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1 Introduction and conclusion

Open String Field Theory (OSFT) could provide a complete non-perturbative approach

to D-brane physics, once its quantum structure is understood. Still, at the classical level

it gives a new perspective and methodology for finding the possible conformal boundary

conditions which are consistent with a given bulk two-dimensional CFT. In String Theory

language this amounts to the classification of the possible physical D-branes (stable or

not) that can be consistently placed in a given closed string background. From the OSFT

perspective this means solving the classical equation of motion.

The aim of this paper is to provide exact non-perturbative results on the relation

between BCFT marginal parameters and the corresponding parameters in OSFT solutions.

Remarkably we now know [1], that given two generic BCFT’s (sharing a common non-

compact time-like factor) it is always possible to explicitly construct an analytic solution

relating the two backgrounds, by suitably using a pair of boundary condition changing

operators with known OPE. However here we would like to study an example which is

not so distant to the available Siegel gauge numerical results, where the time-CFT is

only excited through the identity and its descendants. For self-local boundary marginal

deformations [2], we have an explicit analytic wedge-based solution [3], and this is the

solution we wish to study in this note.

Given an open string background BCFT0, there is typically a continuous manifold of

equally consistent open string backgrounds, connected to BCFT0, forming a moduli space.

Such a moduli space is locally spanned by the VEV of the exactly marginal boundary

operators that can be switched on in BCFT0. Because of the linear structure of small fluc-

tuations, it appears natural to parametrize the OSFT solutions for marginal deformations

by the coefficient of their marginal field. This quantity is typically called λSFT

Ψmarg = λSFT cj(0) |0〉SL(2,R) + · · · . (1.1)

On the other hand, the physical trajectory in moduli space has a more natural coordinate

λBCFT, or more succinctly λ, which corresponds to the strength of the (conformal) boundary
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interaction that one adds to the sigma-model action to describe the new background

SBCFTλ = SBCFT0 + λ

∫
∂M

ds j(s). (1.2)

The relation between λSFT and λBCFT triggered a lot of discussions in the last fifteen

years [4–10], especially because of the following long-standing puzzle. Given an exactly

marginal field j(z), a one-parameter family of approximate solutions labeled by λSFT was

found in Siegel gauge by Sen and Zwiebach [4]. Evidence was found that this one-parameter

family ceases to exist at a finite value of λSFT, posing the question about the ability of OSFT

to cover or not the BCFT moduli space. With the advent of the new analytic methods,

beginning with [11], new powerful tools have been developed to extract the BCFT data

from a given OSFT solution. Notably it has been found how to directly construct the

boundary state corresponding to a given solution [12, 13], using a powerful conjecture due

to Ellwood [14], which relates simple gauge invariants in OSFT to closed string tadpoles

in the new open string background defined by a given solution. Using Ellwood conjecture,

more recent results for the cosine deformation at the self-dual radius [10], showed that the

finite critical value at which the solutions of [4] truncate, correspond to a finite value of

λBCFT, close to the point where the boundary conditions become Dirichlet. After that no

further solutions are found. Where is the missing region of the BCFT moduli space?

In this note we propose that such an apparent drawback is simply a consequence of the

fact that λSFT does not globally parameterize OSFT solutions for marginal deformations

which, on the other hand, exist for all physical values of λBCFT. To do so, we derive,

in an explicit computable example, the precise relation between λSFT and λBCFT, taking

advantage of the recently constructed solution for marginal deformations [3], which is

naturally defined in terms of λBCFT. This allows to calculate λSFT as a function of λBCFT,

by simply computing the coefficient of the marginal field in the solution

λSFT = 〈0|j1c−1c0|Ψ(λBCFT)〉 = fΨ(λBCFT). (1.3)

This computation gives a nice surprise: we find that λSFT, as a function of λBCFT,

starts linearly with unit slope and then, after reaching a maximum, it starts decreasing

and it eventually relaxes to zero for large values of λBCFT, see figure 2. Therefore, for a

given λSFT there are typically two values of λBCFT. This is our main result.

The fine details of the function λSFT(λ), including the critical value of λBCFT at which

λSFT has a maximum, depend on the gauge freedom in the definition of the OSFT solution,

but we find that the relaxation to zero is generic in the whole gauge orbit which we analyze.

