PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: March 27, 2015
REVISED: August 6, 2015
ACCEPTED: August 7, 2015
PUBLISHED: August 27, 2015

Chiral ground states in a frustrated holographic
superconductor

Mitsuhiro Nishida

Department of Physics, Graduate School of Science,
Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail: nishida@het.phys.sci.osaka-u.ac. jp

ABSTRACT: Frustration is an important phenomenon in condensed matter physics because
it can introduce a new order parameter such as chirality. Towards understanding a mecha-
nism of the frustration in strongly correlated systems, we study a holographic superconduc-
tor model with three scalar fields and an interband Josephson coupling, which is important
for the frustration. We analyze free energy of solutions of the model to determine ground
states. We find chiral ground states, which have nonzero chirality.

KEYwoORDS: Gauge-gravity correspondence, Holography and condensed matter physics
(AdS/CMT)

ARX1v EPRINT: 1503.00129

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP08(2015)136


mailto:nishida@het.phys.sci.osaka-u.ac.jp
http://arxiv.org/abs/1503.00129
http://dx.doi.org/10.1007/JHEP08(2015)136

Contents

1 Introduction 1
2 Two-scalar model 2
3 Three-scalar model 4
3.1 Analysis of the solutions with n =0 )
3.2 Analysis of the free energy with n > 0 7
4 Summary and discussion 11

1 Introduction

Frustration is widely studied in condensed matter physics (see, for example, [1, 2]). This
frustration means a situation where several constraints compete and it can cause degen-
eracy of vacuum. One famous example is antiferromagnets on a triangular lattice. Some
frustrated systems have a characteristic order parameter such as chirality, which represents
a property under a mirror operation. There is a strange phenomenon by nonzero chirality,
for example, anomalous Hall effect [3]. Study of the frustration is aimed to create new
materials by using a property of frustrated systems.

In condensed matter physics, there is a three-band superconductor model in which the
frustration occurs [4]. This model has three interband Josephson coupling terms between
three scalar fields and they lead the frustration. Furthermore, chiral ground states! exist
in this model. These chiral ground states are vacua, which have nonzero chirality and their
origin is the frustration.

In this paper, we find a holographic superconductor model [5] in which the frustration
occurs. From a viewpoint of the gauge/gravity correspondence [6-8], holographic super-
conductor models with several order parameters are well-studied [9-26]. In particular, a
two-scalar model with the Josephson coupling was studied in ref. [27]. However, we need
more than two scalar fields for the frustration since we need some constraints of complex
phases of the scalar fields. Therefore, we consider a three-scalar model with the Josephson
coupling for the frustration. In order to determine ground states, we analyze free energy
of solutions of this model. In ref. [4], the authors introduce the Josephson coupling in
order to obtain the chiral ground states. In our holographic model, we first consider the
three-scalar model with the Josephson coupling. Next, we add a quartic potential term
in order to obtain the chiral ground states. When we choose specific values of parame-
ters, there are solutions corresponding to the chiral ground states. This model may be a

'In this paper, ground state means the lowest energy state at finite temperature.



help to understand a mechanism of the frustration in strongly correlated systems from the
viewpoint of the gauge/gravity correspondence.

The organization of this paper is as follows. In section 2, we analyze a holographic
two-scalar model and see that the frustration does not occur in this model. In section 3,
we analyze a holographic three-scalar model and see that there are the chiral ground states
by comparing the free energy when we choose specific values of parameters. Section 4 is a

summary and a discussion.

2 Two-scalar model

In this section, we study a two-scalar model as a minimal model with the Josephson
coupling. This model was studied first in ref. [27].? We see that the two-scalar model can
be solved and cannot describe the frustration.

In this paper, we use a four-dimensional AdS planar black hole space-time

2_£2 — f(2)dt2 2 o | d2°

ds? = 22( F(2)dt? + da + dy +f(z)>, (2.1)
3

fz)=1- (h) , (22)

where z = 0 is the AdS boundary and z = z, is the horizon of the black hole. This metric
is often used in the field of the holographic superconductor since a phase transition of
the order parameter occurs by changing the Hawking temperature of the black hole. For
simplicity, we fix the metric and use the probe limit.

