.54354 3.79409

n = 2

i = 0 0.822267 0 0 0 0 0 0 0 0

i = 1 0.498944 0.822267 0 0 0 0 0 0 0

i = 2 0.999196 1.74376 1.19914 0 − 0.956309 − 1.57601 0 0 0

i = 3 −3.19148 1.49991 6.92794 1.93195 − 5.03603 − 8.67158 − 4.5967 1.83292 3.02069

n = 3

i = 0 0.804393 0 0 0 0 0 0 0 0

i = 1 0.257044 0.804393 0 0 0 0 0 0 0

i = 2 0.817928 1.4748 1.17307 0 − 0.492667 − 1.54175 0 0 0

i = 3 −1.97558 0.0722677 6.44038 1.88995 − 3.75658 − 7.59737 − 4.49678 0.944279 2.95503

n = 4

i = 0 0.809673 0 0 0 0 0 0 0 0

i = 1 0.111301 0.809673 0 0 0 0 0 0 0

i = 2 0.615164 1.33706 1.18077 0 − 0.213327 − 1.55187 0 0 0

i = 3 −1.36612 − 0.923734 6.26766 1.90236 − 2.62711 − 7.08209 − 4.5263 0.408876 2.97442

Table 9. Numerical values of the coefficients for eq. (2.3) for the vector current with nf = 5.

(Linearized expansion).
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[C̃V ]0,0n,i [C̃V ]1,0n,i [C̃V ]2,0n,i [C̃V ]3,0n,i [C̃V ]0,1n,i [C̃V ]1,1n,i [C̃V ]2,1n,i [C̃V ]0,2n,i [C̃V ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 1.19753 1 0 0 0 0 0 0 0

i = 2 3.1588 4.71142 1.45833 0 − 2.29527 −1.91667 0 0 0

i = 3 1.32698 14.7867 13.2036 2.34954 − 15.0028 − 20.4771 − 5.59028 4.39926 3.67361

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.60679 1 0 0 0 0 0 0 0

i = 2 2.42875 4.12068 1.45833 0 − 1.16301 −1.91667 0 0 0

i = 3 1.7702 11.9808 12.3421 2.34954 − 10.7766 − 18.2126 − 5.59028 2.22911 3.67361

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.31955 1 0 0 0 0 0 0 0

i = 2 1.65593 3.83344 1.45833 0 − 0.612471 − 1.91667 0 0 0

i = 3 1.53408 10.1987 11.9232 2.34954 − 7.11997 − 17.1115 − 5.59028 1.1739 3.67361

n = 4

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.137464 1 0 0 0 0 0 0 0

i = 2 1.0347 3.65135 1.45833 0 − 0.263473 − 1.91667 0 0 0

i = 3 0.744809 8.93759 11.6576 2.34954 − 4.29854 − 16.4135 − 5.59028 0.504989 3.67361

Table 10. Numerical values of the coefficients for eq. (2.4) for the vector current with nf = 5.

(Iterative linearized expansion).

[CP ]0,0n,i [CP ]1,0n,i [CP ]2,0n,i [CP ]3,0n,i [CP ]0,1n,i [CP ]1,1n,i [CP ]2,1n,i [CP ]0,2n,i [CP ]1,2n,i

n = 1

i = 0 0.5333 0 0 0 0 0 0 0 0

i = 1 2.0642 1.06667 0 0 0 0 0 0 0

i = 2 7.23618 5.89136 2.17778 0 − 4.30041 − 2.22222 0 0 0

i = 3 7.06593 29.1882 19.5609 4.47654 − 36.7734 − 27.9695 − 9.07407 8.95919 4.62963

n = 2

i = 0 0.30476 0 0 0 0 0 0 0 0

i = 1 1.21171 1.21905 0 0 0 0 0 0 0

i = 2 5.9992 6.86166 3.70794 0 − 2.5244 − 2.53968 0 0 0

i = 3 14.5789 36.2468 31.4945 10.0938 − 28.8842 − 32.5014 −15.4497 5.25916 5.29101

