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Abstract: Testing the idea of naturalness is and will continue to be one of the most

important goals of high energy physics experiments. It will play a central role in the

physics program of future colliders. In this paper, we present projections of the reach

of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the

observables which give the strongest reach, the electroweak precision observables (for left-

handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed

stops). There is a “blind spot” when the stop mixing parameter Xt is approximately

equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy

Higgs bosons from tree-level mixing effects that modify the hbb̄ coupling together with

bounds from b → sγ play a complementary role in probing the blind spot region. For

specific natural SUSY scenarios such as folded SUSY in which the top partners do not

carry Standard Model color charges, electroweak precision observables could be the most

sensitive probe. In all the scenarios discussed in this paper, the combined set of precision

measurements will probe down to a few percent in fine-tuning.
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1 Introduction

Naturalness is an interesting theoretical idea which has motivated our expectation for new

physics beyond the Standard Model. At the same time, as a potential candidate framework

for new physics, supersymmetry has many appealing features. The convergence of these

two ideas has made natural SUSY one of the prime targets of the new physics searches at

the LHC. The most robust prediction of natural SUSY is the presence of light stops [1–4].

They have not been discovered yet at the LHC Run 1. Such a pursuit will continue to

be a central theme of the physics program of Run 2. Due to its importance, we will not
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give up even if HL-LHC turns up empty. Therefore, it will be a top target for the future

colliders as well.1

The null result for the stop searches could be due to two types of reasons. The stop

could be heavier than the kinematical reach of the collider. In this case, the reach of

future lepton colliders is limited by the relatively low center of mass energy. Only CLIC

can in principle have a reach comparable to that of the HL-LHC. The high energy proton

colliders, such as the hadronic mode of the Future Circular Collider (FCC-hh) and the

Super proton-proton Collider (SppC), have better prospects. On the other hand, stops can

also be hidden due to some “non-standard” decay modes and/or kinematics of the decay

products [5–16]. In this case, precision measurements at lepton colliders could provide

complementary probes independent of the details of stop decays. In this paper, we focus

on the potential of future lepton colliders in covering the gaps of searches at high energy

proton colliders and raising the “bottom line” of the test of naturalness.

There are two classes of precision observables at future e+e− colliders which are sen-

sitive to the presence of light stops. First, due to their significant coupling to the Higgs

boson, the stops can induce considerable shifts in some Higgs couplings at the one-loop

level. Among them, we observe that the constraints from hγγ and hgg measurements

are stronger than that from the Higgs boson wave-function renormalization in most cases.

The other class is the electroweak precision test (EWPT) observables. Among them, the

T -parameter is the most sensitive observable to the left-handed stops. A main conclusion

of this paper is that future lepton colliders can push the test of naturalness to the level of

a few percent by a combination of these observables.

There is also an interesting “blind spot” in the stop parameter space in which the

coupling between the lightest stop and the light Higgs boson vanishes. In this region, the

observables discussed above are much less sensitive. We note that in this case, the level

of fine-tuning is controlled by the mass of the heavier stop. Hence, hiding a light stop

does not lead to a much more natural theory. In addition, the light stop is not completely

hidden from the full suite of precision measurements. In particular, the measurement of

b→ sγ could be useful. The stop contribution to this process also depends on tan β and µ,

parameters in the Higgs sector. The implication of this measurement for naturalness also

depends on the value of mA [17]. Tweaking these parameters can loosen the limits on the

stop. Yet some of these parameters are also constrained by the hbb̄ coupling measurement.

A combination of these two probes can push the level of the test of naturalness in the blind

spot region to the several percent level as well.

The study of the physics potential of future e+e− colliders has a long history [18–21].

An early study of the GigaZ prospects for constraining stops, albeit only for restricted

subsets of the MSSM parameter space, appeared in ref. [22]. We will mostly rely on more

recent studies for the ILC and FCC-ee [23–27].

Due to the null result in the stop searches, in recent years, alternative proposals in

which top partners carry different gauge quantum numbers than the top have attracted

1In this paper, we will not distinguish between the naturalness and the level of (absence of) fine-tuning

in a theory, and we will use these two terms interchangeably.
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renewed attention. To this end, we have generalized our study to the “folded SUSY”

scenario [28]. Folded stops have Standard Model electroweak quantum numbers but no

charge under SU(3)c. We observe that the T -parameter measurement could be the most

sensitive probe of this scenario, except for the blind spot region, which is difficult to probe

with any indirect observable.

Among the proposed lepton colliders FCC-ee, with its higher projected integrated

luminosity, provides the best limit in Higgs coupling measurements. At the same time,

the limits from CEPC are similar to those obtained from the ILC 1TeV scenario. With

potential improvements suggested in [29], the CEPC could be comparable to FCC-ee in

the reach of EWPT.

In section 2, we discuss the parametric size of the leading loop effects to the electroweak

and Higgs observables in natural SUSY and demonstrate how they arise as effective oper-

ators when stops and higgsinos are integrated out. In section 3, we compute and present

oblique EWPT constraints from future electron colliders on the stop sector. In section 4, we

compute and present constraints on the stop sector from the non-oblique observable Rb at

future electron colliders. In section 5, we compute and present Higgs coupling constraints

on the stop sector from future electron colliders. In section 6, we discuss the physical

origin of the blind spot region in the stop parameter space at future lepton colliders. In

section 7, we discuss probing the blind spot region by a combination of b → sγ and hbb̄

coupling measurements. Then we present the key projections of this paper in figure 8 to

show that the combined set of precision measurements will probe down to a few percent

in fine-tuning. In the end, we comment that EWPT could be the most sensitive probe in

a large bulk of the folded stop parameter space.

2 Loop effects of natural SUSY

We would like to understand how e+e− colliders can constrain natural supersymmetric

scenarios. Requiring a low degree of fine tuning imposes upper bounds on the masses

of higgsinos, stops, and gluinos due to their respective tree-level, one-loop, and two-loop

effects on electroweak symmetry breaking [1–4, 30, 31]. Because gluinos carry only SU(3)c
quantum numbers, their effect on lepton collider processes is generally at a higher loop

order than the effect of stops or higgsinos, which carry electroweak quantum numbers.

Thus, we focus on understanding the dominant corrections to the Standard Model effective

Lagrangian from integrating out stops and higgsinos. We assume that R-parity violation

is small, in which case the leading corrections are always at one loop rather than tree-level.

Furthermore, the largest contributions are generally those where the coupling appearing in

the loop diagrams is the top Yukawa coupling yt ≈ 1. These include the F -term potential

terms
∣∣∣ytHu · Q̃3

∣∣∣2 + |ytHuũ
c
3|

2.

In this section we will discuss the parametric size of the leading loop effects and demon-

strate how they arise as effective operators when stops and higgsinos are integrated out.

The discussions here help to understand the qualitative features of the results presented in

later sections. In obtaining our numerical results, we will include the full loop functions as

computed in the older literature, which are valid for arbitrary masses and mixings.
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2.1 Parametrization of natural SUSY

The stop mass-squared matrix, in the gauge eigenstate basis (t̃L, t̃R), is given by

M2
t̃

=

(
m2
Q̃3

+m2
t + ∆ũL mtXt

mtX
∗
t m2

ũ3
+m2

t + ∆ũR

)
,

where m2
Q̃3
,m2

ũ3
are the soft mass squared of left- and right- handed stops respectively

and the stop mixing term Xt = At − µ/ tanβ. For simplicity, we will neglect possi-

ble phases in the stop mass matrix. The D-term quartic interactions give terms ∆ũR =(
2
3 sin2 θW

)
cos(2β)m2

Z and ∆ũL =
(

1
2 −

2
3 sin2 θW

)
cos(2β)m2

Z which are � m2
t .

