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1 Introduction

Frustration is widely studied in condensed matter physics (see, for example, [1, 2]). This

frustration means a situation where several constraints compete and it can cause degen-

eracy of vacuum. One famous example is antiferromagnets on a triangular lattice. Some

frustrated systems have a characteristic order parameter such as chirality, which represents

a property under a mirror operation. There is a strange phenomenon by nonzero chirality,

for example, anomalous Hall effect [3]. Study of the frustration is aimed to create new

materials by using a property of frustrated systems.

In condensed matter physics, there is a three-band superconductor model in which the

frustration occurs [4]. This model has three interband Josephson coupling terms between

three scalar fields and they lead the frustration. Furthermore, chiral ground states1 exist

in this model. These chiral ground states are vacua, which have nonzero chirality and their

origin is the frustration.

In this paper, we find a holographic superconductor model [5] in which the frustration

occurs. From a viewpoint of the gauge/gravity correspondence [6–8], holographic super-

conductor models with several order parameters are well-studied [9–26]. In particular, a

two-scalar model with the Josephson coupling was studied in ref. [27]. However, we need

more than two scalar fields for the frustration since we need some constraints of complex

phases of the scalar fields. Therefore, we consider a three-scalar model with the Josephson

coupling for the frustration. In order to determine ground states, we analyze free energy

of solutions of this model. In ref. [4], the authors introduce the Josephson coupling in

order to obtain the chiral ground states. In our holographic model, we first consider the

three-scalar model with the Josephson coupling. Next, we add a quartic potential term

in order to obtain the chiral ground states. When we choose specific values of parame-

ters, there are solutions corresponding to the chiral ground states. This model may be a

1In this paper, ground state means the lowest energy state at finite temperature.
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help to understand a mechanism of the frustration in strongly correlated systems from the

viewpoint of the gauge/gravity correspondence.

The organization of this paper is as follows. In section 2, we analyze a holographic

two-scalar model and see that the frustration does not occur in this model. In section 3,

we analyze a holographic three-scalar model and see that there are the chiral ground states

by comparing the free energy when we choose specific values of parameters. Section 4 is a

summary and a discussion.

2 Two-scalar model

In this section, we study a two-scalar model as a minimal model with the Josephson

coupling. This model was studied first in ref. [27].2 We see that the two-scalar model can

be solved and cannot describe the frustration.

In this paper, we use a four-dimensional AdS planar black hole space-time

ds2 =
L2

z2

(
− f(z)dt2 + dx2 + dy2 +

dz2

f(z)

)
, (2.1)

f(z) = 1−
(
z

zh

)3

, (2.2)

where z = 0 is the AdS boundary and z = zh is the horizon of the black hole. This metric

is often used in the field of the holographic superconductor since a phase transition of

the order parameter occurs by changing the Hawking temperature of the black hole. For

simplicity, we fix the metric and use the probe limit.

For a two-scalar model with the Josephson coupling, we consider an action with a

Maxwell field Aµ, two complex scalar fields ϕi and the nonzero Josephson coupling ε as

S =

∫
d4x
√
−g
[
− 1

4
FµνFµν − |Dµϕ1|2 − |Dµϕ2|2

−m2
1|ϕ1|2 −m2

2|ϕ2|2 − ε(ϕ∗1ϕ2 + ϕ1ϕ
∗
2)

]
, (2.3)

Dµ = ∇µ − iAµ. (2.4)

Because of the existence of the Josephson coupling, phase angles of the scalar fields are

constrained as we will see in (2.14).

The equations of motion of ϕi are

DµDµϕ1 −m2
1ϕ1 − εϕ2 = 0, (2.5)

DµDµϕ2 −m2
2ϕ2 − εϕ1 = 0. (2.6)

In these equations, two types of the solution are possible:

• ϕ1 = ϕ2 = 0. This solution corresponds to the normal conducting phase.

• ϕ1 6= 0, ϕ2 6= 0. This solution corresponds to the superconducting phase.

2In ref. [27], effect of the Josephson coupling to boundary conditions of the scalar fields at the AdS

boundary is not considered. We will derive this effect by diagonalization.

– 2 –



J
H
E
P
0
8
(
2
0
1
5
)
1
3
6

If ϕ1 = 0, we obtain ϕ2 = 0 from (2.5). Therefore, there are no solutions as ϕ1 6= 0, ϕ2 = 0

and ϕ1 = 0, ϕ2 6= 0.