For a two-scalar model with the Josephson coupling, we consider an action with a
Maxwell field A, two complex scalar fields ¢; and the nonzero Josephson coupling € as

1
S / d4x\ﬁ—g[— T Fu — [Dugi? ~ Dypal?

—milp1|* — m3lpa|?® — e(Wip2 + p193) |, (2.3)
D, =V, —iA,. (2.4)

Because of the existence of the Josephson coupling, phase angles of the scalar fields are
constrained as we will see in (2.14).
The equations of motion of ; are

DHD,p1 — mipr — ey = 0, (2.5)
DM D, pa — m3ps — epr = 0. (2.6)

In these equations, two types of the solution are possible:
e ] = o = 0. This solution corresponds to the normal conducting phase.

e 1 # 0,99 # 0. This solution corresponds to the superconducting phase.

In ref. [27], effect of the Josephson coupling to boundary conditions of the scalar fields at the AdS
boundary is not considered. We will derive this effect by diagonalization.



If o1 = 0, we obtain @9 = 0 from (2.5). Therefore, there are no solutions as @1 # 0,3 =0
and @1 = 0,2 # 0.

From now, we consider the solution with ¢ #£ 0, 2 # 0 to describe the superconduct-
ing phase. This solution exists when the Hawking temperature of the black hole is low
enough. In this case, we can rewrite (; by absolute values ¥; and phase angles 6; as

i = e’ (2.7)

where 1; > 0. For homogeneousness of the fields and simplicity of 6;, our ansatz for the
fields is

Ay = A(2), i =1i(2), 6; = const., (2.8)

and other components are zero. Under this ansatz, the equations of motion are

VP — 207 AV — 23 AV = 0, (2.9)
VuVFpy — Ay Afpy — mirhy — ey cos (61 — 62) = 0, (2.10)
VMVMZDQ — AuAu1/12 — m%?bg — Ewl COS (91 — (92) = 0, (2.11)
61,[)11#2 sin (91 — (92) = O, (212)
ewlwg sin (92 — 01) =0. (2.13)
From the equations of motion of #;, we obtain
01 — 92 =0 or m. (2.14)

This solution is not frustrated because it minimizes the coefficient of the Josephson coupling
potential term 2e cos (1 — 03) in (2.3). Therefore, the two-scalar model cannot describe the
frustration. To describe the frustration, we need more than two scalar fields as section 3.
Incidentally, the two-scalar model can be solved by diagonalization. To rewrite the
equations of motion of ¢; by a diagonal basis of the scalar fields, we define ¢, \; and v} as

€ =ecos (01 —0s), (2.15)
2 2 2 2\2 12
+ - — +4
2 = , )
2
_ 2 _
\/6’2 + (mf — A\1)?
2 /
= (mi — A1 + €'y (2.19)

V2 (m2—N\)2

Using them, the equations of motion of A, and ¢} are written as

V, FH — 22 A — 292 AY = 0, (2.20)
Vi VY — Ay AP — My = 0, (2.21)
YV VHFy — A APy — Aarpy = 0. (2.22)



These equations of motion are same as those of a two-scalar model without the Josephson
coupling. We assume that there is no solution with ¢} # 0,4, # 0 since it was checked that
there is not such solution if charges of the scalar fields are same and A\; # Ao by numerical
calculations in ref. [9].

For example, we consider the solution in the case of ¢ < 0. In this case, the solution
is o} # 0,14 = 0 since —€'1h; + (m? — A\1)1)q is positive and we obtain

V, F" — 2¢2AY =0, (2.23)
V VH — A AR — Mt =0, (2.24)
€2 4+ (m? — \p)? €2 4+ (m? — \p)?
T LN BV Ay, (2.25)
1

Egs. (2.23) and (2.24) are same as the equations of motion of a one-scalar model [5]. Tt
is well-known that the solution with ¢} # 0 exists if the Hawking temperature of the
black hole is low enough. Therefore, we conclude that the two-scalar model can be solved.
Similarly, we can obtain the solution in the case of € > 0.

In the gauge/gravity correspondence, the free energy is related to on-shell Euclidean
action. Generally, the free energy of the solution in the case of ¢ < 0 is smaller than
that of € > 0 since A\ < \o. It is reasonable because € is a coefficient of the Josephson
coupling potential term in (2.3). From (2.24), the power of z in ] at the AdS boundary
is determined as

g = DA gl (2.26)
A, = 3—\/2—%4)\1, A, = 3+\/92+4)\1. (2.27)

If |¢| is large enough, A; is below Breitenlohner-Freedman bound [28] and the theory is
unstable.