The stop mixing angle is related to the physical stop masses and mixing as

sin(2θt̃) =
2mtXt

m2
t̃2
−m2

t̃1

. (2.1)

We will choose θt̃ ⊂ (−π/4, π/4) so the mass eigenstate with eigenvalue mt̃1
is mostly left-

handed and the other one with mt̃2
is mostly right-handed. Not all possible values of m2

t̃2
,

m2
t̃1

, and Xt are allowed. In particular, for non-zero Xt, the region around |m2
t̃1
−m2

t̃2
| ∼ 0

may not be obtainable from the diagonalization of a Hermitian stop mass matrix [32].

The sbottom sector has a similar mass matrix with mt replaced by mb, md̃3
replacing

mũ3 , and the appropriately modified D-terms. Generally we can neglect mixing in the

sbottom sector because mb � mt. The mass of the left-handed sbottom m2
b̃1

could be

written in terms of the stop physical masses and mixing angle as

m2
b̃1

= cos2 θt̃m
2
t̃1

+ sin2 θt̃m
2
t̃2
−m2

t −m2
W cos(2β). (2.2)

In the higgsino sector, there are two neutral Majorana fermions and one charged Dirac

fermion, with masses approximately equal to µ. The splittings originate from dimension

five operators when the bino and wino are integrated out, and are of order m2
Z/M1,2. We

will ignore these splittings and treat all higgsino masses as equal to µ for the purpose of

calculating loop effects.

2.2 Electroweak precision: oblique corrections

The familiar S and T oblique parameters [33, 34] (see also [35–37]) correspond, in an

effective operator language (reviewed in ref. [38, 39]), to adding to the Lagrangian

Loblique = S

(
α

4 sin θW cos θW v2

)
h†W iµνσihBµν − T

(
2α

v2

) ∣∣∣h†Dµh
∣∣∣2 . (2.3)

Here h is the Standard Model Higgs doublet and v ≈ 246 GeV; in the MSSM context it

may be thought of as the doublet that remains after integrating out the linear combination

of Hu and Hd that does not obtain a VEV. The often-discussed U parameter corresponds

to a dimension-8 operator,
(
h†σihW i

µν

)2
, and we can safely neglect it. In equating S and

T with coefficients in Loblique, we must first rewrite the Lagrangian (using equations of

motion and integration by parts) in terms of a minimal basis of operators [40]. Other

– 4 –



J
H
E
P
0
8
(
2
0
1
5
)
1
5
2

Figure 1. Loop diagrams contributing to the T parameter operator
(
h†Dµh

)2
when the left-handed

stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc3)
†

are integrated out.

operators like i∂νBµνh
†
↔
Dµh will contribute to the S parameter if we leave the result in

terms of an overcomplete basis. We will see some examples below in which a straightforward

diagrammatic calculation leads to operators not present in the minimal basis.

Integrating out any SU(2)L multiplet containing states that are split by electroweak

symmetry breaking — for instance, the left-handed doublet of stops and sbottoms — will

produce a contribution to S. The masses must additionally be split by custodial symmetry-

violating effects to contribute to T . In the case of the stop and sbottom sector we have both,

and T is numerically dominant [41]. The diagrams leading to a T -parameter are shown

in figure 1. There are terms proportional to y4
t , to y2

tX
2
t , and to X4

t . These diagrams

are very familiar from the loop corrections to the Higgs quartic coupling that can lift the

MSSM Higgs mass above the Z-mass [42–45]. The only difference for T is that we extract

momentum-dependent terms to obtain the dimension-six operator. The result is:

T ≈ m4
t

16π sin2 θWm2
Wm

2
Q̃3

+O

(
m2
tX

2
t

4πm2
Q̃3
m2
ũ3

)
. (2.4)

The diagrams generating the S-parameter are shown in figure 2. Notice that in order

for the first diagram to contribute, it is important that the SU(2)L structure of the coupling

is
(
h · Q̃3

)(
h† · Q̃†3

)
rather than (h†h)(Q̃†3Q̃3), as the latter would lead to a zero SU(2)L

trace around the loop. As a result, the F -term potential contributes ∝ y2
t and the SU(2)L

D-term potential contributes ∝ g2, but there is no U(1)Y D-term contribution ∝ g′2. The

leading correction is

S ≈ − 1

6π

m2
t

m2
Q̃3

+O

(
m2
tX

2
t

4πm2
Q̃3
m2
ũ3

)
. (2.5)

The Xt dependent part of the correction depends on the subtlety in the use of our effective

oblique Lagrangian eq. (2.3) that we mentioned above: the strict relation between S and

the coefficient of h†W iµνσihBµν applies only if we first rewrite all operators in a mini-

mal basis [39, 46]. The third loop diagram of figure 2 generates different operators like

i∂νBµνh
†
↔
Dµh which may be rewritten using integration by parts and equations of motion

and also contribute to S. Note that a similar diagram with a bubble topology connecting a

– 5 –
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W B

h h†

Q̃3

y2
t

+ W B

h

h†

Q̃3 t̃R

Q̃3 t̃R

Xt

Xt

, B, W

Q̃3

Q̃3

t̃R

h†

h

Xt

Xt

Figure 2. Loop diagrams contributing to the S parameter. The two diagrams at left generate the

usual operator h†W iµνσihBµν when the left-handed stop/sbottom doublet Q̃3 and the right-handed

stop t̃R = (ũc3)
†

are integrated out. The diagram at right generates the operators i∂νBµνh
†
↔
Dµh

and iDνW i
µνh
†σi

↔
Dµh, which also contribute to S after being rewritten in terms of the minimal

basis of dimension-six operators.

gauge boson on one side and two Higgs bosons on the other (which can be obtained by re-

moving one of the vector bosons from the left most diagram in figure 2) cannot be sensitive

to the difference in momenta of the Higgs bosons, and so never generates the operators in

question. The fact that integrating out heavy particles often generates operators that are

not present in the minimal basis was also recently emphasized in ref. [47, 48].

Notice that the S parameter contribution from loops of stops and sbottoms is small

and, for small Xt, negative. The T parameter contribution is numerically somewhat larger

and positive. In both cases, the dominant contribution is due to the left-handed stops

and sbottoms, with their right-handed counterparts entering through mixing effects. As

a result, we expect that precision measurements of the T parameter can set interesting

constraints on left-handed stops. (For a recent study of existing constraints, see ref. [49].)

2.3 Production of b and t quarks

Integrating out loops of stops and higgsinos can correct the production of bottom and top

quarks at e+e− colliders. In particular, in the minimal basis of dimension-six operators

these corrections show up in the terms [40]

chq;1ih
† ↔DµhQ

†
3σ

µQ3+ chq;3ih
†σi

↔
DµhQ

†
3σ

iσµQ3+ chuih
† ↔Dµhu

c†
3 σ

µuc3+ chdih
† ↔Dµhd

c†
3 σ

µdc3+h.c.

(2.6)

Again, however, calculating loop diagrams might generate other operators not present in

eq. (2.6), in which case we should use the equations of motion and integration by parts to

rewrite the operators in a minimal basis.