From now, we consider the solution with ϕ1 6= 0, ϕ2 6= 0 to describe the superconduct-

ing phase. This solution exists when the Hawking temperature of the black hole is low

enough. In this case, we can rewrite ϕi by absolute values ψi and phase angles θi as

ϕi = ψie
iθi , (2.7)

where ψi > 0. For homogeneousness of the fields and simplicity of θi, our ansatz for the

fields is

At = At(z), ψi = ψi(z), θi = const., (2.8)

and other components are zero. Under this ansatz, the equations of motion are

∇µFµν − 2ψ2
1A

ν − 2ψ2
2A

ν = 0, (2.9)

∇µ∇µψ1 −AµAµψ1 −m2
1ψ1 − εψ2 cos (θ1 − θ2) = 0, (2.10)

∇µ∇µψ2 −AµAµψ2 −m2
2ψ2 − εψ1 cos (θ1 − θ2) = 0, (2.11)

εψ1ψ2 sin (θ1 − θ2) = 0, (2.12)

εψ1ψ2 sin (θ2 − θ1) = 0. (2.13)

From the equations of motion of θi, we obtain

θ1 − θ2 = 0 or π. (2.14)

This solution is not frustrated because it minimizes the coefficient of the Josephson coupling

potential term 2ε cos (θ1 − θ2) in (2.3). Therefore, the two-scalar model cannot describe the

frustration. To describe the frustration, we need more than two scalar fields as section 3.

Incidentally, the two-scalar model can be solved by diagonalization. To rewrite the

equations of motion of ψi by a diagonal basis of the scalar fields, we define ε′, λi and ψ′i as

ε′ ≡ ε cos (θ1 − θ2), (2.15)

λ1 ≡
(m2

1 +m2
2)−

√
(m2

1 −m2
2)2 + 4ε′2

2
, (2.16)

λ2 ≡
(m2

1 +m2
2) +

√
(m2

1 −m2
2)2 + 4ε′2

2
, (2.17)

ψ′1 ≡
−ε′ψ1 + (m2

1 − λ1)ψ2√
ε′2 + (m2

1 − λ1)2
, (2.18)

ψ′2 ≡
(m2

1 − λ1)ψ1 + ε′ψ2√
ε′2 + (m2

1 − λ1)2
. (2.19)

Using them, the equations of motion of Aµ and ψ′i are written as

∇µFµν − 2ψ′21 A
ν − 2ψ′22 A

ν = 0, (2.20)

∇µ∇µψ′1 −AµAµψ′1 − λ1ψ
′
1 = 0, (2.21)

∇µ∇µψ′2 −AµAµψ′2 − λ2ψ
′
2 = 0. (2.22)
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These equations of motion are same as those of a two-scalar model without the Josephson

coupling. We assume that there is no solution with ψ′1 6= 0, ψ′2 6= 0 since it was checked that

there is not such solution if charges of the scalar fields are same and λ1 6= λ2 by numerical

calculations in ref. [9].

For example, we consider the solution in the case of ε′ < 0. In this case, the solution

is ψ′1 6= 0, ψ′2 = 0 since −ε′ψ1 + (m2
1 − λ1)ψ2 is positive and we obtain

∇µFµν − 2ψ′21 A
ν = 0, (2.23)

∇µ∇µψ′1 −AµAµψ′1 − λ1ψ
′
1 = 0, (2.24)

ψ′1 = −
√
ε′2 + (m2

1 − λ1)2

ε′
ψ1 =

√
ε′2 + (m2

1 − λ1)2

m2
1 − λ1

ψ2. (2.25)

Eqs. (2.23) and (2.24) are same as the equations of motion of a one-scalar model [5]. It

is well-known that the solution with ψ′1 6= 0 exists if the Hawking temperature of the

black hole is low enough. Therefore, we conclude that the two-scalar model can be solved.

Similarly, we can obtain the solution in the case of ε′ > 0.

In the gauge/gravity correspondence, the free energy is related to on-shell Euclidean

action. Generally, the free energy of the solution in the case of ε′ < 0 is smaller than

that of ε′ > 0 since λ1 < λ2. It is reasonable because ε′ is a coefficient of the Josephson

coupling potential term in (2.3). From (2.24), the power of z in ψ′1 at the AdS boundary

is determined as

ψ′1 = ψ
′(1)
1 z∆1 + ψ

′(2)
2 z∆2 , (2.26)

∆1 =
3−
√

9 + 4λ1

2
, ∆2 =

3 +
√

9 + 4λ1

2
. (2.27)

If |ε| is large enough, λ1 is below Breitenlohner-Freedman bound [28] and the theory is

unstable.

