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Universidad de Granada, E-18071 Granada, Spain

E-mail: maraujo@mpp.mpg.de, darean@mpp.mpg.de, jke@mpp.mpg.de,

jlizan@ugr.es

Abstract: Using gauge/gravity duality, we investigate charge localization near an inter-

face in a strongly coupled system. For this purpose we consider a top-down holographic

model and determine its conductivities. Our model corresponds to a holographic interface

which localizes charge around a (1+1)-dimensional defect in a (2+1)-dimensional system.

The setup consists of a D3/D5 intersection at finite temperature and charge density. We

work in the probe limit, and consider massive embeddings of a D5-brane where the mass

depends on one of the field theory spatial directions, with a profile interpolating between

a negative and a positive value. We compute the conductivity in the direction parallel

and perpendicular to the interface. For the latter case we are able to express the DC

conductivity as a function of background horizon data. At the interface, the DC conduc-

tivity in the parallel direction is enhanced up to five times with respect to that in the

orthogonal one. We study the implications of broken translation invariance for the AC and

DC conductivities.
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1 Introduction

The AdS/CFT correspondence [1–4] and its extensions to more general examples of gauge/

gravity duality are by now well established as a powerful modeling tool for strongly coupled

systems. This applies in particular to systems of relevance for condensed matter physics.

A number of relevant phenomena in condensed matter physics involve the presence of

an interface between materials of different kind. Such interfaces represent a localized im-

purity which breaks translational symmetry in the system. Broken translational symmetry

allows the charge carriers to dissipate their momentum. In the case of strong coupling

where the standard quasiparticle picture does not apply, many questions about the exact

form of this mechanism are still open. Gauge/gravity duality reveals itself as a natural

tool to further explore momentum dissipation at strong coupling, given that it provides

a method for describing strongly coupled systems by mapping them to weakly coupled

gravity theories.

Recently, significant progress has been achieved in studying holographic systems with

broken translation invariance by numerically solving the resulting equations of motion,

– 1 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
6

which are in general partial differential equations (PDEs). These include setups with

different holographic realizations of lattices [5–12] through periodically space-dependent

sources, and also setups implementing disordered sources [13–16]. Moreover, a lattice

realization where PDEs are avoided, which goes under the name of Q-lattices given its

resemblance to the construction of Q-balls [17], was introduced in [18] and further explored

in [19, 20]. Alternatively to introducing translational symmetry breaking by spatially

modulating the sources of conserved currents, momentum relaxation may also be realized

by explicitly breaking diffeomorphism invariance in the bulk [21–27], which in [28] led to

progress on the study of the conductivity for systems with broken translational symmetry.

An example is given by helical lattices [29–33]. Furthermore, translation invariance may

also be broken spontaneously [34, 35].

In this paper we consider the breaking of translation invariance by an interface. We

consider a top-down model involving a probe brane with a kink geometry. The basic idea

is to incorporate the existence of massless modes localized on an interface by letting the

embedding vary over one of the boundary coordinates, say x, in addition to being a function

of the radial coordinate. The embedding function asymptotes to a positive value m (with

mq = 2πα′m the quark mass) for x → ∞ and to −m for x → −∞, while it vanishes at

x = 0, therefore introducing a defect there. Our work is motivated in part by a model

constructed in [36] to holographically realize topological insulators by means of the D3/D7

intersection. This kind of configuration was used in [37] for both D7 and D5 probe branes

to verify the expected topologically protected transport properties for (2+1)- and (1+1)-

dimensional defects, which are holographic constructions of respectively (2+1)-dimensional

Topological Insulators and (1+1)-dimensional Quantum Spin Hall Insulators, see also [38].

The interpretation as a topological insulator arises from the localization of fermions at the

interface. In fact, as already shown within field theory in [39, 40], in 3+1 dimensions there

are massless localized fermions for a Lagrangian of the form

L = ψ̄
(
i/∂ −mq(x)

)
ψ , (1.1)

in which mq(x) jumps from a positive to a negative value at an interface. The thermody-

namic properties of the D7-brane model with a kink [36] were computed in [41], where the

PDE equations of motion for the brane embedding in a black D3-brane background were

solved, and the relationship between the charge density and the chemical potential was

analyzed in connection with the possible fermionic character of the gapless interface exci-

tations. A supersymmetric realization of the D7-brane holographic Topological Insulator

model was given in [42].

The present paper relies on the use of probe branes, and therefore past results for

these are relevant for explaining the new structures we construct. Hence we briefly review

the pertinent features of holographic probe brane intersections. As part of the quest for

holographic models of QCD, which requires the presence of fundamental degrees of freedom,

probe D-brane systems were the subject of intensive study in the past. By considering Nf

D7-branes embedded in the background generated by N D3-branes (AdS5×S5) in the limit

Nf � N , one can construct the holographic dual of N = 4 SU(N) SYM with Nf N = 2

matter hypermultiplets, which are realized by the open strings stretching between the D3-

and D7-branes. The probe D7-branes are therefore called flavor branes [43, 44]. Moreover,
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a finite temperature is introduced by considering the background generated by black D3-

branes, while nonzero quark density , i.e. density of the fundamental degrees of freedom,

may be added by switching on the temporal component of the worldvolume gauge field

on the D7-branes. A similar construction with D5 instead of D7 flavor branes overlapping

with the background D3-branes along 2+1 dimensions is dual to N = 4 SYM with N = 2

fundamental matter living on a (2+1)-dimensional defect [45–47]. At finite density and

magnetic field, these D3/D5 systems display a BKT phase transition [48]. Analyses of

finite temperature setups with probe D7-branes [49, 50] and probe D5-branes [51] have

established two qualitatively different embeddings: those in which the brane ends before

reaching the black hole horizon, denoted Minkowski embeddings, and those in which the

brane reaches the horizon, called black hole embeddings. There is a first order phase

transition between both types of embedding which has been identified with the melting of

mesons in the dual field theory [52]. However, in the presence of a nonzero quark density,

only black hole embeddings are possible [53–55].

In this work we consider a D5-brane probing the black D3-brane background. The

D5-brane shares 2+1 directions with the D3-branes, and hence gives rise in the dual theory

to fundamental matter living on a (2+1)-dimensional defect. Furthermore, the embedding

presents a kink-like profile as described above, thus creating a (1+1)-dimensional interface

at x = 0, where the mass of the quarks vanishes. A finite quark density is introduced

via the temporal component of the worldvolume gauge field. Since our embeddings are

of the black hole kind, this charge density is non-vanishing along the entire system, that

is for all x. There exist however homogeneous black hole embeddings where the charge

density is arbitrarily small, so we can engineer kink profiles for our system such that the

charge density is very small away for the interface. We construct numerical solutions

corresponding to these configurations, and check that indeed the charge density peaks at

the interface. Next, we concentrate on the study of the conductivities of the system. We

work in the linear response regime, hence to compute the conductivities we just need study

the fluctuations of the worldvolume gauge fields, which couple among themselves and with

those of the embedding field. Moreover, for simplicity in this work we do not consider

the contribution of a WZ term proposed in [37] as dual to the Quantum Spin Hall effect.

This term results from fluctuations of the RR C4 form of the background. We leave the

inclusion of such a term for future work.

The study of the conductivities of our charged holographic interface gives rise to the

main results of this work, which we now summarize.

• We compute the AC and DC conductivities both in the direction parallel1 to the

interface (σy) and in the one orthogonal to it (σx). Away from the interface, both

conductivities coincide and agree with that of an homogeneous system corresponding

to an embedding with constant mass m. In particular, the resonances corresponding

to the mesonic quasi-particles are clearly visible. At the interface, where the quarks

are massless, the conductivity exhibits at low frequency a peak reminiscent of Drude

1Since the fundamental matter sourced by the D5 lives in a (2+1)-dimensional defect, we consider our

system to be (2+1)-dimensional, denoting by x the direction orthogonal to the (1+1)-dimensional interface

and by y the one parallel to it. Notice that the system is therefore homogeneous along y.
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theory. Notice that we are working in the probe approximation, and therefore the

charge carriers can relax momentum into the background. Hence, no infinite DC

conductivity is to be expected, see [56, 57].

• Due to current conservation, σxDC is independent of x for a system with a codimension

one impurity like ours. Following [58, 59], we can express σxDC purely in terms of

horizon data, i.e. the behavior of the functions describing the embedding at the black

hole horizon. This DC conductivity is basically determined by the system away from

the interface, where the charge density is very low.

• The DC conductivity is enhanced along the interface. We observe that σyDC(x = 0)

is much larger than σxDC. While the latter is determined by the system away from

the interface, where the charge density can be very low, σyDC(x = 0) is roughly

proportional to the value of the charge density at the interface, and is therefore

enhanced with respect to σxDC.

• The translational symmetry breaking effects sourced by the interface result in an

enhancement of σyDC in its vicinity. Although the system is homogeneous in the y

direction, thanks to the non-linearities of the DBI action, a current along y is sensitive

to the gradients along x of the embedding fields. We observe a transfer of spectral

weight in σy from mid to low frequencies, resulting in an enhancement of σyDC.

• We study the competing effects that the presence of the interface has on the DC

conductivity in the transverse direction, σxDC. These depend on the relative width

of the interface with respect to the total length of the system. When that width

is negligible, σxDC is just determined by the homogeneous system away from the

interface. On the other hand, when the interface has a sizeable width, it enhances

σxDC. Notice that in this case the interface introduces two competing effects: an

increase of the charge density on the one hand, and the presence of inhomogeneities

along x on the other. Although, as discussed in [59], these inhomogeneities should

suppress the conductivity, we observe that the interface always produces an increase

of σxDC with respect to an embedding with constant mass m.