The largest effects are associated with the top quark Yukawa coupling ytu
c
3Hu · Q3.

As a result, we should look for corrections associated with the production of left-handed b

quarks, and either left- or right-handed top quarks. Let us begin by discussing the b-quark

coupling, which is constrained for instance by measurements of

Rb ≡
Γ(Z → bb)

Γ(Z → hadrons)
. (2.7)

– 6 –
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Z

bL

bL

t̃R

H̃−u

H̃+
u

Figure 3. Loop diagram correcting Rb. The operators that are generated are W i
µνQ

†
3σ
iσµiDνQ3

and BµνQ
†
3σ
µiDνQ3.

A diagram generating a correction to the Z → bb process is shown in figure 3. This

cannot arise from an operator in eq. (2.6), because there is nowhere in the diagram that

we could place insertions of h and h†. A more complete list of operators [50] includes the

additional terms

W i
µνQ

†
3σ

iσµiDνQ3, BµνQ
†
3σ

µiDνQ3, (2.8)

which also couple the left-handed bottom quark to the Z boson. These operators, missing

in the minimal basis, are the ones that are generated by integrating out higgsinos and

right-handed stops. (Note the similarity in form of both the diagram and the corresponding

operator to the right-hand diagram of figure 2.) The full dependence of Rb on dimension-six

operators is worked out in ref. [51].

In fact, we can understand the expected size of the resulting effect in somewhat more

detail by integrating out first the right-handed stops and subsequently the higgsinos. After

the first step we have a four-fermion operator:

H̃u bL

t̃R

H̃u bL

⇒ y2t
m

t̃2
R

(
H̃u ·Q3

)(
Q†3 · H̃†u

)
.

(2.9)

This operator then mixes with the Zbb coupling as we integrate out the higgsinos:

Z

H̃u
bL

bL

⇒ y2t
m

t̃2
R

W i
µνQ

†
3σ

iσµiDνQ3 log
mt̃R

µ
.

(2.10)

The structure of derivatives in this operator produces a factor of m2
Z in the formula for

Rb, eq. (A.6). The reason for integrating the particles out in two steps is to highlight

that there is a potentially large logarithm of the ratio of stop and higgsino masses. In

a careful effective field theory treatment, this log could be resummed by computing the

renormalization group evolution that mixes the four-fermion operator with the operator

modifying the Z coupling through their matrix of anomalous dimensions.

– 7 –
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Once we include mixing of the left- and right-handed stops, there are additional terms

that directly generate the operators in eq. (2.6). We can start by integrating out the

left-handed stops to generate a correction to the coupling of right-handed stops to the

Z boson:

Z

h

h

t̃L

t̃L

t̃R

t̃R

⇒
y2tX

2
t

(
h†i
←→
D µh

)(
t̃†Ri
←→
D µt̃R

)
m4
t̃L

.

(2.11)

This new operator then mixes at one loop into the operator coupling Z bosons to the

left-handed b quark:

Z

h

h

H̃u

bL

bL

⇒
y4tX

2
t

(
h†i
←→
D µh

)
(Q†3σµQ3)

m4
t̃L

log
mt̃L

max(mt̃R
,µ) .

(2.12)

These structures that we have deduced on effective field theory grounds match terms that

can be found by expanding the full loop formulas in refs. [52, 53].

A future e+e− collider running above the tt threshold can also measure corrections to

the top quark’s couplings to Z bosons and photons to about 1% accuracy [54, 55]. The

ZtLtL vertex is modified by the same operator as Rb, and a correction to the ZtRtR vertex

can also arise from integrating out left-handed stops. We expect that either Rb or the T

parameter will provide stronger constraints in any region of parameter space that modifies

the tt couplings, though depending on the details of a future collider and the luminosity it

accumulates for top quark production this may need to be revisited in the future.

2.4 Higgs couplings to photons and gluons

The corrections to the Higgs couplings induced by loops of stops and sbottoms have been

the subject of intense recent interest [32, 49, 56–59]. As is well known, stop loops could

modify the Higgs coupling to gluons, via diagrams like those of figure 4. The leading order

contribution could be computed easily via the low energy Higgs theorem [60, 61]

rt̃G ≡
ct̃hgg

cSM
hgg

≈ 1

4

(
m2
t

m2
t̃1

+
m2
t

m2
t̃2

− m2
tX

2
t

m2
t̃1
m2
t̃2

)
, stop contribution to hgg coupling (2.13)

where we neglect D-terms. The low-energy theorem essentially upgrades the log(Mthreshold)

terms that appear when integrating out a heavy mass threshold to field-dependent terms,

viewing Mthreshold as a function of a variable higgs VEV. The resulting expression is valid for

mt̃1,2 ∼> mh/2, which we will assume is always true. A loop of light stops will also generate

– 8 –
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g g

h h†

Q̃3, t̃R

y2
t

+ g g

h

h†

Q̃3 t̃R

Q̃3 t̃R

Xt

Xt

Figure 4. Loop diagrams contributing to the correction to the Higgs coupling to gluons, via the

operator h†hGaµνG
aµν .

a smaller contribution to the Higgs diphoton coupling, which is anti-correlated to rt̃G

rt̃γ ≡
ct̃hγγ

cSM
hγγ

=
Aγ
t̃(

AγW +Aγt
)SM

≈ −0.28rt̃G, (2.14)

using AγW ≈ 8.33 and Aγt ≈ −1.84, the amplitudes of h → γγ in the SM, valid for

mh = 125 GeV. One could see that the more natural the stop parameter space is, the

larger the modification is [58]. Except for the special case of colorless stop, the strongest

limit on the stop always comes from the measurement of hgg coupling.

Corrections to Γ(h → Zγ) play a similar role as those for Γ(h → γγ), but we find

that they are numerically less important. Similarly, corrections to the Higgs coupling to Z

bosons play a subdominant role because they compete with the large tree-level coupling.

2.5 Wavefunction renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will

induce a wavefunction renormalization of the Higgs boson, arising from the dimension-six

kinetic term ∂µ |h|2 ∂µ |h|2 (also see [63, 64]). This is an interesting observation, because

it opens up the possibility of probing naturalness even in scenarios where the quadratic

divergence in the Higgs mass is canceled by particles without Standard Model quantum

numbers, which are otherwise hard to probe. We have generalized the calculation of this

correction from ref. [63] to allow for mixing between the two stops. We write the general

result in terms of the couplings of stop mass eigenstates to the Higgs boson, ghij ≡ ght̃†i t̃j :

gh11 = y2
t v −

ytXt√
2

sin(2θt̃) = y2
t v

(
1− X2

t

m2
t̃2
−m2

t̃1

)
,

gh22 = y2
t v +

ytXt√
2

sin(2θt̃) = y2
t v

(
1 +

X2
t

m2
t̃2
−m2

t̃1

)
,

gh12 = gh21 =
ytXt√

2
cos(2θt̃). (2.15)

– 9 –
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In terms of these couplings, the fractional correction to the Higgsstrahlung cross section is

given by

δσZh =

2∑
i=1

2∑
j=1

Ncg
2
hij

16π2
I
(
m2
h;m2

t̃i
,m2

t̃j

)
, (2.16)

where the loop function is

I
(
p2;m2

1,m
2
2

)
=

∫ 1

0
dx

x(1− x)

x(1− x)p2 − xm2
1 − (1− x)m2

2

. (2.17)

In the special case of equal masses, this is

I
(
p2;m2,m2

)
=

1

p2

1−
4m2 arctan

(√
p2

4m2−p2

)
√
p2(4m2 − p2)

 , (2.18)

in agreement with the result of ref. [63]. For us the more relevant limit is the case m2
h �

m2
t̃1
,m2

t̃2
, in which case the loop function reduces to:

I(0;m2
t̃1
,m2

t̃2
) =

m2
t̃1
m2
t̃2

log(m2
t̃1
/m2

t̃2
)(

m2
t̃1
−m2

t̃2

)3 −
m2
t̃1

+m2
t̃2

2
(
m2
t̃1
−m2

t̃2

)2 → −
1

6m2
if m2

t̃1
= m2

t̃1
= m2.