3 Three-scalar model

In this section, we study a three-scalar model as a model in which the frustration occurs.

When we choose specific values of parameters, the frustration is realized and the solutions

which correspond to the chiral ground states exist.

For a three-scalar model with the Josephson coupling, we consider an action with a

Maxwell field Aµ, three complex scalar fields ϕi, three nonzero Josephson coupling εij and

a nonnegative constant η as

S =

∫
d4x
√
−g
[
− 1

4
FµνFµν − |Dµϕ1|2 − |Dµϕ2|2 − |Dµϕ3|2

−m2
1|ϕ1|2 −m2

2|ϕ2|2 −m2
3|ϕ3|2

− ε12(ϕ∗1ϕ2 + ϕ1ϕ
∗
2)− ε23(ϕ∗2ϕ3 + ϕ2ϕ

∗
3)− ε31(ϕ∗3ϕ1 + ϕ3ϕ

∗
1)

− η(|ϕ1|4 + |ϕ2|4 + |ϕ3|4)

]
. (3.1)
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If ε12ε12ε31 > 0, there is no configuration of θi which minimizes each coefficient of the

Josephson coupling potential terms. In this case, the chiral ground states can exist. The

quartic potential of this action is symmetric about ϕi and it is one example of the potential

that the chiral ground states can exist. We use the metric (2.1) and the probe limit for

simple calculation.

3.1 Analysis of the solutions with η = 0

First, we ignore the quartic potential and analyze the equations of motion with η = 0. The

equations of motion of ϕi are

DµDµϕ1 −m2
1ϕ1 − ε12ϕ2 − ε31ϕ3 = 0, (3.2)

DµDµϕ2 −m2
2ϕ2 − ε23ϕ3 − ε12ϕ1 = 0, (3.3)

DµDµϕ3 −m2
3ϕ3 − ε31ϕ1 − ε23ϕ2 = 0. (3.4)

In these equations, three types of the solution are possible:

• Sol.1 : ϕ1 = ϕ2 = ϕ3 = 0.

• Sol.2 : One scalar field is zero and others are nonzero as ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0.

• Sol.3 : ϕ1 6= 0, ϕ2 6= 0, ϕ3 6= 0.

To analyze the frustration between three scalar fields, we consider the solution 3. We

rewrite ϕi as (2.7) and use the ansatz as (2.8) in the same way of section 2. Under this

ansatz, the equations of motion are

∇µFµν − 2ψ2
1A

ν − 2ψ2
2A

ν − 2ψ2
3A

ν = 0, (3.5)

∇µ∇µψ1 −AµAµψ1 −m2
1ψ1 − ε′12ψ2 − ε′31ψ3 = 0, (3.6)

∇µ∇µψ2 −AµAµψ2 −m2
2ψ2 − ε′23ψ3 − ε′12ψ1 = 0, (3.7)

∇µ∇µψ3 −AµAµψ3 −m2
3ψ3 − ε′31ψ1 − ε′23ψ2 = 0, (3.8)

ε12ψ1ψ2 sin (θ1 − θ2) + ε31ψ1ψ3 sin (θ1 − θ3) = 0, (3.9)

ε23ψ2ψ3 sin (θ2 − θ3) + ε12ψ2ψ1 sin (θ2 − θ1) = 0, (3.10)

ε31ψ3ψ1 sin (θ3 − θ1) + ε23ψ3ψ2 sin (θ3 − θ2) = 0, (3.11)

ε′12 ≡ ε12 cos (θ1 − θ2), ε′23 ≡ ε23 cos (θ2 − θ3), ε′31 ≡ ε31 cos (θ3 − θ1). (3.12)

In the equations of θi, two types of the solution are possible:

• Sol.3a: sin (θ1 − θ2) 6= 0, sin (θ2 − θ3) 6= 0, sin (θ3 − θ1) 6= 0.

• Sol.3b: sin (θ1 − θ2) = sin (θ2 − θ3) = sin (θ3 − θ1) = 0.