n = 3

i = 0 0.20318 0 0 0 0 0 0 0 0

i = 1 0.71276 1.21905 0 0 0 0 0 0 0

i = 2 4.26701 6.29135 4.92698 0 − 1.48491 − 2.53968 0 0 0

i = 3 13.3278 34.8305 38.066 16.697 − 20.066 − 30.1251 − 20.5291 3.09356 5.29101

n = 4

i = 0 0.147763 0 0 0 0 0 0 0 0

i = 1 0.401317 1.18211 0 0 0 0 0 0 0

i = 2 2.91493 5.1643 5.95979 0 − 0.836077 − 2.46272 0 0 0

i = 3 9.9948 29.5129 40.2459 24.1703 −13.4331 −25.3105 −24.8325 1.74183 5.13067

Table 11. Numerical values of the coefficients for eq. (2.2) for the pseudoscalar correlator with

nf = 4. (Standard fixed-order expansion).
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[C̄P ]0,0n,i [C̄P ]1,0n,i [C̄P ]2,0n,i [C̄P ]3,0n,i [C̄P ]0,1n,i [C̄P ]1,1n,i [C̄P ]2,1n,i [C̄P ]0,2n,i [C̄P ]1,2n,i

n = 1

i = 0 0.730297 0 0 0 0 0 0 0 0

i = 1 1.41326 0.730297 0 0 0 0 0 0 0

i = 2 3.58681 2.62028 1.12587 0 − 2.94429 − 1.52145 0 0 0

i = 3 − 2.10344 11.3262 8.59338 1.93901 − 19.4793 − 13.2609 − 4.69114 6.13394 3.16969

n = 2

i = 0 0.743002 0 0 0 0 0 0 0 0

i = 1 0.738531 0.743002 0 0 0 0 0 0 0

i = 2 2.55535 1.96655 1.14546 0 − 1.53861 − 1.54792 0 0 0

i = 3 0.536147 6.35978 7.66478 1.97274 − 13.0167 − 10.5778 − 4.77276 3.20543 3.22484

n = 3

i = 0 0.766734 0 0 0 0 0 0 0 0

i = 1 0.448296 0.766734 0 0 0 0 0 0 0

i = 2 2.02851 1.71554 1.18205 0 − 0.93395 − 1.59736 0 0 0

i = 3 1.94168 4.12818 7.42578 2.03575 −9.89039 − 9.60801 − 4.9252 1.94573 3.32784

n = 4

i = 0 0.787401 0 0 0 0 0 0 0 0

i = 1 0.267317 0.787401 0 0 0 0 0 0 0

i = 2 1.624 1.56872 1.21391 0 − 0.55691 − 1.64042 0 0 0

i = 3 2.58251 2.65675 7.3283 2.09062 − 7.62431 − 9.06256 − 5.05796 1.16023 3.41754

Table 12. Numerical values of the coefficients for eq. (2.3) for the pseudoscalar current with nf = 4.

(Linearized expansion).

[C̃P ]0,0n,i [C̃P ]1,0n,i [C̃P ]2,0n,i [C̃P ]3,0n,i [C̃P ]0,1n,i [C̃P ]1,1n,i [C̃P ]2,1n,i [C̃P ]0,2n,i [C̃P ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 1.93519 1 0 0 0 0 0 0 0

i = 2 8.78182 5.58796 1.54167 0 − 4.03164 − 2.08333 0 0 0

i = 3 9.22126 25.7977 15.8503 2.65509 − 42.7996 − 26.4915 − 6.42361 8.39924 4.34028

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.99398 1 0 0 0 0 0 0 0

i = 2 5.42718 4.64676 1.54167 0 −2.07079 −2.08333 0 0 0

i = 3 11.733 19.005 14.3993 2.65509 −25.8023 −22.5698 −6.42361 4.31416 4.34028

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.584683 1 0 0 0 0 0 0 0

i = 2 3.81501 4.23746 1.54167 0 − 1.21809 − 2.08333 0 0 0

i = 3 11.0126 15.8978 13.7683 2.65509 − 17.7717 − 20.8644 − 6.42361 2.53768 4.34028

n = 4

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.339493 1 0 0 0 0 0 0 0

i = 2 2.74147 3.99227 1.54167 0 − 0.707277 − 2.08333 0 0 0

i = 3 9.51996 13.9286 13.3903 2.65509 − 12.512 − 19.8428 − 6.42361 1.47349 4.34028

Table 13. Numerical values of the coefficients for eq. (2.4) for the pseudoscalar current with nf = 4.