It is amazing to realize that this is precisely the behavior that Zwiebach conjectured many

years ago [5], by analyzing a simple field theory model for tachyon condensation. To fur-

ther confirm Zwiebach’s hypothesis, we also compute the coefficient of the zero momentum

tachyon. This time, at large λ, we find that it asymptotes to a finite positive value. In a par-

ticular limit along the gauge orbit the solution localizes to the boundary of the world-sheet,

and the above finite positive value agrees with the tachyon coefficient of the tachyon vacuum

solution ΨTV = 1
1+K c(1 + K)Bc of [15], again in accord with Zwiebach’s picture, see fig-

ure 3. It is tempting to speculate that in fact the whole string field in this limit approaches

the tachyon vacuum ΨTV as has been shown in the case of light-like rolling tachyon in [16].
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Our simple calculation shows that, at least in this particular example, OSFT does

cover the full BCFT moduli space, but such a moduli space cannot be fully described

by the coefficient of the marginal field that generates the deformation. At large BCFT

modulus it is not the marginal field that drives the marginal flow but it is rather the whole

string field with all of its higher level components.

An important question is to what degree is this behavior generic. There are other

analytic wedge-based solutions for marginal deformations with singular OPE, which can

be constructed systematically at any order in the marginal parameter [17–20]. However

their intrinsic perturbative nature is a major obstacle to obtain conclusive results on the

issues we are discussing.1 A non perturbative treatment of (time-independent) marginal

deformations is also clearly provided by the EM solution [1]. It is not difficult to see that

for this solution we have the exact relation

λ
(EM)
SFT = λBCFT, (1.4)

which is in fact common to all SFT solutions which describe marginal deformations with

regular OPE [17, 22, 23]. The reason for this is that the EM solution in this case describes a

marginal deformation [23] generated by j = i√
2
∂X0 + j(c=25), which has regular OPE with

itself by construction. Since time is non-compact, the solution only changes the boundary

conditions in the c = 25 part of the initial BCFT.

That said, it seems plausible that the double-valued dependence on λSFT we have found

is generic in cases where the solution only excites the matter primaries and descendants

generated by the repeated OPE’s of the marginal field. It would be very instructive to

“experimentally” confirm this expectation by level truncation computation in the Siegel

gauge, and to identify the predicted new branch.

2 Review of the simple marginal solution

The solution [3] can be constructed from any self-local boundary deformation [2], generated

by a boundary field j(x) with self-OPE given by2

j(x)j(0) ∼ 1

x2
+ (reg). (2.1)

Let us quickly review the structure of the solution, details can be found in [3]. It is derived

from an identity-based solution, discovered years ago by Takahashi and Tanimoto [24],

which is used here as an elementary identity-like string field in addition to the well known

fields K,B, c. Calling Φ the TT solution [24], and defining as in [25]

K ′ ≡ K + J = QΦΦB ≡ QB + [Φ, B], (2.2)

1See [21] for recent developments in this direction.
2In [3] it was further assumed that the current was not only self-local but also chiral, in the sense of [2],

so that it was guaranteed to be local with respect to all bulk and boundary fields. This was a technical

assumption which allowed to easily construct the fluctuations around the new solution and to show that, for

chiral marginal deformations, the Hilbert spaces of the undeformed and deformed theory are isomorphic at

the level of the operator algebra. This is not necessarily true for generic self-local boundary deformations.
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J ≡ [B,Φ], (2.3)

where [·, ·] is the graded commutator, the solution [3] can be written as

Ψ =
1

1 +K
Φ

1

1 +K ′
−Q

(
1

1 +K
Φ

B

1 +K ′

)
. (2.4)

In the very convenient sliver frame, obtained by mapping the UHP (with coordinate w) to

a semi-infinite cylinder of circumference 2 (with coordinate z) via the map

z =
2

π
arctanw, (2.5)

the TT solution is defined as

Φ =

∫ i∞

−i∞

dz

2πi

(
f(z)cj(z) +

1

2
f2(z)c(z)

)
. (2.6)

All the degrees of freedom of the function f(z) are pure gauge except for its zero mode

which defines λBCFT through the relation

λBCFT ≡ λ =

∫ i∞

−i∞

dz

2πi
f(z). (2.7)