In the three-scalar model, there is the solution 3a with sin (θi − θj) 6= 0 unlike the two-scalar

model. This solution has nonzero chirality.
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We derive a condition that the solution 3a is possible. From (3.10) and (3.11), we

obtain

ψ2 = −ε31 sin (θ3 − θ1)

ε23 sin (θ3 − θ2)
ψ1, ψ3 = −ε12 sin (θ2 − θ1)

ε23 sin (θ2 − θ3)
ψ1. (3.13)

Since ψi > 0, we need

ε31 sin (θ3 − θ1)

ε23 sin (θ3 − θ2)
< 0,

ε12 sin (θ2 − θ1)

ε23 sin (θ2 − θ3)
< 0. (3.14)

Substituting (3.13) for (3.6), (3.7) and (3.8), we obtain

∇µ∇µψ1 −AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 = 0, (3.15)

∇µ∇µψ1 −AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 = 0, (3.16)

∇µ∇µψ1 −AµAµψ1 −
(
m2

3 −
ε31ε23

ε12

)
ψ1 = 0. (3.17)

Therefore, the solution 3a is possible only if

m2
1 −

ε12ε31

ε23
= m2

2 −
ε23ε12

ε31
= m2

3 −
ε31ε23

ε12
. (3.18)

To compare the free energy of the solutions, we analyze other solutions with (3.18).

• Sol.1: ϕ1 = ϕ2 = ϕ3 = 0.

Generally, the free energy of the solution with ϕ1 = ϕ2 = ϕ3 = 0 is larger than that

with the nonzero scalar fields. Therefore, this solution is not a ground state if the

Hawking temperature of the black hole is low enough.

• Sol.2: ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0.

From (3.4), we obtain

ψ2 = −ε31

ε23
ψ1e

i(θ1−θ2), (3.19)

and

θ1 − θ2 = 0 or π, (3.20)

are the solutions. Substituting (3.19) for (3.6) and (3.7), we obtain

∇µ∇µψ1 −AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 = 0, (3.21)

∇µ∇µψ1 −AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 = 0, (3.22)

and the solution with ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0 is possible if (3.18) holds. Similarly,

other solutions with ϕ1 = 0, ϕ2 6= 0, ϕ3 6= 0 and ϕ1 6= 0, ϕ2 = 0, ϕ3 6= 0 are possible.

Free energy of these solutions is same as that of solution 3a because the mass squared

of ψi in (3.15) and (3.21) is same.
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• Sol.3b: sin (θ1 − θ2) = sin (θ2 − θ3) = sin (θ3 − θ1) = 0.

In this case, the diagonalization as section 2 is useful. We diagonalize a matrix asm2
1 ε
′
12 ε′31

ε′12 m
2
2 ε
′
23

ε′31 ε′23 m
2
3

 . (3.23)

If (3.18) holds, this matrix can be transformed to a diagonal matrix asm2
1 − ε12ε31

ε23
0 0

0 m2
1 − ε12ε31

ε23
0

0 0 m2
1 + ε31ε23

ε12
+ ε23ε12

ε31

 . (3.24)

If ε12ε23ε31 > 0, a minimum value of the free energy of this solution is same as that

of the solution 3a since m2
1 − ε12ε31

ε23
< m2

1 + ε31ε23
ε12

+ ε23ε12
ε31

.3 However, if ε12ε23ε31 < 0,

the free energy of the solution corresponds to m2
1 + ε31ε23

ε12
+ ε23ε12

ε31
is smaller than that

of the solution 3a and the frustration does not occur.

Summarizing the above, if η = 0, ε12ε23ε31 > 0 and (3.18) hold, there are several

solutions whose free energy is same by the frustration.

3.2 Analysis of the free energy with η > 0

Next, we consider the three-scalar model with η > 0, ε12ε23ε31 > 0 and (3.18). Substituting

the solutions with η > 0 for the action, we analyze the free energy with η > 0. The

equations of motion of ψi are

∇µ∇µψ1 −AµAµψ1 −m2
1ψ1 − ε′12ψ2 − ε′31ψ3 − 2ηψ3

1 = 0, (3.25)

∇µ∇µψ2 −AµAµψ2 −m2
2ψ2 − ε′23ψ3 − ε′12ψ1 − 2ηψ3

2 = 0, (3.26)

∇µ∇µψ3 −AµAµψ3 −m2
3ψ3 − ε′31ψ1 − ε′23ψ2 − 2ηψ3

3 = 0, (3.27)

and the equations of motion of Aµ and θi are (3.5), (3.9), (3.10) and (3.11). For simplicity,

we set

m2
1 = m2

2 = m2
3, ε12 = ε23 = ε31 > 0. (3.28)

In this case, difference of θi of the chiral ground states becomes symmetric, but we lose

generality of the model.

