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1 Introduction

In our recent work [1], the two- and three-point correlation functions of the supercurrent

and flavour current multiplets have been computed for three-dimensional (3D) N -extended

superconformal field theories with 1 ≤ N ≤ 3. Here we extend the analysis of [1] to

the N = 4 case. We also study the reduction of correlation functions in N -extended

superconformal field theory to (N − 1)-extended superspace.

In two dimensions, N = 3 supersymmetry automatically implies N = 4 [2, 3] for

nonlinear σ-models.1 What about three dimensions? As far as the supersymmetric non-

linear σ-models are concerned, 3D N = 3 supersymmetry again implies N = 4. Indeed,

the proof given in [2, 3] remains valid in three dimensions. Moreover, off-shell N = 3

supersymmetric σ-models can be shown to possess off-shell N = 4 supersymmetry [4].

Analogous results hold for N = 3 super Yang-Mills theories with matter [5]. However, a

rather counter-intuitive situation occurs with parity odd Chern-Simons terms. The N = 3

Chern-Simons action2 exists for any gauge group [6–8]. On the other hand, it is well known

that no N = 4 supersymmetric Chern-Simons action can be constructed (for a recent proof,

see [9]), although abelian N = 4 BF couplings are abundant [10].

The R-symmetry group is (locally isomorphic to) SU(2) in N = 3 supersymmetry and

SU(2)L × SU(2)R for N = 4. This difference implies that there are two inequivalent N = 4

gauge multiplets [10–12] and two inequivalent N = 4 hypermultiplets [11, 12], as compared

with a single vector multiplet and a single hypermultiplet in N = 3 supersymmetry. The

1The proof given in [2, 3] is as follows. It is known that N -extended supersymmetry requires the

existence of N − 1 anti-commuting complex structures for the σ-model target space. In the N = 3 case,

the target space has two such structures, I and J . Their product, K := I J , is a third complex structure

which anti-commutes with I and J , and therefore the σ-model is N = 4 supersymmetric.
2The N = 3 Chern-Simons action was constructed for the first time by Zupnik and Hetselius [6] in 3D

N = 3 harmonic superspace, and several years later it was re-discovered [7, 8] at the component level.
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inequivalent N = 4 vector multiplets obey different off-shell constraints and transform

in different representations of the R-symmetry group, and similarly for the inequivalent

hypermultiplets.3

The doubling of gauge and matter multiplets in N = 4 supersymmetry has important

implications for the structure of N = 4 superconformal field theory. First of all, there are

two inequivalent N = 4 flavour current multiplets whereas there is only one in superconfor-

mal models with N = 1, 2, 3 supersymmetry which were considered in [1]. Secondly, we will

demonstrate that the three-point function of the N = 4 supercurrent has two independent

structures, as compared with a single structure in the N = 1, 2, 3 cases studied in [1].

The zoo of N = 4 superconformal field theories in three dimensions is pretty large.

The trivial examples of such theories are provided by models of free hypermultiplets. More

interesting are interacting models of hypermultiplets coupled to vector multiplets, with BF

couplings for the vector multiplets. The non-abelian N = 4 superconformal field theories

include the Gaiotto-Witten models [13] and their generalisations [14]. For all abelianN = 4

superconformal field theories, there exist off-shell realisations. As concerns the non-abelian

N = 4 superconformal theories proposed in [13, 14], it is not yet known how to formulate

them in N = 4 superspace, which is an interesting open problem. There also exist Chern-

Simons-matter theories with N = 6 [15–17] and N = 8 [18–20] superconformal symmetry.

The correlation functions of certain conserved currents in these theories can be studied

using the N = 4 superfield methods developed in the present paper.

This paper is organised as follows. In section 2 we give a brief review of the supercon-

formal building blocks for the two- and three-point correlation functions in 3D N -extended

superspace following the conventions and notation used in [1]. We also elaborate on those

properties of the building blocks which are specific to the N = 3 and N = 4 cases. In

section 3 we develop a new representation for the correlation functions of the N = 3 flavour

current multiplets originally computed in [1]. This representation allows us to easily up-

grade the N = 3 flavour current correlators to the N = 4 ones which are derived in section

4. Here we also construct two- and three-point functions of the N = 4 supercurrent and

demonstrate that the latter involves two independent tensor structures which distinguish

the N = 4 supercurrent correlators from those in the N = 1, 2, 3 cases. In section 5 we

consider a particular example of N = 4 superconformal field theories given by the model

of free N = 4 hypermultiplets for which we explicitly compute the correlation functions of

the supercurrent and the flavour current multiplets. For this model we find important re-

lations between the coefficients in the two- and three-point functions which are interpreted

as the manifestations of Ward identities for these correlators. We argue that though these

relations between the coefficients are found for the particular model of free hypermultiplets,

they hold for generic N = 4 superconformal field theories as well. Section 6 is devoted

to the derivation of the Ward identities for the 1 ≤ N ≤ 4 flavour current multiplets. In

section 7 we uncover various relations between the coefficients in the two-point and three-

point functions both for the supercurrents and flavour current multiplets for all N ≤ 4.

Finally, in section 8 we discuss the results and some open problems.

3The inequivalent vector multiplets and hypermultiplets can be described in terms of superfields that

are defined on two different supersymmetric subspaces of the N = 4 harmonic superspace [11, 12].
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The main body of the paper is accompanied by three technical appendices. Appendix

A is devoted to a brief review of 3D off-shell N = 4 multiplets. In appendix B we use

the 3D N = 4 harmonic superspace approach to derive a new representation for the q+

hypermultiplet propagator which is important in studying the implications of the Ward

identity for the correlation functions of the N = 4 flavour current multiplets. In appendix

C we collect some details of the reduction of the N = 4 correlation functions computed in

this paper to the N = 3 and N = 2 superspaces.

2 Superconformal building blocks

This section contains a brief summary of those results in [1] which are necessary for our

subsequent analysis. In addition, we elaborate on specific technical features of the N = 3

and N = 4 cases.

2.1 Superconformal transformations and primary superfields

Consider N -extended Minkowski superspace M
3|2N parametrised by real bosonic (xa) and

fermionic (θαI ) coordinates

zA = (xa, θαI ), a = 0, 1, 2 , α = 1, 2 , I = 1, . . . ,N .

Here the indices ‘a’ and ‘α’ are Lorentz and spinor ones, respectively, while ‘I’ is the

R-symmetry index. The 3D N -extended superconformal group OSp(N|4;R) cannot be

realised to act by smooth transformations on M
3|2N . However, a transitive action of

OSp(N|4;R) is naturally defined on the so-called compactified Minkowski superspaceM3|2N

in which M
3|2N is embedded as a dense open domain [4]. In general, only infinitesimal su-

perconformal transformations are well defined on M
3|2N . Such a transformation

δzA = ξzA ⇐⇒ δxa = ξa(z) + i ξαI (z)θ
β
I (γ

a)αβ , δθαI = ξαI (z) (2.1)

is associated with an even real supervector field on M
3|2N ,

ξ = ξADA = ξa∂a + ξαI D
I
α = −1

2
ξαβ∂αβ + ξαI D

I
α , ξA = ξA , (2.2)

which obeys the equation [ξ,DI
α] ∝ DJ

β . All solutions of this equation are called the

conformal Killing supervector fields of Minkowski superspace. They span a Lie superalgebra

(with respect to the standard Lie bracket [ξ1, ξ2]) that is isomorphic to the superconformal

algebra osp(N|4;R).
Explicit expressions for the components ξA = (ξa, ξαI ) of the most general conformal

Killing supervector fields are given by eq. (4.4) in [1]. Equivalent results were derived

earlier by Park [21] and later in [4]. In the present paper, we will not need these explicit

expressions. For our analysis, it suffices to use the relation

[ξ,DI
α] = −(DI

αξ
β
J )D

J
β = λα

β(z)DI
β + ΛIJ(z)DJ

α − 1

2
σ(z)DI

α . (2.3)

– 3 –
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Here the superfield parameters on the right are expressed in terms of ξA as follows:

λαβ(z) = − 1

N DI
(αξ

I
β) , ΛIJ(z) = −2D[I

α ξ
J ]α , σ(z) =

1

N DI
αξ

α
I =

1

3
∂aξ

a . (2.4)

One may think of λαβ(z), ΛIJ(z) and σ(z) as the parameters of special local Lorentz,

R-symmetry and scale transformations, respectively, due to their action on the covariant

derivative given by (2.3). The same interpretation is supported by the explicit expressions

for λαβ(z), Λ
IJ(z) and σ(z) as polynomials in zA:

λαβ(z) = λαβ − xγ(αbβ)γ − i

2
bαβθγI θIγ + 2iη

(α
I θ

β)
I , (2.5a)

ΛIJ(z) = ΛIJ + 4iηα[IθJ ]α + 2ibαβθ
α
I θ

β
J , (2.5b)

σ(z) = σ + bαβx
βα + 2iθαI ηIα . (2.5c)

Here the constant parameters λαβ , Λ
IJ and σ correspond to the Lorentz, R-symmetry and

scale transformations from OSp(N|4;R), while bαβ and ηIα generate the special conformal

and S-supersymmetry transformations.

It is the z-dependent parameters (2.4) which appear, along with ξ itself, in the super-

conformal transformation law4 of a primary tensor superfield of dimension q

δΦI
A = −ξΦI

A − q σ(z)ΦI
A + λαβ(z)(Mαβ)A

BΦI
B + ΛIJ(z)(R

IJ)IJΦ
J
A . (2.6)

Here ΦI
A is assumed to transform in some representations of the Lorentz and R-symmetry

groups with respect to its indices ‘A’ and ‘I’, respectively. The matrices Mαβ and RIJ

in (2.6) are the Lorentz and SO(N ) generators, respectively. It should be mentioned

that the R-symmetry subgroup of OSp(N|4;R) is O(N ). In what follows, its connected

component of the identity, SO(N ), will be referred to as the R-symmetry group.

Consider a correlation function 〈Φ1(z1) . . .Φn(zn)〉 of several primary superfields Φ1,

. . . , Φn (with their indices suppressed) that originate in some superconformal field theory.

In terms of this correlation function, the statement of superconformal invariance is

n∑

k=1

〈Φ1(z1) . . . δΦk(zk) . . .Φn(zn)〉 = 0 . (2.7)

2.2 Two-point functions

In ordinary conformal field theory in d dimensions, a comprehensive discussion of the

building blocks for the two- and three-point correlation functions of primary fields was given

by Osborn and Petkou [23] who built on the earlier works by Mack [24] and others [25–30].

Their analysis was extended to superconformal field theories formulated in superspace by

Osborn and Park [21, 31–33].

In the case of 3D superconformal field theories, the building blocks for the two- and

three-point correlation functions were derived first in [21] using the coset construction for

4The transformation law (2.6) is a 3D super-extension of the Mack-Salam construction [22].

– 4 –
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OSp(N|4;R) and more recently in [1] using the supertwistor approach. All building blocks

are composed of the following two-point structures:

x
αβ
12 = (x1 − x2)

αβ + 2iθ
(α
1I θ

β)
2I − iθα12Iθ

β
12I , (2.8a)

θα12I = (θ1 − θ2)
α
I . (2.8b)

The former transforms homogeneously at z1 and z2,

δ̃xαβ
12 =

(
1

2
δαγσ(z1)− λα

γ(z1)

)
x
γβ
12 + x

αγ
12

(
1

2
δγ

βσ(z2)− λγ
β(z2)

)
, (2.9a)

while the latter involves an inhomogeneous piece in its transformation law,

δ̃θα12I =

(
1

2
δαβσ(z1)− λα

β(z1)

)
θβ12I + ΛIJ(z2)θ

α
12J − x

αβ
12 ηIβ(z2) , (2.9b)

with ηIα(z) := − i
2D

I
ασ(z) = ηIα − bαβθ

β
I . Here the variation δ̃ is defined to act on an

arbitrary n-point function O(z1, . . . , zn) by the rule

δ̃O(z1, . . . , zn) =
n∑

i=1

ξziO(z1, . . . , zn) . (2.10)

As follows from (2.6), each primary superfield Φ is determined by the following data:

(i) its dimension q; (ii) the representation T of the Lorentz group to which Φ belongs; and

(iii) the representation D of SO(N ) in which Φ transforms. There are three building blocks,

which are descendants of (2.8) and which take care of the above data in the correlation

functions of primary superfields.

Firstly, using (2.8a) we define the scalar two-point function

x12
2 := −1

2
x
αβ
12 x12αβ (2.11)

with the transformation law

δ̃x12
2 =

(
σ(z1) + σ(z2)

)
x12

2 . (2.12)

In general, the correlation functions contain multiplicative factors proportional to powers

of x12
2 in such a way as to guarantee the right scaling properties.

Secondly, the Lorentz structure of the primary fields in correlation functions is taken

care of by the 2× 2 matrix

x̂12 :=
x̂12√
−x12

2
, (εx̂12)

2 = 12 , (2.13)

where we have used the matrix notation x̂12 = (xαβ
12 ) and ε = (εαβ). Its transformation

law is

δ̃xαβ
12 = −λα

γ(z1)x
γβ
12 − x

αγ
12 λγ

β(z2) . (2.14)

– 5 –
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Thirdly, the SO(N ) structure of the primary fields in correlation functions is taken

care of by the N ×N matrix

u12 = (uIJ12 ) , uIJ12 = δIJ + 2iθαI12 (x
−1
12 )αβθ

βJ
12 , (2.15)

where

(x−1
12 )αβ = −x12βα

x12
2

(2.16)

is the inverse for (x12)
αβ , that is (x−1

12 )αβ(x12)
βγ = δγα. One may check that the matrix

u12 is orthogonal and unimodular,

uT12u12 = 1N , detu12 = 1 . (2.17)

It follows from (2.9) that

δ̃uIJ12 = ΛIK(z1)u
KJ
12 − uIK12 ΛKJ(z2) . (2.18)

The above properties provide the rationale why uIJ12 naturally arises in correlation functions

of primary superfields with SO(N ) indices.

The two-point correlation function of the primary superfield ΦI
A and its conjugate Φ̄A

I

is fixed by the superconformal symmetry up to a single coefficient c and has the form

〈ΦI
A(z1)Φ̄

B
J (z2)〉 = c

TA
B(εx̂12)D

I
J (u12)

(x12
2)q

(2.19)

provided the representations T and D are irreducible. The denominator in (2.19) is fixed

by the dimension of Φ.

Before turning to three-point building blocks, it should be pointed out that the two-

point structure x
αβ
12 defined by (2.8a) has the following symmetry property

x
αβ
21 = −x

βα
12 . (2.20)

It can be decomposed into its symmetric and antisymmetric parts,

x
αβ
12 = xαβ12 +

i

2
εαβθ12

2 , (2.21)

where

θ12
2 := θα12Iθ12Iα , xαβ12 = xβα12 := (x1 − x2)

αβ + 2iθ
(α
1I θ

β)
2I . (2.22)

As is seen from (2.9a), the two-point structure xαβ12 does not transform homogeneously,

unlike xαβ
12 . However, in practice it is often useful to deal with xαβ12 for concrete calculations.

2.3 Three-point functions

Associated with three superspace points z1, z2 and z3 are the following three-point struc-

tures:

X1αβ = −(x−1
21 )αγx

γδ
23(x

−1
13 )δβ , (2.23a)

ΘI
1α = (x−1

21 )αβθ
Iβ
12 − (x−1

31 )αβθ
Iβ
13 , (2.23b)

– 6 –
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U IJ
1 = uIK12 uKL

23 uLJ31 . (2.23c)

They transform as tensors at the point z1

δ̃X1αβ = λα
γ(z1)X1γβ +X1αγλ

γ
β(z1)− σ(z1)X1αβ , (2.24a)

δ̃ΘI
1α =

(
λα

β(z1)−
1

2
δα

βσ(z1)

)
ΘI

1β + ΛIJ(z1)Θ
J
1α , (2.24b)

δ̃U IJ
1 = ΛIK(z1)U

KJ
1 − U IK

1 ΛKJ(z1) . (2.24c)

These objects have many properties resembling those of the two-point functions. In partic-

ular, the tensor (2.23a) can be decomposed into symmetric and antisymmetric parts similar

to (2.21),

X1αβ = X1αβ − i

2
εαβΘ1

2 , (2.25)

where the symmetric spinor X1αβ = X1βα is equivalently represented as a three-vector

X1m = −1
2γ

αβ
m X1αβ .

Next, the matrix (2.23c) can be expressed in terms of (2.23a) and (2.23b) similarly

to (2.15):

U IJ
1 = δIJ + 2iΘI

1α(X
−1
1 )αβΘJ

1β = δIJ − 2i
ΘI

1αX
βα
1 ΘJ

1β

X1
2

. (2.26)

The matrix U1 = (U IJ
1 ) is orthogonal and unimodular.

We point out that in (2.23) we have defined the three-point structures which transform

as tensors at the point z1. Performing cyclic permutations of the superspace points z1, z2
and z3 in (2.23) one obtains similar objects which transform as tensors at the superspace

points z2 and z3. The three-point structures at different superspace points are related to

each other as follows

xαα′

13 X3α′β′x
β′β
31 = −(X−1

1 )βα =
X

αβ
1

X1
2
, (2.27a)

ΘI
1γx

γδ
13X3δβ = uIJ13Θ

J
3β , (2.27b)

U IJ
3 = uIK31 UKL

1 uLJ13 . (2.27c)

Various primary superfields, including the supercurrent, obey certain differential con-

straints. In order to take into account these constraints in correlation functions, we need

rules to evaluate covariant derivatives of the variables (2.23a) and (2.23b) and also those

obtained from them by cyclic permutations of the superspace points z1, z2 and z3. Given

a function f(X3,Θ3), one can prove the following differential identities:

DI
(1)γf(X3,Θ3) = (x−1

13 )αγu
IJ
13DJα

(3)f(X3,Θ3) , (2.28a)

DI
(2)γf(X3,Θ3) = i(x−1

23 )αγu
IJ
23QJα

(3)f(X3,Θ3) , (2.28b)

where we have introduced the operators

DI
(3)α =

∂

∂Θα
3I

+ iγmαβΘ
Iβ
3

∂

∂Xm
3

, QI
(3)α = i

∂

∂Θα
3I

+ γmαβΘ
Iβ
3

∂

∂Xm
3

. (2.29)

– 7 –
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Let Φ, Ψ and Π be primary superfields (with indices suppressed) of dimensions q1,

q2 and q3, respectively. The three-point correlation function for these superfields can be

found with the use of the ansatz

〈ΦI1
A1

(z1)Ψ
I2
A2

(z2)Π
I3
A3

(z3)〉 =
T (1)

A1
B1(εx̂13)T

(2)
A2

B2(εx̂23)D
(1)I1

J1(u13)D
(2)I2

J2(u23)

(x13
2)q1(x23

2)q2

×HJ1J2I3
B1B2A3

(X3,Θ3, U3) , (2.30)

where HJ1J2I3
B1B2A3

is a tensor constructed in terms of the three-point functions (2.23). The

functional form of this tensor is highly constrained by the following conditions:

(i) It should obey the scaling property

HJ1J2I3
B1B2A3

(λ2X, λΘ, U) = (λ2)q3−q2−q1HJ1J2I3
B1B2A3

(X,Θ, U) (2.31)

in order for the correlation function to have the correct transformation law under the

superconformal group.