To summarize, up to well-known effects characteristic of holographic brane intersec-

tions, like the constant conductivity in the high frequency limit, or the finite DC conductiv-

ity, the behavior of the conductivity observed in our work agrees with broad expectations

for a system where charge is localized on a (1+1)-dimensional interface. Moreover, some

of the translational symmetry breaking effects sourced by the interface, as the sensitivity

of σyDC to the inhomogeneities in the orthogonal direction thanks to the DBI action, are

likely to be particular to strongly coupled systems.2

This paper is organized as follows. Section 2 is devoted to the construction of the

holographic interface. We first introduce the probe-brane embedding of interest and write

down the corresponding action. The embedding is described by two fields, for which we

present the IR and UV asymptotic solutions. From the UV solutions we read the values of

2See [60] for recent results on conductivities in the presence of spatially modulated sources.
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the chemical potential and the mass, which determine the embedding. We then character-

ize the part of the phase diagram accessible to the embeddings with finite charge density.

In subsection 2.3 we describe the inhomogeneous embeddings that realize a charged inter-

face. Finally, in subsection 2.4 we discuss the numerical methods employed to solve the

equations of motion and present examples of numerical solutions corresponding to holo-

graphic interfaces. We study the charge density, showing that it peaks at the interface,

and analyze how it scales with the chemical potential. Section 3 contains the main results

of this work, namely the study of the conductivities for a holographic charged interface.

We start by introducing the fluctuations relevant to the computation of the conductivities.

We compute the quadratic action for these fluctuations, study the asymptotic solutions

of the equations of motion, and discuss the relevant boundary conditions. Subsection 3.2

is focused on the computation of the DC conductivity σxDC, which can be expressed in

terms of the horizon data. Next, in subsection 3.3, we explain our numerical methods and

boundary conditions, defining two kinds of systems, long and short, for which σxDC exhibits

different behaviors. Finally, in subsection 3.4 we present and discuss the results for the

conductivity of our setup. We write our conclusions in section 4, where we also discuss

some possible directions of future research. We have furthermore included two appendices.

Appendix A contains the background equations of motion. In appendix B we write down

the quadratic action for the fluctuations relevant for studying the conductivities.

2 Localized charge at brane intersections

In this section we consider D3/D5 intersections at nonzero temperature and finite charge

density, namely in the presence of a finite density of the fundamental matter dual to the

open strings stretching between the D3- and D5-branes. The supersymmetric intersection

of N D3- and Nf D5-branes along 2+1 spacetime dimensions is dual to (3+1)-dimensional

N = 4 SYM with Nf fundamental hypermultiplets living on a (2+1)-dimensional defect [45,

46]. We work in the probe limit and at nonzero temperature, hence we treat the D5-branes

as probes in the geometry generated by the black D3-branes.

2.1 Black D3-branes

According to the AdS/CFT prescription originally proposed in [1], N = 4 super Yang-

Mills theory with an SU(Nc) gauge group is holographically dual to type IIB string theory

on AdS5×S5 with Nc units of flux of the Ramond-Ramond five form. The string coupling

gs, and the coupling of the gauge theory gYM are related through gs = g2
YM/2π. The

AdS curvature radius L is furthermore related to Nc and the string tension (2πα′)−1 by

L4/α2 = 2g2
YMNc ≡ 2λ, where λ is the ’t Hooft coupling. In the limit of large Nc and large

λ the string side of the duality reduces to weakly coupled classical gravity.

We are interested in finite temperature configurations, and therefore consider the ge-

ometry generated by Nc black D3-branes, whose metric reads3 [50]

ds2 =
L2

z2

(
−f(z)2

h(z)
dt2 + h(z) d~x2 + dz2

)
+ L2 dΩ2

5 , (2.1)

3This metric is related to the more standard Schwarzschild-AdS presentation via the change of coordi-

nates z2 = 2L4/
(
u2 +

√
u4 − u4

0

)
(see also [50]).
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where ~x = (x1, x2, x3), dΩ2
5 is the metric of a unit radius S5, and

f(z) = 1− z4

z4
0

, h(z) = 1 +
z4

z4
0

. (2.2)

This geometry becomes asymptotic to AdS5 × S5 in the small z limit, with the boundary

of AdS5 being at z = 0, while it presents a horizon at z = z0. Accordingly, the Hawking

temperature of the black hole reads

T =

√
2

π z0
. (2.3)

It is useful to define the dimensionless coordinates

(z̃, x̃µ) =
1

z0
(z, xµ) , (2.4)

in terms of which the metric takes the form (2.1) with z0 = 1. From now on we always use

these dimensionless coordinates and drop the tilde for presentational purposes.

2.2 Probe D5-brane

As anticipated, we embed a probe D5-brane in the background generated by the stack of

D3-branes (2.1). The embedding is better described by writing the metric of the S5 in

terms of two S2 as follows

dΩ2
5 = dθ2 + sin2 θ dΩ2

2 + cos2 θ dΩ̃2
2 . (2.5)

We consider the following configuration

t x1 x2 x3 z Ω2 Ω̃2 θ

D3 × × × ×
D5 × × × × ×

(2.6)

where the D5-brane shares two Minkowski directions with the D3-branes generating the

background, is extended along the radial direction z, and wraps an S2 (Ω2) inside the

S5, while it is located at a fixed point of the remaining S2 (Ω̃2). The embedding is then

described by the coordinate θ, which determines the radius of the S2 wrapped by the

D5-brane. In order to simplify the analysis we define

cos θ = χ , (2.7)

in terms of which we describe the embedding.

We are interested in configurations with finite charge density of the fundamental fields

introduced by the flavor D5-brane. Therefore we turn on a nonzero temporal component

of the U(1) worldvolume gauge field

A = At dt . (2.8)

Indeed, its boundary value determines the value of the chemical potential in the dual theory.

The embedding of the probe D5-brane is then determined by the two fields χ and At.

– 6 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
6

2.2.1 Action and equations of motion

In order to describe setups where the embedding of the D5-brane depends on one of the

spatial directions, we let the fields χ and At depend on the radial variable z, and on

one of the Minkowski directions; x1 (just x in the following).4 Hence the embedding is

characterized by χ(z, x) and At(z, x).

The dynamics of the system is governed, in the probe approximation, by the DBI

action for the D5-brane in the background sourced by the black D3-branes

S = −NfTD5

∫
d6x

√
− det(P [g] + 2π α′ F ) , (2.9)

where P [g] is the pullback of the metric on the worldvolume of the D5-brane and F the

field strength of the worldvolume U(1) gauge field. For our setup the DBI action can be

written as5

S = −Nf TD5 L
6

∫
dt d2x dz dΩ2 f z

−4
√
h (1− χ2) (Sχ + Sφ + Sint) , (2.10)

with

Sχ = 1− χ2 + z2χ′2 +
z2 χ̇2

h
, (2.11)

Sφ = −z
4(1− χ2)

f2

(
hφ′2 + φ̇2

)
, (2.12)

Sint −
z6(χ̇φ′ − χ′φ̇)2

f2
, (2.13)

where a tilde denotes a derivative with respect to z and a dot a derivative with respect

to x. Moreover, φ stands for the dimensionless temporal component of the gauge field

defined via

φ = 2πα′
z0

L2
At . (2.14)

The equations of motion for φ(z, x) and χ(z, x) can be readily obtained from the

action (2.10). The resulting lengthy expressions are shown in appendix A. In the following

we analyze their IR (z → 1) and UV (z → 0) asymptotic solutions.

IR asymptotics. As we explain below, we are interested in solutions describing black

hole embeddings for which the brane ends at the horizon. Hence regularity at the horizon

requires φ and χ′ to vanish there, restricting the IR solution to the following form

φ(z, x) = a(2)(x) (1− z)2 +O((1− z)3) , (2.15a)

χ(z, x) = C(0)(x) + C(2)(x) (1− z)2 +O((1− z)3) , (2.15b)

4As far as the dependence on x2 and x3 is concerned, it is consistent to locate the D5-brane at x3 = 0,

and consider embeddings homogeneous along x2, which we call y in the following.
5It is straightforward to check that for the embedding at hand there is no contribution to the action

coming from the WZ term.
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with

C(2)(x) =

(
2− a(2)(x)2

) [
C(0)′′(x)(C(0)(x)2−1)− C(0)(x)

(
3C(0)′(x)2+4

)
+4C(0)(x)3

]
8
[
C(0)′(x)2 − 2C(0)(x)2 + 2

] .