• Sol.2: ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0.

Substituting (3.19) to (3.25) and (3.26), we obtain

∇µ∇µψ1 −AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 − 2ηψ3

1 = 0, (3.29)

∇µ∇µψ1 −AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 − 2η

(
ε31

ε23

)2

ψ3
1 = 0, (3.30)

3We assume that there are the solutions as those of a one-scalar model only as section 2. We will explain

this assumption later.
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and these equations are same if (3.28) holds. This equation is the equation of one-

scalar model with a quartic potential in the probe limit [29, 30]. Substituting (3.19)

to (3.1), we obtain the on-shell action

Son-shell =

∫
d4x
√
−g
[
− 1

4
FµνFµν − 2|Dµψ1|2 − 2

(
m2

1 −
ε12ε31

ε23

)
ψ2

1 − 2ηψ4
1

]
=

∫
d4x
√
−g
[
− 1

4
FµνFµν − |Dµψ

′|2 −
(
m2

1 −
ε12ε31

ε23

)
ψ′2 − η

2
ψ′4
]
, (3.31)

where we redefine a new scalar field ψ′ to compare the free energy as

ψ′2 ≡ 2ψ2
1. (3.32)

In this solution, a coefficient of the quartic potential of ψ′ is η/2. The solutions with

ϕ1 = 0, ϕ2 6= 0, ϕ3 6= 0 and ϕ1 6= 0, ϕ2 = 0, ϕ3 6= 0 are also the same.

• Sol.3a: sin (θ1 − θ2) 6= 0, sin (θ2 − θ3) 6= 0, sin (θ3 − θ1) 6= 0.

Substituting (3.13) to (3.25), (3.26) and (3.27), we obtain

∇µ∇µψ1 −AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 − 2ηψ3

1 = 0, (3.33)

∇µ∇µψ1 −AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 − 2η

(
ε31 sin (θ3 − θ1)

ε23 sin (θ3 − θ2)

)2

ψ3
1 = 0, (3.34)

∇µ∇µψ1 −AµAµψ1 −
(
m2

3 −
ε31ε23

ε12

)
ψ1 − 2η

(
ε12 sin (θ2 − θ1)

ε23 sin (θ2 − θ3)

)2

ψ3
1 = 0. (3.35)

If (3.28) is satisfied, the solution 3a exists only if

1 =

(
sin (θ3 − θ1)

sin (θ3 − θ2)

)2

=

(
sin (θ2 − θ1)

sin (θ2 − θ3)

)2

. (3.36)

In the range of (3.14), there are two configurations of θi which satisfy (3.36):

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 =
2π

3
, (3.37)

and

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 =
4π

3
. (3.38)

These solutions are chiral as figure 1. We can define a physical quantity to determine

the chirality. For example, the sign of i(ϕ∗1ϕ2−ϕ1ϕ
∗
2) = 2ψ1ψ2 sin (θ1 − θ2) is different

for each solution. Substituting (3.13) and (3.36) to (3.1), we obtain the on-shell action

Son-shell =

∫
d4x
√
−g
[
− 1

4
FµνFµν − 3|Dµψ1|2 − 3

(
m2

1 −
ε12ε31

ε23

)
ψ2

1 − 3ηψ4
1

]
=

∫
d4x
√
−g
[
− 1

4
FµνFµν − |Dµψ

′|2 −
(
m2

1 −
ε12ε31

ε23

)
ψ′2 − η

3
ψ′4
]
, (3.39)

where we redefine a new scalar field ψ′ as

ψ′2 ≡ 3ψ2
1, (3.40)

and the coefficient of the quartic potential of ψ′ is η/3.

– 8 –
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θ1 θ1

θ2 θ2θ3 θ3

Figure 1. Chiral solutions (3.37) and (3.38). Three allows represent the phase angles of the scalar

fields. These solutions interchange by a mirror operation.

• Sol.3b: sin (θ1 − θ2) = sin (θ2 − θ3) = sin (θ3 − θ1) = 0.