In the following we will make the dependence on λ ≡ λBCFT manifest by defining

f(z) ≡ λf̄(z), (2.8)∫ i∞

−i∞

dz

2πi
f̄(z) = 1. (2.9)

The current-like string field J is then given by

J ≡ [B,Φ] =

∫ i∞

−i∞

dz

2πi

(
f(z)j(z) +

1

2
f2(z)

)
. (2.10)

3 λSFT vs λBCFT and the tachyon

Expanding the solution in the Fock space basis, the first components are the zero momen-

tum tachyon and the marginal field

Ψ = T c1|0〉+ λSFT j−1c1|0〉+ · · · . (3.1)

The coefficient of the marginal field is given by

λSFT = 〈0|c−1c0j1|Ψ〉 = −Tr

[
e−K/2 c∂cj e−K/2

1

1 +K
Φ

1

1 +K + J

]
= −

∫ ∞
0

d` e−`
∫ `

0
dy Tr

[
e−K/2 c∂cj e−(`−y+1/2)KΦ e−y(K+J)

]
, (3.2)

while the coefficient of the zero momentum tachyon is

T = 〈0|c−1c0|Ψ〉 = −π
2

Tr

[
e−K/2 c∂c e−K/2

1

1 +K
Φ

1

1 +K + J

]

– 4 –
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c∂cj

e−
y
0 dsJ(s)

L y 0

Φ

x

Figure 1. Graphical presentation of the correlator (3.13). The two vertical edges are identified to

make a cylinder of circumference L. In the conventions of [15] the coordinate along the boundary

increases from right to the left. The shaded region corresponds to the insertion of the boundary

interaction spread out to the bulk. On the left border of this region there is an insertion of the

Takahashi-Tanimoto identity-like solution Φ.

= −π
2

∫ ∞
0

d` e−`
∫ `

0
dy Tr

[
e−K/2 c∂c e−(`−y+1/2)KΦ e−y(K+J)

]
. (3.3)

Notice that the BRST exact part of the solution (2.4), does not contribute to these coeffi-

cients, as well as to any other coefficient of cφ(h)(0)|0〉, where φ is a matter primary.

Let us start with the integrand which defines λSFT

Tr
[
e−K/2 c∂cj e−(`−y+1/2)KΦ e−y(K+J)

]
=
〈
c∂cj(`+ 1/2) Φ(y)e−

∫ y
0 dsJ(s)

〉
C`+1

. (3.4)

Here we have defined the world-sheet insertions

Φ(y) ≡
∫ i∞

−i∞

dz

2πi

(
f(z) cj(z + y) +

1

2
f2(z) c(z + y)

)
, (3.5)

J(s) =

∫ i∞

−i∞

dz

2πi

(
f(z) j(z + s) +

1

2
f2(z)

)
. (3.6)

The correlator (3.4) is naturally defined in the cylinder coordinate frame. General correlator

of this form on a cylinder of total circumference L is depicted in figure 1.

This correlator can be systematically computed by Wick theorem3 from the basic

current-current correlator

〈j(z)j(w)〉CL =
(π
L

)2 1

sin2 π(z−w)
L

, (3.7)

and from the standard ghost correlator

〈c∂c(z)c(w)〉CL = −
(
L

π

)2

sin2 π(z − w)

L
. (3.8)

3See [26] for a general discussion.
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In particular, Wick theorem implies that we have〈
e−

∫ y
0 dsJ(s)

〉
CL

= exp

[
1

2

∫ y

0

∫ y

0
ds1 ds2 〈J(s1)J(s2)〉CL

]
. (3.9)

In computing the above quadruple integral (two integrals along the boundary and two

vertical integrals implicit in the J ’s) one finds out, by a mechanism analogous to [25], that

the contribution from the f2-terms in J precisely cancels with a delta-function contribution

coming from the boundary integral of the current correlator. This leaves us with a net result〈
e−

∫ y
0 dsJ(s)

〉
CL

= e−λ
2Gf̄ (y,L). (3.10)

The function(al) Gf̄ controls the exponential behavior in λBCFT ≡ λ and it is given by4

Gf̄ (y, L) =

∫ i∞

−i∞

dξ

2πi
f̄ ∗f̄ (ξ) log

sin π(y+ξ)
L

sin πξ
L

, (3.11)

f ∗f (ξ) ≡
∫ i∞

−i∞

dz

2πi
f (z − ξ/2) f (z + ξ/2) . (3.12)