3 Three-scalar model

In this section, we study a three-scalar model as a model in which the frustration occurs.
When we choose specific values of parameters, the frustration is realized and the solutions
which correspond to the chiral ground states exist.

For a three-scalar model with the Josephson coupling, we consider an action with a
Maxwell field A,,, three complex scalar fields ¢;, three nonzero Josephson coupling €;; and
a nonnegative constant n as

1 v
5= / d“W—g[— T F = 1Dupr* = 1Dyl = Dyl

— milp1]* — m3|pa|* — m3|eps|?
— e12(P1p2 + P105) — €23(P303 + V203) — €31(P301 + P307)

= n(ler* + o2l + sl |- (3.1)



If €19€10€31 > 0, there is no configuration of #; which minimizes each coefficient of the
Josephson coupling potential terms. In this case, the chiral ground states can exist. The
quartic potential of this action is symmetric about ; and it is one example of the potential
that the chiral ground states can exist. We use the metric (2.1) and the probe limit for
simple calculation.

3.1 Analysis of the solutions with n =0

First, we ignore the quartic potential and analyze the equations of motion with n = 0. The
equations of motion of ¢; are

DM D, p1 — mip1 — €122 — 3103 = 0, (3.2)
D" D, 9 — m%@z — €233 — €12¢01 = 0,
DFD,p3 — m3p3 — €311 — €a3pa = 0.

In these equations, three types of the solution are possible:
e Sol.1: ©1 :@22903:0.
e Sol.2: One scalar field is zero and others are nonzero as ¢1 # 0, p2 # 0,3 = 0.

e Sol.3: 9017&()’9027&0’9037&0'

To analyze the frustration between three scalar fields, we consider the solution 3. We
rewrite ¢; as (2.7) and use the ansatz as (2.8) in the same way of section 2. Under this
ansatz, the equations of motion are

V, FM — 2T AV — 23 AV — 23 A” = 0, (3.5)
ViV — Ay A — miy — €a¢hn — €113 = 0, (3.6)
ViV — Ay by — mits — €ngtbs — €1yt = 0, (3.7)
Vi Viaps — Ay Al — minps — egihy — ehgipp =0, (3.8)
e12t19 sin (01 — 02) + €113 sin (61 — 03) = 0, (3.9)
€9310213 sin (B2 — 03) + €121021) sin (62 — 61) = 0, (3.10)
€31%3%1 sin (03 — 01) + ea31P31Pa sin (03 — 62) = 0, (3.11)
€1y = €12c08 (01 — 03), €3 = €z cos (02 — 03), €5 = €31 cos (03 — 61). (3.12)

In the equations of 8;, two types of the solution are possible:
e Sol.3a: sin (91 - 92) 75 O,Sin (92 - 93) 75 O,Sin (93 - 91) 75 0.
e So0l.3b: sin (91 — 92) = sin (92 — 93) = sin (93 — 91) =0.

In the three-scalar model, there is the solution 3a with sin (6; — 6;) # 0 unlike the two-scalar
model. This solution has nonzero chirality.



We derive a condition that the solution 3a is possible. From (3.10) and (3.11), we

obtain
€31 sin (93 — )

91 B €12 sin (02 — 91)
€23 sin ((93 — 92)

Py =

r(/]la 1/)3 =

€23 sin (02 — 93)
Since 1; > 0, we need

€31 sin (93 — 91) €12 sin (92 — 91)
€923 sin (93 — 92) ’ €923 sin (02 — 93)

< 0.

Substituting (3.13) for (3.6), (3.7) and (3.8), we obtain

Y, VHhy — Ay APy — (m% = “je‘“> b1 =0,
23

V, Vi — A, Ay — <m§ - 62;”;112) P =0,

V, Vi — A, Al — <m§ - 6361;23> P1 = 0.

Therefore, the solution 3a is possible only if
€12€31 €23€12 €31€23
2 m2 TTL2 —_ .

my - — = 9 — — = 3
€23 €31 €12

Y.

(3.13)

(3.14)

(3.15)
(3.16)

(3.17)

(3.18)

To compare the free energy of the solutions, we analyze other solutions with (3.18).

o Sol.1: o1 =2 =3 =0.