For example, we consider the solution with cos (θ2 − θ3) = 1, cos (θ1 − θ2) =

cos (θ3 − θ1) = −1. For the diagonalization, we define ψ′i as

ψ′1 ≡
2√
6
ψ1 +

1√
6
ψ2 +

1√
6
ψ3, (3.41)

ψ′2 ≡ −
1√
2
ψ2 +

1√
2
ψ3, (3.42)

ψ′3 ≡ −
1√
3
ψ1 +

1√
3
ψ2 +

1√
3
ψ3. (3.43)

Using them and (3.28), we can rewrite (3.1) as

S =

∫
d4x
√
−g
[
− 1

4
FµνFµν − |Dµψ

′
1|2 − |Dµψ

′
2|2 − |Dµψ

′
3|2

−
(
m2

1 −
ε12ε31

ε23

)
ψ′21 −

(
m2

1 −
ε12ε31

ε23

)
ψ′22

−
(
m2

1 +
ε31ε23

ε12
+
ε23ε12

ε31

)
ψ′23 − η(ψ4

1 + ψ4
2 + ψ4

3)

]
. (3.44)

It is difficult to compare the free energy of this solution with others. To compare the

free energy, we assume that there are only four types of the solutions with η = 0:

– ψ′2 6= 0, ψ′1 = ψ′3 = 0 or ψ′1 6= 0, ψ′2 = ψ′3 = 0.

– ψ′1 = Aψ′2 6= 0, ψ′3 = 0 and A is constant.

– ψ′1 = ψ′2 = 0, ψ′3 6= 0.

– ψ′1 = ψ′2 = ψ′3 = 0.

This assumption is natural because the mass squared of ψ′1 and ψ′2 is same, and the

scalar fields with different mass squared do not have nonzero values together in two-

scalar model [9] as we explained in section 2. Under this assumption, the solution

– 9 –



J
H
E
P
0
8
(
2
0
1
5
)
1
3
6

with η = 0 is

ψ′1 = ψ, ψ′2 = Aψ, ψ′3 = 0, (3.45)

ψ1 =
2√
6
ψ, ψ2 =

1−
√

3A√
6

ψ, ψ3 =
1 +
√

3A√
6

ψ, (3.46)

ψ > 0, − 1√
3
< A <

1√
3
. (3.47)

Next, we check whether (3.46) is the solution with η > 0. Substituting (3.28)

and (3.46) to (3.25), (3.26) and (3.27), we obtain

∇µ∇µψ −AµAµψ −
(
m2

1 −
ε12ε31

ε23

)
ψ − 4

3
ηψ3 = 0, (3.48)

∇µ∇µψ −AµAµψ −
(
m2

1 −
ε12ε31

ε23

)
ψ − (1−

√
3A)2

3
ηψ3 = 0, (3.49)

∇µ∇µψ −AµAµψ −
(
m2

1 −
ε12ε31

ε23

)
ψ − (1 +

√
3A)2

3
ηψ3 = 0. (3.50)

Since these equations are not same if η > 0, we conclude that (3.46) is not the solution

with η > 0. The same is true for cos (θ1 − θ2) = 1, cos (θ2 − θ3) = cos (θ3 − θ1) = −1

and cos (θ3 − θ1) = 1, cos (θ1 − θ2) = cos (θ2 − θ3) = −1.

The solution with cos (θ1 − θ2) = cos (θ2 − θ3) = cos (θ3 − θ1) = 1 is

ψ1 = ψ2 = ψ3. (3.51)

In fact, by substituting (3.28) and (3.51) to (3.25), (3.26) and (3.27), we obtain

∇µ∇µψ1 −AµAµψ1 −
(
m2

1 +
ε31ε23

ε12
+
ε23ε12

ε31

)
ψ1 − 2ηψ3

1 = 0, (3.52)

∇µ∇µψ2 −AµAµψ2 −
(
m2

1 +
ε31ε23

ε12
+
ε23ε12

ε31

)
ψ2 − 2ηψ3

2 = 0, (3.53)

∇µ∇µψ3 −AµAµψ3 −
(
m2

1 +
ε31ε23

ε12
+
ε23ε12

ε31

)
ψ3 − 2ηψ3

3 = 0, (3.54)

and the on-shell action is

Son-shell =

∫
d4x
√
−g
[
− 1

4
FµνFµν − 3|Dµψ1|2

− 3

(
m2

1 +
ε31ε23

ε12
+
ε23ε12

ε31

)
ψ2

1 − 3ηψ4
1

]
=

∫
d4x
√
−g
[
− 1

4
FµνFµν − |Dµψ

′|2

−
(
m2

1 +
ε31ε23

ε12
+
ε23ε12

ε31

)
ψ′2 − η

3
ψ′4
]
, (3.55)

where we redefine a new scalar field ψ′ as

ψ′2 ≡ 3ψ2
1, (3.56)

and the coefficient of the quartic potential of ψ′ is η/3.
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Figure 2. Plot of the coefficients of the scalar field in each solution. Sol.2, Sol.3a and Sol.3b

correspond to blue, red and green curves. Tc is a critical temperature of Sol.3a.