(ii) When some of the superfields Φ, Ψ and Π obey differential equations such as the

conservation conditions of conserved current multiplets, the tensor HJ1J2I3
B1B2A3

is con-

strained by certain differential equations as well. In deriving such equations the

identities (2.28) may be useful.

(iii) When two of the superfields Φ, Ψ and Π (or all of them) coincide, the tensor H

should obey certain constraints originating from the symmetry under permutations

of the superfields, e.g.

〈ΦA
I (z1)Φ

B
J (z2)Π

C
K(z3)〉 = (−1)ǫ(Φ)〈ΦB

J (z2)Φ
A
I (z1)Π

C
K(z3)〉 , (2.32)

where ǫ(Φ) is the Grassmann parity of ΦA
I .

These constraints fix the functional form of the tensor H (and, hence, the three-point

correlation function) up to a few arbitrary constants.

2.4 Specific features of the N = 3 case

An important feature of the N = 3 case is that the R-symmetry group SO(3) is related

to SU(2) by the isomorphism SO(3) ∼= SU(2)/Z2. This isomorphism makes it possible to

convert the SO(3) index of every isovector ZI into a pair of isospinor ones,

ZI → Zi
j :=

i√
2
(~Z · ~σ)ij ≡ ZI(τI)i

j , Zi
i = 0 , (2.33)

with ~σ the Pauli matrices.5

The isospinor indices will be raised and lowered using the SU(2) invariant antisymmet-

ric tensors εij and εij (normalised as ε12 = ε21 = 1). The rules for raising and lowering the

isospinor indices are

ψi = εijψj , ψi = εijψ
j . (2.34)

5Our definition of the τ -matrices agrees with the one adopted in [4].
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In particular, associated with the matrices (τI)i
j , eq. (2.33), are the symmetric matrices

(τI)ij = (τI)ji and (τI)
ij = (τI)

ji which are related to each other by complex conjugation:

(τI)ij = (τI)
ij . (2.35)

If AI and BI are SO(3) vectors and Aij and Bij are the associated symmetric isotensors,

then

AI = Aij(τI)
ij , AIBI = AijB

ij , (2.36)

in accordance with the identities

(τI)i
k(τJ)k

j = − 1√
2
εIJK(τK)i

j − 1

2
δIJδi

j , (τI)ij(τI)kl =
1

2
(εikεjl + εilεjk) . (2.37)

Given an antisymmetric second-rank SO(3) tensor, ΛIJ = −ΛJI , for its counterpart with

isospinor indices Λijkl = −Λklij = ΛIJ(τI)
ij(τJ)

kl we have

ΛIJ = −ΛJI =⇒ ΛIJ(τI)
ij(τJ)

kl = −εjlΛik − εikΛjl , Λij = Λji . (2.38)

Applying the above conversion to the Grassmann coordinates θαI and the spinor co-

variant derivatives DI
α gives

θαij = θαI (τI)ij , Dij
α = (τI)

ijDI
α , (2.39)

and similarly for the two- and three-point functions (2.8b) and (2.23b)

θij12α = (τI)
ijθI12α , Θij

1α = (τI)
ijΘI

1α . (2.40)

The covariant derivatives Dij
α obey the anti-commutation relation

{Dij
α , D

kl
β } = −2iεi(kεl)j∂αβ . (2.41)

In terms of the superspace coordinates zA = (xa, θαij), the explicit realisation of the covari-

ant derivatives is

Dij
α =

∂

∂θαij
+ i θβ ij∂αβ . (2.42)

The isomorphism SO(3) ∼= SU(2)/Z2 implies that associated with the orthogonal uni-

modular matrix uIJ12 given by (2.15) is a unique, up to sign, unitary and unimodular matrix

u
ij
12 such that

(τI)
ii′(τJ)

jj′uIJ12 =
1

2
(uij

12u
i′j′

12 + u
i′j
12u

ij′

12 ) . (2.43)

The matrix u
ij
12 can be chosen as

u
ij
12 = −εij − i

θik12αx
βα
12 θ

j
12kβ

x12
2

+
1

8
εij

θ12
4

x12
2
, θ12

4 := (θαij12 θ12αij)
2 . (2.44)

It is easy to check that (2.44) is indeed unitary and unimodular,

u
†
12u12 = 12 , detu12 = 1 , (2.45)

and obeys the equation (2.43) with uIJ12 given by (2.15).
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The transformation law of the orthogonal matrix u12, eq. (2.18), has the following

counterpart in terms of the unitary matrix u12:

δ̃uij
12 = Λi

k(z1)u
kj
12 + uik

12Λ
j
k(z2) . (2.46)

Here the symmetric matrix Λij(z) with isospinor indices is related to the antisymmetric

matrix ΛIJ(z) with isovector indices, eq. (2.4), according to the general rule (2.38).

Let us introduce one more 2× 2 matrix by the rule

nij
12 =

u
ij
12

x12
= − εij

x12
− i

θik12αx
αβ
12 θ

j
12kβ

x123
. (2.47)

The second expression for nij
12 is given in terms of the symmetric part of xαβ

12 given by (2.22).

It may be shown that the two-point function (2.47) obeys the analyticity condition

D
(ij
(1)αn

k)l
12 = 0 . (2.48)

This is why nij
12 appears in the correlation functions of N = 3 flavour current multiplets.

Similarly to (2.43), we can represent (2.26) as

(τI)
ii′(τJ)

jj′U IJ
1 =

1

2
(Uij

1 U
i′j′

1 +U
i′j
1 U

ij′

1 ) , (2.49)

where we have introduced the matrix

U
ij
1 = −εij + iΘik

1α(X
−1
1 )αβΘj

1kβ +
1

8
εij

Θ1
4

X1
2
, (2.50)

which can be expressed as a product of three two-point functions (2.44)

U
ij
1 = −uik

12u23 klu
lj
31 . (2.51)

As a consequence, the transformation law (2.46) implies

δ̃Uij
1 = Λi

k(z1)U
kj
1 +Uik

1 Λj
k(z1) . (2.52)

By analogy with (2.47) we introduce the matrix

N ij
1 =

U
ij
1

X1
= − εij

X1
− i

Θik
1αX

αβ
1 Θj

1kβ

X1
3

, (2.53)

which obeys the analyticity condition

D(ij
(1)αN

k)l
1 = 0 , (2.54)

where the derivative Dij
α is related to (2.29) by the rule (2.39).

Here we have only considered the thee-point functions (2.50) and (2.53) which trans-

form as tensors at z1. Performing cyclic permutations of the superspace points z1, z2 and

z3 leads to similar objects which transform as tensors at z2 and z3.
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2.5 Specific features of the N = 4 case

In the case of N = 4 supersymmetry, the R-symmetry group SO(4) possesses the isomor-

phism SO(4) ∼=
(
SU(2)L × SU(2)R

)
/Z2 which can be used to convert each SO(4) vector

index into a pair of SU(2) ones,6

ZI = (~Z, Z4) → Zi
k̃ :=

i√
2
(~Z · ~σ)ik̃ +

1√
2
Z4δi

k̃ ≡ ZI(τI)i
k̃ . (2.55)

The index ‘I’ is an SO(4) vector one, while the indices ‘i’ and ‘̃i’ are, respectively, SU(2)L
and SU(2)R spinor indices. Given SU(2)L and SU(2)R spinors ψi and χĩ, respectively, we

will raise and lower their indices by using the antisymmetric tensors εij , εij and εĩj̃ , εĩj̃
(normalised by ε12 = ε21 = ε1̃2̃ = ε2̃1̃ = 1) according to the rules:

ψi = εijψj , ψi = εijψ
j , χĩ = εĩj̃χj̃ , χĩ = εĩj̃χ

j̃ . (2.56)

The complex conjugation acts on the τ -matrices as

(τI)ĩi = (τI)
ĩi = εijεĩj̃(τI)jj̃ . (2.57)

The τ -matrices have the following properties:

(τ(I)ij̃(τJ))
jj̃ =

1

2
δIJδ

j
i , (τ(I)jĩ(τJ))

jj̃ =
1

2
δIJδ

j̃

ĩ
, (τI)ĩi(τ

I)jj̃ = εijεĩj̃ . (2.58)

The conversion from SO(4) to SU(2) indices works as follows. Associated with an

SO(4) vector AI is the second-rank isospinor Aĩi defined by

Aĩi := (τI)ĩiA
I ←→ AI = (τI)

ĩiAĩi , (2.59)

such that

AIB
I = AĩiB

ĩi . (2.60)

Given an antisymmetric second-rank SO(4) tensor, AIJ = −AJI , its counterpart with

isospinor indices, AIJ(τ
I)ĩi(τ

J)jj̃ , can be decomposed as

AIJ = −AJI −→ AIJ(τ
I)ĩi(τ

J)jj̃ = εijAĩj̃ + εĩj̃Aij , Aij = Aji , Aĩj̃ = Aj̃ĩ . (2.61a)

We also have

AIJ(τ
I)ĩi(τJ)jj̃ = −εijAĩj̃ − εĩj̃Aij . (2.61b)

Applying the conversion rule to the Grassmann variables θIα and covariant derivatives

DI
α gives θĩiα = (τI)

ĩiθIα and Dĩi
α = (τI)

ĩiDI
α, respectively. For the two- and tree-point

functions (2.8b) and (2.23b), the same rule gives θĩi12α = (τI)
ĩiθI12α and Θĩi

1α = (τI)
ĩiΘI

1α.

The covariant derivatives Dik̃
α satisfy the anti-commutation relations

{Dik̃
α , Djl̃

β } = 2iεijεk̃l̃∂αβ . (2.62)

6Our definition of the τ -matrices agrees with the one used in [4] and differs from that adopted in [34].
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In terms of the superspace coordinates zA = (xa, θα
kl̃
), the explicit realisation of the covari-

ant derivatives is

Dkl̃
α =

∂

∂θα
kl̃

+ i θβkl̃∂αβ . (2.63)

Due to the isomorphism SO(4) ∼=
(
SU(2)L × SU(2)R

)
/Z2, the orthogonal matrix uIJ12

given by (2.15) is equivalent to a pair of SU(2) matrices uij
12 and u

ĩj̃
12 constrained by

uIJ12 (τI)
ĩi(τJ)

jj̃ = u
ij
12u

ĩj̃
12 . (2.64)

The solution to this equation is

u
ij
12 = −εij − i

θk̃i12αx
αβ
12 θ

j

12βk̃

x122
− 1

8

εijθ12
4

x122
+

1

8

εij θ̃412
x124

− i

8

θk̃iα xαβ12 θ
j

12βk̃
θ12

4

x124
+

1

128

εijθ12
8

x124
, (2.65a)

u
ĩj̃
12 = −εĩj̃ − i

θĩk12αx
αβ
12 θ

j̃
12βk

x122
− 1

8

εĩj̃θ12
4

x122
− 1

8

εĩj̃ θ̃412
x124

− i

8

θĩk12αx
αβ
12 θ

j̃
12βkθ12

4

x124
+

1

128

εĩj̃θ12
8

x124
, (2.65b)

where we have used the notation

θ4 = (θIαθIα)
2 = (θĩiαθĩiα)

2 , (2.66a)

θ̃4 = θIαx
αβθJβθ

K
µ xµνθLν εIJKL = θk̃jα xαβθik̃βθ

l̃i
µx

µνθjl̃ν − θj̃kα xαβθkĩβθ
ĩl
µx

µνθlj̃ν . (2.66b)

Both matrices (2.65) are unitary and unimodular, in particular it holds that

u
ij
12u12kj = δik , u

ĩj̃
12u12k̃j̃ = δĩ

k̃
. (2.67)

Note also that the expressions (2.65) are defined by the equation (2.64) uniquely, up to an

overall sign which we fix as in (2.65) for further convenience.

The transformation law (2.18) implies that the matrices uij
12 and u

ĩj̃
12 defined by (2.64)

vary under the infinitesimal superconformal transformations as isospinors at z1 and z2,

δ̃uij
12 = Λi

k(z1)u
kj
12 + uik

12Λ
j
k(z2) , δ̃uĩj̃

12 = Λĩ
k̃
(z1)u

k̃j̃
12 + uĩk̃

12Λ
j̃

k̃
(z2) , (2.68)

where Λij(z) and Λĩj̃(z) are constructed from ΛIJ(z) by the rule (2.61).

Let us define the following matrices:

nij
12 =

u
ij
12

x12
= − εij

x12
− i

θk̃iα xαβ12 θ
j

12βk̃

x123
+

1

8

εij θ̃412
x125

, (2.69a)

nĩj̃
12 =

u
ĩj̃
12

x12
= − εĩj̃

x12
− i

θĩk12αx
αβ
12 θ

j̃
12βk

x123
− 1

8

εĩj̃ θ̃412
x125

. (2.69b)
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Similarly to (2.48), these matrices obey the analyticity conditions

D
ĩ(i
(1)αn

k)l
12 = 0 , D

i(̃i
(1)αn

k̃)l̃
12 = 0 . (2.70)

By analogy with the two-point functions (2.64), we introduce three-point matrices with

SU(2) indices

U IJ
1 (τI)

ĩi(τJ)
jj̃ = U

ij
1 U

ĩj̃
1 , (2.71)

which have the following explicit form

U
ij
1 = −εij − i

Θk̃i
1αX

αβ
1 Θj

1βk̃

X1
2

− 1

8

εijΘ1
4

X1
2

+
1

8

εijΘ̃4
1

X1
4

− i

8

Θk̃i
1αX

αβ
1 Θj

1βk̃
Θ1

4

X1
4

+
1

128

εijΘ1
8

X1
4

, (2.72a)

U
ĩj̃
1 = −εĩj̃ − i

Θĩk
1αX

αβ
1 Θj̃

1βk

X1
2

− 1

8

εĩj̃Θ1
4

X1
2

− 1

8

εĩj̃Θ̃4
1

X1
4

− i

8

Θĩk
1αX

αβ
1 Θj̃

1βkΘ1
4

X1
4

+
1

128

εĩj̃Θ1
8

X1
4

. (2.72b)

Here the composites Θ4 and Θ̃4 are defined by the same rules as in (2.66). By construction,

the matrices (2.72) transform as tensors at the superspace point z1

δ̃Uij
1 = Λi

k(z1)U
kj
1 +Uik

1 Λj
k(z1) , δ̃Uĩj̃

1 = Λĩ
k̃
(z1)U

k̃j̃
1 +Uĩk̃

1 Λj̃

k̃
(z1) . (2.73)

It is possible to check that the matrices (2.72) can be expressed as products of three

matrices of the type (2.65)

U
ij
1 = −uik

12u23 klu
lj
31 , U

ĩj̃
1 = −uĩk̃

12u23 k̃l̃u
l̃j̃
31 . (2.74)

The three-point analogs of (2.69) are

N ij
1 =

U
ij
1

X1
= − εij

X1
− i

Θk̃i
1αX

αβ
1 Θj

1βk̃

X1
3

+
1

8

εijΘ̃4
1

X1
5

, (2.75a)

N ĩj̃
1 =

U
ĩj̃
1

X1
= − εĩj̃

X1
− i

Θĩk
1αX

αβ
1 Θj̃

1βk

X1
3

− 1

8

εĩj̃Θ̃4
1

X1
5

. (2.75b)

These matrices are analytic with respect to the spinor derivatives (2.29)

Dĩ(i
(1)αN

k)l
1 = 0 , Di(̃i

(1)αN
k̃)l̃
1 = 0 . (2.76)

In this section we considered only the three-point functions which transform as tensors

at the superspace point z1. It is straightforward to obtain the analogs of these objects

transforming covariantly at z2 and z3 by permuting the superspace points.

The two- and three-point superconformal building blocks constructed above are very

similar to the N = 3 ones given in the previous subsection. This is not accidental. It
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turns out that the latter can be found from the former by applying the N = 4 → N = 3

superspace reduction. Indeed, when we switch off one of the four Grassmann variables θI
at each superspace point, say θ4 = 0, the expressions (2.65) prove to coincide with (2.44),

u
ij
12(N=4)|θ4=0 = u

ĩj̃
12(N=4)|θ4=0 = u

ij
12(N=3) . (2.77)

Here we have attached extra subscripts, (N = 4) and (N = 3), to the two-point functions to

distinguish them. We usually omit these labels if no confusion occurs. For the three-point

functions (2.50) and (2.72) we have similar relations

U
ij
1(N=4)|θ4=0 = U

ĩj̃
1(N=4)|θ4=0 = U

ij
1(N=3) . (2.78)

The superspace reduction rules (2.77) and (2.78) will be important below when we turn to

studying the correlators of the N = 3 and N = 4 flavour current multiplets.

3 Correlation functions for the N = 3 flavour current multiplets revis-

ited

Here we obtain a new representation for the correlation functions of the N = 3 flavour

current multiplets computed in [1]. Such a representation will be more convenient for

comparison of the N = 3 correlators with N = 4 ones.

As discussed in [1], the N = 3 flavour current multiplet is described by a primary

isovector superfield LI of dimension 1, which is subject to the conservation equation

D(I
α LJ) − 1

3
δIJDK

α LK = 0 . (3.1)

Its superconformal transformation law is

δLI = −ξLI − σ(z)LI + ΛIJ(z)LJ . (3.2)

The dimension of LI is uniquely fixed by requiring the constraint (3.1) to be invariant

under the superconformal transformations.