(Iterative linearized expansion).
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[RV ]0,0n,i [RV ]1,0n,i [RV ]2,0n,i [RV ]3,0n,i [RV ]0,1n,i [RV ]1,1n,i [RV ]2,1n,i [RV ]0,2n,i [RV ]1,2n,i

n = 1

i = 0 0.428571 0 0 0 0 0 0 0 0

i = 1 0.0137566 0.857143 0 0 0 0 0 0 0

i = 2
1.56736 1.44418 1.75 0 − 0.0286596 − 1.78571 0 0 0

1.72775 1.32513 1.67857 0 − 0.0263668 − 1.64286 0 0 0

i = 3
− 4.79526 2.66831 9.00161 3.59722 − 6.57481 − 8.76742 − 7.29167 0.0597075 3.72024

− 3.53855 1.29072 7.81479 3.26389 − 6.65629 − 7.1511 − 6.43452 0.0505364 3.14881

n = 2

i = 0 0.592593 0 0 0 0 0 0 0 0

i = 1 − 0.302139 1.18519 0 0 0 0 0 0 0

i = 2
0.718416 1.35457 2.41975 0 0.629455 − 2.46914 0 0 0

1.06685 1.18996 2.32099 0 0.579099 − 2.2716 0 0 0

i = 3
− 1.59081 − 1.60786 11.1353 4.97394 − 2.02404 − 9.44651 − 10.0823 − 1.31137 5.14403

0.404636 − 3.06309 9.54776 4.51303 − 3.35942 − 7.42572 − 8.89712 − 1.10994 4.35391

n = 3

i = 0 0.681818 0 0 0 0 0 0 0 0

i = 1 − 0.557447 1.36364 0 0 0 0 0 0 0

i = 2
− 0.119176 1.13889 2.78409 0 1.16135 − 2.84091 0 0 0

0.369655 0.949499 2.67045 0 1.06844 − 2.61364 0 0 0

i = 3
− 1.61506 − 5.30928 11.9551 5.72285 2.28504 − 9.12039 − 11.6004 − 2.41948 5.91856

1.3858 − 6.67953 10.1636 5.19255 − 0.0698462 −6.9352 − 10.2367 − 2.04785 5.00947

Table 14. Numerical values for the coefficients of the standard fixed-order expansion of the ratios

of vector moments. We display results for the vector current with nf = 4, (5) for the upper (lower)

number.

[RP ]0,0n,i [RP ]1,0n,i [RP ]2,0n,i [RP ]3,0n,i [RP ]0,1n,i [RP ]1,1n,i [RP ]2,1n,i [RP ]0,2n,i [RP ]1,2n,i

n = 1

i = 0 0.571429 0 0 0 0 0 0 0 0

i = 1 0.0603175 1.14286 0 0 0 0 0 0 0

i = 2 3.262 2.00952 2.33333 0 − 0.125661 − 2.38095 0 0 0

i = 3 6.32118 6.21577 12.1735 4.7963 − 13.7852 − 12.0397 − 9.72222 0.261795 4.96032

n = 2

i = 0 0.666667 0 0 0 0 0 0 0 0

i = 1 − 0.311887 1.33333 0 0 0 0 0 0 0

i = 2 2.1179 1.57993 2.72222 0 0.649765 − 2.77778 0 0 0

i = 3 9.55945 1.01989 12.6416 5.59568 − 7.82395 − 10.8608 − 11.3426 − 1.35368 5.78704

n = 3

i = 0 0.727273 0 0 0 0 0 0 0 0

i = 1 − 0.57611 1.45455 0 0 0 0 0 0 0

i = 2 1.09403 1.25182 2.9697 0 1.20023 − 3.0303 0 0 0

i = 3 9.74702 − 3.08269 12.8277 6.10438 − 2.71009 − 9.88258 − 12.3737 − 2.50048 6.31313