(2.16)

UV asymptotics. At the boundary, the asymptotic form of the fields χ(z, x) and A(z, x)

can be found to be of the form

φ(z, x) = µ(x)− ρ(x)z +O(z2) , (2.17a)

χ(z, x) = m(x) z + ψ(x)z2 +O(z3) . (2.17b)

Let us recall that the holographic dictionary relates µ(x), and ρ(x) respectively to the

chemical potential and charge density of the U(1) flavor symmetry supported by the D5-

brane. As for the asymptotic form of χ, the leading piece m(x) is proportional to the

asymptotic distance M̄ between the probe D5 and the D3-branes generating the back-

ground, and is therefore interpreted as the quark mass. The subleading contribution ψ(x)

is associated to the vacuum expectation value of the bilinear quark-antiquark operator

sourced by the flavor D5-brane, namely the quark condensate. In order to make these

identifications more precise, let us bring the dimensions back into the game. First, we

recall that the dimensionful chemical potential µ̄ and charge density ρ̄ are read from the

asymptotic form of the temporal component of the gauge field as

At = µ̄(x)− ρ̄(x)z + . . . . (2.18)

Hence, recalling the redefinitions (2.4) and (2.14), the temperature of the black hole (2.3),

and using that
√
λ = L2/(

√
2α′) we arrive at

µ =
2√
λ

µ̄

T
, ρ =

2
√

2

π
√
λ

ρ̄

T 2
. (2.19)

As for the quark mass, we follow [50] and define Mq =
√
λ M̄/2, where M̄ = m/z0. This

allows us to write

m =
2
√

2

π
√
λ

Mq

T
. (2.20)

As is clear from (2.17), the UV solutions depend on four parameters (functions of x): µ,

ρ, m, and ψ, while as we see in (2.15), the IR behavior is determined by two free functions,

namely C(0)(x) and a(2)(x). Thus we expect a two-parameter family of solutions, which we

choose to describe in terms of the chemical potential µ, which we choose to be independent

of x, and the mass m(x). Consequently, once µ and m(x) are fixed, the embedding of the

probe D5-brane is completely fixed.

2.3 Inhomogeneous embeddings and charge localization

The phenomenology of Dp/Dq brane intersections, both at zero and finite temperature,

with and without charge density, has been thoroughly studied over the last ten years, see

for instance [61–63] and references therein.
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q
/
T

µ̄/Tµ̄/T

Figure 1. Quark mass m = Mq/T versus chemical potential µ = µ̄/T for black hole embeddings

corresponding to various values of the charge density ρ = ρ̄/T 2, decreasing from right to left: ρ = 2,

1.25, 0.6, 0.25, 0.1, 0.01, 10−4, 10−6. The shaded area is not accessible by BH embeddings, and is

asymptotically delimited (at large µ) by m > 1.00µ + 1.41. In the inlay we zoom in on the region

of low µ.

We now review some features that are relevant for our construction. Embeddings of

the probe D5-brane in the black D3-brane background generally fall into two qualitatively

different categories labeled Minkowski and black hole (BH). Minkowski embeddings are

those in which the D5-brane never reaches the black hole, while for the BH embeddings the

probe brane ends at the horizon. Minkowski embeddings exist above a certain value of the

mass, while BH embeddings are possible for any mass. A phase transition between these two

embeddings occurs as the ratio Mq/T is varied; this is known as meson melting [50] since

stable mesonic states exist for Minkowski embeddings, but not for black hole ones. This

phase transition also happens in the presence of a chemical potential, and the corresponding

phase diagram has been studied in [51] (see also [54]).

A feature that is crucial for our construction stems from the fact that at nonzero

charge density only BH embeddings are possible. As explained in [53], the fundamental

strings realizing the charge density would have nowhere to end in a Minkowski embedding.

Moreover, as illustrated in figure 1, for a large enough Mq/T , BH embeddings exist only

above a nonzero chemical potential µ̄/T . In particular, the shaded region in the plot is

only accessible by Minkowski embeddings, which have zero charge density. Since it will

be useful later, in figure 2 we plot the same data as in figure 1, but now for µ̄/Mq versus

T/Mq. In terms of these variables the forbidden region corresponds to the triangular region

visible at T/Mq . 0.6

As explained above, our purpose is to construct an embedding depending on one spatial

direction x, that localizes charge density along an interface situated at x = 0. This can be

– 9 –
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2.5

2.0

1.5

1.0

0.5

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T/Mq

µ̄
/M

q

Figure 2. As in figure 1 we plot lines of constant charge density for BH embeddings. From bottom

(light gray) to top (black) they correspond to ρ = 10−6, 0.25, 0.6, 1.25, 2, 3, 10.

done, following [36], by means of an embedding with constant chemical potential µ = µ̄/T ,

and an x-dependent mass (m = Mq/T )

m(x) = M

(
2

1 + e−a x
− 1

)
, (2.21)

that interpolates between two constant values; M at x→ −∞, and −M at x→∞, while

vanishing at the origin, m(0) = 0.6 Notice that a is a constant parameter that fixes the

steepness of the kink. Ideally, if we chose µ and M to lie in the shaded region of figure 1,

asymptotically, at x→ ±∞, the embedding should be of the Minkowski type, and therefore

the charge density would vanish. At the interface (x = 0) though, the mass vanishes, the

brane must intersect the BH, and, for a nonzero µ, some charge density is induced. In such

a construction the charge density would exactly vanish towards the spatial edges, while it

would peak at the interface. Notice that by increasing a in (2.21) the transition can be

made as abrupt as desired, and therefore the charge may be localized at x ∼ 0. However,

such an embedding, with a varying topology along x, turns out to be too challenging in

numerical terms. Instead, we do as in [41], and settle for a more modest construction: we

choose M and µ to be just outside, but at the edge of, the shaded region of figure 1. So

we deal with embeddings that are of the BH kind everywhere. Notice that in principle one

can pick M and µ such that the corresponding embedding has an arbitrarily small charge

density induced at the edges. Then, effectively the charge density is localized around the

interface, where the embedding becomes massless.

6As explained in [37], embeddings with positive and negative m correspond respectively to the D5-brane

sitting at opposite poles of the Ω̃2 in (2.6). As in [36] we account for the case m < 0 by letting χ become

negative.

– 10 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
6

2.4 Numerical results

In this section we present numerical solutions realizing the inhomogeneous embeddings

described in the previous section. In order to construct those embeddings we must solve

the equations of motion for the fields χ(z, x) and φ(z, x), and the inhomogeneous mass

profile boundary condition (2.21) implies that we have to deal with two coupled second

order PDEs which we solve numerically.

Before describing our numerical method, let us recall the boundary conditions to be

imposed on the two equations of motion. First, in the UV (z = 0), from (2.17) and (2.21),

we impose

χ′(0, x) = M

(
2

1 + e−ax
− 1

)
, φ(0, x) = µ , (2.22)

where µ determines the homogeneous chemical potential of the solution, while M fixes the

mass of the embedding at the edges of the system. On the other hand, at the horizon

(z = 1) the asymptotic solutions (2.15) result in the following boundary conditions

φ(1, x) = 0 , χ′(1, x) = 0 . (2.23)

As for the boundary conditions at the spatial edges, note that the symmetry of our

setup does not allow the use of periodic boundary conditions. We take our system to have

a finite length (x ∈ [−L,L]), but require it to be large enough so that it resembles an

homogeneous embedding towards the spatial edges. Consequently we impose the following

Neumann boundary conditions

χ̇(z,±L) = 0 , φ̇(z,±L) = 0 , (2.24)

which ensure that the effects of the inhomogeneity sourced by the mass profile (2.21) fade

away towards the edges.

Regarding the numerics, we resort to pseudospectral methods implemented in Math-

ematica, discretizing the plane (z, x) on a grid of Chebyshev points, and then solving the

resulting set of nonlinear algebraic equations via Newton-Raphson iteration. Defining the

variations of the fields f = (χ, φ) in each iteration by δf , we consider the accuracy of our

solution to be given by Max |δf |.
In addition, we can benefit from the symmetry of our setup by noting that χ(z, x) is

an odd function of x, whereas φ(z, x) is even

χ(z, x) = −χ(z,−x) , φ(z, x) = φ(z,−x). (2.25)

This follows from the form of the equations of motion together with our UV boundary

conditions (2.22), and helps us making the numerics more efficient in two ways. First, it

allows us to solve for half the range along x, imposing (2.24) at x = L, while in view of 2.25

at x = 0 we must have

χ(z, 0) = 0 , φ̇(z, 0) = 0. (2.26)

Second, given that Chebyshev collocation points are more densely concentrated towards

the boundaries of the interval, this reduction of the integration range results in a better

– 11 –
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Figure 3. Computed solutions of χ(z, x) and A(z, x) for µ = 4 and M = 5.34.

accuracy of our solutions around the interface (at x = 0), where the gradients along x

are larger.

Having described the numerical method we employ to construct the embeddings, we

now present the output of the numerical computation. We have used a grid of 50 × 50

collocation points for the half-interval of integration ranging from x = 0 to x = 10.

According to what we have discussed in section 2.3 we have chosen the values of M

and µ to be such that the charge density induced at the edges of our system is much lower

than that at the interface. In figure 3 we plot the numeric solution for the fields χ(z, x)

and φ(z, x), for a case where µ = 4 and M = 5.34. The parameter a is chosen so that

the numerics remain stable while still having a steep embedding. a = 3 turns out to be

good enough for this.7 It is worth mentioning how the spatial inhomogeneity introduced

by the step-like boundary condition (2.21) affects differently the two fields defining our

setup. While for χ the inhomogeneity is amplified towards the horizon, for the gauge field

φ it dies away towards the horizon.

In figure 4 we present the resulting charge density, which through (2.17a) is given by

the radial derivative of φ evaluated at the boundary. Indeed, we see that the charge density

peaks at the interface, where its value is about five times the value at the edges.

Finally, it is interesting to study how the charge density depends on the chemical

potential, both at the interface and far from it. This is plotted in figure 5, where we

observe that the scaling ρ ∝ µ2 expected for a D3/D5 intersection [64] is approached

everywhere in our system for large enough µ.