Consider an N = 3 superconformal field theory possessing n flavour current multiplets

LIā, ā = 1, . . . , n. Their two- and three-point functions were found in [1] to be

〈LIā(z1)L
Jb̄(z2)〉 = aN=3

uIJ12 δ
āb̄

x12
2

, (3.3)

〈LIā(z1)L
Jb̄(z2)L

Kc̄(z3)〉 = bN=3 f
āb̄c̄ u

II′
13 u

JJ ′

23

x13
2x23

2
HI′J ′K(X3,Θ3) , (3.4)

where

HIJK(X,Θ) =
1

X

[
εIJK − ULJεLIK + U ILεLJK

− 1

16
(δIJεKMNUMN + εIMNUMNUKJ + εJMNUMNU IK)
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+
5

16
(U IJεKMNUMN + δIKεJMNUMN + δJKεIMNUMN )

]
. (3.5)

In (3.4), f āb̄c̄ denotes the completely antisymmetric structure constants of the Lie algebra

of the flavour group which is assumed to be simple. The tensor HIJK in (3.5) is expressed

in terms of the orthogonal matrix (2.26). The correlation functions (3.3) and (3.4) are fixed

by the superconformal symmetry and the conservation condition up to arbitrary coefficients

aN=3 and bN=3.

We now switch to the SU(2) notation, LI → Lij = (τI)
ijLI , in accordance with the

rules introduced in subsection 2.4. Then the conservation equation (3.1) turns into the

analyticity condition

D(ij
α Lkl) = 0 , (3.6)

and the superconformal transformation (3.2) takes the form

δLij = −ξLij − σ(z)Lij + 2Λ
(i
k (z)L

j)k . (3.7)

Here the symmetric matrix Λij(z) with isospinor indices is related to the antisymmetric

matrix ΛIJ(z) with isovector indices, eq. (2.4), according to the general rule (2.38).

Using the relation (2.43) between the two-point building blocks with SO(3) and SU(2)

indices, for (3.3) we immediately get

〈Lij ā(z1)L
kl b̄(z2)〉 =

aN=3

2

δāb̄(uik
12u

jl
12 + u

jk
12u

il
12)

x12
2

. (3.8)

Contracting the three-point function (3.4) with three τ -matrices leads to

〈Lij ā(z1)L
kl b̄(z2)L

mn c̄(z3)〉 = bN=3 f
āb̄c̄u

ii′
13u

jj′

13 u
kk′
23 ull′

23

x13
2x23

2
Hi′j′ k′l′

mn(X3,Θ3) , (3.9)

where

H ij klmn = H(ij)(kl)(mn) = (τI)
ij(τJ)

kl(τK)mnHIJK . (3.10)

In order to compute the right-hand side of (3.10), it is convenient to rewrite the

expression (3.5) in the form

HIJK(X,Θ) =
εIJK

X
+

1

2

δIJεKMNAMN

X3
− 1

2

δIKεJMNAMN

X3
− 1

2

δJKεIMNAMN

X3
, (3.11)

where

AIJ := iΘIαXαβΘ
Jβ = −AJI . (3.12)

For the first term in the right-hand side of (3.11) we apply the identity

εIJK = −
√
2tr(τ IτKτJ) = −

√
2τ Iijτ

J
klτ

K
mnε

miεjkεln . (3.13)

The other terms in (3.11) can be rewritten as

δIJεKMNAMN − δIKεJMNAMN − δKJεIMNAMN = −2
√
2τ Iijτ

J
klτ

K
mnε

miAjlεkn , (3.14)
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where

Amn = εklτ
mk
I τnlJ AIJ = iΘmk

α XαβΘn
kβ . (3.15)

In deriving (3.14), the following identity

τmn
K εKMNAMN = −

√
2Amn (3.16)

may be useful. Now, substituting (3.13) and (3.14) into (3.10) we find

H ij klmn = − 1√
2

(
εm(iεj)(lεk)n

X
+

εm(iAj)(lεk)n

X3

)
− 1√

2

(
εn(iεj)(lεk)m

X
+

εn(iAj)(lεk)m

X3

)
.

(3.17)

Finally, taking into account the explicit expression for Ajl given by (3.15), we note that the

tensors in the parentheses in (3.17) can be rewritten in terms of the matrix N jl introduced

in (2.53),

H ij klmn(X3,Θ3) =
1√
2

(
εm(iN

j)(l
3 εk)n + εn(iN

j)(l
3 εk)m

)
. (3.18)

We arrive at the final expression for the three-point function of the N = 3 flavour current

multiplets

〈Lij ā(z1)L
kl b̄(z2)L

mn c̄(z3)〉 = bN=3 f
āb̄c̄u

ii′
13u

jj′

13 u
kk′
23 ull′

23

x13
2x23

2
Hi′j′ k′l′

mn(X3,Θ3) , (3.19a)

H ij klmn(X3,Θ3) =
1√
2

(
εm(iU

j)(l
3 εk)n

X3
+

εn(iU
j)(l
3 εk)m

X3

)
. (3.19b)

Obviously, this three-point function possesses the correct superconformal properties since

it is built out of the covariant two- and three-point objects introduced in subsection 2.4.

After using the identity (2.28a), the conservation law (3.6) implies the following equa-

tion on the tensor H ij klmn:

D(i′j′

α H ij)klmn = 0 . (3.20)

It is easy to see that (3.18) obeys this equation since the matrix N jl is analytic (2.54).

The three-point correlation function (3.19a) must have the symmetry property

〈Lij ā(z1)L
kl b̄(z2)L

mn c̄(z3)〉 = 〈Lmn c̄(z3)L
kl b̄(z2)L

ij ā(z1)〉 , (3.21)

which implies the following constraint for the tensor H ij klmn

Hmnpq
ij(−XT

1 ,−Θ1) = −x13
2X3

2u13mm′u13nn′u13pr

×Urr′

3 u13qsU
ss′

3 uii′

13u
jj′

13 Hi′j′ r′s′
m′n′

(X3,Θ3) . (3.22)

Using (2.51) one can check that (3.19b) does satisfy this equation.

Finally, we point out that the explicit form of the correlation function (3.19) is analo-

gous to the three-point correlator of flavour current multiplets in 4D N = 2 superconformal

theories [35].
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4 Correlation functions of conserved N = 4 current multiplets

In this section we compute the two- and three-point functions of the N = 4 supercurrent

and flavour current multiplets.

4.1 Correlation functions of flavour current multiplets

As discussed in [1], there are two inequivalent flavour current multiplets, LIJ
+ and LIJ

− ,

in N = 4 superconformal field theories. They are described by primary SO(4) bivectors,

LIJ
± = −LJI

± , subject to the same conservation equation

DI
αL

JK
± = D[I

αL
JK]
± − 2

3
DL

αL
L[J
± δK]I , (4.1)

which implies that LIJ
+ and LIJ

− have dimension 1. These operators possess the same

superconformal transformation law

δLIJ
± = −ξLIJ

± − σ(z)LIJ
± + 2ΛK[I(z)L

J ]K
± . (4.2)

However, they have different algebraic properties,

1

2
εIJKLLKL

± = ±LIJ
± , (4.3)

and thus LIJ
+ and LIJ

− belong to inequivalent representations of SO(4).

Let us convert the SO(4) indices of LIJ
+ and LIJ

− into SU(2) ones following the rules de-

scribed in subsection 2.5, and specifically eq. (2.61). The (anti) self-duality conditions (4.3)

imply that

(τI)
ĩi(τJ)

jj̃LIJ
+ = εĩj̃Lij , (τI)

ĩi(τJ)
jj̃LIJ

− = εijLĩj̃ . (4.4)

Here Lij and Lĩj̃ are symmetric, Lij = Lji and Lĩj̃ = Lj̃ĩ. Since LIJ
+ and LIJ

− have different

algebraic properties, the conservation equation (4.1) leads to the two different analyticity

conditions:

Dĩ(i
α Lkl) = 0 , (4.5a)

Di(̃i
α Lk̃l̃) = 0 , (4.5b)

where Dĩi
α ≡ Dĩi

α := (τI)
ĩiDI

α. It follows from (4.2) and (4.3) that the superconformal

transformation laws of Lij and Lĩj̃ are

δLij = −ξLij − σ(z)Lij + 2Λ
(i
k (z)L

j)k , (4.6a)

δLĩj̃ = −ξLĩj̃ − σ(z)Lĩj̃ + 2Λ
(̃i

k̃
(z)Lj̃)k̃ , (4.6b)

where Λij(z) and Λĩj̃(z) are constructed from ΛIJ(z) by the rule (2.61).

We emphasise that the flavour current multiplets Lij and Lĩj̃ are completely inde-

pendent and can be studied independently of each other. Since their properties are very

similar, here we will consider in detail only the correlation functions for Lij and comment

on the correlators of Lĩj̃ at the end of this section.
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The properties of Lij given by its conservation equation (4.5a) and superconformal

transformation (4.6a) are very similar to those of the N = 3 flavour current multiplet,

eqs. (3.6) and (3.7). This similarity is not accidental since there proves to exist a unique

N = 3 flavour current multiplet Lij
(N=3) associated with Lij ≡ Lij

(N=4).
7 The former is

obtained from the latter through the procedure of N = 4 → N = 3 superspace reduction

which has been discussed in the literature in the cases of N = 4 Minkowski [5] and anti-de

Sitter [36] superspaces (see also [1]). As applied to Lij
(N=4), it works as follows. For the

Grassmann coordinates θαI of the N = 4 superspace, we make 3 + 1 splitting θI → (θÎ , θ4)

and then consider the θ4-independent component of Lij
(N=4). It proves to be the desired

N = 3 flavour current multiplet,

Lij
(N=3) = Lij

(N=4)|θ4=0 . (4.7)

In fact, it is possible to define an inverse correspondence, Lij
(N=3) → Lij

(N=4). Specifically,

given an N = 3 superfield Lij
(N=3) subject to the constraint (3.6), there exists a unique

N = 4 superfield Lij
(N=4) obeying the constraint (4.5a) and related to Lij

(N=3) by (4.7). This

means that all components in the θ4-expansion of Lij
(N=4) can be restored from the lowest

one given by Lij
(N=3).

The above simple observation appears crucial for finding the correlation functions of

the N = 4 flavour current multiplets. Indeed, the expressions (3.8) and (3.19) can be

considered as the lowest components in the θ4-expansion of the corresponding correlators

of the N = 4 flavour current multiplets. Moreover, the full information is encoded in these

parts of the correlators since the higher-order corrections in θ4 can be uniquely restored

from these lowest components.

Based on these observations, we propose the following ansatz for the correlation func-

tions of several N = 4 flavour current multiplets Lij ā, ā = 1, . . . , n. The two-point function

is

〈Lij ā(z1)L
kl b̄(z2)〉 =

aN=4

2

δāb̄(uik
12u

jl
12 + u

jk
12u

il
12)

x12
2

, (4.8)

while the three-point function reads

〈Lij ā(z1)L
kl b̄(z2)L

mn c̄(z3)〉 = bN=4 f
āb̄c̄u

ii′
13u

jj′

13 u
kk′
23 ull′

23

x13
2x23

2
Hi′j′ k′l′

mn(X3,Θ3) , (4.9a)

H ij klmn(X3,Θ3) =
1√
2

(
εm(iU

j)(l
3 εk)n

X3
+

εn(iU
j)(l
3 εk)m

X3

)
. (4.9b)

The two- and three-point building blocks u
ij
12 and U

ij
3 used in these expressions were

introduced in subsection 2.5. Taking into account the relations (2.77) and (2.78), it is clear

that (3.8) and (3.19) are related to (4.8) and (4.9a) via the superspace reduction described

above

〈Lij ā
(N=4)(z1)L

kl b̄
(N=4)(z2)〉|θ4=0 = 〈Lij ā

(N=3)(z1)L
kl b̄
(N=3)(z2)〉 , (4.10a)

7Here we have attached the labels (N = 3) and (N = 4) to these superfields to distinguish them. Below,

when no confusion is possible, these labels are omitted.
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〈Lij ā
(N=4)(z1)L

kl b̄
(N=4)(z2)L

mn c̄
(N=4)(z3)〉|θ4=0 = 〈Lij ā

(N=3)(z1)L
kl b̄
(N=3)(z2)L

mn c̄
(N=3)(z3)〉 .(4.10b)

Let us rewrite the correlation function (4.8) in terms of the two-point matrix (2.69a)

〈Lij ā(z1)L
kl b̄(z2)〉 =

aN=4

2
δāb̄(nik

12n
jl
12 + njk

12n
il
12) . (4.11)

Then, owing to (2.70), it is obvious that (4.11) obeys the conservation condition

Dĩ′(i′

α 〈Lij)ā(z1)L
kl b̄(z2)〉 = 0 (z1 6= z2) . (4.12)

In the same manner we express (4.9b) in terms of (2.75a)

H ij klmn(X3,Θ3) =
1√
2

(
εm(iN

j)(l
3 εk)n + εn(iN

j)(l
3 εk)m

)
(4.13)

and observe that

Dĩ′(i′

α H ij)klmn(X,Θ) = 0 , (4.14)

as a consequence of (2.76). The equations (4.12) and (4.14) prove that the correlation

functions of N = 4 flavour current multiplets constructed in (4.8) and (4.9) do obey the

necessary conservation laws.

As concerns the correlation functions of the flavour current multiplets Lĩj̃ , they have

the same form as eqs. (4.8) and (4.9) but with the indices i, j, . . . replaced with ĩ, j̃ . . . Note

also that all mixed two- and and three-point correlators involving both Lij and Lĩj̃ vanish.

4.2 Correlation functions of the supercurrent

In accordance with [37, 38] (see also [1]), the N = 4 supercurrent is described by a primary

real scalar J subject to the conservation equation

DIαDK
α J =

1

4
δIKDLαDL

αJ . (4.15)

Its superconformal transformation law is

δJ = −ξJ − σ(z)J . (4.16)

The constraint (4.15) uniquely fixes the dimension of J to be 1.

Since the supercurrent J is a scalar superfield, its two-point correlation function has a

simple form

〈J(z1)J(z2)〉 =
cN=4

x12
2
, (4.17)

where cN=4 is a free coefficient. Using (2.21) it is easy to check that (4.17) obeys the

conservation law (4.15).

The three-point correlation function of theN = 4 supercurrent can be found by making

the following ansatz

〈J(z1)J(z2)J(z3)〉 =
1

x13
2x23

2
H(X3,Θ3) , (4.18)
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where the function H has the homogeneity property

H(λ2X, λΘ) = λ−2H(X,Θ) , (4.19)

for a real positive λ. With the use of (2.28a), one can check that the supercurrent conser-

vation condition (4.15) implies a similar equation for H,

DIαDK
α H =

1

4
δIKDLαDL

αH , (4.20)

where DI
α is the generalized spinor covariant derivative (2.29).

The general solution of (4.19) can be represented as a Θ-expansion

H(X,Θ) =
c1
X

+ c2
Θ2

X2 + c3
Θ4

X3 + c4
Θ6

X4 + c5
Θ8

X5 + c6
εIJKLΘ

IαΘJβΘKγΘLδXαβXγδ

X5 ,

(4.21)

where ci are some coefficients. It is useful to rewrite (4.21) in terms of the symmetric part

Xαβ of Xαβ given in (2.25). The result is

H =
d1
X

+ d2
Θ2

X2
+ d3

Θ4

X3
+ d4

Θ6

X4
+ d5

Θ8

X5
+ d6

εIJKLΘ
IαΘJβΘKγΘLδXαβXγδ

X5
, (4.22)

where di are some coefficients which can be, in principle, expressed in terms of ci. For the

function H in the form (4.22) it is easy to check that it solves (4.20) for

d2 = d3 = d4 = d5 = 0 , (4.23)

and d1, d6 are arbitrary real. Thus, if we denote d6 = dN=4 and d1 = d̃N=4, the solution

for H is

H(X,Θ) =
d̃N=4

X
+ dN=4

εIJKLΘ
IαΘJβΘKγΘLδXαβXγδ

X5
(4.24)

= d̃N=4

(
1

X
+
1

8

Θ4

X3+
3

128

Θ8

X5

)
+dN=4

εIJKLΘ
IαΘJβΘKγΘLδXαβXγδ

X5 .

Here, in the second line of (4.24), we expressed the function H in terms of Xαβ given

in (2.25) and transforming covariantly under the superconformal group.

Using the identities (2.27a) and (2.27b) it is possible to show that for arbitrary dN=4

and d̃N=4 the expression (4.24) obeys the equation

H(−XT
1 ,−Θ1) =

x12
2

x23
2
H(X3,Θ3) , (4.25)

which must hold as a consequence of the symmetry property

〈J(z1)J(z2)J(z3)〉 = 〈J(z3)J(z2)J(z1)〉 . (4.26)

Thus, theN = 4 supercurrent three-point correlation function (4.18) withH given by (4.24)

obeys all the constraints dictated by the superconformal symmetry and the conservation

– 20 –



J
H
E
P
0
8
(
2
0
1
5
)
1
2
5

equation with two arbitrary real coefficients dN=4 and d̃N=4. The structure of this three-

point correlator has some similarities with that for the 4D N = 2 supercurrent computed

in [35].

As was demonstrated in [1], the three-point functions of the supercurrent in N =

1, 2, 3 superconformal theories involve only one free parameter. In this regard, our N =

4 result given by eqs. (4.18) and (4.24) may look rather puzzling, since every N = 4

superconformal field theory is a special N = 3 superconformal field theory. The resolution

of this puzzle is as follows. We showed in [1] that the N = 4 supercurrent consists of two

N = 3 multiplets, one of which is the N = 3 supercurrent and the other multiplet includes

conserved currents that are not present in general N = 3 superconformal fields theories

(the fourth supersymmetry current and the R-symmetry currents associated with the coset

space SO(4)/SO(3)). In subsection C.1, by performing the N = 4 → N = 3 reduction

of the N = 4 supercurrent correlation function (4.18), we demonstrate that the first term

in (4.24) does not contribute to the three-point function of the N = 3 supercurrent. Hence,

it also does not contribute to the three-point correlation function of the energy-momentum

tensor upon further reduction down to the component fields. This means that just like

in N = 1, 2, 3 superconformal theories the three-point function of the energy-momentum

tensor depends just on a single tensor structure and a single free coefficient dN=4.