Generally, the free energy of the solution with @1 = @9 = 3 = 0 is larger than that

with the nonzero scalar fields. Therefore, this solution is not a ground state if the

Hawking temperature of the black hole is low enough.
e Sol.2: p1 # 0,02 # 0,3 =0.
From (3.4), we obtain

Wy = — iy ei0r-02),
€23

and

91—02:0 or T,

are the solutions. Substituting (3.19) for (3.6) and (3.7), we obtain

V, Vihy — A, Ay — (m% - 61?‘“) P =0,
23

VuVhpr = A Ay — <m% - 62536112) v =0,

(3.19)

(3.20)

(3.21)

(3.22)

and the solution with ¢ # 0,92 # 0,93 = 0 is possible if (3.18) holds. Similarly,
other solutions with 1 = 0,2 # 0,3 # 0 and ¢ # 0,02 = 0,3 # 0 are possible.
Free energy of these solutions is same as that of solution 3a because the mass squared

of 1; in (3.15) and (3.21) is same.



e S50l.3b: sin (01 — 02) = sin (03 — 03) = sin (65 — 61) = 0.

In this case, the diagonalization as section 2 is useful. We diagonalize a matrix as

2 /
mi €12 €31
/ 2

/ / 2
€31 €23 M3

If (3.18) holds, this matrix can be transformed to a diagonal matrix as

m% __ €12€31 0 0
€23
2 _ €12€31
0 mi - g 0 : (3.24)
€31€23 €23€12
0 0 my + €12 + €31

If €19€23€31 > 0, a minimum value of the free energy of this solution is same as that

i i 2 _ €12€31 2 | €31€23 | €23€12 3 ;
of the solution 3a since mj on <My =R 4 SR However, if €19€03€31 < 0,

the free energy of the solution corresponds to m? + s 2882 s smaller than that

of the solution 3a and the frustration does not occur.

Summarizing the above, if n = 0, €12€23€31 > 0 and (3.18) hold, there are several
solutions whose free energy is same by the frustration.

3.2 Analysis of the free energy with n > 0

Next, we consider the three-scalar model with n > 0, €12€23€3; > 0 and (3.18). Substituting
the solutions with n > 0 for the action, we analyze the free energy with n > 0. The
equations of motion of 1; are

YV, VFy — Ay Afapy — m3 — €lgthn — éyyibs — 2mbs = 0, (3.25)
YV, VHiapy — Ay Afapy — mihs — etz — €oth1 — 23 = 0, (3.26)
YV, VFis — A, Afahs — m3ihs — ehyih1 — ehgtha — 25 = 0, (3.27)

and the equations of motion of A, and 6; are (3.5), (3.9), (3.10) and (3.11). For simplicity,
we set

2 2 2
mj = mj = M3, €12 = €23 = €31 > 0. (328)

In this case, difference of #; of the chiral ground states becomes symmetric, but we lose
generality of the model.

o Sol.2: o1 # 0,02 # 0,903 =0.
Substituting (3.19) to (3.25) and (3.26), we obtain

Vi — Ay Al - <m% - “j;?’l) =27 =0, (3.29)

2
VLV A= (= Y gy g () gt o, 330

3We assume that there are the solutions as those of a one-scalar model only as section 2. We will explain
this assumption later.



and these equations are same if (3.28) holds. This equation is the equation of one-
scalar model with a quartic potential in the probe limit [29, 30]. Substituting (3.19)
0 (3.1), we obtain the on-shell action

1 €12€
Son—shell = /d4$v —9g |: - 7FW}FMV - 2|D;ﬂ[)1|2 -2 (m% 2 31> % - 277¢1:|

— [dtav= [ P B, 1D - (m% - 1“1) e ;Zu}'ﬂ, (3:31)
€23
where we redefine a new scalar field v’ to compare the free energy as
Y% = 247 (3.32)

In this solution, a coefficient of the quartic potential of ¢’ is /2. The solutions with
1 =0,09 # 0,03 # 0 and @1 # 0,9 = 0,3 # 0 are also the same.