3 Conductivities

After constructing a holographic setup localizing charge along a (1+1)-dimensional defect,

we go on to study its response to an applied electric field. In the rest of this work we

study the AC and DC conductivities of our system both in the direction parallel, y, and

orthogonal to the defect, x. In order to do so, we compute the linear response of our

7While the numerics allow for much larger values of a for the computation of the background, these pose

some difficulties when it comes to solving for the perturbation fields.
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Figure 5. Charge density ρ(x) versus chemical potential µ for an embedding with M = 5.3. The

blue line corresponds to the interface, while the red one to one of the spatial edges. The charge

density has been normalized to unity at µ = 1, m = 0. The dashed line illustrates the fit ρ = µ1.96

performed for µ > 74.

background when an electric field is switched on along the boundary. We must then study

the fluctuations of the worldvolume gauge field along the Minkowski directions. In general

these are coupled among them and to the fluctuations of the embedding field χ, thus we

have to solve for the whole set of coupled fields.

3.1 Fluctuations

We are interested in switching on fluctuations of the gauge field realizing an electric field of

constant modulus and frequency ω along the boundary, hence at z = 0 those fluctuations

must satisfy

fti = (iω ei) e
iω t , (i = x, y) . (3.1)
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where fti stands for the field strength of the fluctuations of the gauge field, and we are

considering both the case when the electric field is orthogonal to the interface (with constant

modulus ex), and parallel to it (ey). Consequently, we must study the following set of

fluctuations8

Aµ = Aµ(z, x) + aµ(z, x)eiωt , (3.2a)

χ = χ(z, x) + c(z, x)eiωt , (3.2b)

where the uppercase Aµ and χ stand for the background fields, while lowercase aµ and c

refer to the fluctuations of the gauge field and the embedding scalar respectively.9 Our

background, described by At(z, x) and χ(z, x), is both time invariant and translation in-

variant along the y direction. This allows us to Fourier transform both along t and y, and

since we are interested only in the conductivity we consider our fluctuations to have no net

spatial momentum. In addition, we choose to work in the radial gauge and therefore set

az(z, x) = 0 . (3.3)

We are working in the linear response regime, hence the equations of motion for the

fluctuations (3.2) follow from expanding the DBI action (2.9) up to second order in those

fluctuations. The resulting quadratic action S(2) is shown in appendix B. Although straight-

forward to derive, the resulting equations of motion are lengthy and we do not reproduce

them here. However, it is worth mentioning that the component of the gauge field fluc-

tuations parallel to the defect, ay, decouples from the rest of the fluctuations. Hence to

study the conductivity σy we only need to solve the corresponding linear partial differen-

tial equation (PDE) for ay. Instead, ax is coupled to both at, and c. Their dynamics is

described by a system of three second order linear PDEs plus a first order constraint PDE

resulting from the equation of motion for az.

The conductivity is given by the retarded correlator of the worldvolume U(1) current.

In order to compute it, we must solve the equations of motion of the fluctuations with

infalling boundary conditions at the horizon. Then we can read the electric current on the

boundary, ji, and therefore compute the conductivity as10

σi(ω, x) =
ji
iω ei

= lim
z→0

fiz
fti

, (i = x, y) . (3.4)

We now study the asymptotic behavior of the fluctuations both in the IR and UV.

This allows us to properly choose the boundary conditions when solving the corresponding

8We are working with the dimensionless coordinates (2.4), hence ω is dimensionless, and in terms of the

dimensionful frequency w, one has ω =
√

2w/(π T ).
9We need apply the same field redefinition as in (2.14) to the fluctuations of the gauge field. However,

for notational simplicity we do not introduce a new label and just assume that we have rescaled the fields

as aµ → L2/(2πα′ z0) aµ .
10Here and in the following we are rescaling the conductivity by the dimensionless constant appearing in

front of the action (2.10), i.e. σ → σ/(NfTD5 L
6), so that we recover the usual high frequency CFT result

limω→∞ σ = 1.
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equations of motion. It is easy to check that the fields behave in the UV (z → 0) as

aµ(z, x) = a(b)
µ (x)− jµ(x) z +O(z2) , (µ = t, x, y) , (3.5a)

c(z, x) = c(b)(x) z +O(z2) , (3.5b)

while in the IR (z → 1) they take the form

aµ = (1− z)iα±
(
a(0)
µ (x) + a(1)

µ (x) (1− z) +O((1− z)2)
)
, (3.6a)

c = (1− z)iα±
(
c(0)(x) + c(1)(x) (1− z) +O((1− z)2)

)
, (3.6b)

with

α± = ± ω

2
√

2
. (3.7)

Notice that with our conventions (see (3.2)) it is the positive root α+ the one corresponding

to an infalling solution at the horizon. For this choice we obtain the following solution for

the first order (x-dependent) coefficients

c(1) =
iω

4
√

2
c(0) , a

(0)
t = 0 , a

(1)
i =

iω

4
√

2
a

(0)
i ; (i = x, y) , (3.8)

while higher order coefficients are determined in terms of these.

We now have all ingredients needed to compute the conductivity by solving the equa-

tions of motion of the fluctuations. First, as is clear from the form of the IR solutions (3.6),

it is useful to redefine the fields as

ãµ(z, x) = (1− z)−iα+ aµ(z, x) , c̃(z, x) = (1− z)−iα+ c(z, x) . (3.9)

Then, at the horizon we impose the following mixed Dirichlet and Robin boundary

conditions

ãt(1, x) = 0 , ã′i(1, x) =
iω

4
√

2
ãi(1, x) , c̃′(1, x) =

iω

4
√

2
c̃(1, x) . (3.10)

At the boundary we want our fluctuations to source an homogeneous electric field (3.1).

When computing the conductivity parallel to the defect (we need only solve for ay),

we impose

ay(0, x) = 1 , (3.11)

where we are normalizing the modulus of the electric field to unity (ey = 1). Instead, to

compute σx we must solve for ax, at, and c. Again, we want our fluctuations to source

solely an electric field in the x direction. Hence

c′(0, x) = 0 , (3.12a)

ax(0, x)− 1

iω
∂xat(0, x) = 1 , (3.12b)

where the first condition ensures that no fluctuations of the mass are sourced, whereas the

second implies that an homogeneous electric field along x, normalized to ex = 1, is turned
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on at the boundary. In addition, in the UV we impose the fulfillment of the constraint

equation, which reduces to

iω ∂zat(0, x)− ∂x∂zax(0, x) = 0 . (3.13)

Notice that in terms of the asymptotic solutions (3.5a) this boundary condition is nothing

else than the conservation of current

∂t
(
eiω tjt(x)

)
− eiω t ∂xjx(x) = 0 . (3.14)

As expected, it is straightforward to check that the partial derivative along z of the con-

straint equation vanishes for solutions of the equations of motion. This ensures that the

constraint is satisfied for all z by any solution of the equations of motion that obeys the

constraint on a constant z slice.

Finally, one should notice that although we have allowed for both at and ax to be

nonzero at the boundary, one can proceed as in [12, 18] and apply a gauge transformation

eiωt Λ(z, x) that brings the boundary field configuration to

aµ(0, x) eiω t dxµ → (aµ + ∂µΛ(0, x)) eiωt dxµ = eiω tdx , (3.15)

which makes clear that the only boundary source is that corresponding to an homogeneous

electric field, and other nonzero sources are just gauge artifacts.11

Summing up, in order to compute the conductivity σy(ω) we must solve the equation

of motion of ay with boundary conditions (3.10) and (3.11), and then read the conductivity

from (3.4). On the other hand, to calculate σx we need solve the equations of motion of ax,

at, and c, imposing (3.10) at the horizon, and (3.12)–(3.13) on the boundary; and again

read σx(ω) from (3.4). We will discuss the boundary conditions at the spatial boundaries

when describing our numerical methods. But before that, in the next section we analyze

the DC limit of the conductivity, and show how σDC
x can be computed from the background

horizon data, with no need to solve for the fluctuations.

3.2 DC conductivity

We can follow the procedure of [58] (as applied for instance in [59] to a DBI action) and

compute the DC conductivity along the direction perpendicular to the interface σDC
x in

terms of the background functions evaluated at the horizon.

Let us start by defining the radial coordinate ζ through

dζ =

√
h(z)

f(z)2
dz , (3.16)

and note that the horizon (at z = 1) is located at ζ = ∞ in the new coordinate. When

expressed in this coordinate, the equations of motion for the fluctuation fields ax(z, x) and

az(z, x) in the DC limit, ω → 0, respectively take the form

∂ζ (F(ζ, x) ∂ζax) = 0 , ∂x (F(ζ, x) ∂ζax) = 0 , (3.17)

11Notice that one can always choose Λ(z, x) such that it vanishes at the horizon (so at is still zero there),

and also satisfies ∂zΛ(0, x) = 0 (and hence az(0, x) = 0).
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where we have defined

F(z, x) = f
(
1− χ2

)3/2√h

Γ
, (3.18)

with

Γ = −z4h
{
φ′2
[
h(1− χ2) + z2 χ̇2

]
− 2z2φ′ φ̇ χ′ χ̇+ φ̇2(1− χ2 + z2 χ′2)

}
− f2

[
h
(
χ2 − 1− z2 χ′2

)
− z2 χ̇2

]
.