4.3 Mixed correlators

For completeness, we also present mixed three-point correlation functions involving both

the supercurrent and flavour current multiplets. It is not difficult to see that

〈Lij ā(z1)J(z2)J(z3)〉 = 0 . (4.27)

However, for the correlator with one supercurrent and two flavour current multiplet inser-

tions we get

〈Lij ā(z1)J(z2)L
kl b̄(z3)〉 = δāb̄

uii′
13u

jj′

13

x13
2x23

2
Hi′j′

kl(X3,Θ3) , (4.28a)

H ij kl(X,Θ) = c
(
N i(kεl)j +N j(kεl)i

)
= c

Ui(kεl)j +Uj(kεl)i

X
, (4.28b)

where c is a constant. The tensor H ij kl is expressed in terms of the matrices Uij and N ij

which are given by (2.72a) and (2.75a), respectively. This tensor is found as the general

solution of the equations

Dm̃(m
α H ij)kl = 0 , (4.29a)

QIαQJ
αH

ij kl =
1

4
δIJQKαQKαH

ij kl , (4.29b)

which are the corollaries of the analyticity of the flavour current multiplet (4.5a) and the

supercurrent conservation law (4.15). In deriving the equations (4.29) the identities (2.28)

have been used.
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The equation (4.29a) immediately follows from the analyticity of the matrix N ij ,

see (2.76). To check the equation (4.29b) it is convenient to rewrite it in terms of SU(2)

indices

Qi(̃iαQj̃)j
α H i′j′ kl = 0 . (4.30)

It is easy to see that this equation is satisfied as a consequence of the following property

of the matrix (2.75a)

Di(̃iαDj̃)j
α Nkl = Qi(̃iαQj̃)j

α Nkl = 0 . (4.31)

Finally, we note that the tensor (4.28b) obeys the constraint

Hij
kl(X3,Θ3) =

X1

X3
u31ii′u31jj′u

kk′

31 ull′

31Hk′l′
i′j′(−XT

1 ,−Θ1) , (4.32)

which is a corollary of the following symmetry property of the correlation function (4.28a)

〈Lij ā(z1)J(z2)L
kl b̄(z3)〉 = 〈Lkl b̄(z3)J(z2)L

ij ā(z1)〉 . (4.33)

The equation (4.32) can be easily verified with the use of the relation (2.74) which links

together the thee-point and two-point unitary matrices.

5 Free N = 4 hypermultiplets

In this section we consider a family of trivial N = 4 superconformal field theories — models

for free hypermultiplets. In these models, the correlation functions of conserved currents

can be computed exactly. Using such results will allow us to derive important relations

between the numerical parameters appearing in certain two- and three-point functions in

general N = 4 superconformal field theories.

5.1 On-shell hypermultiplets

In 3D N = 4 supersymmetry, there are two types of free on-shell hypermultiplets, left qi

and right qĩ, that transform as isospinors of the different subgroups SU(2)L and SU(2)R of

the R-symmetry group. They obey the following constraints

Dĩ(i
α qj) = 0 , (5.1a)

Di(̃i
α qj̃) = 0 , (5.1b)

which are similar to those introduced by Sohnius [39] to describe the N = 2 hypermultiplet

in four dimensions. These primary superfields possess the superconformal transformation

laws

δqi = −ξqi − 1

2
σ(z)qi + Λi

j(z)q
j ,

δqĩ = −ξqĩ − 1

2
σ(z)qĩ + Λĩ

j̃
(z)qj̃ . (5.2)

The constraints (5.1a) and (5.1b) uniquely fix the dimension of qi and qĩ to be 1/2. Asso-

ciated with qi and qĩ are their conjugates

qi = q̄i = εij q̄
j , qĩ = q̄ĩ = εĩj̃ q̄

j̃ , (5.3)
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which may be seen to obey the same constraints as qi and qĩ.

In accordance with the general results in section 2, the two-point correlation functions

of the primary superfields qi and qĩ with their conjugates are

〈qi(z1)q̄j(z2)〉 =
1

4π

u
ij
12

x12
=

1

4π
nij
12 , (5.4a)

〈qĩ(z1)q̄j̃(z2)〉 =
1

4π

u
ĩj̃
12

x12
=

1

4π
nĩj̃
12 , (5.4b)

where the matrices u
ij
12, u

ĩj̃
12 and nij

12, n
ĩj̃
12 are defined in (2.65) and (2.69), respectively.

On the one hand, the expressions for 〈qi(z1)q̄j(z2)〉 and 〈qĩ(z1)q̄j̃(z2)〉 in terms of uij
12, u

ĩj̃
12

and x12 guarantee that they comply with the requirement of superconformal invariance,

eq. (2.7). On the other hand, expressing these correlators in terms of nij
12 and nĩj̃

12 allows

one to check easily that these two-point functions obey the analyticity constraints (5.1a)

and (5.1b), owing to (2.70).

There exist several off-shell realisations for the hypermultiplet, see appendix A for a

review. In any off-shell realisation for the left hypermultiplet, the two-point function (5.4a)

may differ only by contact terms from that corresponding to the off-shell formulation. In

particular, in the harmonic superspace approach one deals with the q+-hypermultiplet for

which it holds that

〈q+(z1, u1) q̆+(z2, u2)〉 = u+1i 〈qi(z1) q̄j(z2)〉u
+j
2 + contact terms . (5.5)

Similar comments apply to the right hypermultiplet correlator (5.4b). For our purposes in

this section, it suffices to work with the two-point functions (5.4a) and (5.4b). A careful

treatment of the singularities of the two- and three-point functions at coincident points is

beyond the scope of this paper.

It should be pointed out that switching off the Grassmann variables in (5.4) leads to

to the correctly normalised correlators of free complex scalars,

〈qi(z1)q̄j(z2)〉|θ=0 = 〈ϕi(x1)ϕ̄j(x2)〉 =
1

4π
δij

1√
(x1 − x2)2

, (5.6a)

〈qĩ(z1)q̄j̃(z2)〉|θ=0 = 〈ϕĩ(x1)ϕ̄j̃(x2)〉 =
1

4π
δĩ
j̃

1√
(x1 − x2)2

, (5.6b)

where ϕi(x) = qi(z)|θ=0, ϕ
ĩ(x) = qĩ(z)|θ=0.

5.2 Two-point correlators

Let us consider a free model of m left hypermultiplets qi and n right hypermultiplets qĩ.

We assume that qi transforms in an irreducible representation of a simple flavour group GL

with generators Σā. Similarly, qĩ is assumed to transform in an irreducible representation of

another simple flavour group GR with generators Σã. Viewing qi and qĩ as column vectors

and their Hermitian conjugates q̄i and q̄ĩ as row vectors, the supercurrent J is

J = q̄ĩq
ĩ − q̄iq

i , (5.7)
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and the flavour current multiplets Lij ā, Lĩj̃ ã are given by

Lā
ij = −iq̄(iΣ

āqj) , Lã
ĩj̃
= −iq̄(̃iΣ

ãqj̃) . (5.8)

We assume that the generators of the flavour groups are normalised such that

tr(ΣāΣb̄) = kLδ
āb̄ , tr(ΣãΣb̃) = kRδ

ãb̃ . (5.9)

The normalisation constants kL and kR depend on the representations of the flavour groups

GL and GR chosen. One can check that, due to the free equations of motion (5.1), the

current multiplets (5.7) and (5.8) obey the conservation laws (4.15) and (4.5), respectively.

The notable feature of the supercurrent (5.7) is that J is asymmetric with respect

to the left and right hypermultiplets. The supergravity origin of this property will be

discussed in section 8.

We compute the two-point correlation functions of the supercurrent and flavour current

multiplets for the free hypermultiplets. Since there is no correlation between the superfields

qi and qĩ, the two-point function for the supercurrent is given by

〈J(z1)J(z2)〉 = 〈qĩ(z1)q̄ĩ(z1)qj̃(z2)q̄j̃(z2)〉+ 〈qi(z1)q̄i(z1)qj(z2)q̄j(z2)〉 . (5.10)

Performing the Wick contractions and making use of (5.4), we find

〈J(z1)J(z2)〉 =
m

(4π)2
u
ij
12u12ij

x12
2

+
n

(4π)2
u
ĩj̃
12u12̃ij̃

x12
2

=
1

8π2

m+ n

x12
2

. (5.11)

In a similar way we find two-point correlation functions of flavour current multiplets

〈Lā
ij(z1)L

b̄
kl(z2)〉 =

kL
32π2

(u12ilu12jk + u12jlu12ik)

x12
2

δāb̄ , (5.12a)

〈Lã
ĩj̃
(z1)L

b̃
k̃l̃
(z2)〉 =

kR
32π2

(u12̃il̃u12j̃k̃ + u12j̃ l̃u12̃ik̃)

x12
2

δãb̃ . (5.12b)

Comparing these correlation functions with (4.8) and (4.17) we find the following values

for the coefficients aN=4 and cN=4:

aN=4 =
kL
16π2

, (5.13)

cN=4 =
m+ n

8π2
. (5.14)

5.3 Three-point correlators

For the three-point function of the flavour current multiplets Lā
ij , which are defined by (5.8),

we have

〈Lā
ij(z1)L

b̄
kl(z2)L

c̄
mn(z3)〉 = i〈q̄(i(z1)Σāqj)(z1)q̄(k(z2)Σ

b̄ql)(z2)q̄(m(z3)Σ
c̄qn)(z3)〉 . (5.15)

Performing the Wick contractions and using the explicit form of the hypermultiplet two-

point function (5.4a) we find

〈Lā
ij(z1)L

b̄
kl(z2)L

c̄
mn(z3)〉 = −f āb̄c̄kL

128π3

u12i(ku23l)(mu31n)j + u12j(ku23l)(mu31n)i

x12x13x23
. (5.16)
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Using the identity x12
2 = X3

2x13
2x23

2 the denominator in (5.16) can be written as

1

x12x13x23
=

1

x13
2x23

2X3
. (5.17)

With the help of (2.74) the correlation function (5.16) gets exactly the form (4.9) with

bN=4 = −
√
2

128π3
kL . (5.18)

Comparing this coefficient with (5.13) we observe that

bN=4

aN=4
= −

√
2

8π
. (5.19)

Although this relation between the coefficients of the two-point and three-point correlation

functions is obtained for the free hypermultiplets, we propose that it is universal for any

N = 4 superconformal field theory. Indeed, the relation (5.19) can be considered as a

manifestation of a Ward identity relating the two- and three-point correlation functions

of the flavour current multiplets. Since both of these correlation functions depend on a

single tensor structure the relation between their coefficients can be found by considering

a particular theory. The explicit form of the relevant N = 4 Ward identity will be derived

in the next section.

The three-point correlation function for the flavour current multiplets Lã
ĩj̃
can be anal-

ysed in a similar way, with the same relation (5.19) between the coefficients.

Now we turn to computing the three-point correlator for the supercurrent (5.7). In

the right-hand side of

〈J(z1)J(z2)J(z3)〉 = 〈qĩ(z1)q̄ĩ(z1)qj̃(z2)q̄j̃(z2)qk̃(z3)q̄k̃(z3)〉
−〈qi(z1)q̄i(z1)qj(z2)q̄j(z2)qk(z3)q̄k(z3)〉 (5.20)

we perform the Wick contractions and make use of (5.4) to get

〈J(z1)J(z2)J(z3)〉 =
m

(4π)3
u12

ĩ
j̃u23

j̃
k̃u31

k̃
ĩ + u13

ĩ
k̃u21

j̃
ĩu32

k̃
j̃

x13x12x23

− n

(4π)3
u12

i
ju23

j
ku31

k
i + u13

i
ku21

j
iu32

k
j

x13x12x23

=
2m

(4π)3
U3

ĩ
ĩ

x12x23x13
− 2n

(4π)3
U3

i
i

x12x23x13
. (5.21)

Here, in the last line, we have applied the relations (2.74). Next, using the identity (5.17),

we express (5.21) in terms of N ij and N ĩj̃ introduced in (2.75)

〈J(z1)J(z2)J(z3)〉 =
1

32π3

1

x13
2x23

2
(mN3

ĩ
ĩ − nN3

i
i) . (5.22)

Taking into account the explicit form of the matrices N ij and N ĩj̃ given in (2.75), we

conclude that the correlator has the form (4.24),

〈J(z1)J(z2)J(z3)〉 =
1

x13
2x23

2

(
d̃N=4

X3
+

dN=4

X3
5
εIJKLΘ

IαΘJβΘKγΘLδXαβXγδ

)
, (5.23a)
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where

dN=4 =
m+ n

128π3
, d̃N=4 =

m− n

16π3
. (5.23b)

As discussed at the end of subsection 4.2, it is the dN=4-term in (5.23) which con-

tributes to the three-point function of the energy-momentum tensor upon reduction to

the component fields. In accordance with (5.23b), the coefficient dN=4 receives additive

contributions from the qi and qĩ hypermultiplets. The other coefficient d̃N=4 is non-zero

when m 6= n. It is known that the mirror map8 M [12, 40] turns every left hypermultiplet

qi into a right one, qĩ, and vice versa, see appendix A. Invariance under the mirror map

implies that the theory has the same number of the qi and qĩ hypermultiplets. Thus, we

conclude that the non-vanishing value of d̃N=4 indicates that the superconformal theory

under consideration is not invariant under the mirror map.

The ratio of the coefficient dN=4 in the three-point function (5.23) with cN=4, which

determines the two-point correlator (5.14), is

dN=4

cN=4
=

1

16π
. (5.24)

Although we have found this relation for the special model of free N = 4 hypermultiplets,

we expect that (5.24) is universal for all N = 4 superconformal models, as a consequence

of a Ward identity. Indeed, there is a Ward identity relating the two- and three-point

functions of the energy-momentum tensor (see, e.g., [23]). Since in N = 4 superconformal

field theories each of them is determined by a single tensor structure, the relation between

their coefficients can be found by considering a particular theory. Of course, it is possible to

derive a superfield Ward identity expressing the N = 4 superconformal symmetry. Since

its main application is to give another derivation of (5.24), we will not indulge in this

technical issue in the present paper.

6 Ward identities for flavour current multiplets

The Ward identities play an important role in quantum field theory as they relate different

Green functions. In this section we derive Ward identities for flavour current multiplets in

N -extended superconformal field theories, with 1 ≤ N ≤ 4. Such Ward identities relate

the two- and three-point correlation functions of the flavour current multiplets and, in

principle, allow one to relate the parameters in these correlators. The common feature of

the four supersymmetry types 1 ≤ N ≤ 4 is that for each of these cases the Yang-Mills

multiplet possesses an unconstrained prepotential formulation.

To derive the Ward identities we will use a standard field theoretic construction that

can be described as follows. Consider a superconformal field theory that possesses a flavour

current multiplet L (with all indices suppressed). We gauge the flavour symmetry by cou-

pling the theory to a background vector multiplet described by an unconstrained prepoten-

tial V which will be the source for L. An n-point function for L is obtained by computing

8The mirror map is not directly related to mirror symmetry [41].
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n functional derivatives of the generating functional Z[V ] with respect to V and then

switching V off,

in〈L(1) . . . L(n)〉 = δnZ[V ]

δV (1) . . . δV (n)

∣∣∣∣
V=0

, (6.1)

where the operator insertions on the left are taken at distinct points. The Ward identities

follow from the condition of the gauge invariance of Z[V ].

6.1 N = 1 superconformal theories

In N = 1 superconformal field theory, the flavour current multiplet is described by a

primary real spinor superfield Lā
α of dimension 3/2 subject to the conservation condition

DαLā
α = 0 , (6.2)

with ā being the flavour index (see [1] for more details). We now gauge the flavour sym-

metry by coupling the theory to a background vector multiplet described by a spinor

prepotential V ā
α , which is real but otherwise unconstrained (see [42] for the details). The

gauge transformation law of V ā
α is

δλV
ā
α = Dαλ

ā − f āb̄c̄V b̄
αλ

c̄ , (6.3)

with the superfield gauge parameters λā being real but otherwise unconstrained. The gauge

prepotential V ā
α is the source for the flavour current multiplet in the sense that

i〈Lā
α(z)〉V =

δZ[V ]

δV αā(z)
, (6.4)

where Z[V ] is the generating functional. As usual, 〈. . . 〉V denotes a correlation function

in the presence of the background field. The gauge invariance of Z[V ] implies that

∫
d3|2z (Dαλ

ā − f āb̄c̄V b̄
αλ

c̄)
δZ[V ]

δV ā
α (z)

= 0 . (6.5)

Since the gauge parameters λā are arbitrary superfields, we conclude that

(
Dα δ

δV αā
− f āb̄c̄V b̄ α δ

δV αc̄

)
Z[V ] = 0 . (6.6)

Varying this identity twice and switching off the source V ā
α , we end up with the Ward

identity for N = 1 flavour current multiplets

Dα〈Lā
α(z)L

b̄
β(z1)L

c̄
γ(z2)〉+ if āb̄d̄δ3|2(z − z1)〈Ld̄

β(z1)L
c̄
γ(z2)〉

+if āc̄d̄δ3|2(z − z2)〈Lb̄
β(z1)L

d̄
γ(z2)〉 = 0 . (6.7)

Here δ3|2(z − z′) is the N = 1 superspace delta-function.
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6.2 N = 2 superconformal theories

The N = 2 flavour current multiplet is described by a primary real scalar superfield Lā of

dimension 1 subject to the conservation equation
(
Dα(IDJ)

α − 1

2
δIJDαKDK

α

)
Lā = 0 , (6.8)

see [1] for more details.

In this subsection it is useful to deal with complex Grassmann coordinates θα and θ̄α

for N = 2 superspace that are related to the real ones, θαI , as follows:

θα =
1√
2
(θα1 + iθα2 ) , θ̄α =

1√
2
(θα1 − iθα2 ) . (6.9)

The corresponding spinor covariant derivatives are

Dα =
1√
2
(D1

α − iD2
α) , D̄α = − 1√

2
(D1

α + iD2
α) . (6.10)

In this basis, the conservation equations (6.8) turn into the conditions

D2Lā = 0 , D̄2Lā = 0 , (6.11)

which mean that Lā is a real linear superfield.

We gauge the flavour symmetry by coupling the theory to a background vector mul-

tiplet described by a prepotential V ā, which is real but otherwise unconstrained [43, 44].