Sol.3a: sin (01 — 03) # 0,sin (03 — O3) # 0,sin (03 — 01) # 0.
Substituting (3.13) to (3.25), (3.26) and (3.27), we obtain

Vi — Ay Al — <m% - “j;"l) =27 =0, (3.33)
T,V — A ARy — <m2 B 623612) w1 — 2 (631 sin (65 — 91)) —0, (3.34)
# # 2 €31 €923 sin (93 — 92) ’
sin (0 — 01) ) 2
b — A Ababy — (2 — €31€23 i €128in (62 — 64 _ ‘
V.V Al <m3 . P —2n 25 511 (05 — O) Y3 =0. (3.35)
If (3.28) is satisfied, the solution 3a exists only if
_ s%n (93 — 91) 2 _ S%n (92 — 91) 2 ‘ (3.36)
sin (03 — 602) sin (02 — 603)
In the range of (3.14), there are two configurations of #; which satisfy (3.36):
2
01—92:02—93:93—01:§, (3.37)
and
4
Or — 0o =0 — 03 = 03 — 0, = ; (3.38)

These solutions are chiral as figure 1. We can define a physical quantity to determine
the chirality. For example, the sign of i(¢]p2—p195) = 291109 sin (61 — 02) is different
for each solution. Substituting (3.13) and (3.36) to (3.1), we obtain the on-shell action

Son-shell = /d TN — |: 7FMVF - 3‘DH¢1‘2 -3 (m% 612631) 1/}1 - 3771?1}

v €12€
= / d4m¢fg[ - zF” Fuy — D) — <m% - 152331) Y2 — gw"ﬂ, (3.39)

where we redefine a new scalar field ¢’ as

W2 = 393, (3.40)

and the coefficient of the quartic potential of ¢’ is 7/3.



(91 91

03 0y 6 03

Figure 1. Chiral solutions (3.37) and (3.38). Three allows represent the phase angles of the scalar
fields. These solutions interchange by a mirror operation.

e Sol.3b: sin () — ) = sin (A — 03) = sin (f3 — 61) = 0.

For example, we consider the solution with cos (62 —63) = 1,cos(0) —0y) =
cos (f3 — 01) = —1. For the diagonalization, we define 1} as
2 1 1

!/
= " by iy + ——bs, 3.41
/¢1 V4§¢q Vﬂgd@ V4§¢B ( )

1 1

/
= gy 4+ ——bs, 3.42
(& \/i% \/5% (3.42)

. 1 1

(= _77#1‘1'%

N (3.43)

P + \}§¢3'

Using them and (3.28), we can rewrite (3.1) as

]' v
5— / dmﬁ—g[— 1F" By = 1Dt = Dl — 1Dyt

2 €12€31 2 2 €12€31 2
- (ml - 1 —\m1— (05
€23 €23

€31€23 €23€12
- (mte ) gt vt v @A)

€12

It is difficult to compare the free energy of this solution with others. To compare the
free energy, we assume that there are only four types of the solutions with n = 0:

— aply £ 0,90h = by = 0 or | # 0,3 = = 0.
— ) = Ay # 0,94 = 0 and A is constant.
= ¥ =y = 0,95 #0.
— Y = =y =0.
This assumption is natural because the mass squared of ¢] and v}, is same, and the

scalar fields with different mass squared do not have nonzero values together in two-
scalar model [9] as we explained in section 2. Under this assumption, the solution



with n =0 is

U =, by = Ay, Py =0, (3.45)
2 1-+/34 14434
Qpl = %d}a ¢2 = \/6 1% 1/)3 = \/6 sz)v (346)
1 1
¥ > 0, —E<A<ﬁ. (3.47)

Next, we check whether (3.46) is the solution with 7 > 0. Substituting (3.28)
and (3.46) to (3.25), (3.26) and (3.27), we obtain

V, Vi — Ay Al — (m% - efe‘”’l) - §n¢3 =0, (3.48)
23
. 2
V, Vih — A, At — <m2 _ 6162631> W — ug/mmﬁ -0, (3.49)
23
1 A)?
V, Vi) — A, Ay — <m§ - 61:“”) W — (+‘3/§’)an — 0. (3.50)
23

Since these equations are not same if > 0, we conclude that (3.46) is not the solution
with 7 > 0. The same is true for cos (61 — 62) = 1,cos (02 — 03) = cos (05 — 1) = —1
and cos (03 — 01) = 1,cos (01 — 03) = cos (02 — 03) = —1.