Table 15. Numerical values for the coefficients of the linearized expansion of the ratios of pseu-

doscalar moments with nf = 4.
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[R̄V ]0,0n,i [R̄V ]1,0n,i [R̄V ]2,0n,i [R̄V ]3,0n,i [R̄V ]0,1n,i [R̄V ]1,1n,i [R̄V ]2,1n,i [R̄V ]0,2n,i [R̄V ]1,2n,i

n = 1

i = 0 0.654654 0 0 0 0 0 0 0 0

i = 1 0.0105068 0.654654 0 0 0 0 0 0 0

i = 2
1.19701 1.0925 1.00926 0 − 0.0218891 − 1.36386 0 0 0

1.31951 1.00158 0.954703 0 − 0.020138 − 1.25475 0 0 0

i = 3
− 3.68165 0.823415 5.76639 1.73817 − 5.02124 − 6.65245 − 4.20524 0.0456024 2.84138

− 2.72379 − 0.349776 4.95174 1.53813 − 5.0835 − 5.42147 − 3.6597 0.0385979 2.40494

n = 2

i = 0 0.7698 0 0 0 0 0 0 0 0

i = 1 − 0.196245 0.7698 0 0 0 0 0 0 0

i = 2
0.441611 1.07606 1.18678 0 0.408843 − 1.60375 0 0 0

0.667925 0.969147 1.12263 0 0.376136 − 1.47545 0 0 0

i = 3
− 0.92068 − 1.21163 6.45905 2.04389 − 1.21043 − 6.95338 − 4.9449 − 0.851757 3.34115

0.433093 − 2.4104 5.5185 1.80867 − 2.08612 − 5.57542 − 4.3034 − 0.720927 2.82795

n = 3

i = 0 0.825723 0 0 0 0 0 0 0 0

i = 1 − 0.337551 0.825723 0 0 0 0 0 0 0

i = 2
− 0.141159 1.02719 1.27299 0 0.703232 − 1.72026 0 0 0

0.154843 0.912501 1.20418 0 0.646973 − 1.58264 0 0 0

i = 3
− 1.03567 −2.65386 6.7324 2.19237 1.67114 − 6.92913 − 5.30412 − 1.46507 3.58387

0.902443 −3.82647 5.73411 1.94007 0.222185 − 5.49342 − 4.61602 − 1.24003 3.03338

Table 16. Numerical values for the coefficients of the linearized expansion of the ratios of vector

moments. We display results for the vector current with nf = 4, (5) for the upper (lower) number.

[R̄P ]0,0n,i [R̄P ]1,0n,i [R̄P ]2,0n,i [R̄P ]3,0n,i [R̄P ]0,1n,i [R̄P ]1,1n,i [R̄P ]2,1n,i [R̄P ]0,2n,i [R̄P ]1,2n,i

n = 1

i = 0 0.7559290 0 0 0 0 0 0 0 0

i = 1 0.0398962 0.755929 0 0 0 0 0 0 0

i = 2 2.15656 1.28928 1.16539 0 − 0.0831172 − 1.57485 0 0 0

i = 3 4.06725 1.88674 6.70126 2.00706 − 9.11366 − 7.79727 − 4.85579 0.173161 3.28094

n = 2

i = 0 0.816497 0 0 0 0 0 0 0 0

i = 1 − 0.190991 0.816497 0 0 0 0 0 0 0

i = 2 1.27461 1.1585 1.25877 0 0.397898 − 1.70103 0 0 0

i = 3 6.15209 − 0.379067 6.87731 2.16787 − 4.6981 − 7.44666 − 5.24486 − 0.828954 3.54382

n = 3

i = 0 0.852803 0 0 0 0 0 0 0 0

i = 1 − 0.337775 0.852803 0 0 0 0 0 0 0

i = 2 0.574538 1.07172 1.31474 0 0.703697 − 1.77667 0 0 0

i = 3 5.94225 − 1.95744 6.96991 2.26427 − 1.31021 − 7.20157 − 5.47807 − 1.46604 3.7014