The gauge transformation of the prepotential is

δλV
ā =

i

2
(λ̄ā − λā) +

1

2
f āb̄c̄V b̄(λc̄ + λ̄c̄) + . . . , (6.12)

where the gauge parameter λā is an arbitrary chiral scalar superfield. The ellipsis in (6.12)

stands for those terms which are at least quadratic in V ā, and therefore are irrelevant for

the Ward identity relating the two- and three-point correlation functions. Below, we will

systematically neglect the O(V 2)-terms in the gauge transformation of V ā.

The gauge prepotential V ā is the source for the flavour current multiplet Lā which is

obtained from the generating functional Z[V ] by

i〈Lā(z)〉V =
δZ[V ]

δV ā(z)
. (6.13)

The gauge invariance of the generating functional is expressed as

∫
d3|4z

(
i

2
(λ̄ā − λā) +

1

2
f āb̄c̄V b̄(λc̄ + λ̄c̄) + . . .

)
δZ[V ]

δV ā(z)
= 0 . (6.14)

Since the gauge parameters λā are arbitrary chiral superfields, we end up with the following

identity for the generating functional Z:

D̄2

(
δ

δV ā(z)
− if āb̄c̄V b̄(z)

δ

δV c̄(z)
+ . . .

)
Z[V ] = 0 (6.15)
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and its conjugate. Varying this equation twice and switching off the gauge superfield V ā, we

obtain the Ward identity relating the two- and three-point correlation functions of N = 2

flavour current multiplets

D̄2〈Lā(z)Lē(z1)L
d̄(z2)〉 − 4f āēc̄δ+(z, z1)〈Lc̄(z1)L

d̄(z2)〉
−4f ād̄c̄δ+(z, z2)〈Lē(z1)L

c̄(z2)〉 = 0 . (6.16)

Here δ+(z, z
′) is the chiral delta-function; it is expressed in terms of the full superspace

delta-function δ3|4(z − z′) in the standard way

δ+(z, z
′) = −1

4
D̄2δ3|4(z − z′) . (6.17)

6.3 N = 3 superconformal theories

It is known that the conventional 3DN = 3Minkowski superspaceM3|6 is not suitable to re-

alise off-shell N = 3 supersymmetric theories. The adequate superspace setting for them [6]

is M3|6×CP 1, which is an extension of M3|6 by the compact coset space SU(2)/U(1) associ-

ated with the R-symmetry group.9 The most generalN = 3 supersymmetric gauge theories

in three dimensions can be described using either the harmonic superspace techniques [6, 12]

or the projective ones [34]. These formulations are 3D analogues of the 4D N = 2 har-

monic [45, 46] and projective [47–49] superspace approaches (see also [50] for a review of

the projective superspace formalism). The 3D N = 3 projective superspace setting has

been used to construct the most general off-shell N = 3 superconformal σ-models [4] and

supergravity-matter couplings [34]. The 3D N = 3 harmonic superspace has been shown

to be efficient for studying the quantum aspects of N = 3 superconformal theories [51]. It

also provides an elegant description of the ABJM theory [52]. In this subsection we will use

the harmonic superspace to derive Ward identities for N = 3 flavour current multiplets.

We will use SU(2) harmonic variables u+i and u−i constrained by

u+iu−j − u−iu+j = δij , u+i = u−i . (6.18)

Associated with these variables there are the following vector fields

∂++ = u+i
∂

∂u−i
, ∂−− = u−i

∂

∂u+i
, ∂0 = u+i

∂

∂u+i
− u−i

∂

∂u−i
, (6.19)

which form the SU(2) algebra

[∂0, ∂++] = 2∂++ , [∂0, ∂−−] = −2∂−− , [∂++, ∂−−] = ∂0 . (6.20)

Using these harmonic variables allows one to introduce a new basis for the Grassmann

variables θijα and the spinor covariant derivatives Dij
α :

θijα −→ (θ++
α , θ−−

α , θ0α) = (u+i u
+
j θ

ij
α , u

−
i u

−
j θ

ij
α , u

+
i u

−
j θ

ij
α ) , (6.21a)

9For every positive integer N , the 3DN -extended superconformal group OSp(N|4;R) is a transformation

group of the compactified Minkowski superspace M3|2N in which Minkowski superspace M3|2N is embedded

as a dense open domain [4]. In the N = 3 case, OSp(3|4;R) is also defined to act transitively on M
3|6×CP

1,

as shown in [4].
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Dij
α −→ (D++

α , D−−
α , D0

α) = (u+i u
+
j D

ij
α , u

−
i u

−
j D

ij
α , u

+
i u

−
j D

ij
α ) . (6.21b)

As discussed in section 3, the N = 3 flavour current multiplet is described by a primary

superfield Lij = Lji subject to the conservation law (3.6). Associated with this superfield

are the following harmonic projections:

L++ = u+i u
+
j L

ij , L−− = u−i u
−
j L

ij , L0 = u+i u
−
j L

ij . (6.22)

It is sufficient to study only one of these projections, say L++, since the others can be

obtained by acting on L++ with ∂−−. By construction, L++ is annihilated by ∂++,

∂++L++ = 0 . (6.23)

It is important that the equation (3.6) has the following corollary

D++
α L++ = 0 , (6.24)

which is usually referred to as the analyticity condition.

The main feature of harmonic superspace is that it allows one to introduce new off-shell

multiplets that are annihilated by D++
α . Such superfields are defined on a supersymmetric

subspace of M3|6×CP 1 known as the analytic subspace. It is parametrised by coordinates

ζ = (xaA, θ
++
α , θ0α, u

±
i ) , (6.25)

where

xaA = xa + iγaαβθ
++αθ−−β . (6.26)

In the analytic coordinate basis for M3|6 × CP 1 consisting of the variables ζ and θ−−
α , the

spinor covariant derivative D++
α becomes short,

D++
α =

∂

∂θ−−α
, (6.27)

while the harmonic derivative ∂++ acquires additional terms

D
++ = ∂++ + 2iγaαβθ

++αθ0α
∂

∂xaA
+ θ++α ∂

∂θ0α
+ 2θ0α

∂

∂θ−−α
. (6.28)

Therefore, in the analytic basis, the equation (6.24) tells us that L++ = L++(ζ) while (6.23)

becomes a non-trivial constraint

D
++L++ = 0 . (6.29)

We are prepared to derive Ward identities in a superconformal field theory possessing

flavour current multiplets L++ ā. For this we gauge the flavour symmetry by coupling the

theory to a background vector multiplet described by a prepotential V ++ ā which is an

analytic real superfield. Its gauge transformation reads

δλV
++ ā = D

++λā − f āb̄c̄V ++ b̄λc̄ , (6.30)
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where the gauge parameters λā are unconstrained analytic superfields. The gauge prepo-

tential V ++ā is the source for the flavour current multiplet L++ā which is obtained from

the generating functional Z[V ] by

i〈L++ ā(ζ)〉V =
δZ[V ]

δV ++ ā(ζ)
. (6.31)

The gauge invariance of Z[V ] implies the equation
∫

dζ(−4)(D++λā − f āb̄c̄V ++ b̄λc̄)
δZ[V ]

δV ++ ā(ζ)
= 0 , (6.32)

where dζ(−4) is the invariant measure on the analytic subspace (6.25). Since the gauge

parameters λā in (6.32) are arbitrary, we conclude that
(

D
++ δ

δV ++ ā(ζ)
− f āb̄c̄V ++ b̄(ζ)

δ

δV ++ c̄(ζ)

)
Z[V ] = 0 . (6.33)

Finally, varying this relation twice and switching off the gauge superfield V ++ we end up

with the Ward identity for the correlation functions of flavour current multiplets L++ ā

D
++
(ζ) 〈L

++ ā(ζ)L++ b̄(ζ1)L
++ c̄(ζ2)〉+ if āb̄d̄δ

(4,0)
A (ζ, ζ1)〈L++ d̄(ζ1)L

++ c̄(ζ2)〉

+if āc̄d̄δ
(4,0)
A (ζ, ζ2)〈L++ b̄(ζ1)L

++ d̄(ζ2)〉 = 0 , (6.34)

where δ
(4,0)
A (ζ, ζ ′) is the delta-function in the analytic subspace.

6.4 N = 4 superconformal theories

The R-symmetry group of the N = 4 super-Poincaré algebra is SU(2)L × SU(2)R. It is the

superspace (A.1) which is adequate to formulate general off-shell N = 4 supersymmetric

theories. Hence, one can introduce harmonic variables for either of the SU(2) subgroups,

or for both of them. For studying Ward identities involving correlation functions of the

left flavour current multiplets Lij it is sufficient to introduce harmonic variables for the

subgroup SU(2)L which acts on the indices i, j. We will use the same harmonic variables u±i
constrained by (6.18) and the corresponding harmonic derivatives (6.19). Now we project

the N = 4 Grassmann variables θĩiα and spinor covariant derivatives Dĩi
α as

θĩiα −→ (θĩ+α , θĩ−α ) = (u+i θ
ĩi
α , u

−
i θ

ĩi
α) , (6.35)

Dĩi
α −→ (Dĩ+

α , Dĩ−
α ) = (u+i D

ĩi
α , u

−
i D

ĩi
α) . (6.36)

The flavour current multiplet Lij has the same harmonic projections as in (6.22). The

equation (6.23) remains unchanged in theN = 4 case while the analyticity constraint (6.24)

turns into

Dĩ+
α L++ = 0 . (6.37)

This equation follows from (4.5a) by contracting the indices i, k, l with the u+-harmonics.

Let us consider the analytic subspace of the N = 4 harmonic superspace parametrised

by the variables

ζ = (xaA, θ
ĩ+
α , u±i ) , (6.38)
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where

xaA = xa + iγaαβθ
ĩ+αθ−β

ĩ
. (6.39)

In the coordinate system (ζ, θĩ−α ), the spinor covariant derivative Dĩ+
α becomes short,

Dĩ+
α =

∂

∂θ−α
ĩ

, (6.40)

while the covariant harmonic derivatives ∂++ and ∂−− acquire additional terms

D
++ = ∂++ + iγaαβθ

ĩ+αθ+β

ĩ

∂

∂xaA
+ θĩ+α

∂

∂θĩ−α
, (6.41a)

D
−− = ∂−− + iγaαβθ

ĩ−αθ−β

ĩ

∂

∂xaA
+ θĩ−α

∂

∂θĩ+α
. (6.41b)

The crucial feature of using the analytic coordinates in the N = 4 harmonic superspace is

that the equation (6.37) is automatically solved by the analytic superfield L++ = L++(ζ)

while (6.23) turns into a non-trivial constraint

D
++L++ = 0 . (6.42)

Once the analytic subspace (6.38) in the N = 4 superspace is introduced, the further

derivation of the Ward identity for L++ goes exactly the same way as in section 6.3 and

the equations (6.30)–(6.33) remain unchanged. Thus, we end up with the Ward identity

for L++ exactly in the form (6.34)

D
++
(ζ) 〈L

++ ā(ζ)L++ b̄(ζ1)L
++ c̄(ζ2)〉+ if āb̄d̄δ

(4,0)
A (ζ, ζ1)〈L++ d̄(ζ1)L

++ c̄(ζ2)〉

+if āc̄d̄δ
(4,0)
A (ζ, ζ2)〈L++ b̄(ζ1)L

++ d̄(ζ2)〉 = 0 . (6.43)

In a similar way one can find the Ward identity for the right flavour current multiplet

Lĩj̃ by introducing the harmonic variables for the subgroup SU(2)R of the R-symmetry

group.

It is instructive to check that the Ward identity (6.43) is satisfied for the free hyper-

multiplets.

Consider the action for a single hypermultiplet

S =

∫
dζ(−4)q̆+D

++q+ , (6.44)

where q+ is constrained by

Dĩ+
α q+ = 0 , (6.45)

and the same constraints hold for its smile-conjugate q̆+. The superfield q+ contains

infinitely many auxiliary component fields at the component level. These auxiliary fields

vanish on the equation of motion

D
++q+ = 0 , (6.46)
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which implies that the hypermultiplet superfields take the form

q+(z, u) = u+i q
i(z) , q̆+(z, u) = u+iq̄i(z) . (6.47)

The two-point function 〈q+(ζ1)q̆+(ζ2)〉 corresponding to the action (6.44) is

〈q+(ζ1)q̆+(ζ2)〉 = −iG(+,+)(ζ1, ζ2) . (6.48)

Here we have introduced the Green function G(+,+)(ζ1, ζ2) as a solution of the equation

D
++G(+,+)(ζ1, ζ2) = −δ

(3,1)
A (ζ1, ζ2) . (6.49)

It can be represented explicitly in the following form (see appendix B for the details)

G(+,+)(ζ1, ζ2) = − i

4π

(u+1 u
+
2 )√

x̂a12x̂12a
, (6.50)

where

x̂a12 = xaA 1 − xaA 2 −
i

(u+1 u
+
2 )

[(u−1 u
+
1 )θ

+ĩ
1 γaθ+

1̃i
− (u+1 u

−
2 )θ

+ĩ
2 γaθ+

2̃i
+ 2θ+ĩ

1 γaθ+
2̃i
] (6.51)

is a manifestly analytic coordinate difference that is invariant under Q-supersymmetry

transformations. We point out that the two-point function (6.48) is related to (5.4a)

according to eq. (5.5).

Let us consider a free superconformal theory describing a column vector q+ of several

q+ hypermultiplets and their smile conjugates q̆+ viewed as a row vector. The corre-

sponding action, which is the sum of n free actions (6.44) is invariant under rigid flavour

transformations

δq+ = iλāΣāq+ , δq̆+ = −iλāq̆+Σā , (6.52)

with constant real parameters λā and Hermitian generators Σā of the flavour group. We

gauge this symmetry by coupling the hypermultiplets to an analytic gauge prepotential

V ++ = V ++ā(ζ)Σā taking its values in the Lie algebra of the flavour group,

S =

∫
dζ(−4)q̆+D

++q+ −→
∫

dζ(−4)q̆+
(
D

++ + iV ++
)
q+ . (6.53)

From the action obtained we read off the flavour current multiplet

L++ā(ζ) = iq̆+Σāq+ . (6.54)

By construction, L++ā respects the analyticity constraint (6.37). It also obeys the condi-

tion (6.42) on the mass shell. Thus, our new representation (6.54) for the flavour current

multiplet is equivalent to (5.8) we used before.

Let us use the new representation (6.54) to compute the two- and three-point functions

of the flavour current multiplets. Performing the Wick contractions gives

〈L++ā(ζ1)L
++b̄(ζ2)〉=kLδ

āb̄〈q+(ζ1)q̄+(ζ2)〉〈q+(ζ1)q̄+(ζ2)〉 , (6.55)
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〈L++ā(ζ1)L
++b̄(ζ2)L

++c̄(ζ3)〉=−kLf
āb̄c̄〈q+(ζ1)q̄+(ζ3)〉〈q+(ζ1)q̄+(ζ2)〉〈q+(ζ2)q̄+(ζ3)〉,(6.56)

where the propagator is given by (6.48). Now we use the explicit form of the hypermultiplet

Green’s function (6.50) and obtain a new representation for the correlators of the flavour

current multiplets

〈L++ā(ζ1)L
++b̄(ζ2)〉 = aN=4δ

āb̄ (u
+
1 u

+
2 )

2

x̂122
, (6.57)

〈L++ā(ζ1)L
++b̄(ζ2)L

++c̄(ζ3)〉 =
√
2bN=4f

āb̄c̄ (u
+
1 u

+
2 )(u

+
2 u

+
3 )(u

+
3 u

+
1 )√

x̂122x̂232x̂312
. (6.58)

These expressions are manifestly analytic in all arguments. They are equivalent to (4.8)

and (4.9) modulo contact terms which vanish for non-coincident superspace points. We

stress that for generic values of aN=4 and bN=4 the form of the correlation functions (6.57)

and (6.58) is universal for any N = 4 superconformal theory although they were derived

for free hypermultiplets. The values of the coefficients aN=4 and bN=4 for the case of free

hypermultiplets are given by (5.13) and (5.18), respectively.

Recall that the hypermultiplet Green’s function (6.50) obeys the equation (6.49). Using

this equation we compute the derivative of the expression (6.58)

D
++
(1) 〈L

++ā(ζ1)L
++b̄(ζ2)L

++c(ζ3)〉 = 4
√
2iπbN=4f

āb̄c̄[δ
(4,0)
A (ζ1, ζ2)− δ

(4,0)
A (ζ1, ζ3)]

(u+2 u
+
3 )

x̂122

= 4
√
2iπ

bN=4

aN=4
f āb̄d̄[δ

(4,0)
A (ζ1, ζ2)− δ

(4,0)
A (ζ1, ζ3)]〈L++c̄(ζ2)L

++d̄(ζ3)〉 . (6.59)

Hence, the correlation functions (6.57) and (6.58) obey the Ward identity (6.43) if the

coefficients aN=4 and bN=4 are related to each other by the equation (5.19) which was

found previously for the case of free hypermultiplets. Here we have demonstrated that it

holds for every N = 4 superconformal field theory.

7 Relations between correlation functions in superconformal field theo-

ries with 1 ≤ N ≤ 4

The study of correlation functions performed in the present paper is the continuation of

our earlier work [1]. In [1] and in sections 3 and 4 of the present paper, we derived ex-

plicit expressions for the two- and three-point correlation functions of the supercurrent and

flavour current multiplets in three-dimensional N -extended superconformal field theories

with 1 ≤ N ≤ 4. As was discussed above, the coefficients of the two- and three-point func-

tion are not independent but are related by the Ward identities. The aim of this section

is to derive the relations between these coefficients for 1 ≤ N ≤ 4. Our derivation will be

based on the following two observations.

• If both the two- and the three-point functions are fixed up to overall coefficients

and are related to each other by the Ward identities, we can find a universal relation

between the coefficients by considering a particular theory. We have already used this
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observation to obtain the relations (5.19) and (5.24) which are valid in any N = 4

superconformal field theory.10

• Every N = 4 superconformal theory can also be viewed as a special N̂ -extended

superconformal theory, with N̂ ≤ 3. Since the relevant two- and three-point func-

tions in theories with N = 1, 2, 3 supersymmetries are fixed up to overall coef-

ficients11 [1] we can find similar universal relations between the coefficients using

eqs. (5.19) and (5.24).

To perform explicit calculations we use the fact that the correlation functions of con-

served currents for different N are related to each other by the superspace reduction.