(3.19)

The equations of motion (3.17) ensure that the combination F ∂ζax is a constant. It is

thanks to the existence of this conserved quantity that one can express σDC
x in terms of

the background functions evaluated at the horizon. First, notice that at the boundary

F(0, x) = 1, (3.20)

and let us define the function

X(ζ, x) = −
∂ζax(ζ, x)

ax(ζ, x)
, (3.21)

which at the horizon satisfies

X(∞, x) = iω , (3.22)

due to the ingoing wave boundary condition imposed on ax. In terms of X(ζ, x), the

conductivity from (3.4) reads

σx(ω, x) =
X(0, x)

iω
ax(0, x) , (3.23)

where we have normalized the modulus of the electric field to one. Next, in the DC limit

we can expand X in a power series in ω as

X(ζ, x) = iω a(ζ, x) +O(ω2) , (3.24)

and ax and at at the boundary as

at(0, x) = iω p(x) +O(ω2) , (3.25a)

ax(0, x) = 1 + ∂xp(x) +O(ω) , (3.25b)

where a(ζ, x) and p(x) are fixed by the equations of motion (3.17). Moreover, notice

that (3.25) is such that the condition (3.1) of having a constant electric field (with ex = 1)

at the boundary is automatically satisfied. At the horizon, the ingoing wave condition (3.22)

translates into

a(∞, x) = 1 . (3.26)

Plugging the expansions (3.24), (3.25) into eq. (3.23) we obtain

σDC
x = a(0, x)(1 + ∂xp(x)) . (3.27)

Using the definition (3.21) together with the expansions (3.24), (3.25), the equations of

motion (3.17) imply that

F(ζ, x) a(ζ, x) (1 + ∂xp(x)) (3.28)
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is a constant.12 Now, notice that (3.28) when evaluated at ζ = 0 reduces precisely to the

expression (3.27) for the conductivity. Hence we conclude that σDC
x is a constant. By eval-

uating (3.28) at the horizon we arrive at the following expression for the DC conductivity

σDC
x = F(z = 1, x) (1 + ∂xp(x)) , (3.29)

which is indeed a constant as required by current conservation. Notice though, that this

expression for σDC
x still depends on the fluctuations through the field p(x) which should

in principle be determined by solving the corresponding equations of motion. However,

this dependence can be eliminated and σDC
x expressed solely in terms of the background

horizon data. Integrating the expression (3.29) over the whole sample we can write

σDC
x

1

2L

∫ L

−L

dx

F(1, x)
=

1

2L

∫ L

−L
dx (1 + ∂xp(x)) , (3.30)

and assuming the condition

1

2L

∫ L

−L
dx (1 + ∂xp(x)) = 1 , (3.31)

(to be justified below) we arrive at the following expression for the DC conductivity

σDC
x =

2L∫ L
−L

dx
F(1,x)

, (3.32)

which allows us to calculate σDC
x purely in terms of background functions evaluated at

the horizon. In terms of the IR asymptotic solutions for φ and χ, given in eq. (2.15),

F(z = 1, x) can be written as

F(z = 1, x) =
2
(
C(0)(x)

2 − 1
)3/2

√(
a(2)(x)2 − 2

) (
2− 2C(0)(x)

2
+ C(0)′(x)

2
) . (3.33)

To end this section, let us discuss the condition (3.31) that must be satisfied by the

fluctuations. First, notice that when rewritten in terms of at(z, x) it boils down to∫ L

−L
dx ∂xat(0, x) = 0 . (3.34)

This would be automatically satisfied for a periodic system, but also in a setup like ours

if we assume that the system is long enough for the effects of the interface to fade away

towards the edges of the sample. As we discuss below, it can be checked that in that case the

solution for the fluctuations asymptotes towards the edges to that of a homogeneous system,

for which at = 0 and then (3.34) holds. A more general argument for requiring (3.34) to

hold is as follows. Notice that even though we allow at to be nonzero at the boundary, as

illustrated by (3.15) our configuration is gauge equivalent to one where ax is the only source

at the boundary [12, 18]. Then, at(0, x) is pure gauge, i.e. Λ(0, x), and gauge invariance

of the action in presence of a conserved current implies that
∫ L
−L dx ∂xΛ(0, x) = 0, which

justifies the assumption (3.34).

12We have taken into account that ax(ζ, x) = ax(0, x) +O(ω).
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3.3 Numerics

As discussed above, in order to compute the conductivity, we solve the equations of motion

of the fluctuations numerically. We now briefly describe the numerical methods employed,

and specify the boundary conditions imposed at the spatial edges of the system.

We solve the equations of motion of the fluctuation fields (3.9) on the same Chebyshev

grid used for the background. To simplify the numerics, we make use of the parity along x

of the fields in our problem, namely

at(z, x) = − at(z,−x) , ax(z, x) = ax(z,−x) ,

c(z, x) = c(z,−x) , ay(z, x) = ay(z,−x) ,
(3.35)

which follows straightforwardly from the (linear) equations of motion taking into account

that the background fields satisfy (2.25). As in the case of the background, this allows us

to actually solve for half the system, between x = −L and x = 0, and given the distribution

of points in a Chebyshev grid, greatly increases the resolution close to the interface, where

the gradients in x are larger. The IR and UV boundary conditions are given by eqs. (3.8),

and (3.11)–(3.13) as discussed above.

Regarding the boundary conditions at the spatial edges (x = ±L), again, periodic

boundary conditions cannot be used due to the symmetry of the problem. Let us focus

first on the the three coupled fields at, ax, and c, which allow us to compute σx. By studying

the asymptotic form of the coupled PDEs at the spatial boundaries, one can show that a

solution is completely determined once the values of at and c, or those of their derivatives

∂xat and ∂xc, are fixed at each spatial boundary.13 The case of ay is simpler, for we just

need to solve a linear PDE, and as spatial boundary conditions we either fix the value of

the function, or of its derivative ∂xay, at the spatial boundaries. Both when computing σx
and σy we consider two different sets of boundary conditions as we now describe.

Damping boundary conditions. Long systems. A reasonable boundary condition

is derived from the assumption that the system is long enough for all the inhomogeneities

sourced by the interface to die away towards the edges, that is from the requirement that

the fluctuations become independent of x there, namely

∂xat(z,±L) = 0 , ∂xc(z,±L) = 0 , (3.36)

while ax is left free as discussed above.

To compute the conductivity in the direction parallel to the interface (σy) we only

need to solve for ay. The damping boundary condition at the spatial boundaries is then

∂xay(z,±L) = 0 . (3.37)

13Solving the system asymptotically at one edge, once the the values of at and c, and their derivatives

∂xat and ∂xc, are fixed, the asymptotic solution for ax, at and c is fully determined (one needs plug in the

UV and IR boundary conditions too). Then, to fully determine a solution of the system one can fix the

values of at and c, and their derivatives, at one edge, or equivalently impose two conditions at one edge

and two more at the other. We consider fixing at and c both at x = L and x = −L, or, alternatively, fixing

∂xat and ∂xc at x = ±L.
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Boundary conditions. Short systems. One can instead be interested in a situation in

which the system is not long enough for the inhomogeneities of the fluctuations to vanish

towards the spatial boundaries. Consequently, a relaxation of the boundary conditions

considered above for long systems would consist in allowing the fluctuations to have a

nonzero derivative at the spatial boundary. Then, we must impose Dirichlet boundary

conditions there. As discussed in the previous section, at, which is odd, must obey (3.34),

hence an alternative boundary condition that allows for a nonzero ∂xat at the boundary is

at(z,±L) = 0 . (3.38)

Analogously we require c to also vanish at the boundaries

c(z,±L) = 0 . (3.39)

Notice that these boundary conditions are nothing else than the requirement that at and c

reach the solution of the homogeneous problem exactly at the edge. We should bear in mind

that when computing the conductivity σx of an homogeneous system, only ax has to be

turned on, hence c and at, which decouple from ax, vanish identically. It is straightforward

to check, both analytically and numerically, that these boundary conditions are satisfied

whenever the previous more restricting damping boundary conditions are imposed. Yet

the opposite is not true, and for short enough systems the solutions are such that ∂xat and

∂xc are non-vanishing at the spatial boundaries.

Finally, for ay one can also consider a Dirichlet boundary condition which requires

that ay reach the homogeneous solution at the boundary, namely the solution for ay in

a homogeneous background characterized by the values of the chemical potential and the

mass far away from the interface

ay(z,±L) = ahom
y (z) . (3.40)

Except for when we specifically focus on long systems (figure 10), in the rest of this

work we consider our systems to be short, and consequently impose the boundary conditions

above. In particular, we set L = 10 (remember x ∈ [−L,L], with the interface located at

x = 0), and fix a = 3 in (2.21), as discussed in section 2.4. Moreover, as for the background,

we use grids of size 50 × 50, except for the results plotted in figures 7 and 8 which were

obtained with a grid of size Nz ×Nx = 50× 35.

3.4 Results

Finally, in this section we present our results for the conductivities of a holographic inter-

face. After a glance at the optical conductivity for the entire range of the coordinate x, we

focus on its behavior at the interface. We end the section by studying the DC conductivity.

In figure 6 we plot the real part of the optical conductivities σx and σy as functions

of the frequency ω, and the position x for a background with µ = 4 and14 M = 5.3.

14We remind the reader that the value of M sets the mass reached by the inhomogeneous embedding (2.21)

at the edges, away from the interface.
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Figure 6. Real optical conductivities as a function of frequency and position, for a background with

µ = 4 and m = 5.3. Notice that the main differences between σx and σy occur at low frequencies,

and close to the interface (x = 0).