(2.19)

This scaling is as expected from the interpretation of the wavefunction renormalization as

the coefficient of the dimension-six operator ∂µ |h|2 ∂µ |h|2.

The approximate FCC-ee measurement limit, δσZh ≈ 0.2%, is reached when Xt = 0

for equal stop masses of 440 GeV. However, as computed in detail recently in ref. [65],

several different operators contribute to the Higgsstrahlung cross section when stops are

integrated out. The wavefunction renormalization is one contribution, but others arise

from operators like h†hW i
µνW

iµν that directly alter the Higgs coupling to the Z boson. As

shown in figure 3 of their paper, the effect of including these additional operators on the

Higgsstrahlung cross section is roughly a factor of 2 larger than including the wavefunction

correction alone (with some dependence on the stop masses — light left-handed stops play

a larger role than light right-handed stops). As a result, the bounds can be slightly larger

than those estimated from wavefunction renormalization alone. Nonetheless, the future

e+e− collider reach from measurements of Γ(h→ gg), as estimated in refs. [29, 32, 47, 65]

and in this paper below, is more constraining than that from Higgsstrahlung while the

measurement of Γ(h→ γγ) (combined with the HL-LHC result) is comparable to or a bit

weaker than those from Higgsstrahlung.

2.6 Other corrections to precision observables

Loops of stops and higgsinos are likely to give the dominant correction to the b→ sγ ampli-

tude in natural SUSY theories [17, 49, 58, 66–69]. Although this is an interesting bound on
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natural SUSY parameter space, it depends on a combination Atµ tanβ/m4
t̃
, and so results

in a weaker constraint on At when tan β is small. This has interesting implications for the

heavy Higgs bosons of the 2HDM, H0, A0, and H±, which should not be too heavy [17, 70]

and may have interesting effects of their own on precision observables [58, 71]. As we will

discuss in section 7.1, it could be the main sensitive probe to the “blind spot” region.

Charginos and neutralinos have relatively small effects on the observables we have

mentioned so far. This is largely because they have dominantly vectorlike masses and

sensitivity to SU(2)L breaking through the Higgs is a small effect. On the other hand,

integrating out higgsinos or winos will always generate the triple gauge coupling operator

cWWW gεijkW
i
µνW

jν
ρ W kρµ. Unfortunately, the coefficient generated by integrating out an

SU(2)L multiplet is small [72]:

cWWW =
g2

2880π2

∑
rep R, mass M

(−1)F
T (R)

M2
, (2.20)

where T (R) is the Dynkin index of the representation and the sum is over Weyl fermions

for which F = 1 and complex scalars for which F = 0. (That the effect of a complex scalar

and that of a Weyl fermion cancel for equal masses is a result of a supersymmetric Ward

identity [73].) Expected bounds from the ILC are expressed in terms of dimensionless coef-

ficients λγ and λZ , which are both equal to 6m2
W cWWW . The ILC can bound the coefficient

at 1σ to be |λγ,Z | ∼< 6 × 10−4 with 500 fb−1 at
√
s = 500 TeV or half that with 1 ab−1 at√

s = 800 GeV [23, 74]. Even for the bound assuming higher energy and luminosity, this

does not probe wino or higgsino (or left-handed stop) masses above 100 GeV.

Similarly, any particles with SU(2)L quantum numbers contribute above threshold to

the running of gauge couplings. At future very high energy proton-proton colliders this

might be detected with precision Drell-Yan measurements [75]. At an e+e− collider it

would be difficult, but if the collider attains high luminosities at energies near 1 TeV it

may be possible to probe running. There is also a “below-threshold running effect” arising

from the operator cJJD
µW i

µνDλW
iλν , which has coefficient [72]

cJJ = − g2

960π2

∑
rep R, mass M

aF
T (R)

M2
, (2.21)

where aF = 4 for Weyl fermions and 1 for complex scalars. By the equation of motion,

DµW
iµν = −gJ iν , where J iν is the SU(2)L current, so this operator is a current-current

interaction that may be thought of as a power-law (p2/M2) running of the gauge coupling

below the scale M . In the usual QED calculation of vacuum polarization, one obtains an

expression like
∫ 1

0 dx x(1− x) log(M2 − p2x(1− x)) and expands for −p2 �M2 to obtain

logarithmic running. This operator is simply the corresponding result if we expand for

M2 � p2. Again, it will be difficult to obtain interesting constraints from this operator

simply because the number in the denominator is so large.

2.7 Comments on the use of effective field theory

In the remainder of the paper we will use formulas for S, T , and Rb originating in

refs. [41, 52] and presented in appendix A. These include complete loop functions based
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on the original Peskin-Takeuchi definitions of S and T in terms of gauge boson vacuum

polarizations, allowing for arbitrary stop-sector mixing. In particular, nontrivial functions

of ratios like mtXt/m
2
ũ3

, if expanded in powers of the Higgs VEV, may effectively come

from operators of dimension higher than 6 in an EFT treatment. In this sense, the full

loop functions include effects of higher order than the operator analysis we have sketched

above. On the other hand, as we have discussed in the case of Rb, if we integrate out

multiple particles — say, first right-handed stops and then higgsinos — these loop func-

tions may contain logarithms like log(mt̃R
/µ) that could be resummed. In this case a

careful EFT operator analysis would first obtain a Wilson coefficient for an operator like(
H̃u ·Q3

)(
Q†3 · H̃

†
u

)
and then use the matrix of anomalous dimensions in an EFT includ-

ing the Standard Model fields and higgsinos to compute how this operator mixes through

RG evolution into the operator W i
µνQ

†
3σ

iσµiDνQ3 that modifies the ZbLbL coupling mea-

sured at low energy. The RG calculation would resum logarithms that are not resummed

in the classic results of refs. [41, 52].

For the purposes of setting limits, the detailed resummation probably produces only

mild changes to the result, and so for now we use the loop formulas and forego the RG

treatment. On the other hand, if one observes a deviation from SM expectations at a future

collider, the RG calculation should be done to assess what parameters are preferred by the

observations.

3 Oblique corrections from stop sector

3.1 Global fit of electroweak observables with oblique corrections

In our previous paper [29], we performed a simplified global fit of electroweak observables

with oblique corrections for current and future electroweak precision tests. The simplified

fit includes five Standard Model observables that are free to be varied in the fit: the top

quark mass mt, the Z boson mass mZ , the Higgs boson mass mh, the strong coupling

constant at the Z pole αs(M
2
Z) and the hadronic contribution to the running of the fine-

structure constant α: ∆α
(5)
had(M2

Z). It also includes three additional observables, the W

boson mass mW , the weak mixing angle sin2 θ`eff and the total Z boson decay width ΓZ ,

which are determined by the values of the five free observables in the Standard Model. The

effects of the new physics are parametrized by the oblique parameters S and T [33, 34]. We

constructed a modified χ2 function taking into account of the theory uncertainties with a

flat prior and then performed profile likelihood fits to carve out the allowed (S, T ) regions

for different experiments. We will refer the readers to [29] for details of the fit and the

results. A quick summary of the results is that the current 1σ allowed range of S and T

is about 0.1 which will be reduced to . 0.03 at ILC and CEPC baseline plan, . 0.01 at

FCC-ee and CEPC with potential improvements. The possible improvements of the CEPC

electroweak program are described in [29].