Then, with standard generating function techniques, we can explicitly compute〈
c∂cj(x) Φ(y)e−

∫ y
0 dsJ(s)

〉
CL

= −λ
(

1 + λ2Ff̄ (x, y, L)
)
e−λ

2Gf̄ (y,L). (3.13)

The λ2 contribution in front of the exponential, which we denote Ff̄ , is given as a product

of two quantities

Ff̄ (x, y, L) = Sf̄ (x, y, L) Pf̄ (x, y, L). (3.14)

The first factor accounts for the contraction of j(x), the matter part of the test state, with

the exponential interaction and it is given by

Sf̄ (x, y, L)=
L

πλ

〈
j(x)

∫ y

0
ds J(s)

〉
CL

=

∫ i∞

−i∞

dz

2πi
f̄(z)

(
cot

π(y−x+z)

L
+cot

π(x−z)

L

)
.

(3.15)

The second factor is responsible for the contraction between the current in Φ(y) and the

exponential interaction, as well as the total ghost contribution (which gives an explicit

x-dependence)

Pf̄ (x, y, L) =

∫ i∞

−i∞

dξ

2πi

[
f̄ ?f̄(ξ, x, y, L) cot

π(y−ξ)
L

+f̄�f̄(ξ, x, y, L) cos
πξ

L

]
, (3.16)

f̄ ?f̄(ξ, x, y, L) ≡
∫ i∞

−i∞

dz

2πi
f̄ (z − ξ/2) f̄ (z + ξ/2) sin2 π(x− y − z + ξ/2)

L
, (3.17)

f̄�f̄(ξ, x, y, L) ≡
∫ i∞

−i∞

dz

2πi
f̄ (z − ξ/2) f̄ (z + ξ/2)

1

2
sin

2π(x− y − z)

L
. (3.18)

4A much quicker way to compute this correlator is to see it as 〈σL(y)σR(0)〉CL , where the bcc-like

operators are given by σL/R(x) = e∓iλχf̄ (x), and use Wick theorem directly in terms of χf̄ , see [3] for the

precise definitions.
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The second contribution in Pf , controlled by (f�f), is a residue of a cancelation between

the counter-term in the TT solution ∼
∫

1
2f

2(z)c(z+y) and a corresponding term from the

contraction of j(z+y) in the TT solution and the exponential interaction. The latter gives

rise to a delta function (canceling the TT counter-term) plus a remaining contribution,

from which the second term in Pf̄ originates.5

The basic correlator for the zero momentum tachyon is given by the simpler expression〈
c∂c(x) Φ(y)e−

∫ y
0 dsJ(s)

〉
CL

= −λ2 Pf̄ (x, y, L) e−λ
2Gf̄ (y,L). (3.19)

The marginal and tachyon coefficients are finally given by the f̄ -dependent functionals

λSFT(λ) = λ

∫ ∞
0

d` `e−`
∫ 1

0
dŷ
(
1 + λ2Ff̄ (`+ 1/2, `ŷ, `+ 1)

)
e−λ

2Gf̄ (`ŷ,`+1), (3.20)

T (λ) =
λ2

2

∫ ∞
0

d` `(`+ 1) e−`
∫ 1

0
dŷPf̄ (`+ 1/2, `ŷ, `+ 1) e−λ

2Gf̄ (`ŷ,`+1), (3.21)

where we introduced ŷ = y/` for later convenience. Notice that the λ-dependence is fully

manifest.

3.1 Explicit results

To continue further we choose a family of functions ft(z), given by the gaussians [3]

ft(z) ≡ 2λ
√
π t e(tz)2

. (3.22)

As shown in [3] the t dependence is just an L− reparametrization of the TT solution Φ and

it is thus a gauge redundancy. For very large t the gaussian becomes a delta function which

localizes the exponential interaction to the boundary, providing a regularization of contact

term divergences, alternative to the standard one by Recknagel and Schomerus [2]. In our

application this choice is particularly fortunate as it allows to perform the convolution-like

operations (3.12), (3.17), (3.18) analytically. In particular we have

ft ∗ ft(ξ) = λ2
√

2π t e
(tξ)2

2 , (3.23)

ft ? ft(ξ, x, y, L) = λ2

√
π

2
t e

(tξ)2

2

(
1− e

π2

2L2t2 cos

[
2π(x− y + ξ

2)