At intermediate and large frequencies, and away from the interface, both conductivities

are very similar, not only to each other, but also to the conductivity of the equivalent

homogeneous system, i.e. the one given by an homogeneous embedding with the same

values of mass and chemical potential that characterize our system away from the interface.

In particular, we observe the presence of the resonances given by the quasi-normal modes

corresponding to the ‘melting’ vector mesons. In fact, as found in [65], the effective meson

masses, which correspond to peaks in the spectral function, are in one-to-one relation with

the frequencies

ωres = m
√

2(k + 1)(k + 2) , k = 0, 1, 2, . . . , (3.41)

which correspond to the masses of stable mesons [66]. Away from the interface the system

becomes homogeneous, and therefore we expect the conductivity to reproduce the homo-

geneous result. On the other hand, near the interface the conductivities in the directions

parallel and orthogonal to it behave quite differently, presenting interesting features which

we elucidate below.

Let us first study the effects of the inhomogeneities on the conductivity along the

direction parallel to the interface. For a system like ours, homogeneous along the y direc-

tion, one could naively expect that at each point x, the conductivity in the y direction,

σy(ω, x), be very similar to that of an homogeneous system having the same mass and

chemical potential as our setup at that point, which we denote σh
y . However, as we discuss

below, σy(ω, x) is sensitive to the spatial gradients of the inhomogeneous embedding, and

therefore becomes different from σh
y where the spatial gradients are large. To illustrate

this, in figure 7 we plot σy(ω) and σh
y (ω) at the point where the difference between them

is maximal, which is of course close to the interface. Interestingly, with respect to the

equivalent homogeneous case we observe a transfer of spectral weight from intermediate to

very low frequencies resulting in a larger DC conductivity in the presence of the interface.

Moreover, we have checked that the relative enhancement increases with decreasing µ for

a given M as one moves toward the phase transition in the phase diagram 1.

The spatial gradients due to the interface affect the conductivity σy(ω, x) in two ways.

The most important effect occurs at the level of the background fields χ and φ: the nonzero

spatial gradients of these fields result in a value of the charge density ρ(x), which near the

interface is higher than that of a homogeneous system with the same values of mass m(x)
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Figure 7. Plots of the real part of σy(ω) (orange lines) at a point x = x0 = 0.749 in the vicinity of

the interface for different pairs of values (M,µ). The gray line stands for the equivalent homogeneous

conductivity σh
y (ω), obtained for an homogeneous system with the same mass m = m(x0), and

chemical potential as our setup at that point (from left to right m(x0) = 2.4262, 4.044, and 5.661

respectively).

and chemical potential µ. This is shown in the left panel of figure 8 where we compare

both charge densities, and see that indeed, around the interface, the charge density of the

inhomogeneous case is always larger. Consequently, one expects σy(x) and σh
y (x) to differ,

and in particular, the DC value of σy(x) to be higher than that of σh
y . This is in agreement

with what we see in figure 7. Note that this effect, due to the the enhancement of the

charge density around the interface, would be there even if the form of the equations of

motion for the fluctuations were not changed with respect to the homogeneous case. The

second effect occurs at the level of the equations of motion of the fluctuations. Notice that

while the fluctuation ax is coupled to those of the embedding and the charge density, c and

at, the field ay decouples from any other fluctuation, as it happens in the homogeneous

case. However, the DBI action does couple ay to the spatial derivatives of the background

functions, φ̇ and χ̇, as can be seen in (B.2). Hence, there are new terms in the equation of

motion for ay that are not present in the homogeneous case, and one expects these terms

to affect the conductivity. To try and gauge the relevance of these two effects, on the right

panel of figure 8 we compare the conductivity σy(ω), computed at a point x (orange line),

with the one that results for a system with the same value of the chemical potential and the

charge density as our system at that point x (purple line). Although the purple line does

not exactly overlap with the orange one, it is much closer to it than the gray line (which as

in figure 7 stands for σh
y ). This confirms that, as expected, the enhancement of the charge

density due to the spatial inhomogeneities is the dominant effect of the interface on σy.

We now focus on the behavior of the conductivities at the interface. In figure 9 we plot

both σx and σy at the interface for three different values of the background parameters M

and µ. We have chosen the pairs of values (M,µ) so that they correspond to systems where

the charge density at the edges is kept low (namely configurations at the edge of the area

accessible to BH embeddings in figure 1). At the interface the embedding becomes massless,

thus the configurations with higher values of µ = µ̄/T correspond to lower temperatures

and higher values of the charge density.

By looking at the plots of the real part of the conductivities at the interface, presented

on the right panels of figure 9, we observe one of the main features of our construction:

the DC conductivity along the interface (σDC
y ) is considerably enhanced with respect to

that in the direction perpendicular to it (σDC
x ). This is a direct consequence of the spatial
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Figure 8. On the left panel we plot the charge density (orange line) for a setup with M = 3

and µ = 2. The gray line corresponds to the charge density of the equivalent homogeneous system

at each point x, namely a homogeneous system with the same mass m(x) as our setup at that

point. On the right we plot the same conductivities as in the leftmost plot of figure 7 (orange

and gray lines) together with the conductivity obtained for an homogeneous system with µ = 3

and m = 2.095 (purple line). This last system has the same value of the charge density as the

inhomogeneous setup at the point of interest (x = 0.749).

distribution of the charge density in our system (see figure 4 for an example of ρ(x)). As

we have seen in figure 7, the conductivity σy(ω) is basically determined by the value of

the charge density at the point of interest, in this case x = 0. However, this is not the

case for the conductivity in the x direction σx(ω). As we discuss below, when focusing

on σDC
x , the DC conductivity along the x direction, which must be independent of x due

to current conservation, is basically determined by the charge density at the edges of the

system, which is much lower than that at the interface. Therefore σDC
x is suppressed with

respect to σy(ω). This suppression is maximal for embeddings such that the charge density

at the edges is arbitrarily small. Nevertheless, σDC
x never vanishes completely, since there

is always a contribution from the thermally produced pairs of charge carriers [56].

3.4.1 DC conductivity

In the following we focus on the DC conductivity along the direction orthogonal to the

interface, namely σDC
x . As is obvious from the action of the fluctuations, σx is more sen-

sitive to the effects of translational symmetry breaking introduced by our inhomogeneous

embedding. In addition, as can be seen from the current conservation equation (3.14), for

a setup like ours, in which the charge density does not vary with time, σDC
x is a constant.

Moreover, as we have described in section 3.2, we can compute σDC
x from the behavior of

the background functions at the horizon without having to solve the fluctuation equations

in the ω → 0 limit. Note that eq. (3.33) is particularly well suited to numerical evaluation

for this purpose.15

We start by comparing the DC conductivities σDC
x and σDC

y . They are plotted in

figure 10 for the two kinds of systems introduced in section 3.3. Let us first describe what

we expect for σDC
y , and then discuss σDC

x in detail.

15In fact, (3.33) is the expression we evaluate numerically to read the value of σDC
x . A field redefinition of

the form φ→ (1− z)2φ̃ eliminates the need to evaluate a term containing a second derivative like a(2)(x).
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Figure 9. Conductivities at the interface. Plots of the conductivity σx(x = 0, ω) (blue) and

σy(x = 0, ω) (orange) for different values of the background parameters M and µ. The real parts

are shown on the left and the imaginary parts on the right.

The DC conductivity along the direction parallel to the interface, σDC
y (x), is read from

the ω → 0 limit of the AC conductivity σy(ω, x). As shown in figure 7, up to a constant [56]

and to some small effects sourced by the spatial gradients of the background, σDC
y (x) is

determined by the value of the charge density at each point x. Hence, it is expected to

peak at the interface, where the charge density is maximal, and to asymptote to a nonzero

baseline value towards the edges.

In section 3.2 we discussed how to compute σDC
x in terms of the horizon data. Subse-

quently, in section 3.3 we defined two different kinds of systems corresponding to different
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Figure 10. Comparison of σDC
x (x) (blue) and σDC

y (x) (orange) for a setup with µ = 4 and M = 5.3.

On the left panel we plot the results for a short system, for which we set L = 10. The right panel

corresponds to a long system where L = 100. In both cases we have set a = 3 (remember that a

determines the width of the interface via eq. (2.21)).

boundary conditions for the fluctuations at the edges. As we now show, these result in

slightly different behaviors of σDC
x .

Long systems. For these systems the effects of the interface fade away towards the

edges. Consequently, in eq. (3.29) we can use the boundary condition (3.37), i.e. ∂xp(±L) =

∂xat(0,±L) = 0 to get

σDC
x = F(z = 1, x = ±L) , (3.42)

which is the DC conductivity of a system without an interface, since F at the edges

agrees with that of a background with an homogeneous embedding. Notice that this is

to be expected; assuming that the effects of the interface do not reach the edges amounts

to having a system where the width of the interface is negligible with respect to the total

length. Therefore we expect σDC
x to be the same as σDC

y (x = ±L), namely σDC
y at the edges.

On the right panel of figure 10 we plot σDC
x and σDC

y for a long system, and we observe

that they overlap away from the interface.

Short systems. In section 3.3 we also considered the case of a system where the effects

of the interface reach the boundary by allowing the derivatives of the fluctuations to be

nonzero at the edges. In that case, it is still possible to compute σDC
x by means of the

integral (3.32).