Indeed, as explained in [1], the supercurrents in 1 ≤ N ≤ 3 superconformal theories can be

derived from the supercurrent J in the N = 4 theory by applying covariant spinor deriva-

tives and switching off some of the Grassmann coordinates. The flavour current multiplets

in 1 ≤ N ≤ 3 theories can also be derived from the N = 4 flavour current multiplets by

applying the rules of the superspace reduction discussed in [1].

7.1 Superspace reduction of the supercurrent correlation functions

7.1.1 N = 3 supercurrent

Let us start with the N = 4 supercurrent J whose correlation functions are given

by (4.17), (4.18) and (4.24). The N = 3 supercurrent Jα is related to J as follows

Jα = iD4
αJ | , (7.1)

where the bar-projection means that we set θα4 = 0. Hence, for the correlation functions of

Jα we have

〈Jα(z1)Jβ(z2)〉 = −D4
(1)αD

4
(2)β〈J(z1)J(z2)〉| , (7.2)

〈Jα(z1)Jβ(z2)Jγ(z3)〉 = −iD4
(1)αD

4
(2)βD

4
(3)γ〈J(z1)J(z2)J(z3)〉| . (7.3)

Computation of the required derivatives of (4.17) and (4.18) is a straightforward but tedious

task. The details of this procedure are given in subsection C.1. Here we present the results:

〈Jα(z1)Jβ(z2)〉 = icN=3
x12αβ

x12
4
, (7.4a)

〈Jα(z1)Jβ(z2)Jγ(z3)〉 = dN=3
x13αα′x23ββ′

x13
4x23

4
Hα′β′

γ(X3,Θ3) , (7.4b)

10The coefficient d̃N=4 does not contribute to the three-point function of the energy-momentum tensor

and, hence, does not appear in the Ward identities. Thus, it is not related to the coefficients cN=4 and

dN=4 in a universal manner.
11In the case of the three-point function of flavour current multiplets in N = 2 superconformal field

theories, there is a second structure proportional to the totally symmetric tensor of the flavour symmetry

group [1]. However, this structure does not contribute to the three-point functions of conserved currents.

Hence, it does not contribute to the Ward identities and can be ignored for our discussion.
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Hαβ
γ(X,Θ) =

1

X5

[
(δβγX

αρ + δαγX
ρβ)XµνΘI

µΘ
J
νΘ

K
ρ εIJK

+XβαXµνΘI
µΘ

J
νΘ

K
γ εIJK + 2XαµXνβΘI

µΘ
J
νΘ

K
γ εIJK

]
, (7.4c)

where

cN=3 = 2cN=4 , (7.5a)

dN=3 = 4dN=4 . (7.5b)

Eqs. (7.4) are precisely the expressions for the correlation functions of the N = 3 su-

percurrent obtained in [1]. Using eq. (5.24) we obtain the following relation between the

coefficients
dN=3

cN=3
=

1

8π
. (7.6)

We expect that this relation is valid in any N = 3 superconformal theory.

7.1.2 N = 2 supercurrent

The N = 2 supercurrent Jαβ is related to the N = 3 supercurrent Jα as follows

Jαβ = D3
αJβ | , (7.7)

where the bar-projection means that θα3 = 0. Hence, the correlation functions of N = 2

supercurrents can be found from (7.4) by the rules

〈Jαα′(z1)Jββ′(z2)〉 = −D3
(1)αD

3
(2)β〈Jα′(z1)Jβ′(z2)〉| , (7.8)

〈Jαα′(z1)Jββ′(z2)Jγγ′(z3)〉 = −D3
(1)αD

3
(2)βD

3
(3)γ〈Jα′(z1)Jβ′(z2)Jγ′(z3)〉| . (7.9)

The details of computations of these derivatives are given in subsection C.2. The resulting

expressions are:

〈Jαβ(z1)Jα′β′
(z2)〉 = cN=2

x12α
(α′

x12β
β′)

x12
6

, (7.10)

〈Jαα′(z1)Jββ′(z2)Jγγ′(z3)〉 = dN=2
x13αρx13α′ρ′x23βσx23β′σ′

x13
6x23

6
Hρρ′,σσ′

γγ′(X3,Θ3) , (7.11)

where

Hαα′,ββ′,γγ′
(X,Θ) =

2i

X3

[
εα(βεβ

′)α′
Θγ

IΘ
γ′

J + εα(γεγ
′)α′

Θβ
IΘ

β′

J + εβ(γεγ
′)β′

Θα
IΘ

α′

J

]
εIJ

+
i

X5

[
3Xαα′

Xγγ′
Θβ

IΘ
β′

J + 3Xββ′
Xγγ′

Θα
IΘ

α′

J − 5Xαα′
Xββ′

Θγ
IΘ

γ′

J

]
εIJ

+
i

X5

[
5εα(γεγ

′)α′
Xββ′

+ 5εβ(γεγ
′)β′

Xαα′ − 3εα(βεβ
′)α′

Xγγ′
]
Xδδ′ΘI

δΘ
J
δ′εIJ

+
5

2

i

X7X
αα′

Xββ′
Xγγ′

Xδδ′ΘI
δΘ

J
δ′εIJ . (7.12)

The coefficients cN=2 and dN=2 in (7.10) and (7.11) are related to cN=3 and dN=3 as

cN=2 = −4cN=3 , dN=2 = −6dN=3 . (7.13)
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Eqs. (7.10), (7.11), (7.12) represent precisely the correlation functions of the N = 2 super-

current obtained in [1].

Taking into account (7.6), we find the ratio of the coefficients (7.13):

dN=2

cN=2
=

3

16π
, (7.14)

which we expect to be valid in any N = 2 superconformal theory.

7.1.3 N = 1 supercurrent

Consider now the reduction of the N = 2 supercurrent Jαβ to the N = 1 supercurrent

Jαβγ = iD2
αJβγ | , (7.15)

where the bar-projection means that θα2 = 0. The corresponding relation for the supercur-

rent correlation functions reads

〈Jαα′α′′(z1)Jββ′β′′(z2)〉=−D2
(1)αD

2
(2)β〈Jα′α′′(z1)Jβ′β′′(z2)〉| , (7.16)

〈Jαα′α′′(z1)Jββ′β′′(z2)Jγγ′γ′′(z3)〉=−iD2
(1)αD

2
(2)βD

2
(3)γ〈Jα′α′′(z1)Jβ′β′′(z2)Jγ′γ′′(z3)〉|. (7.17)

The computations of these expressions were performed in [1]. Here we give only the result:

〈Jαβγ(z1)Jα′β′γ′
(z2)〉 = icN=1

x12α
(α′

x12β
β′
x12γ

γ′)

x12
8

, (7.18)

〈Jαα′α′′(z1)Jββ′β′′(z2)Jγγ′γ′′(z3)〉 = idN=1
x13α

ρx13α′
ρ′x13α′′

ρ′′x23β
σx23β′

σ′
x23β′′

σ′

x13
8x23

8

×Hρρ′ρ′′ σσ′σ′′ γγ′γ′′(X3,Θ3) , (7.19)

where the tensor Hαα′α′′ ββ′β′′ γγ′γ′′
= (γm)α

′α′′
(γn)

β′β′′
(γk)

γ′γ′′
Hαmβnγk has the following

complicated but explicit form:

Hαmβnγk(X,Θ)= (γp)
αβ

[
ΘγC(mnp),k+

1

2
(γr)

γ
δΘ

δεkrqηqq′C
(mnp),q′+(γr)

γ
δΘ

δD(mnp),(kr)

]
,

Cmnp,k =
1

X3
(ηmnηkp + ηmkηnp + ηnkηmp)

+
3

X5
(XmXkηnp +XnXkηmp +XpXkηmn)

− 5

X5
(XmXnηpk +XnXpηmk +XmXpηnk)− 5

X7
XmXnXpXk ,

D(mnp),(kr) = εmksηss′T
(np),r,s′ + εnksηss′T

(mp),r,s′ + εpksηss′T
(mn),r,s′

+εmrsηss′T
(np),k,s′ + εnrsηss′T

(mp),k,s′ + εprsηss′T
(mn),k,s′ ,

T (np),r,s =
1

2

[
ηnrXpXs + ηprXnXs − ηnpXrXs

X5
+

3XnXpXrXs

X7

]
. (7.20)

It is important that the coefficients cN=1 and dN=1 in (7.18) and (7.19) are expressed in

terms of cN=2 and dN=2 as

cN=1 = 6cN=2 , dN=1 = −5dN=2 . (7.21)

From (7.14) we find the ratio of these coefficients:

dN=1

cN=1
= − 5

32π
. (7.22)
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7.2 Correlation functions of flavour current multiplets

We now turn to deriving relations between the coefficients in the two- and three-point

correlators of flavour current multiplets.

7.2.1 N = 3 flavour current multiplets

The two- and three-point correlation functions of N = 4 flavour current multiplets are

found in the form (4.8) and (4.9). They contain free coefficients aN=4 and bN=4 which are

related to each other by (5.19). Owing to the identities (4.10), the same relation must hold

for the coefficients among two-point and three-point functions in N = 3 superconformal

theories
bN=3

aN=3
= −

√
2

8π
. (7.23)

7.2.2 N = 2 flavour current multiplets

Let us consider the reduction of the N = 3 〈LLL〉 correlator to N = 2 superspace. Recall

that the N = 2 flavour current multiplet is described by a primary real dimension-1

superfield L subject to the constraint

(
DαIDJ

α − 1

2
δIJDKαDK

α

)
L = 0 , (7.24)

which defines the N = 2 linear multiplet. Such a superfield can be obtained by bar-

projecting one of the three components of the N = 3 flavour current multiplet LI ,

L = L3| , (7.25)

where the bar-projection assumes that θα3 = 0. Hence, the correlation functions of the

N = 2 flavour current multiplets can be obtained by evaluating the bar-projections

〈Lā(z1)L
b̄(z2)〉 = 〈L3 ā(z1)L

3 b̄(z2)〉| , (7.26a)

〈Lā(z1)L
b̄(z2)L

c̄(z3)〉 = 〈L3 ā(z1)L
3 b̄(z2)L

3 c̄(z3)〉| . (7.26b)

Now, given the explicit form of the correlation functions ofN = 3 flavour current multiplets,

eqs. (3.3) and (3.4), we derive

〈Lā(z1)L
b̄(z2)〉 = aN=3

δāb̄

x12
2
, (7.27a)

〈Lā(z1)L
b̄(z2)L

c̄(z3)〉 = −1

2
bN=3

f āb̄c̄

x13
2x23

2

iΘÎα
3 X3αβΘ

Ĵβ
3 εÎ Ĵ

X3
3

, (7.27b)

where Î , Ĵ are the SO(2) indices. Recall that theN = 2 flavour current correlation functions

were found in [1] in the form

〈Lā(z1)L
b̄(z2)〉 = aN=2

δāb̄

x12
2
, (7.28a)
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〈Lā(z1)L
b̄(z2)L

c̄(z3)〉 =
1

x13
2x23

2


f āb̄c̄bN=2

iεÎ ĴΘ
Îα
3 X3αβΘ

Ĵβ
3

X3
3

+ dāb̄c̄
b̃N=2

X3


 . (7.28b)

Comparing these expressions with (7.27) we conclude that

aN=2 = aN=3 , bN=2 = −1

2
bN=3 , b̃N=2 = 0 . (7.29)

As a consequence of (7.23) we find the ratio of coefficients bN=2 and aN=2

bN=2

aN=2
=

√
2

16π
. (7.30)

Let us point out that b̃N=2 is found to be zero because the last term in (7.28b) cannot

be lifted to N = 3 supersymmetry, but in generic N = 2 supersymmetric theories it is

not necessarily zero. It can be shown that this term does not contribute to the three-point

function of conserved currents [1] and, hence, is irrelevant for our present discussion.

7.2.3 N = 1 flavour current multiplets

Finally, let us discuss the reduction of the N = 2 flavour current multiplets correlation

functions down to N = 1. The N = 1 flavour current is described by a primary dimension-

3/2 superfield Lα obeying the conservation law DαLα = 0. It can be obtained from the

N = 2 flavour current multiplet L by the rule

Lα = iD2
αL| , (7.31)

where the bar-projection assumes that θα2 = 0. The corresponding relations among the

correlation functions of N = 2 and N = 1 flavour current multiplets were found in [1]

〈Lā
α(z1)L

b̄
β(z2)〉 = −D2

(1)αD
2
(2)β〈Lā(z1)L

b̄(z2)〉| = 2iaN=2δ
āb̄x12αβ

x12
4
, (7.32)

〈Lā
α(z1)L

b̄
β(z2)L

c̄
γ(z3)〉 = −iD2

(1)αD
2
(2)βD

2
(3)γ〈Lā(z1)L

b̄(z2)L
c̄(z3)〉|

= 2ibN=2
x13αα′x23ββ′

x13
4x23

4

Xαβ
3 Θγ

3 − εαγXβρ
3 Θ3ρ − εβγXαρ

3 Θ3ρ

X3
3

. (7.33)

The same expressions for these correlation functions were found in [1] by using the super-

conformal invariance and conservation conditions. The free coefficients of these correlation

functions are related to the ones in (7.32) and (7.33)

aN=1 = 2aN=2 , bN=1 = 2bN=2 . (7.34)

Hence, these coefficients have the same ratio as in (7.30)

bN=1

aN=1
=

√
2

16π
. (7.35)
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8 Concluding comments

In this paper, we have studied some implications of N = 4 superconformal symmetry

in three dimensions. A rather unexpected result of our analysis is that the three-point

function of the supercurrent in N = 4 superconformal field theories is allowed to possess

two independent tensor structures, which is a consequence of the superconformal symmetry

and the conservation equation. It may look surprising since any N = 4 superconformal

field theory can also be thought of as a special case of one with N < 4 and, as we showed

in [1], similar three-point functions in superconformal field theories with N < 4 contain

only one tensor structure. An apparent disagreement has a simple resolution. From the

viewpoint of N = 3 (or even less extended) supersymmetry, the N = 4 supercurrent

consists of two N = 3 multiplets, one of which is the N = 3 supercurrent and the

other contains additional currents, like the R-symmetry currents. Such N → N − 1

decompositions can be found in the introduction of [1]. As we explained in section 4

(see also subsection C.1), only one tensor structure in the three-point function of the

N = 4 supercurrent contributes to the three-point function of the N = 3 (and, hence,

N < 3) supercurrent. Thus, just like in general N ≤ 3 superconformal theories, the

three-point correlator of the energy-momentum tensor in N = 4 superconformal theories

is determined by a single tensor structure. As concerned the second tensor structure, in

section 5 we pointed out that it is present in those N = 4 superconformal field theories

which are not invariant under the mirror map (see also below). In the case of free N = 4

hypermultiplet models, it is proportional to the difference between the number of left and

right supermultiplets with respect to the R-symmetry group SU(2)L × SU(2)R.

Another important result of the paper consists in the relations between the coefficients

of the two- and three-point correlation functions of the supercurrent and flavour current

multiplets in all 1 ≤ N ≤ 4 superconformal theories. These relations are derived in section

7 and the analysis is based on two observations. First, if both the two- and three-point

functions of either the supercurrent or the flavour current multiplets are fixed up to a single

coefficient and are related to each other by the Ward identities, we can derive the universal

ratio of the coefficients by simply considering any specific theory. Second, as already

mentioned, any N -extended supersymmetric theory is a special case of a (N −1)-extended

theory. In particular, any N = 4 superconformal theory can be considered as an N = 1,

N = 2 or N = 3 superconformal theory. As a result, we can derive all universal relations

between the coefficients of the two- and three-point functions by considering one relatively

simple specific example, namely, the N = 4 superconformal theory of free hypermultiplets.

The hypermultiplet supercurrent (5.7) is asymmetric with respect to the left and right

hypermultiplets. More generally, given an N = 4 superconformal theory that is invariant

with respect to the mirror map, its supercurrent must change sign under the mirror map

M. A simple illustrating example is provided by the model describing an equal number of

left and right hypermultiplets. The corresponding supercurrent

J = q̄ĩq
ĩ − q̄iq

i (8.1)

is odd under the mirror map qĩ ←→ qi. This property has its origin in N = 4 confor-

mal supergravity. To explain this important point, we have to recall three results from
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supergravity. Firstly, as shown in [34], the N = 4 super-Cotton tensor X(z) changes its

sign under the mirror map.12 Secondly, the off-shell action SCSG for N = 4 conformal

supergravity [53] proves to be invariant under the mirror map, and its variation can be

represented as

δSCSG ∝
∫

d3|8z E δHX , E = Ber(EM
A) . (8.2)

Here d3|8z E is the integration measure of N = 4 curved superspace, and H(z) denotes

the conformal supergravity prepotential (see also [37, 38]). Therefore, the prepotential

H changes its sign under the mirror map. Thirdly, given a system of matter multiplets

coupled to conformal supergravity, an infinitesimal disturbance of H changes the matter

action Smatter as follows

δSmatter =

∫
d3|8z E δHJ , (8.3)

where J(z) is the matter supercurrent. If Smatter is invariant with respect to M, then J is

indeed odd under the mirror map.

As shown in subsection 4.2, the most general expression for the three-point function

of the N = 4 supercurrent is

〈J(z1)J(z2)J(z3)〉 =
1

x13
2x23

2

(
d̃N=4

X3
+

dN=4

X3
5
εIJKLΘ

IαΘJβΘKγΘLδXαβXγδ

)
. (8.4)

The parameter d̃N=4 must vanish, d̃N=4 = 0, in every theory invariant under the mirror

map. The second term in (8.4) is odd under the mirror map due to the property

M : εIJKLΘ
IαΘJβΘKγΘLδXαβXγδ −→ − εIJKLΘ

IαΘJβΘKγΘLδXαβXγδ . (8.5)

All other building blocks in (8.4) are invariant under M.