3.2 Constraints on the stop sector

Now we turn to study the sensitivities of future EWPT to the stop sector. As we discussed

in section 2.2, the mass splitting between left-handed stops and sbottoms violates custodial
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SU(2) and will generate a correction to the T parameter, whereas the S parameter cor-

rection is relatively small [41]. Detailed formulas are in appendix A. The mixing between

left- and right-handed stops would introduce some cancelation between various terms in

eq. (A.4). It has been demonstrated in ref. [49] that when the ratio between either the two

stop or stop/sbottom masses is smaller than 3, the stop contribution to the T parameter

is minimized at about

sin(2θt̃) ≈
2mt

mt̃2
−mt̃1

, or equivalently, Xt ≈ mt̃2
+mt̃1

. (3.1)

The S − T constraints from the analysis in the previous section could be translated

into constraints on the parameters in the stop sector, which are shown in the left column

of figure 5. When there is no mixing between stops, i.e. Xt = 0, current data already

rules out the left-handed stop up to about 350 GeV. The ILC/GigaZ, CEPC baseline or

FCC-ee/TeraZ program could push the limit on the left-handed stop up to about 600 GeV.

With a top threshold scan at FCC-ee or an improved CEPC plan, the bound will be pushed

to above 1 TeV. Once stop mixing is turned on, the bound will be relaxed. In particular,

close to Xt ≈ mt̃2
+ mt̃1

, the bound on the stop masses almost vanishes as demonstrated

in the third plot of the left column. At large mixing, when Xt is above the sum of two

physical masses, the constraints will reappear. Instead of containing mostly left-handed

stops, the constraints begin to symmetrize for left- and right- handed stops. Notice that

the vacuum instability bound constrains Xt/
√
m2
t̃1

+m2
t̃2

.
√

3 [76] (the early analysis of

the vauum instability bound constrains Xt/
√
m2
t̃1

+m2
t̃2
.
√

7 [77]).

4 Non-oblique corrections from stops to Rb

As discussed in section 2.3, in addition to modifying the SM gauge boson two-point func-

tions right-handed stops could also generate a non-oblique correction to the three-point

function Zbb̄ and thus the ratio of the partial width of Z decaying to bottom quarks to the

Z hadronic partial width, denoted by Rb. Currently Rb is measured to be 0.21629±0.00066

at LEP and SLC [78]. The error bar is roughly equally shared by the systematic and sta-

tistical uncertainties. At ILC, the GigaZ running will accumulate 1010 Z’s in three years,

which is a factor of 103 times the statistics accumulated at LEP, and thus will reduce the

statistical error by a factor of 30. This makes the statistical uncertainty negligible com-

pared to the more important systematic uncertainties. These include b-tagging capabilities,

which are expected to be improved at ILC. At LEP, the individual experiments that have

the smallest systematics uncertainty of Rb measurements are DELPHI with b tagging ef-

ficiency of 30% and SLD with b tagging efficiency of 62% for almost pure b-jets [78]. At

ILC, the efficiency could be raised up to 80% [79] and the precision of Rb is expected to be

improved by a factor of five relative to the result of LEP [21, 74], giving an uncertainty of

about 1.3×10−4. The CEPC Rb measurement expects a 10–15% higher b tagging efficiency

compared to the LEP one [80]. This leads to a total uncertainty in Rb of about 1.7× 10−4,

which is dominated by the systematic error [80].
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Figure 5. Regions in the stop physical mass plane that are/will be excluded at 2σ by EWPT with

oblique corrections (left column), Rb at FCC-ee (mid column) and Higgs couplings (right column)

for different choices of Xt/
√
m2
t̃1

+m2
t̃2

: 0 (first row), 0.6 (2nd row), 1.0 (3rd row) and 1.4 (last

row). We chose the mass eigenstate with mt̃1
to be mostly left-handed while the mass eigenstate

with mt̃2
to be mostly right-handed. For non-zero choices of Xt, there are regions along the diagonal

line which cannot be attained by diagonalizing a Hermitian mass matrix [32]. Also notice that the

vacuum instability bound constrains Xt/
√
m2
t̃1

+m2
t̃2

.
√

3 [76].
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At FCC-ee, the statistics uncertainty will be reduced by a factor of 300 and the b-

tagging capabilities are also expected to be similar to or better than those of SLD with a

more granular vertex detector and a smaller beam spot. It’s projected that FCC-ee could

measure Rb with a precision (2 − 5) × 10−5 [24]. It’s more precise compared to the ILC

and CEPC measurements though it should be understood that these numbers, especially

those for CEPC and FCC-ee, may not be the final ones. Below we present an estimate of

the reach for the stops using the most optimistic number. The current theory uncertainty

of Rb is 1.5× 10−4 from two-loop diagrams without closed fermion loops and higher-order

contributions [81]. Completing the two-loop and the three-loop computations will bring

the theory uncertainty down to a few times 10−5. Thus to achieve the precision estimate

of FCC-ee, higher-order calculations of the total and partial widths of Z are crucial.

We will focus on the stop-charged higgsino loop as the stops and higgsinos are the nec-

essary ingredients of natural SUSY. Even if contributions from other superparticles could

cancel the stop-higgsino contribution to Rb, they will bring in additional fine-tunings. The

full loop formulas for the stop-higgsino contribution to Rb are presented in appendix A.3,

along with an approximate expansion when µ � mt̃1
,mt̃2

. In the middle column of fig-

ure 5, we demonstrate regions in the physical stop mass plane with |∆Rb| > 2×10−5 fixing

the Higgsino mass to be 200 GeV. Without mixing, measurement of Rb with a precision of

2 × 10−5 at FCC-ee could probe right-handed stops up to about 800 GeV. Similar to the

T parameter, the sensitivity decreases once the mixing is turned on and almost vanishes

around Xt =
√
m2
t̃1

+m2
t̃2

. It increases again when mixing gets larger but constrains both

left- and right-handed stops at the same time.

Given the current, ILC and CEPC measurements of Rb, there are no constraint on

stops. Only the most optimistic FCC-ee planned reach could achieve a significant constraint

on right-handed stops. If Rb’s precision is 5 × 10−5 instead of 2 × 10−5, the constraint

will be reduced to 350 GeV for zero stop mixing and Higgsino mass 200 GeV. This shows

the importance of achieving a small beam spot and good b-tagging capabilities so that

systematic uncertainties can be reduced as much as possible.

We also plot the constraint of the right-handed stop mass as a function of Higgsino

mass µ in figure 6. One could see from the figure that the smaller µ is, the more sensitive

Rb measurement is to the right-handed stop.

5 Higgs coupling constraints on stops

Stop loops modify the Higgs couplings to gluons and photons, as we reviewed in section 2.4.