On the left panel of figure 10 we plot σDC
x and σDC

y for a short system. We see

that σDC
x is slightly larger than σDC

y at the edges. The interface is now introducing a

sizeable region where the charge density is augmented, producing a net enhancement of

the conductivity σDC
x .16

16In order to roughly estimate the DC conductivity σDC
x , we may think of the system as made of two

regions: one region of length ε and conductivity σint
DC, corresponding to the interface; and another region of

length 2L− ε and conductivity σ0
DC < σint

DC, corresponding to the system away from the interface. One can

then write 2L
σDC
x

= 2L−ε
σ0
DC

+ ε
σint
DC

. Hence, when ε � L, σDC
x = σ0

DC; instead for ε . L, we have σDC
x & σ0

DC.

We point out that this analogy also works for non-symmetric systems, having m(x) interpolating between
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Figure 11. Schematic illustration of our setup. The system is two-dimensional; the third (vertical)

dimension has been added for illustrative purposes. The intensity of green encodes the x-dependence

of the charge density (see figure 4), with darker green standing for larger charge density. The red

arrows represent the value of σDC
y , which varies along the system, and the blue arrows denote the

value of σDC
x , which is constant.
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Figure 12. DC conductivity versus 1/µ = T/µ̄. The solid blue line corresponds to σDC
x , while

the solid gray line represents σ0
DC, which corresponds to a system with no interface. For guidance

we also plot the values of the charge density at the edges (blue dashed lines) and at the interface

(gray dashed lines). The left panel corresponds to a setup with µ̄/Mq = 4/5. The right panel is for

µ̄/Mq = 3/4.3. The left vertical axes refer to the conductivity plots whereas the right ones show

the scale for the charge density.

In figure 11 we illustratively summarize the behavior of the DC conductivities in our

system. As is clear from the illustration, σDC
y (x) roughly follows the charge density, which

varies along x and peaks at the interface, while σDC
x is constant, its value mainly determined

by the charge density away from the interface.

Finally, in figure 12 we study the evolution of σDC
x as a function of 1/µ = T/µ̄, at

fixed M/µ = Mq/µ̄. We perform the analysis for a short system with L = 10, and in order

to study the effect of the interface, we compare σDC
x to the conductivity of an equivalent

homogeneous system σ0
DC. This is the DC conductivity for an homogeneous system with

the same mass M and chemical potential µ as our setup at its edges. Notice that for the

values of M/µ considered, there is a minimum value of 1/µ that can be reached by our

embeddings (see figure 2). Both conductivities grow as we lower the temperature (1/µ) until

they reach a maximum, and then decrease rapidly. As is clear from the plots, the behavior

different masses at both sides of the interface.
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of the conductivity follows closely that of the charge density at the edges (blue dashed line).

Moreover, σDC
x is always slightly larger than the homogeneous counterpart σ0

DC as expected

from the length of the system. Also note that, with respect to an homogeneous system, the

presence of the interface has two competing effects on the DC conductivity. On the one

hand, the interface is a region of small size where the charge density is much larger than in

the homogeneous system towards the edges. This fact, as we have seen when discussing the

plots in figure 10, should result in an enhancement of σDC
x . On the other hand, the presence

of the interface gives rise to inhomogeneities that, on general grounds, should impede the

conductivity [59]. However, in view of our results the enhancement of the charge density

is strong enough to overcome other effects of the inhomogeneous embedding.

4 Conclusions

In this work we constructed a holographic system that realizes a one-dimensional charged

interface. We have considered a D3/D5 intersection in the limit where the number of

D5-branes is much smaller than that of D3-branes. The gravity dual consists of a probe

D5-brane in the background generated by the D3-branes. We are interested in systems

at fine temperature, which is why we have embedded the probe D5-brane in a black D3-

brane geometry. Furthermore, in order to have a finite charge density of the fundamental

degrees of freedom sourced by the D5-branes we switched on the temporal component of

the worldvolume gauge field of the probe. Our configurations are massive embeddings for

which the asymptotic distance between the D5-branes and the D3-branes is non-vanishing.

The D5-brane is extended along two spatial Minkowski directions, giving rise to a (2+1)-

dimensional defect. To realize the interface, we chose the mass parameter to depend on

one of those Minkowski directions, which we denote by x, with a profile that interpolates

between two homogeneous embeddings corresponding to a positive and negative mass re-

spectively. Due to technical limitations arising from the numerics, our embeddings are

chosen to be of black hole type for every value of x, thus the induced charge density is

nonzero along the entire system. Nevertheless, the charge density peaks at the interface,

where the mass vanishes, and away from it can be made arbitrarily small by appropriately

tuning the embedding. To sum up, the embedding is described by two fields: the embed-

ding scalar χ and the temporal component of the worldvolume gauge field φ. They both

depend on the radial coordinate z and on the spatial direction x. The dynamics of the

probe brane is governed by the DBI action and the equations of motion are a set of two

coupled non-linear PDEs, for χ and φ. In order to construct our holographic interface we

have solved those PDEs numerically.

For the configurations obtained in this way, we checked that indeed the charge density

peaks at the interface. For the examples provided, the value of the charge density at the

interface is about five times larger than at the edges. Moreover, both at the interface and

away from it, we have studied the scaling of the charge density with the chemical potential,

finding that it agrees with the result for the homogeneous intersection, ρ ∝ µ2 [64].

After constructing the backgrounds realizing the holographic interface, we proceeded

with the computation of the electrical conductivities of the system. For this purpose, we
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studied the fluctuations of the worldvolume gauge field, which in some cases couple among

themselves and with that of the scalar describing the embedding. We now summarize our

main results.

We have computed the AC and DC conductivities both in the direction perpendicular

to the interface (σx) and in that parallel to it (σy). As for the AC conductivities, away from

the interface σx and σy do not present substantial differences and almost agree with the

AC conductivity of an homogeneous system without interface. In particular, we observe

the peaks due to mesonic excitations known from brane embeddings constant in x. These

peaks disappear at the interface where the charge carriers become massless. Moreover, at

the interface σx and σy present differences at low frequencies. Notice that low frequencies

correspond to probing the system at long ranges, and for large length scales the setup looks

very different in the x and in the y direction.

Next, we studied the effects of the inhomogeneous background on the conductivity

in the direction parallel to the interface, σy. Despite the background being homogeneous

along the y direction, due to the non-linearities of the DBI action, a current along y is

sensitive to the gradients along x of the background fields χ and φ. These gradients are

larger in the vicinity of the interface, and therefore have more significant effects upon the

conductivity σy in this region. We have checked that the main effect of these gradients on

the conductivity σy is due to an enhancement of the charge density with respect to what

would be the equivalent homogeneous system. In particular, we found that close to the

interface the inhomogeneous background causes a transfer of spectral weight from mid to

low frequencies, resulting in an enhancement of the DC conductivity σDC
y .

We have paid special attention to the computation of the DC conductivity in the

direction perpendicular to the interface, σDC
x . For a system like the one at hand, where

the charge density is inhomogeneous only in the x direction, current conservation implies

that σDC
x is constant. Moreover, following [58, 59], we were able to compute σDC

x in terms

of the background fields evaluated at the horizon. Two of the most relevant results of this

work are related to the conductivity σDC
x .

An important feature of our system is the fact that σDC
x is basically determined by

the homogeneous system away from the interface, where the charge density is very low.

On the other hand, σDC
y varies with x and is roughly proportional to the charge density.

Consequently, at the interface the conductivity along it, σDC
y , is considerably larger than

the conductivity in the orthogonal direction, σDC
x . For some of our numerical simulations,

σDC
y at the interface is up to 4 × σDC

x .

Our analysis of σDC
x provides information on the effects of the breaking of translational

symmetry caused by our interface. In particular, we showed that when the size of the

inhomogeneous region is not negligible with respect to the total size of the system, σDC
x

is sensitive to the inhomogeneities. Interestingly, two competing effects are expected to

be at work in this scenario: the increase of charge density at the interface is expected to

cause an increase of σDC
x , while the non-vanishing gradient of the charge density along x

ought to suppress the conductivity [59]. In the light of our results, we see the effect of

charge density localization being clearly dominant for our setup. Additionally, we studied

the evolution of σDC
x with the temperature, and found it to be always larger than its

homogeneous counterpart, with the increment becoming larger at lower temperatures.
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To conclude, let us comment on some possible applications of the holographic interface

studied in this work. The D3/D5 intersection with a kink profile for the embedding was

proposed in [37] as the holographic realization of Quantum Spin Hall (QSH) insulators.

A key feature of these systems is a non-vanishing mixed Chern-Simons term of the form

AR ∧ dA. The gauge field AR corresponds to a U(1) R-symmetry, which in this condensed

matter systems is associated to the U(1) spin global symmetry, i.e. the z component of the

spin of the electrons. In the holographic dual, the U(1)R corresponds to a shift symmetry

of the internal S5, and the gauge field AR appears as a fluctuation of the RR four-form

C4 [67]. A non-trivial WZ term of the form AR ∧ dA is generated when fluctuations of the

C4 are considered. It would therefore be interesting to extend the analysis of this work to

the case in which a topological term as described above is present. This would allow for a

study of the QSH conductivity in a (2+1)-dimensional topological insulator.