L

])
, (3.24)

ft � ft(ξ, x, y, L) = λ2

√
π

2
t e

(tξ)2

2 e
π2

2L2t2 sin
2π(x− y)

L
. (3.25)

The remaining integrations are performed numerically, except for the second term in

Pf (3.16) which can be computed analytically∫ i∞

−i∞

dξ

2πi
f̄�f̄(ξ, x, y, L) cos

πξ

L
=
λ2

2
e

π2

L2t2 sin
2π(x− y)

L
. (3.26)

5This can be seen by infinitesimally detaching the TT solution Φ from the left edge of the exponential

interaction.
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t=2

t=3

t=5

t=10

1 2 3 4

λBCFT
0.05

0.10

0.15

0.20

0.25

0.30

0.35

λSFT

t=100

t=200

t=300

t=500

λ����= �

� �

0.1 0.2 0.3 0.4 0.5

λBCFT
0.05

0.10

0.15

λSFT

Figure 2. Plot of λSFT(λ) for a set of parameters t in the function ft(z) entering the definition

of the TT solution: O(1) values of the gauge parameter t are shown on the left and larger values

on the right. Dotted curves are extrapolations (for large t the numerical integrations are very slow

so we selected a region around the peak). To set the scale: the vertical dashed line corresponds to

λBCFT = 1
2
√
2

which, for the marginal deformation generated by j(s) =
√

2 cosX(s), is the point

where the initial Neumann boundary condition becomes Dirichlet. The Siegel gauge solution stops

existing approximately at this point [10].

In figure 2 we plot the marginal coefficient as a function of λ for a selection of t

parameters. The plots reveal a clear peak in λSFT and as a result for a given λSFT we find

two corresponding values of λBCFT. Had we included smaller values of t (corresponding

to less localized gaussians) we would have seen λSFT crossing the horizontal axis and

approaching zero from below. This implies, in this smaller t regime, a quadruple degeneracy

for sufficiently small λSFT, taking into account also negative values of λBCFT. For t & 2

the degeneracy is only two-fold and this is the region that we show in the plots. From the

plots it is also quite evident that at large λ the marginal field relaxes to zero. Notice that

the possibility that the maximum of λSFT is reached at the point λBCFT = 1
2
√

2
(which is

approximately what happens in Siegel gauge [10], and for a range of t parameters also here)

is excluded to be true in general. The position of the maximum is not gauge invariant.

In figure 3 we plot the tachyon coefficient. Notice that for large λ it tends to a positive

constant. This positive constant, for large t, approaches the coefficient of the simple tachyon

vacuum ΨTV = 1
1+K c(1 +K)Bc of [15]

Tsimple =
1

4π

∫ ∞
0

d` e−`(`+ 1)2

(
1− cos

π

`+ 1

)
= 0.284394. (3.27)

3.2 Asymptotics for large λ and large t

The numerical integrations we have just performed suggest that something non-trivial

must happen for large λ since the marginal coefficient relaxes to zero, while the tachyon

coefficient to a positive constant. Naively one would think that both quantities should

relax to zero because of the exponential suppression ∼ e−λ2Gf̄ , but evidently this is not the

case. To understand what happens in the λ→∞ limit, we first notice that

lim
λ→∞

λ2e−λ
2Gf̄ (`ŷ,`+1) = δ

[
Gf̄ (`ŷ, `+ 1)

]
. (3.28)

– 8 –
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t=2

t=3

t=5

t=10

Tsimple TV

1 2 3 4

λBCFT
0.1

0.2

0.3

T

Tλ→∞(t)
Tsimple TV

5 10 15 20
t

0.22

0.24

0.26

0.28

0.30

0.32

Tλ→∞

Figure 3. On the left: plot of the tachyon coefficient T (λ) for a choice of t-parameters, together with

the coefficient of the simple tachyon vacuum. The vertical dashed line corresponds to λBCFT = 1
2
√
2
.

On the right: exact large λ asymptotic value for the tachyon coefficient as a function of the gauge

parameter t; for large t we recover the simple tachyon vacuum.