Table 17. Numerical values for the coefficients of the linearized expansion of the ratios of pseu-

doscalar moments with nf = 4.
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[R̃V ]0,0n,i [R̃V ]1,0n,i [R̃V ]2,0n,i [R̃V ]3,0n,i [R̃V ]0,1n,i [R̃V ]1,1n,i [R̃V ]2,1n,i [R̃V ]0,2n,i [R̃V ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.0160494 1 0 0 0 0 0 0 0

i = 2
1.86056 3.66883 1.54167 0 − 0.0334362 − 2.08333 0 0 0

2.04768 3.52994 1.45833 0 − 0.0307613 − 1.91667 0 0 0

i = 3
− 1.85046 11.8662 12.8916 2.65509 −7.80382 −18.4951 −6.42361 0.0696588 4.34028

− 0.0174324 9.52394 11.4806 2.34954 − 7.88822 − 15.9481 − 5.59028 0.0589592 3.67361

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.254929 1 0 0 0 0 0 0 0

i = 2
0.0638103 3.39785 1.54167 0 0.531103 − 2.08333 0 0 0

0.357801 3.25896 1.45833 0 0.488615 − 1.91667 0 0 0

i = 3
− 2.11686 9.07965 12.4739 2.65509 0.552022 − 17.366 − 6.42361 − 1.10646 4.34028

0.322201 6.88187 11.0854 2.34954 − 0.755491 − 14.9093 − 5.59028 − 0.936512 3.67361

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.408795 1 0 0 0 0 0 0 0

i = 2
− 0.988542 3.24398 1.54167 0 0.851656 − 2.08333 0 0 0

− 0.630066 3.10509 1.45833 0 0.783523 − 1.91667 0 0 0

i = 3
− 5.11183 7.46526 12.2367 2.65509 5.43048 − 16.7249 − 6.42361 − 1.77428 4.34028

− 1.87845 5.35334 10.861 2.34954 3.40317 − 14.3195 − 5.59028 − 1.50175 3.67361

Table 18. Numerical values for the coefficients of the iterative linearized expansion of the ratios

of vector moments. We display results for the vector current with nf = 4, (5) for the upper (lower)

number.

[R̃P ]0,0n,i [R̃P ]1,0n,i [R̃P ]2,0n,i [R̃P ]3,0n,i [R̃P ]0,1n,i [R̃P ]1,1n,i [R̃P ]2,1n,i [R̃P ]0,2n,i [R̃P ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.0527778 1 0 0 0 0 0 0 0

i = 2 2.95841 3.70556 1.54167 0 − 0.109954 − 2.08333 0 0 0

i = 3 11.4629 13.0982 12.9483 2.65509 − 12.4961 − 18.6481 − 6.42361 0.22907 4.34028

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.233915 1 0 0 0 0 0 0 0

i = 2 1.09324 3.41886 1.54167 0 0.487324 − 2.08333 0 0 0

i = 3 8.77473 10.1858 12.5063 2.65509 − 3.80468 − 17.4536 − 6.42361 − 1.01526 4.34028

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.3960760 1 0 0 0 0 0 0 0

i = 2 − 0.118446 3.2567 1.54167 0 0.825158 − 2.08333 0 0 0

i = 3 4.92499 8.38182 12.2563 2.65509 1.76427 − 16.7779 − 6.42361 − 1.71908 4.34028

Table 19. Numerical values for the coefficients of the iterative linearized expansion of the ratios

of pseudoscalar moments with nf = 4.
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