The solution with cos (61 — 62) = cos (3 — 03) = cos (05 — 61) = 1 is
Y1 =2 = 3. (3.51)
In fact, by substituting (3.28) and (3.51) to (3.25), (3.26) and (3.27), we obtain

VuVHpy — A Ay — ( + 2B 6236”) Y1 — 2} =0, (3.52)
€12 €31
M L €31€23 €23€12 3
Vi VHiapy — Ay Afapy — (mi + + Yo — 2np; =0, (3.53)
€12 €31
ViV s — Ay A — (m% ey Ef‘”) s 2uf =0, (354)
12 31

and the on-shell action is
Son-shell - /d4$v |:_ 7FMVF - 3’DM’¢1’2

631623 €23€12
—3 (4 2
€12

) 7111 - 3771/’1]
1
— /d4x«/—g[— ZF“”FW — D)2

_ (m% I €31€23 4 623612> W — 77¢/4]’ (3.55)

€12 €31 3

where we redefine a new scalar field ¢’ as

W = 3y7, (3.56)

and the coefficient of the quartic potential of ¢’ is 7/3.

~10 -



(O2)? /T

(O3)'3 /T,

0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/T,

Figure 2. Plot of the coefficients of the scalar field in each solution. Sol.2, Sol.3a and Sol.3b
correspond to blue, red and green curves. T, is a critical temperature of Sol.3a.

Finally, we compare the free energy of three solutions which we found. We expect
that the free energy of the solution 3a is minimum because the coefficients of the potential
of 1/ are smaller than those of other solutions. In order to check this expectation, we
calculate the free energy by a numerical calculation. For the numerical calculation, we set

m3+ a1 R = ), m3 — €291 = —2 and n = 1/2. Boundary conditions of the fields are

P (2) = (03)2? (Sol.2 and Sol.3a), ©¢/(z) = (O3)2® (Sol.3b), Au(z) = pu—pz, (3.57)

and we fix gy = 1 by using the symmetry of the metric (2.1). The equations of motion can
be derived from (3.31), (3.39) and (3.55).

Figure 2 is a plot of three solutions. Sol.2, Sol.3a and Sol.3b correspond to blue, red
and green curves. 1. is a critical temperature of Sol.3a. Near the critical temperature,
Sol.2 and Sol.3a have similar behavior because their mass squared are same.

Figure 3 is a plot of the free energy density. Sg/ [ dtdxdy corresponds to the free
energy density,® where Sg is Euclidian action of (3.31), (3.39) and (3.55). From this figure,
we conclude that the free energy of Sol.3a is minimum and the solutions (3.37) and (3.38)
are chiral ground states if 7 > 0 and (3.28) hold.

Summarizing the above, we have found the chiral ground states (3.37) and (3.38) by
comparing the free energy of the solutions of the three-scalar model (3.1) with n > 0
and (3.28). Therefore, the three-scalar model can describe the frustration in curved space-
time and introduce chirality as an order parameter.

4 Summary and discussion

In this paper, we have analyzed the holographic superconductor model with some scalar
fields and the Josephson coupling from the view point of gauge/gravity correspondence.
We have seen that the frustration does not occur in the holographic two-scalar model
because there is one Josephson coupling term only. On the other hand, we have found that

4We ignore the Gibbons-Hawking term and a counter term because values of these terms in each solution
are same in the probe limit.
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St/ [ dtdacdyio i

—-0.08 - g

-0.10

-0.12

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3. Plot of the free energy density of each solution. The free energy of Sol.3a which
corresponds to the red curve is minimum.

there are several solutions whose free energy is same by the frustration in the holographic
three-scalar model with three Josephson coupling terms if 7 = 0, €12€23€31 > 0 and (3.18)
hold. Furthermore, we have analyzed the free energy of the solutions with > 0. We have
found that there are the solutions (3.37) and (3.38) which correspond to the chiral ground
states with (3.28).

To compare the free energy of the solutions, we reduced the solutions of the three-
scalar model to those of the one-scalar model. It is important to check whether there are
other solutions which do not reduce to those of the one-scalar model. Moreover, analysis
with a back reaction is also important.

For anomalous Hall effect from chirality, a coupling between an electron and local-
ized spins is important [3]. Therefore, the three-scalar model with fermions coupled with
complex scalar fields may have strange property.

In ref. [4], the existence of a chiral domain wall is discussed in the context of condensed
matter physics. It is interesting to check whether there is a solution which corresponds
to the chiral domain wall in a holographic model. In this paper, we considered specific
values of the parameters as (3.28). Comparing the free energy with other values of the
parameters which satisfy (3.18) is also interesting because there is some possibility of a
phase transition by changing the parameters. They are future directions of this study.
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