It would be interesting to extend the results of the present paper to the cases of

superconformal theories with N > 4. The N > 4 supercurrent is described by a primary

superfield JIJKL of dimension 1 subject to the conservation law [37, 38]

DI
αJ

JKLP = D[I
α J

JKLP ] − 4

N − 3
DQ

α J
Q[JKLδP ]I , I = 1, . . . ,N . (8.6)

The construction of the correlation functions involving the supercurrent JIJKL has its own

complications due to a large number of R-symmetry indices. We postpone this problem

for later study.
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A Comments on off-shell hypermultiplets

The superfield constraints (5.1a) and (5.1b) are on-shell. There exist off-shell models

for left and right hypermultiplets such that their equations of motion are equivalent to the

constraints (5.1a) and (5.1b). Before discussing such off-shell hypermultiplets, some general

comments are in order. Off-shell descriptions exist for many 3D N = 4 supersymmetric

field theories such as general N = 4 nonlinear σ-models [4]. However, it turns out that

the conventional N = 4 Minkowski superspace M
3|8 is not suitable to realise the most

interesting off-shell couplings. An adequate superspace setting for them is an extension of

M
3|8 by auxiliary bosonic dimensions parametrising a compact manifold, in the spirit of

the superspace [56] M4|8 × CP 1 which is at the heart of the 4D N = 2 harmonic [45, 46]

and projective [47–49] superspace approaches.13 All known off-shell N = 4 supersymmetric

field theories in three dimensions can be realised in the following superspace14 [11, 12]

M
3|8 × CP 1

L × CP 1
R = M

3|8 × [SU(2)/U(1)]L × [SU(2)/U(1)]R , (A.1)

which may be called harmonic or projective depending on the type of N = 4 off-shell

multiplets one is interested in. All such multiplets are functions over either CP 1
L or CP 1

R.

For definiteness, let us consider left multiplets associated with CP 1
L . Our presentation

below is similar to [50].

Let vL ≡ (vi) ∈ C
2 \ {0} be homogeneous coordinates for CP 1

L , and vL
† = (vi) := (v̄i)

be their conjugates (in what follows, the subscripts ‘L’ and ‘R’ will always be omitted if

no confusion may occur). Any superfield living in M
3|8 × CP 1 may be identified with a

function φ(z, v, v) that only scales under arbitrary re-scalings of v:

φ(z, c v, c̄ v) = cn+ c̄n− φ(z, v, v) , c ∈ C
∗ ≡ C \ {0} (A.2)

for some parameters n± such that n+ − n− is an integer. Since v†v = v̄iv
i 6= 0, we can

always choose n− = 0 by redefining φ(z, v, v̄) → φ(z, v, v̄)/(v†v)n− . Any superfield with

the homogeneity property

φ(n)(z, c v, c̄ v) = cnφ(n)(z, v, v) , c ∈ C
∗ (A.3)

is said to have weight n. Let us introduce fermionic operators

Dĩ
α ≡ Dĩ(1)

α := viD
ĩi
α , (A.4)

where vi := εij v
j . In accordance with (2.62), these operators strictly anticommute with

each other,

{Dĩ
α,D

j̃
β} = 0 , (A.5)

13The relationship between the 4D N = 2 harmonic and projective superspace formulations is spelled

out in [54].
14For every positive integer N , the 3DN -extended superconformal group OSp(N|4;R) is a transformation

group of the so-called compactified Minkowski superspace M
3|2N in which M

3|2N is embedded as a dense

open domain [4]. In the N = 4 case, OSp(4|4;R) is also defined to act transitively on M
3|8 × CP

1
L × CP

1
R,

as shown in [4].
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which allows us to introduce left isochiral multiplets (following the terminology of [55])

constrained by

Dĩ
αφ

(n)(z, v, v) = 0 . (A.6)

These constraints are consistent with the homogeneity condition (A.3).

Given an isochiral superfield φ(n)(z, vi, v̄j), its complex conjugate

φ̄(n)(z, v̄i, v
j) := φ(n)(z, vi, v̄j) (A.7)

is no longer isochiral. However, by analogy with the 4D N = 2 case [45, 56] one can define

a modified conjugation that maps every isochiral superfield φ(n)(z, v, v̄) into an isochiral

one φ̆(n)(z, v, v̄) of the same weight defined as follows:

φ(n)(vi, v̄j) −→ φ̄(n)(v̄i, v
j) −→ φ̄(n)

(
v̄i → −vi, v

j → v̄j
)
=: φ̆(n)(vi, v̄j) . (A.8)

The weight-n isochiral superfield φ̆(n)(z, v, v̄) is said to be the smile-conjugate of

φ(n)(z, v, v̄). One can check that

˘̆
φ(n)(z, v, v̄) = (−1)nφ(n)(z, v, v̄) . (A.9)

Therefore, if the weight n is even, real isochiral superfields can be defined, φ̆(2m) = φ(2m).

Within the 3D N = 4 projective superspace approach [4], off-shell multiplets are

described in terms of weight-n isochiral superfields Q(n)(z, v),

Dĩ
αQ

(n) = 0 , Q(n)(z, c v) = cnQ(n)(z, v) , c ∈ C
∗ , (A.10)

which are holomorphic over an open domain of CP 1
L ,

∂

∂v̄i
Q(n) = 0 . (A.11)

Such isochiral superfields are called left projective multiplets of weight n. The action

principle in projective superspace involves a contour integral, and not an integral over

CP 1. This is why there is no need for projective multiplets to be smooth over CP 1. This

approach is useful to construct the most general N = 4 supersymmetric σ-models, both

in Minkowski superspace [4] and in supergravity [34]. The structure of superconformal

projective multiplets is well understood [4].

Somewhat different isochiral superfields are used in the framework of the 3D N = 4

harmonic superspace approach [11, 12]. The equivalence vi ∼ c vi, which is intrinsic to

CP 1, allows one to switch to the description in terms of normalised isotwistors:

u+i :=
vi√
v†v

, u−i :=
v̄i√
v†v

= u+i =⇒
(
ui

−, ui
+
)
∈ SU(2) . (A.12)

The variables u±i are called harmonics. They are defined modulo the equivalence relation

u±i ∼ e±iαu±i , with α ∈ R. It is clear that the harmonics parametrize the coset space
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SU(2)/U(1) ∼= S2. Given an isochiral superfield φ(n)(z, v, v) we can associate with it the

following superfield

ϕ(n)(z, u+, u−) := φ(n)

(
z,

v√
v†v

,
v̄√
v†v

)
=

1

(
√
v†v)n

φ(n)(z, v, v) (A.13)

obeying the homogeneity condition

ϕ(n)(z, eiα u+, e−iα u−) = einα ϕ(n)(z, u+, u−) . (A.14)

This property tells us that ϕ(n)(z, u±) has U(1) charge n. Thus the weight of φ(n)(z, v, v)

is replaced with the U(1) charge of ϕ(n)(z, u±). It is obvious that we have the one-to-one

correspondence φ(n)(z, v, v) ←→ ϕ(n)(z, u±). The fermionic operators (A.4) turn into

Dĩ+
α :=

1√
v†v

Dĩ
α = u+i D

ĩi
α , (A.15)

and therefore the isochirality condition (A.6) takes the form

Dĩ+
α ϕ(n)(z, u±) = 0 . (A.16)

In harmonic superspace, every isochiral superfield ϕ(n)(z, u±) is required to be a smooth

charge-n function over SU(2) or, equivalently, a smooth tensor field over the two-sphere S2.

Such a superfield is called left analytic. It can be represented, say for n ≥ 0, by a convergent

Fourier series

ϕ(n)(z, u±) =

∞∑

p=0

ϕ(i1...in+pj1...jp)(z)u+i1 . . . u
+
in+p

u−j1 . . . u
−
jp
, (A.17)

in which the coefficients ϕi1...in+2p(z) = ϕ(i1...in+2p)(z) are ordinary N = 4 superfields

obeying first-order differential constraints that follow from (A.16). The beauty of this

approach is that the power of harmonic analysis can be used.

We are now prepared to discuss off-shell hypermultiplets. In harmonic superspace, the

most suitable off-shell description of a single hypermultiplet makes use of an analytic su-

perfield q+(z, u±) ≡ q(1)(z, u±) and its smile-conjugate q̆+(z, u±). The free hypermultiplet

equation of motion, which corresponds to the action (6.44), is

∂++q+ = 0 =⇒ q+(z, u±) = qi(z)u+i , (A.18)

where qi(z) obeys the constraint (5.1a).

In projective superspace, the most suitable off-shell description of a single hypermul-

tiplet makes use of an arctic multiplet Υ(1)(z, v) and its its smile-conjugate Ῠ(1)(z, v). By

definition, Υ(1)(z, v) is a weight-1 projective multiplet which is holomorphic over the so-

called north chart C of CP 1 = C ∪ {∞}. Here the point ∞ ∈ CP 1 is identified with

the “north pole” vinorth ∼ (0, 1). In the north chart, it is useful to introduce a complex

(inhomogeneous) coordinate ζ defined by

vi = v1 (1, ζ) , ζ :=
v2

v1
, i = 1, 2 . (A.19)
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The arctic multiplet Υ(1)(z, v) looks like

Υ(1)(z, v) = v1
∞∑

k=0

Υk(z)ζ
k , (A.20)

and its smile-conjugate antarctic multiplet Ῠ(1)(z, v), is

Ῠ(1)(z, v) = v2
∞∑

k=0

Ῡk(z)
(−1)k

ζk
. (A.21)

The dynamics of the free polar hypermultiplet is described by the action

S =
1

2π

∮

γ
vidv

i

∫
d3xD(−4)L(2)(z, v)

∣∣∣
θ=0

, L(2) = Ῠ(1)Υ(1) , (A.22)

where we have defined

D(−4) :=
1

48
D(−2)̃ij̃D

(−2)

ĩj̃
, D

(−2)

ĩj̃
:= D

(−1)γ

ĩ
D

(−1)

j̃γ
, D(−1)̃i

α :=
1

(v, u)
uiD

ĩi
α . (A.23)

The fourth-order operator D(−4) in (A.22) involves a constant isotwistor ui constrained

only by the condition (v, u) := viui 6= 0 which must hold along the closed integration

contour γ. The action (A.22) proves to be independent of ui. It can be shown that the

equation of motion, which follows from the action (A.22), is

Υ(1)(z, v) = v1
(
Υ0(z) + Υ1(z)ζ

)
≡ qi(z)vi , (A.24)

where qi(z) obeys the constraint (5.1a). Thus, the q+ hypermultiplet and the polar hy-

permultiplet provide two different off-shell realisations for the hypermultiplet. Both ac-

tions (6.44) and (A.22) are superconformal.

There is a family of isochiral multiplets that are holomorphic over CP 1, and therefore

they are suitable for both the harmonic and projective superspace settings. These are the

so-called O(n) multiplets, where n = 1, 2, . . . ,

H(n)(z, v) = H i1...in(z)vi1 . . . vin , Dj̃(j
α H i1...in) = 0 . (A.25)

Such a multiplet is (i) on-shell for n = 1 and describes a free hypermultiplet; and (ii)

off-shell for n > 1. When n is even, one can define real multiplets with respect to the smile-

conjugation. The flavour current multiplet Lij is described by a real O(2) multiplet L(2). It

may be shown that real O(2n) multiplets with n > 1 can be used to describe neutral hyper-

multiplets. However, the corresponding free hypermultiplet actions are not superconformal.

The mirror map [12, 40] is defined as

M : SU(2)L ←→ SU(2)R . (A.26)

It changes the tensor types of superfields as D
(p/2)
L ⊗D

(q/2)
R → D

(q/2)
L ⊗D

(p/2)
R , where D(p/2)

denotes the spin-p/2 representation of SU(2). The mirror map interchanges the on-shell

left qi and right qĩ hypermultiplets,

M · qi = qĩ , M · qĩ = qi . (A.27)
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It also interchanges the left Lij and right Lĩj̃ flavour current multiplets. Since the latter

multiplets are (anti) self-dual, eq. (4.3), the mirror map must act on the Levi-Civita tensor

εIJKL as

M · εIJKL = −εIJKL . (A.28)

B N = 4 hypermultiplet propagator

The free equation of motion for q+ hypermultiplet is D++q+ = 0, where D++ is defined

in (6.41a). By definition, the Green function of the free hypermultiplet G(+,+)(ζ1, ζ2) obeys

the equation

D
++G(+,+)(ζ1, ζ2) = −δ

(3,1)
A (ζ1, ζ2) , (B.1)

where δ
(3,1)
A (ζ1, ζ2) is the analytic delta functions. The solution to this equation is very

similar to the four-dimensional q-hypermultiplet Green’s function [45, 57]

G(+,+)(ζ1, ζ2) =
1

�
(D+

1 )
4(D+

2 )
4 δ

3(x1 − x2)δ
8(θ1 − θ2)

(u+1 u
+
2 )

3
, (B.2)

where (D+)4 = 1
16(D

+1̃αD+1̃
α )(D+2̃βD+2̃

β ). To check that (B.2) obeys (B.1) one has to take

into account that D++ commutes withD+ĩ
α and hits only the harmonic distribution in (B.2)

producing the harmonic delta-function (see [46] for a review of properties of harmonic

distributions)

∂++ 1

(u+1 u
+
2 )

3
=

1

2
(∂−−)2δ(3,−3)(u1, u2) . (B.3)

This harmonic delta function is part of the analytic delta function

δ
(3,1)
A (ζ1, ζ2) = (D+

2 )
4δ3(x1 − x2)δ

8(θ1 − θ2)δ
(3,−3)(u1, u2) . (B.4)

As a result we have

D
++
1 G(+,+)(ζ1, ζ2) =

1

2

1

�
(D+

1 )
4(D−−

1 )2δ
(3,1)
A (ζ1, ζ2) = −δ

(3,1)
A (ζ1, ζ2) . (B.5)

Here we applied the identity

(D+)4(D−−)2φA = −2�φA , (B.6)

which holds for arbitrary analytic superfield φA.

We point out that the operator 1/� in (B.2) acts only on the bosonic delta-function

δ3(x1 − x2) and gives the scalar field Green’s function G(x1, x2) which we represent as the

integral over the proper time s

1

�
δ3(x1 − x2) = −G(x1, x2) = −i

∫ ∞

0
dsU(x1, x2|s) , (B.7)

where U(x1, x2|s) is the heat kernel of the three-dimensional d’Alembert operator

U(x1, x2|s) =
i

(4πis)3/2
ei

(x1−x2)
2

4s . (B.8)
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The integration over the proper time in (B.7) can be done explicitly, and the result has

slightly different forms for the point inside and outside the lightcone

G(x1, x2) =





1
4π

1√
−(x1−x2)2

(x1 − x2)
2 < 0

i
4π

1√
(x1−x2)2

(x1 − x2)
2 > 0 .

(B.9)

These two cases can be unified in a single formula such that

1

�
δ3(x1 − x2) = − i

4π

1√
(x1 − x2)2

(B.10)

is valid for (x1 − x2)
2 6= 0. Then, we rewrite (B.2) as

G(+,+)(ζ1, ζ2) = − i

4π
(D+

1 )
4(D+

2 )
4

(
1√

(x1 − x2)2
δ8(θ1 − θ2)

(u+1 u
+
2 )

3

)
. (B.11)

It is important to realize that the supersymmetrized coordinate difference (6.51) at coinci-

dent Grassmann coordinates is simply

x̂a12|θ1=θ2 = (x1 − x2)
a . (B.12)

Thus, in (B.11) we can apply the identity

δ8(θ1 − θ2)√
(x1 − x2)2

=
δ8(θ1 − θ2)√

x̂122
(B.13)

and use the analyticity of (6.51) in both superspace arguments to represent (B.11) as follows

G(+,+)(ζ1, ζ2) = − i

4π

1√
x̂122

(D+
1 )

4(D+
2 )

4 δ
8(θ1 − θ2)

(u+1 u
+
2 )

3
. (B.14)

Finally, we employ the identity

(D+
1 )

4(D+
2 )

4δ8(θ1 − θ2) = (u+1 u
+
2 )

4 (B.15)

to get the following final expression for the hypermultiplet Green’s function

G(+,+)(ζ1, ζ2) = − i

4π

(u+1 u
+
2 )√

x̂122
. (B.16)

This representation of the hypermultiplet Green’s function was used in section 6.4 in study-

ing Ward identities of N = 4 flavour current multiplets. Note that a similar representation

of the four-dimensional hypermultiplet propagator was found in [58] (see also [46]).

C Superspace reduction of correlation functions

The procedure of superspace reduction of supercurrent correlation functions is straightfor-

ward, but quite tedious. It was applied in [1] to find the relations among three-point corre-

lation functions of the N = 2 and N = 1 supercurrents. Here we will follow the same proce-

dure to perform the N = 4 → N = 3 → N = 2 reductions of the supercurrent correlators.
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C.1 N = 4 → N = 3 reduction of the correlation functions for the supercur-

rent

The N = 4 supercurrent is described by the primary scalar superfield J of dimension

1. When reduced to the N = 3 superspace, it has two independent N = 3 superfield

components: a scalar S and a spinor Jα [1]

S = J | , (C.1a)

Jα = iD4
αJ | , (C.1b)

where the bar-projection means θ4α = 0. The N = 4 supercurrent conservation condi-

tion (4.15) turns to the following constraints for the N = 3 superfields S and Jα
(
DÎαDĴ

α − 1

3
δÎ ĴDK̂αDK̂

α

)
S = 0 , (C.2a)

DÎαJα = 0 . (C.2b)

Here Î , Ĵ , K̂ = 1, 2, 3 are the indices of SO(3) group.

The superfield Jα is the N = 3 supercurrent. In components, it contains the energy-

momentum tensor, conserved currents of N = 3 supersymmetry and conserved currents

of the SO(3) subgroup of the SO(4) R-symmetry of N = 4 theory. The N = 3 scalar

contains among its components the current of the fourth supersymmetry and the currents

of the remaining SO(4)/SO(3) R-symmetry. Therefore, when we consider an N = 4 super-

conformal theory in the N = 3 superspace, the conserved quantities are described by the

following four types of three-point correlation functions

〈SSS〉 , 〈SSJα〉 , 〈SJαJβ〉 , 〈JαJβJγ〉 . (C.3)

In this appendix we derive these correlators from the three-point function of the N = 4

supercurrent which was obtained in section 4.2 in the form

〈J(z1)J(z2)J(z3)〉 =
1

x13
2x23

2
H(X3,Θ3) , (C.4a)

H(X3,Θ3) =
d̃N=4

X3
+ dN=4

εIJKLΘ
Iα
3 ΘJβ

3 ΘKγ
3 ΘLδ

3 X3αβX3γδ

X3
5

. (C.4b)

The distinguishing feature of this correlation function as compared to the ones in the

N = 1, 2, 3 superconformal theories is that it has two completely different terms with two

independent parameters d̃N=4 and dN=4. As we will show further, the two terms in (C.4b)

contribute to different correlators (C.3).