Finally, we compare the free energy of three solutions which we found. We expect

that the free energy of the solution 3a is minimum because the coefficients of the potential

of ψ′ are smaller than those of other solutions. In order to check this expectation, we

calculate the free energy by a numerical calculation. For the numerical calculation, we set

m2
1 + ε31ε23

ε12
+ ε23ε12

ε31
= 0,m2

1− ε12ε31
ε23

= −2 and η = 1/2. Boundary conditions of the fields are

ψ′(z) = 〈O2〉z2 (Sol.2 and Sol.3a), ψ′(z) = 〈O3〉z3 (Sol.3b), At(z) = µ− ρz, (3.57)

and we fix µ = 1 by using the symmetry of the metric (2.1). The equations of motion can

be derived from (3.31), (3.39) and (3.55).

Figure 2 is a plot of three solutions. Sol.2, Sol.3a and Sol.3b correspond to blue, red

and green curves. Tc is a critical temperature of Sol.3a. Near the critical temperature,

Sol.2 and Sol.3a have similar behavior because their mass squared are same.

Figure 3 is a plot of the free energy density. SE/
∫
dtdxdy corresponds to the free

energy density,4 where SE is Euclidian action of (3.31), (3.39) and (3.55). From this figure,

we conclude that the free energy of Sol.3a is minimum and the solutions (3.37) and (3.38)

are chiral ground states if η > 0 and (3.28) hold.

Summarizing the above, we have found the chiral ground states (3.37) and (3.38) by

comparing the free energy of the solutions of the three-scalar model (3.1) with η > 0

and (3.28). Therefore, the three-scalar model can describe the frustration in curved space-

time and introduce chirality as an order parameter.

4 Summary and discussion

In this paper, we have analyzed the holographic superconductor model with some scalar

fields and the Josephson coupling from the view point of gauge/gravity correspondence.

We have seen that the frustration does not occur in the holographic two-scalar model

because there is one Josephson coupling term only. On the other hand, we have found that

4We ignore the Gibbons-Hawking term and a counter term because values of these terms in each solution

are same in the probe limit.
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Figure 3. Plot of the free energy density of each solution. The free energy of Sol.3a which

corresponds to the red curve is minimum.

there are several solutions whose free energy is same by the frustration in the holographic

three-scalar model with three Josephson coupling terms if η = 0, ε12ε23ε31 > 0 and (3.18)

hold. Furthermore, we have analyzed the free energy of the solutions with η > 0. We have

found that there are the solutions (3.37) and (3.38) which correspond to the chiral ground

states with (3.28).

To compare the free energy of the solutions, we reduced the solutions of the three-

scalar model to those of the one-scalar model. It is important to check whether there are

other solutions which do not reduce to those of the one-scalar model. Moreover, analysis

with a back reaction is also important.

For anomalous Hall effect from chirality, a coupling between an electron and local-

ized spins is important [3]. Therefore, the three-scalar model with fermions coupled with

complex scalar fields may have strange property.

In ref. [4], the existence of a chiral domain wall is discussed in the context of condensed

matter physics. It is interesting to check whether there is a solution which corresponds

to the chiral domain wall in a holographic model. In this paper, we considered specific

values of the parameters as (3.28). Comparing the free energy with other values of the

parameters which satisfy (3.18) is also interesting because there is some possibility of a

phase transition by changing the parameters. They are future directions of this study.

Acknowledgments

I would like to thank K. Hashimoto for helpful discussion, careful reading of the manuscript

and useful suggestion about section 3.2. I would also like to thank H. Kawamura and A.

Sonoda for useful comment.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 12 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
8
(
2
0
1
5
)
1
3
6

References

[1] R. Moessner and A.P. Ramirez, Geometrical frustration, Phys. Today 59 (2006) 24.

[2] H.T. Diep, Frustrated spin systems, World Scientific, Singapore (2004).

[3] K. Ohgushi, S. Murakami and N. Nagaosa, Spin anisotropy and quantum Hall effect in the
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