Another interesting continuation of our work would be the extension of our analysis

to the case of the holographic (3+1)-dimensional topological insulators constructed in [36]

by means of a D3/D7 intersection. That system consists of a D7-brane probe with an

inhomogeneous embedding as the one studied here. In that case a nonzero WZ term

is generated at the interface, sourcing a finite Hall conductivity. The relevant D7-brane

embeddings at finite temperature and charge density were constructed in [41], and the

next natural step would be the repetition of the analysis of the conductivity presented

here for those D7-brane embeddings. A crucial difference would arise from the nonzero

Hall conductivity around the interface. Since the embeddings at finite charge density are

always of black hole type, this model would describe the electric transport at the transition

between different quantum Hall states, see [68].

A further continuation of this work would consist in trying to ascertain the existence

of purely fermionic massless degrees of freedom at the interface. For a embedding with a

step-like profile, at the interface the D5-brane shares only one spatial direction with the D3-

branes, and therefore the intersection becomes of the D3/D5’ type. For this intersection,

with six mixed boundary conditions on the worldsheet (#ND = 6), the only fundamental

massless degrees of freedom in the spectrum are fermionic. Hence it would be interesting

to study the Green’s functions of different (gauge invariant) operators at such an interface,

and look for signatures of the existence of a Fermi surface.

Finally, as proposed in [59], setups involving inhomogeneous brane intersections may

be used to study the effects of disorder on strongly coupled systems at finite charge density.

An example for this is provided by intersections where the chemical potential is given by an

inhomogeneous profile with random fluctuations around a baseline value, as in [13]. This

is a direction of work we are actively pursuing and we expect to report on our results in

the future.
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A Background equations of motion

In this appendix we write down the equations of motion of the background functions,

namely those for the functions χ(z, x) and φ(z, x) describing the embedding of the probe

D5-brane. They follow from the action (2.10), and take the form

η1(∂2
zφ) + η2(∂2

xφ) + η3(∂z∂xφ) + η4(∂zφ)3 + η5(∂zχ∂xχ∂xφ) + η6(∂zφ) = 0 , (A.1)

τ1(∂2
zχ) + τ2(∂2

xχ) + τ3(∂z∂xχ) + τ4(∂zχ)3

+τ5(∂zχ)2 + τ6(∂zχ) + τ7(∂xχ)2 + τ8(∂xχ) + τ9χ = 0, (A.2)

where the coefficients ηi, (i = 1 . . . 7), and τi, (i = 1 . . . 9), are given by the following

functions of z and x,

η1(z, x) = 2h
[
hz4(1− χ2)φ̇2 − f2(h(1− χ2) + z2χ̇2)

]
,

η2(z, x) = 2h
[
hz4(1− χ2)φ′2 − f2(1− χ2 + z2χ′2)

]
,

η3(z, x) = 4hz2
[
f2χ′χ̇− hz2(1− χ2)φ′φ̇

]
,

η4(z, x) =hz3(zh′ − 2h)
[
2h(1− χ2) + z2χ̇2

]
,

η5(z, x) = 4fhz(2f − zf ′) + 2hz5φ′2(2h− zh′) ,
η6(z, x) =hz3φ̇2

[
−h
(
4(1− χ2) + 2z2χ′2

)
+ zh′

(
3(1− χ2) + z2χ′2

)]
− 2fhf ′

[
−z2χ̇2 − h

(
1− χ2 − z2χ′2

)]
+ f2

[
−2z2χ̇2h′ + 6h2zχ′2h

(
−2zχ̇2 − h′(3(1− χ2) + z2χ′2)

)]
(A.3)

τ1(z, x) = 2hz2
[
hz4(1− χ2)φ̇2 − f2(h(1− χ2) + z2χ̇2)

]
,

τ2(z, x) = 2hz2
[
hz4(1− χ2)φ′2 − f2(1− χ2 + z2χ′2)

]
,

τ3(z, x) = 4hz4
[
f2χ′χ̇− hz2φ′φ̇(1− χ2)

]
,

τ4(z, x) =hz3
[
6f2h− 2fhzf ′ − 2hz4φ̇2 − zh′(f2 − z4φ̇2)

]
τ5(z, x) = 6h2z2χ(−f2 + z4φ̇2) + 2hz7φ′(2h− zh′)φ̇χ̇,

τ6(z, x) = z
{
− 2fhz

(
h(1− χ2) + z2χ̇2

)
f ′ + f2

[
4h2(1− χ2)− 2z3χ̇2h′

+ hz
(
6zχ̇2 − (1− χ2)h′

)]
+ hz4

[
−2hφ′

(
6zχφ̇χ̇− 2hχ2φ′ + (2h+ z2χ̇2)

)
+ zh′

(
(1− χ2)φ̇2 +

(
2h(1− χ2) + z2χ̇2

)
φ′2
)]}

τ7(z, x) = 6hz2χ
(
hz4φ′2 − f2

)
,

τ8(z, x) = − 2hz5(1− χ2)(2h− zh′)φ′φ̇ ,

τ9(z, x) = 4h2
[
z4
(
φ̇2 + hφ′2

)
− f2

]
, (A.4)
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where primes stand for derivatives with respect to z, and dots for derivatives with respect

to x.

B Quadratic action for the fluctuations

In this appendix we present the action of the fluctuations considered in section 3.1, and

which allowed us to compute the conductivity of the setup. The action results from ex-

panding the DBI action up to second order in the fluctuations (3.2), and can be written as

S(2) = −NfTD5 L
6

∫
dt d2x dz dΩ2 L(2) , (B.1)

with

L(2) =−∆

{[
cΥχ− z2(1− χ2)(1− χ2)(a′t − iωaz)h2z2φ̇− f2χ′ċ+ h

(
z4φ̇ċ(φ̇χ′ − χ̇φ′)

− c′
(
χ̇(f2 − z4φ′2) + z4φ̇φ′χ′

)
+ z4χ′(φ̇χ′ − χ̇φ′)(a′t − iωaz)

+
(
z4φ̇χ̇χ′ − z2(1− χ2 + z2χ̇2)

)
(iωax − ȧt)

))]2

− Σ

h(1− χ2)

[
Ωhc2 − 4hz2χcċ

(
hz4χ′φ̇2 − f2χ′ − hz4φ̇χ̇φ′

)
− h

(
z4φ̇φ′χ′ + χ̇(f2 − z4φ′2)

)
c′

+ hz2
(
φ̇
(
2h(1− χ2) + z2χ′2

)
− z2χ̇φ′χ′

)
(a′t − iωaz)

+
(
hz4φ̇χ̇χ′ − hz2(2− 2χ2 + z2χ̇2)

)
(iωax − ȧt)

− z2(1− χ2)
(
h3
(
2z2iω(1−χ2)a′taz−z2(1−χ2)a′2t +ω2

(
c2+z2(1−χ2)

)
a2
z

)
+ f2z2

(
z2χ′2a′2y − 2z2χ̇χ′a′yȧy + (1− χ2 + z2χ̇2)ȧ2

y

)
+ h
(
f2z2(1− χ2)a′2x + f2ċ2 + z2(1− χ2)(f2 − z4φ′2)a′2y + z4ω2χ′2a2

y

+ 2z6(1− χ2)φ̇φ′a′yȧy − z6φ̇2ȧ2
y + z6χ2φ̇2ȧ2

y − 2f2z2(1− χ2)a′xa
′
z

+ f2z2a′2z − f2z2χ2a′2z

)
− h2

(
2z4φ̇φ′c′ċ− (f2 − z4φ′2)c′2

− φ′χ′(a′t − iωaz) + (φ̇χ′ − 2χ̇φ′)(iωax − ȧt)

+ z2
(
z2φ̇2ċ2 + 2z2χ̇φ′(iωca′x − ċa′t + iωċaz)− (1− χ2 + z2χ̇2)ω2(a2

x + a2
y)

+ 2z2φ̇χ′(2ċa′t − iωċaz − iωca′x) + z2χ′2(a′2t − 2iωa′taz − ω2a2
z)

+ 2z2φ̇χ̇ ((iωax − ȧt)ċ)− 2z2χ̇χ′
(
(iωaz − a′t)(iωax − ȧt)

)
+ (1− χ2 + z2χ̇2)(ȧ2

t − 2iωaxȧt)− 2z2
(
χ̇φ′ + φ̇χ′

)
iωcaz

))]}
, (B.2)

where

∆ =
1

2 z16 L(0) 3
, (B.3)
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L(0) being the Lagrangian of the zeroth order DBI action, (2.10) and the functions Υ, Σ

and Ω are defined as

Υ = hz4
[
(2− 2χ2 + z2 χ̇2)φ′2 − 2z2 φ̇ χ̇ φ′ χ′ + (2h (1− χ2) + z2χ′2) φ̇2

]
− f2

[
h (2− 2χ2 + z2χ̇2) + z2 χ′2

]
, (B.4)

Σ = (1− χ2)2
{
h z4

[
(1− χ2 + z2 χ̇2)φ′2 − 2z2 φ̇ χ̇ φ′ χ′ +

(
h (1− χ2) + z2 χ′2

)
φ̇2
]

− f2
[
h (1− χ2 + z2 χ̇2) + z2 χ′2

] }
, (B.5)

Ω =
{
hz4

[
(2− 6χ2 + z2 χ̇2)φ′2 − 2z2 φ̇ χ̇ φ′ χ′ + (2h (1− 3χ2) + z2 χ′2) φ̇2

]
− f2

[
h (2− 6χ2 + z2 χ̇2) + z2 χ′2

] }
. (B.6)

Note that we gauge away the radial gauge field component az once the equations of motion

for the fluctuation fields have been found.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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