This is the leading term in the asymptotic distributional expansion

λ2e−λ
2f(y) =

N∑
n=0

(−1)n
δ(n)[f(y)]

λ2n
+O(λ−2N−2). (3.29)

Using the explicit definitions (3.11), (3.12), (3.23) this further simplifies to

λ2e−λ
2Gf̄ (`ŷ,`+1) =

√
2

π

1

`t
δ(ŷ) +O

(
1

λ2

)
. (3.30)

This essentially means that the large λ behavior is dominated by surfaces where the de-

formed region has zero width and the exponential term attains unit value

e−λ
2Gf̄ (y→0,L) = 1.

Therefore the string field coefficients for large λ are not necessarily exponentially sup-

pressed. Let us start by looking at the fate of the tachyon coefficient. Using the above

results we get

lim
λ→∞

T (λ) =
1

2t

√
2

π

∫ ∞
0

d` e−`(`+ 1)

[
lim
ŷ→0
Pf̄ (`+ 1/2, `ŷ, `+ 1)

]
. (3.31)

We can further compute

lim
ŷ→0
Pf̄ (`+ 1/2, `ŷ, `+ 1) = t

√
π

2

(`+ 1)

2π

(
1− e

π2

2(`+1)2t2 cos
π

`+ 1

)
. (3.32)

The large λ asymptotic value for the tachyon coefficient is thus given by

T (λ) =
1

4π

∫ ∞
0

d` e−`(`+ 1)2

(
1− e

π2

2(`+1)2t2 cos
π

`+ 1

)
+O

(
1

λ2

)
, (3.33)

and it is shown in figure 3.
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Notice that for very large t this quickly approaches the tachyon coefficient (3.27) of

the simple tachyon vacuum. On the contrary, as expected, the t → 0 limit is very badly

behaved which is related to the identity singularities of the TT solution [3].

If we apply the same analysis to λSFT we now find

λSFT(λ) =

√
2

π

λ

t

∫ ∞
0

d` e−`
[

lim
ŷ→0
Sf̄ (`+ 1/2, `ŷ, `+ 1)Pf̄ (`+ 1/2, `ŷ, `+ 1)

]
+O

(
1

λ

)
.

(3.34)

Now the ŷ → 0 limit also includes Sf̄ (3.15), and it is not difficult to see that the limit

vanishes as it is the difference of two identical converging integrals. Therefore the λ-

coefficient in the asymptotic expansion vanishes and we are left with6

λSFT(λ) = O

(
1

λ

)
, λ→∞, (3.35)

which is indeed much milder than the naively expected exponential suppression.

At last we would like to extract the t→∞ limit of our solution at fixed λ, where the

exponential interaction e−
∫
dsJ(s) localizes to the boundary. In order to do so we should

note that the G function (3.11), diverges for large t unless ŷ = 0 (which corresponds to a

vanishing-width deformed region). To extract the relevant behavior in this limit it is useful

to use the asymptotic formula∫ ∞
−∞

dξe−bξ
2

ln

(
1 +

a2

sinh2 ωξ

)
∼ 2πa

ω
, a→ 0, (3.36)

which allows to extract the small ŷ contribution from G

G(`ŷ, `+ 1) ∼ (`+ 1)t√
2π

sin
πŷ`

`+ 1
, ŷ → 0. (3.37)

Then, in the t→∞ limit we get the same localization mechanism (3.28) as in the large λ

case, where now the role of large λ2 is played by large t, for fixed λ

e−λ
2G(`ŷ,`+1) ∼

√
2

π

1

λ2t`
δ(ŷ). (3.38)

Following the same steps as for the λ→∞ case, we now find

lim
t→∞

T (λ) =


1

4π

∫ ∞
0

d` e−`(`+ 1)2

(
1− cos

π

`+ 1

)
= Tsimple, λ 6= 0,

0, λ = 0,

(3.39)

lim
t→∞

λSFT(λ) = 0. (3.40)

It is difficult to directly compare these limits with the data because the numerical

integrations are very slow in this region, but we have checked that the height and the

position of the peaks in λSFT(λ, t) in figure 2 are nicely fitted by

λmax
SFT(t) ∼ 0.36

(
1

ln t

)0.44

, (3.41)

6If needed, the precise t-dependent coefficient of λ−1 can be computed by taking into account one

subleading correction in (3.29).
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λcrit
BCFT(t) ∼ 0.59

(
1

ln t

)0.44

, (3.42)

which confirm our analysis for t→∞.
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