Thus a precise measurement of Higgs digluon and diphoton couplings will indicate the

degree of naturalness associated with stops. It is demonstrated in [32] that independent of

the stop mixing, current Higgs coupling data has excluded scenarios with both stops lighter

than 400 GeV in the absence of Higgs mixing effects and suggests a minimum electroweak

fine-tuning of between a factor of 5 and 10.

In the right column of figure 5, we plot the regions that current and future Higgs

coupling measurements could exclude at 2σ C.L. We performed a profile likelihood one-

parameter fit to the estimated precisions of cross section and cross section times branching
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Figure 6. Region in the right-handed stop and Higgsino mass plane that the FCC-ee Rb measure-

ment could be sensitive to. We fix stop mixing to be zero, tan β = 10 and left-handed stop mass to

be 600 GeV. The result remains unchanged if one varies the left-handed stop mass.

ratio for each future Higgs program, in which we only allow the Higgs-gluon coupling to

vary and Higgs-photon coupling to vary in a correlated way dictated by eq. (2.14). Then

we obtain the allowed range of rt̃G at 2σ C.L, which we map onto the stop parameter

plane. The ILC precisions are tabulated in [25], CEPC precisions are estimated in [29]

and FCC-ee ones could be found in the Snowmass Higgs working group report [26]. Notice

that one should not use the results of κg from the seven-parameter fits which allow

all Higgs couplings to vary freely [26], as this will underestimate the exclusion. In the

particular scenario we are considering, the variations of the Higgs couplings are much more

constrained. For the ILC, we used the numbers of the ILC 500 scenario with the machine

running at 250 GeV and 500 GeV with luminosities of 1150 fb−1 and 1600 fb−1 and the 1000

scenario with the machine running at 1 TeV in addition to the 500 case with a luminosity of

2500 fb−1. For FCC-ee, the number assumes the machine running at 240 GeV and 350 GeV

with luminosities of 104 fb−1 and 2600 fb−1. From figure 5, one could see that the FCC-ee

scenario is the most sensitive case. Again at the special point Xt ∼
√
m2
t̃1

+m2
t̃2

, rt̃G ≈ 0

from eq. (2.13) and the bound vanishes.

The strongest limit on the stop parameters comes from the measurement of hgg cou-

pling. This is due to a combination of the large size of the correction and the high precision

of the measurements of this coupling at the Higgs factories.

6 The light stop blind spot

It is apparent from figure 5 that in the case X2
t ≈ m2

t̃1
+ m2

t̃2
, all of the precision loop

observables we consider have a significantly poorer reach than for other choices of Xt. This

is a “blind spot” for precision tests of light stops. In calling this choice of Xt a blind

spot, we follow the terminology of ref. [82], which coined the term for regions of neutralino

parameter space that evade direct detection experiments. The analogy is a close one: the
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neutralino blind spots exist when the lightest neutralino has a vanishing tree-level coupling

to the Higgs boson. The underlying reason for the blind spot in stop detection is that the

lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs boson. In this

case, the heavy stop can still contribute to precision observables, but its contributions are

relatively small due to the larger mass suppression. (While this draft was being finalized,

the blind spot region of parameter space was independently pointed out in ref. [65]. The

fact that stops’ contribution to hgg coupling vanishes in the blind spot is well known and

has been studied before, for example, in [83].)

To understand where the blind spot occurs, we can integrate out the heavy stop

mass eigenstate t̃h to determine an effective quartic coupling of the light stop t̃l to the

Higgs boson:

+

t̃l t̃l

h h

y2
t t̃l

t̃h

t̃l

h h

ytXt ytXt (6.1)

This leads to an effective coupling:

Leff =

(
y2
t −

y2
tX

2
t

m2
t̃h
−m2

t̃l

)
|Hu|2

∣∣t̃l∣∣2 . (6.2)

This leads to the “blind spot” mixing for which the coupling of the light stop to the Higgs

boson vanishes:

X∗t =
(
m2
t̃h
−m2

t̃l

)1/2
. (6.3)

This is also apparent from eq. (2.15). Alternatively, one could find this critical mixing by

evaluating the light stop mass eigenvalue and solving the equation ∂ logmt̃l
/∂ log v = 0

for Xt.

We noted in eq. (3.1) that the T parameter correction is minimized when Xt is approx-

imately the sum of the two stop mass eigenvalues, whereas eq. (2.13) makes it clear that

the hgg and hγγ corrections are minimized when Xt is approximately equal to the two stop

mass eigenvalues added in quadrature. These results agree with eq. (6.3) to the extent that

one stop is significantly heavier than the other, because they all reduce to Xt ≈ mt̃h
. On

the other hand, if the two stop mass eigenvalues are very close together, Xt is necessarily

small and the constraints are unaffected by the mixing.

Although being in this blind spot may help hide the light stop at future lepton colliders,

it will make the fine-tuning even worse. In the limit of vanishing coupling between the Higgs

and the light stop, the fine-tuning is dominated by the mass of the heavy stop. Therefore,

it is still significant, especially in the precise blind-spot limit, in which the heavy stop is

much heavier than the light stop. Nevertheless, it is interesting to discuss whether the

signal of light stop could be found in some other observables.
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The approximate blind spot in Rb arising for the same values of Xt appears to be

a numerical accident, because the loop diagram figure 3 does not involve the coupling of

the light stop to the Higgs boson. Other precision observables that do not depend on the

stop-Higgs coupling could potentially probe the blind spot, but as discussed in section 2.6,

most such operators have numerically small coefficients that are difficult to probe. Perhaps

the best probe of the blind spot region is b → sγ, which is strongly constraining for large

At tanβ [17, 49, 58, 66–69]. A detailed discussion of this probe is presented in the next

section.

7 Conclusions and discussions

7.1 Implications for fine-tuning

For a first look at fine-tuning, we show in figure 7 a comparison of bounds in the plane

of stop mass eigenvalues with contours of fixed fine-tuning in the Higgs mass arising from

quadratic sensitivity to the stop soft masses. The Higgs mass fine-tuning from the stop

sector is defined as [3, 4]

(
∆−1
h

)
t̃

=

∣∣∣∣∣2δm2
Hu

m2
h

∣∣∣∣∣ , δm2
Hu
|stop = − 3

8π2
y2
t

(
m2
Q3

+m2
U3

+A2
t

)
log

(
Λ

mEW

)
= − 3

8π2
y2
t

(
m2
t̃1

+m2
t̃2
− 2m2

t +A2
t

)
log

(
Λ

mEW

)
. (7.1)

Here Λ is a scale characterizing mediation of SUSY breaking, while mEW is the low-energy

scale where the running stops. We take mEW = max(
√
mt̃1

mt̃2
,mh). In figure 7, we take

At = max
(
0,
∣∣Xmin

t

∣∣+ µ/ tanβ
)

(7.2)

with the SUSY breaking mediation scale Λ = 30 TeV, µ = 200 GeV and tan β = 10.

Here
∣∣Xmin

t

∣∣ is taken to be the smallest absolute value of Xt allowed by the Higgs coupling

measurements at 2σ C.L. for given stop masses [32]. We have chosen on purpose a very low

SUSY mediation scale to draw conservative conclusions about the tuning level. This plot

shows the region of parameter space which can be excluded by Higgs data independent of

the stop mixing angle, in purple, along with the region that is excluded only for a fine-

tuned set of mixing angles, in blue. The blue curve corresponds a part-in-10 adjustment of

Xt:
∣∣∣m2

t̃1
+m2

t̃2
−X2

t

∣∣∣ < 1
10 |Xt|2. For a detailed discussion of how such a plot is computed,

see ref. [32]. Figure 7 of that reference inferred a bound from the constraints on κg and

κγ listed in the seven-parameter fit of ref. [26]. We have improved the calculation by

performing a one-parameter fit to all projected σ and σ×Br measurements, which slightly

improves the reach. Specifically, the approach taken in ref. [32] was based on bounds that

allowed other parameters to float, whereas here we extract stronger bounds by assuming

that stops are the only contribution to the new physics. We also provide, for the first time,

an estimate of the reach of CEPC. The combined ILC 250, 500, and 1000 GeV runs would

have a very similar reach to CEPC.
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Figure 7. Projected constraints in the stop mass plane from a one-parameter fit to the Higgs data

from future experiments. The purple shaded region along the diagonal is excluded because the

smallest |Xt| consistent with the data at 2σ is larger than the maximum |Xt| compatible with the

mass eigenvalues, as explained in detail in ref. [32]. The blue shaded region requires tuning Xt to

a part in 10 to fit the data. The dot-dashed red contours quantify fine-tuning in the Higgs mass

from the quadratic sensitivity to stop soft terms.

From this plot we see that any future Higgs factory would mostly or entirely rule out

regions of 10% fine tuning, but will leave gaps with 5% fine tuning. These gaps occur due

to the blind spot discussed above. As we have noted above, measurements of b → sγ can

help to constrain the blind spot region. However, bounds from b→ sγ depend not only on

the stop mass matrix but also on µ and tanβ. To provide a perspective on the implications

of these bounds for fine-tuning, we should assess the tree-level tuning arising from µ and

from mA.

The precise measurement of Higgs couplings to fermions is sensitive to the mass scale

of the heavy Higgs bosons A0, H0, H± that are present in the MSSM and its extensions.

Mixing among the Higgs bosons will always modify the coupling of the light Higgs to

fermions at order m2
h/m

2
A. (We will collectively denote the masses of all of these particles

as mA, although there may be some splitting between H0 and A0.) The coefficient is

somewhat model dependent. We can estimate the bound on these couplings by focusing

on κb, which is well-measured and approximately equal to

κb ≡
ySUSY
hbb

ySM
hbb

≈ 1 + 2
m2
h

m2
A

(7.3)

at large tan β in models where the dominant new quartic coupling beyond the MSSM arises

from nondecoupling D-terms [58, 71, 84]. Models with new quartics arising from F -terms

have a somewhat different structure, but would yield a similar bound on mA up to order-

one factors (especially since tan β in theories like the NMSSM cannot be very large). Doing

a one-parameter fit with only κb deviating from one, we find the following 2σ bounds:

ILC− 500 : |κb − 1| < 1.3% ⇒ mA > 1.5 TeV, (7.4)

CEPC : |κb − 1| < 0.71% ⇒ mA > 2.1 TeV, (7.5)

FCC− ee : |κb − 1| < 0.39% ⇒ mA > 2.8 TeV. (7.6)
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These bounds on mA imply moderate fine-tuning, unless tan β is large. We estimate the

fine-tuning of the Higgs potential due to large mA to be [4, 17, 70]

∆A ≈
2m2

A

m2
h tan2 β

. (7.7)

This shows that a failure to observe a deviation in κb will imply either moderate fine-tuning

or moderately large values of tan β. The other tree-level tuning arises from µ [3, 4, 30]:

∆µ ≈
4µ2

m2
h

. (7.8)

The constraints from b→ sγ depend on choices of µ and tanβ. They can be made weaker at

small tan β at the cost of larger ∆A [17]. They could also be made weaker by making µ large

to suppress the loop function, but this increases ∆µ. There is another possibility of large

SUSY-breaking contributions to higgsino masses that do not affect the EWSB conditions,

as from the operator K ⊃ X†XDαHuDαHd. For such an operator to be important, we

would require very low-scale SUSY-breaking. This is an interesting possibility and one that

may require more attention if it becomes the only unconstrained scenario without tuning.

Putting all of this together, we can summarize the implications of precision measure-

ments for tuning in figure 8. The top row displays bounds on stops with no mixing (Xt = 0).

We display the 2σ bounds on stop masses arising from EWPT (mostly the T -parameter)

and from Higgs coupling constraints (hgg and hγγ), superimposed on contours of fixed

stop contribution to the Higgs mass tuning. The fine-tunings are again computed using

eq. (7.1) but with Xt = 0 in this case. From the figure we can see that the ILC would

almost fully exclude regions with less than a factor of 20 tuning, whereas FCC-ee would

reach almost to the factor of 50 tuning level. In the second row, we display constraints on

the blind spot where X2
t = m2

t̃1
+m2

t̃2
. In this case, the large Xt will contribute more to the

Higgs mass fine-tuning. One could see that from eq. (7.1) and by comparing the contours

with the same Higgs mass tuning from stops in the first and second row of figure 8. Yet

in this case Higgs coupling measurements are not constraining, and EWPT only exclude a

small region at CEPC with possible improvements or at FCC-ee. However, b → sγ plays

an interesting complementary role. We show exclusion contours (green dashed lines) from

b→ sγ for the choice µ = 200 GeV and a few different values of tan β. Each of these con-

tours is also labeled with the corresponding tunings ∆µ and ∆A. From this we can see that

the contour of low stop mass tuning (∆t̃ = 10), a blue dashed line which is barely visible at

the lower left, is allowed only by going to tan β < 3, at which point the tuning ∆A will be

large if no deviation has been observed in κb. If we restrict to large enough values of tan β

to suppress ∆A, then the stop mass tuning ∆t̃ becomes large. In this way, the interplay

between measurement of the Higgs couplings to fermions and the existing measurements

of b→ sγ will allow the blind spot region to be indirectly covered by future e+e− colliders.

Notice that we deliberately choose a positive µ throughout the analysis. The sign of µ will

only give a negligible modification to the calculation of the Higgs mass fine-tuning from

the stops. However, for negative µ, the b→ sγ constraint will get considerably stronger.
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Figure 8. Regions in the physical stop mass plane that precision measurements are sensitive to,

with contours of tunings, at future e+e− colliders (left: ILC; middle: CEPC; right: FCC-ee). Top

row: bounds on stops with no mixing, Xt = 0. Dashed vertical lines: 2σ bounds on stop masses

from S and T (mostly T ); solid lines: 2σ bounds on stop masses from Higgs coupling constraints.

Blue dashed contours are the stop contributions to the Higgs mass tuning. Lower row: bounds on

stops in the blind spot X2
t = m2

t̃1
+m2

t̃2
. There are no Higgs measurement constraints. For CEPC

with possible improvements (purple dash-dotted line in the middle) or FCC-ee (orange solid line),

EWPT is only sensitive to a small region. The green dashed lines are the exclusion contours from

b → sγ for the choice µ = 200 GeV and a few different values of tan β. Each of these contours is

also labeled with corresponding tunings ∆µ and ∆A. There is also a region along the diagonal line

which cannot be attained by diagonalizing a Hermitian mass matrix [32].

7.2 Implications for folded stops

EWPT could be the most sensitive experimental probe in some hidden natural SUSY sce-

narios such as “folded SUSY” [28]. In folded SUSY, the folded stops only carry electroweak

charges and some beyond SM color charge but no QCD charge. The most promising direct

collider signal is W+ photons which dominates for the “squirkonium” (the bound state of

the folded squarks) near the ground state [85, 86]. It is a very challenging experimental

signature. Among the Higgs coupling measurements, folded stops could only modify the

Higgs-photon coupling, the Higgs-photon-Z coupling, and (at a subleading level) the Higgs-

Z-Z coupling. Yet the Higgs-photon coupling measurements, even at future e+e− colliders,

have very limited sensitivities. Even FCC-ee Higgs measurements could only probe folded

stops up to 400 GeV, as illustrated in figure 9 (which updates the result in [32] to in-
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Figure 9. Projected constraints in the folded stop mass plane from a one-parameter fit to the

Higgs-photon-photon couplings from future experiments. Directly analogous to figure 7. Results

from the ILC 250/500/1000 would be similar to CEPC; lower-energy ILC measurements provide

even weaker constraints. These constraints are subdominant to the constraints on left-handed folded

stops arising from T -parameter measurements, which are the same as those for ordinary stops in

the left-hand column of figure 5.

clude CEPC). Notice that we have also taken into account of a precise determination of

Γ(h → γγ)/Γ(h → ZZ) at HL-LHC. It has been demonstrated that combing this with

Higgs measurements at future e+e− colliders could result in a significant improvement of

sensitivity to Higgs-photon-photon coupling [87, 88].

On the other hand, the reach of the electroweak precision we derived in this article

(the left column of figure 5) applies to folded stops as well as the usual stops. Except for

the blind spot in the parameter space, future EWPT could probe left-handed folded stops,

via their correction to the T parameter, up to 600 GeV (e.g. at the ILC) or even 1 TeV

(e.g. at FCC-ee). CEPC’s preliminary plans fall close to the ILC reach, but conceivable

upgrades could achieve similar reach to FCC-ee. These EWPT constraints would surpass

the Higgsstrahlung constraints on folded SUSY estimated in ref. [65]. Improved measure-

ments of the W mass, then, may be one of the most promising routes to obtaining stronger

experimental constraints on folded SUSY. Therefore, with the help of future electroweak

precision measurements, we can test the fine tuning of folded SUSY at the few percent level.
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A Formulas for loop effects

A.1 S parameter

The S-parameter contribution of stops and sbottoms from ref. [41] can be simplified to:

S =
1

8π

[ (
6 cos4 θt̃ − 8 cos2 θt̃

)
b(mt̃1

,mt̃1
) +

(
6 sin4 θt̃ − 8 sin2 θt̃

)
b(mt̃2

,mt̃2
)

+3 sin2(2θt̃)b(mt̃1
,mt̃2

) +
(
6 cos4 θb̃ − 4 cos2 θb̃

)
b(mb̃1

,mb̃1
)

+
(
6 sin4 θb̃ − 4 sin2 θb̃

)
b(mb̃2

,mb̃2
) + 3 sin2(2θb̃)b(mb̃1

,mb̃2
)
]
. (A.1)

where

b(x, y) ≡ 2

3(x2 − y2)3

(
x4(x2 − 3y2) log x+ y4(3x2 − y2) log y

)
− 5x4 − 22x2y2 + 5y4

18 (x2 − y2)2

=
2

3
log x if x = y. (A.2)

In particular, in the case of unmixed left-handed stops and sbottoms (split only by Yukawas

and D-terms), we have

S =
1

6π
log

mb̃L

mt̃L

≈ − 1

6π

m2
t

m2
Q̃3

. (A.3)

A.2 T parameter

For simplicity, we decouple right-handed sbottoms and assume a negligible sbottom mixing.

Then the T parameter is [41]:

Tt̃ =
3 cos2 θt̃

16πs2
Wm

2
W

(
− sin2 θt̃F0(m2

t̃1
,m2

t̃2
) + F0(m2

t̃1
,m2

b̃1
) + tan2 θt̃F0(m2

t̃2
,m2

b̃1
)
)
, (A.4)

where m2
t̃1
,m2

t̃2
,m2

b̃1
are the two physical stop masses squared and the left-handed sbottom

mass squared correspondingly. The function F0 is defined as

F0(x, y) = x+ y − 2xy

x− y
log

x

y
. (A.5)

A.3 Rb

The full formula for the stop-Higgsino contribution (a vertex correction to the ZbLbL
coupling) could be found in [52, 53]. It involves several Passarino-Veltman integrals and

does not simplify as nicely as the results for S and T . As a result, we will only present

the expansion of the formula in the limit of small higgsino masses relative to the stop

masses. These simple analytic formulas can be compared with our discussion in section 2.3

to explain the structure of the most important terms from an effective field theory (EFT)
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perspective. Expanding the full formula in the limit of small higgsino masses, we find:

∆RSUSY
b ≈ RSM

b (1−RSM
b )

α

2π sin2 θW

vLλ
2
L

v2
L + v2

R

×

[
sin θ2

t̃

m2
Z

m2
t̃1

(
4

9
− 25

27
sin2 θW +

1− 2 sin2 θW
3

log
µ2

m2
t̃1

)

+ cos2 θt̃
m2
Z

m2
t̃2

(
4

9
− 25

27
sin2 θW +

1− 2 sin2 θW
3

log
µ2

m2
t̃2

)

+ cos2 θt̃ sin2 θt̃

(
−1

2
+

m2
t̃1

+m2
t̃2

2(m2
t̃1
−m2

t̃2
)

log
mt̃1

mt̃2

)
+ · · ·

]
, (A.6)

vL = −1

2
+

1

3
sin2 θW vR =

1

3
sin2 θW λL =

mt√
2mW sinβ

, (A.7)

where RSM
b ≈ 0.22 and we only kept the leading terms in expansions of µ2/m2

t̃
and

m2
Z/m

2
t̃
. We also neglected terms proportional to the bottom Yukawa coupling. The

largest terms in ∆RSUSY
b are the logarithmic terms such as cos2 θt̃ sin2 θt̃

m2
t̃1

+m2
t̃2

2(m2
t̃1
−m2

t̃2
)

log
mt̃1
mt̃2

and y2
t cos2 θt̃

m2
Z

m2
t̃2

log µ2

m2
t̃R

. The logarithms here suggest that there should be an explanation

of these terms based on RG-induced mixing of different dimension-6 operators.

The term proportional to (m2
Z/m

2
t̃2

) log(m2
t̃2
/µ2) is precisely the one that we found

by first integrating out right-handed stops to generate the operator
(
H̃u ·Q3

)(
Q†3 · H̃

†
u

)
,

then integrating out higgsinos, in eq. (2.10) of section 2.3. The log can be understood as

an operator mixing effect when running between the scale where the stops are integrated

out and the scale where the higgsinos are integrated out. Furthermore, we have

cos2 θt̃ sin2 θt̃ ∝ sin2(2θt̃) =

(
2mtXt

m2
t̃2
−m2

t̃1

)2

, (A.8)

so the term proportional to cos2 θt̃ sin2 θt̃ log(mt̃1
/mt̃2

) is precisely the term that we found

from the EFT viewpoint in eq. (2.12) by first integrating out left-handed stops to generate

the operator
(
h†i
←→
D µh

)(
t̃†Ri
←→
D µt̃R

)
and then integrating out right-handed stops and hig-

gsinos. The leading terms in the full vertex diagram calculation could all be derived from

EFT arguments by integrating out left-handed stops, right-handed stops, and higgsinos in

the correct order.
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