C.1.1 Correlator 〈SSS〉

Since the superfield S is just the lowest component of J , see (C.1a), its three-point correlator

appears simply by switching off the Grassmann coordinate θ4α at each superspace point

〈S(z1)S(z2)S(z3)〉 = 〈J(z1)J(z2)J(z3)〉| =
1

x13
2x23

2

d̃N=4

X3
. (C.5)

Note that the last term in (C.4b) vanishes in this reduction and only the first term with

the coefficient d̃N=4 survives.
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C.1.2 Correlator 〈JαSS〉

To compute this correlation function we have to hit (C.4) by one spinor covariant derivative

〈Jα(z1)S(z2)S(z3)〉 = iD4
(1)α〈J(z1)J(z2)J(z3)〉| = iD4

(1)α

1

x13
2x23

2
H(X3,Θ3)| . (C.6)

Note that the spinor covariant derivative acts on the two-point function (2.8a) by the rule

DI
(1)αx

µν
12 = −2iδµαθ

Iν
12 . (C.7)

Hence, all terms in which the derivative D4
(1)α hits the bosonic two-point and three-point

structures vanish under the bar-projection and only the last term in (C.4b) contributes

〈Jα(z1)S(z2)S(z3)〉 = idN=4
1

x13
2x23

2
D4

(1)α

εIJKLΘ
Iµ
3 ΘJν

3 ΘKρ
3 ΘLσ

3 X3µνX3ρσ

X3
5

∣∣∣

= −idN=4
x13αβ

x13
4x23

2
D4β

(3)

εIJKLΘ
Iµ
3 ΘJν

3 ΘKρ
3 ΘLσ

3 X3µνX3ρσ

X3
5

∣∣∣

= −4idN=4
x13αβ

x13
4x23

2

Xµν
3 Xρσ

3 ΘÎ
3µΘ

Ĵ
3νΘ

K̂
3γεÎ ĴK̂

X3
5

. (C.8)

Here, in the second line, we applied the identity (2.28a). Note that, in contrast to (C.5),

this correlation function depends on the coefficient dN=4 rather than d̃N=4.

C.1.3 Correlator 〈JαJβS〉

To compute this correlation function we have to hit (C.4) by two spinor covariant derivatives

〈Jα(z1)S(z2)Jβ(z3)〉 = D4
(3)βD

4
(1)α〈J(z1)J(z2)J(z3)〉| = D4

(3)βD
4
(1)α

1

x13
2x23

2
H(X3,Θ3)| .

(C.9)

As is seen from (C.7), when two covariant spinor derivatives hit the correlation func-

tion (C.4), only the following two terms survive under the bar-projection

〈Jα(z1)S(z2)Jβ(z3)〉 = A+B , (C.10a)

A =
1

x23
2

(
D4

(3)βD
4
(1)α

1

x13
2

)
H(X3,Θ3)| , (C.10b)

B =
1

x13
2x23

2
D4

(3)βD
4
(1)αH(X3,Θ3)| . (C.10c)

In the part A we easily compute the derivatives owing to (C.7)

D4
(3)βD

4
(1)α

1

x13
2

∣∣∣ = 2i
x13αβ

x13
4

. (C.11)

Thus, for (C.10b) we have

A = 2i
x13αβ

x13
4x23

2

d̃N=4

X3
. (C.12)

In the part B given by (C.10c) two derivatives hit the function H. For one of them we

apply the identity (2.28a) to represent it in the form

D4
(3)βD

4
(1)αH| = D4

(3)βx
−1
13γαu

4I
13DIγH| = x−1

13γα[D
4
(3)βD4γH|+ (D4

(3)βu
4Î
13)DÎγH|] . (C.13)
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The two terms in the right-hand side of (C.13) give the following two contributions to the

correlation function

B1 =
x13α

γ

x13
4x23

4
D4

(3)βD4
(3)γ

d̃N=4

X3

∣∣∣ , (C.14a)

B2 =
x13α

γ

x13
4x23

4
(D4

(3)γu
4Î
13)DÎ

(3)γ

d̃N=4

X3

∣∣∣ . (C.14b)

Here we have taken into account that the last term in (C.4b) does not contribute to (C.13).

In the right-hand side of (C.14a) we use the explicit form (2.29) of the derivative D4
γ

to represent this expression as

B1 = id̃N=4
x13α

γ

x13
4x23

4
(D4

(3)βΘ
4δ
(3))∂γδ

1

X3

∣∣∣

= −id̃N=4
x13α

γ

x13
4x23

4
(x−1

13
δ
β − x−1

23
δ
β)

X3γδ

X3
3

= −id̃N=4
x13αγ

x13
4x23

4

(
−X3βδ + iεβδ

θ13
2

x13
2
+ 2ix−1

13βµθ
Îµ
13 θ

Îν
32x

−1
32νδ

)
Xγδ

3

X3
3
. (C.15)

Here, in the last line, we applied the identity

x−1
13αβ − x−1

23αβ = −X3βα + iεβα
θ13

2

x13
2
+ 2ix−1

13βµθ
Îµ
13 θ

Îν
32x

−1
32να . (C.16)

In this identity, only the first term in the right-hand side is given by the three-point struc-

ture while the other two terms are non-covariant in the sense that they are represented

by the combination of two-point superconformal structures and cannot be expressed solely

in terms of three-point ones. These non-covariant terms should cancel against the con-

tributions form (C.14b). Indeed, using the definition (2.15) we compute the derivatives

in (C.14b)

B2 = 2d̃N=4
x13α

γ

x13
4x13

2
x−1
13βρθ

Îρ
13Θ

Îδ
3 ∂γδ

1

X3

= d̃N=4
x13α

γθ13
2

x13
6x23

2

X3γβ

X3
3

+ 2d̃N=4
x13αγ

x13
4x23

2
x−1
13βρx

−1
δσ θ

Îρ
13θ

Îσ
23

Xγδ
3

X3
3
. (C.17)

Thus, in the sum of (C.15) and (C.17) only one term remains which we represent in the

following form using (2.25)

B1 +B2 = id̃N=4
x13αγ

x13
4x23

2

X3βδX
γδ
3

X3
3

= id̃N=4
x13αγ

x13
4x23

2

(
−

δγβ
X3

− i

2

Xγ
3βΘ3

2

X3
3

)
. (C.18)

Finally, we put together the contributions (C.12) and (C.18) and get the resulting

expression for the correlation function (C.9) in the form

〈Jα(z1)S(z2)Jβ(z3)〉 = id̃N=4
x13αγ

x13
4x23

2
Hγ

β (X3,Θ3) , (C.19a)

Hγ
β (X,Θ) = i

δγβ
X

+
1

2

Xγ
βΘ

2

X3
. (C.19b)
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One can verify that the tensor (C.19b) obeys the equations

DÎ
αH

α
β = 0 ,

(
DÎαDĴ

α − 1

3
δÎĴDK̂αDK̂

α

)
Hγ

β = 0 , (C.20)

which are the corollaries of (C.2).

It is interesting to note that the correlation function (C.19a) depends only on the

parameter d̃N=4 similar to (C.5).

C.1.4 Correlator 〈JαJβJγ〉

To compute the correlation function with threeN = 3 supercurrents Jα we have to hit (C.4)

by three spinor covariant derivatives

〈Jα(z1)Jβ(z2)Jγ(z3)〉 = −iD4
(1)αD

4
(2)βD

4
(3)γ〈J(z1)J(z2)J(z3)〉| . (C.21)

First of all, we point out that the first term in (C.4b) does not contribute to (C.21).

Indeed, due to the identity (C.7), when three derivatives hit this term we always get the

contribution which vanishes under the bar-projection

− id̃N=4D
4
(1)αD

4
(2)βD

4
(3)γ

1

x13
2x23

2X3

∣∣∣ = 0 . (C.22)

Hence, we need to consider only the second term in (C.4b).

Taking into account (C.22) we represent (C.21) as a sum of two contributions

〈Jα(z1)Jβ(z2)Jγ(z3)〉 = A+B , (C.23a)

A =
i

x13
2

(
D4

(3)γD
4
(2)β

1

x23
2

)
D4

(1)αH̃(X3,Θ3)

− i

x23
2

(
D4

(3)γD
4
(1)α

1

x13
2

)
D4

(2)βH̃(X3,Θ3)
∣∣∣ , (C.23b)

B =
i

x13
2x23

2
D4

(3)γD
4
(2)βD

4
(1)αH̃(X3,Θ3)

∣∣∣ , (C.23c)

where H̃ is the second term in (C.4b)

H̃(X,Θ) = dN=4
εIJKLΘ

IαΘJβΘKγΘLδXαβXγδ

X5
=

4dN=4

X5
(ΘÎ

αΘ
Ĵ
µΘ

K̂
ν εÎ ĴK̂)Θ4

δX
αµXνδ .

(C.24)

In the right-hand side of (C.23b) we apply the following relations

D4
(3)γD

4
(2)β

1

x23
2

∣∣∣ = 2i
x23βγ

x23
4
, D4

(3)γD
4
(1)α

1

x13
2

∣∣∣ = 2i
x13αγ

x13
4

. (C.25)

Next, using the identities (2.28) we have

D4
(1)αH̃(X3,Θ3)| = −x13αρ

x13
2
D4ρ

(3)H̃(X3,Θ3)| , D4
(2)βH̃(X3,Θ3)| =

x23βρ

x23
2
D4ρ

(3)H̃(X3,Θ3)| ,
(C.26)
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where the derivative of (C.24) reads

D4ρH̃(X,Θ)| = 4dN=4

XρβXγδεÎ ĴK̂ΘÎ
βΘ

Ĵ
γΘ

K̂
δ

X5
. (C.27)

Substituting now (C.25)–(C.27) into (C.23b) we get the corresponding contribution to the

correlation function

A =
x13αα′x23ββ′

x13
4x23

4
Hα′β′

(A) γ , (C.28a)

Hα′β′

(A) γ = 8dN=4

εÎ ĴK̂ΘÎ
γ′ΘĴ

µΘ
K̂
ν Xµν(Xβ′γ′

δα
′

γ +Xα′γ′
δβ

′

γ )

X5
. (C.28b)

Using (2.28) we get the following representation for the part (C.23c)

B =
x13αα′x23ββ′

x13
4x23

4
Hα′β′

(B) γ(X3,Θ3) , (C.29)

where

Hαβ
(B)γ =

(
− 2ΘÎ

γ

∂

∂ΘÎ
β

∂

∂Θ4
α

+Xµγ
∂

∂Xβµ

∂

∂Θ4
α

+Xµγ
∂

∂Xαµ

∂

∂Θ4
β

−Xµγ
∂

∂Xαβ

∂

∂Θ4
µ

)
H̃| .

(C.30)

Computing the derivatives of the function (C.24) which are necessary for (C.30) gives

−2ΘÎ
γ

∂

∂ΘÎ
β

∂

∂Θ4
α

H̃|

=
16dN=4

X5
XαµXβνΘÎ

γΘ
Ĵ
µΘ

K̂
ν εÎ ĴK̂ +

8dN=4

X5
XαβXµνΘÎ

γΘ
Î
µΘ

K̂
ν εÎ ĴK̂ , (C.31)

(
Xµγ

∂

∂Xβµ

∂

∂Θ4
α

+Xµγ
∂

∂Xαµ

∂

∂Θ4
β

−Xµγ
∂

∂Xαβ

∂

∂Θ4
µ

)
H̃|

= −4dN=4

X5
XαβXµνΘÎ

γΘ
Ĵ
αΘ

K̂
β εÎ ĴK̂ − 8dN=4

X5
XαµXβνΘÎ

γΘ
Ĵ
αΘ

K̂
β εÎ ĴK̂

−4dN=4

X5
Xµν(Xαρδβγ +Xβρδαγ )Θ

Î
ρΘ

Ĵ
µΘ

K̂
ν εÎ ĴK̂ . (C.32)

Finally, we collect the results of computations (C.28b), (C.31) and (C.32) in a single ex-

pression

〈Jα(z1)Jβ(z2)Jγ(z3)〉 =
x13αα′x23ββ′

x13
4x23

4
Hα′β′

γ(X3,Θ3) , (C.33a)

Hαβ
γ(X,Θ) =

4dN=4

X5

[
(δβγX

αρ + δαγX
ρβ)XµνΘÎ

µΘ
Ĵ
νΘ

K̂
ρ εÎ ĴK̂

+XβαXµνΘÎ
µΘ

Ĵ
νΘ

K̂
γ εÎ ĴK̂ + 2XαµXνβΘÎ

µΘ
Ĵ
νΘ

K̂
γ εÎ ĴK̂

]
. (C.33b)

This expression for Hαβ
γ coincides with (7.4c) upon the replacement Xαβ → Xαβ . Al-

though Xαβ and Xαβ differ in a Θ-dependent term, see (2.25), one can check that these

additional terms do not contribute to (C.33b). To match the expressions (7.4b) and (C.33)

one has to make also the identification of their parameters (7.5b).
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C.1.5 Reduction of the two-point function

The superspace reduction of the two-point function of N = 4 supercurrents (4.17) to the

N = 3 superspace is much simpler than the same procedure for the three-point functions.

Indeed, the correlator of the superfield S immediately follow from (4.17)

〈S(z1)S(z2)〉 = 〈J(z1)J(z2)〉| =
cN=4

x12
2
, (C.34)

while for the correlation function of the N = 3 supercurrent Jα we have

〈Jα(z1)Jβ(z2)〉 = D4
(2)βD

4
(1)α〈J(z1)J(z2)〉| = cN=4D

4
(2)βD

4
(1)α

1

x12
2

∣∣∣ . (C.35)

Applying the identity (C.11) we find

〈Jα(z1)Jβ(z2)〉 = 2icN=4
x12αβ

x12
4

. (C.36)

Comparing this two-point function with (7.4a) allows us to get the relation (7.5a) among

the coefficients cN=3 and cN=4.

C.2 N = 3 → N = 2 reduction of the supercurrent correlation function

Recall that the N = 3 supercurrent Jα contains the following two independent N = 2

supermultiplets [1]:

Rα := Jα| , DÎαRα = 0 ; (C.37a)

Jαβ := D3
(αJβ)| , DÎαJαβ = 0 , Î = 1, 2 . (C.37b)

Here Jαβ is the N = 2 supercurrent, while Rα contains the third supersymmetry current

and two R-symmetry currents corresponding to SO(3)/SO(2). In this appendix we con-

sider all two- and three-point correlation functions of Rα and Jαβ which follow from the

corresponding correlators of N = 3 supercurrent Jα.

C.2.1 Two-point correlators

Consider the two-point correlation function of the N = 3 supercurrent (7.4a). Obviously,

the two-point correlator of the superfield Rα has the same form in N = 2 superspace

〈Rα(z1)Rβ(z2)〉 = 〈Jα(z1)Jβ(z2)〉| = icN=3
x12αβ

x12
4
, (C.38)

where the bar-projection assumes θ3α = 0.

To find the two-point function of N = 2 supercurrent we need to hit (7.4a) by two

spinor covariant derivatives

〈Jαα′(z1)Jββ′(z2)〉 = −D3
(1)αD

3
(2)β〈Jα′(z1)Jβ′(z2)〉| = icN=3D

3
(2)βD

3
(1)α

x12α′β′

x12
4

∣∣∣ . (C.39)

It is straightforward to compute these derivatives using the definition of the two-point

structure (2.8a)

〈Jαβ(z1)Jα′β′
(z2)〉 = −4cN=3

x12α
(α′

x12β
β′)

x12
6

. (C.40)

Comparing this expression with (7.10) we find the relation among the coefficients cN=2

and cN=3 given in (7.13).
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C.2.2 Three-point correlators involving Rα

There are three correlation functions involving Rα:

〈Rα(z1)Rβ(z2)Rγ(z3)〉 , 〈Jαδ(z1)Rβ(z2)Rγ(z3)〉 , 〈Jαδ(z1)Jβρ(z2)Rγ(z3)〉 .

It is easy to see that

〈Rα(z1)Rβ(z2)Rγ(z3)〉 = 〈Jα(z1)Jβ(z2)Jγ(z3)〉| = 0 . (C.41)

Indeed, the tensor Hαβγ which defines the N = 3 supercurrent correlator (7.4c) vanishes

under the bar-projection owing to ΘI
αΘ

J
βΘ

K
γ εIJK | = 0. Similarly, it is possible to show

that

〈Jαδ(z1)Jβρ(z2)Rγ(z3)〉 = −D3
(1)δD

3
(2)ρ〈Jα(z1)Jβ(z2)Jγ(z3)〉| = 0 . (C.42)

Thus, we need to consider only 〈Jαδ(z1)Rβ(z2)Rγ(z3)〉 which is non-trivial

〈Jαδ(z1)Rβ(z2)Rγ(z3)〉 = D3
(1)δ〈Jα(z1)Jβ(z2)Jγ(z3)〉|

= −dN=3
x13αα′x13δδ′x23ββ′

x13
6x23

4
D3δ′Hα′β′

γ | . (C.43)

Here we have applied the identity (2.28a) and the representation (7.4b) for the N = 3

supercurrent three-point function. It is easy to evaluate the derivative of the tensor (7.4c)

since under the bar projection only those terms survive in which D3δ acts on the generalized

Grassmann variable ΘI
α but not on Xµν . As a result, we get the following representation

for the correlator (C.43)

〈Jαδ(z1)Rβ(z2)Rγ(z3)〉 = dN=3
x13αα′x13δδ′x23ββ′

x13
6x23

4
Hδ′α′β′

γ(X3,Θ3) , (C.44a)

Hδαβ
γ(X,Θ) =

1

X5

[
δβγX

αδXµν(ΘΘ)µν + 2δβγX
αµXδν(ΘΘ)µν

+2XαδXνβ(ΘΘ)νγ + 2δ(αγ Xδ)βXµν(ΘΘ)µν

+4δ(δγ Xα)µXνβ(ΘΘ)µν + 4Xβ(αXδ)ν(ΘΘ)νγ

]
, (C.44b)

where we use the notation (ΘΘ)µν = ΘI
µΘ

J
ν εIJ .

C.2.3 Three-point correlator of the N = 2 supercurrent

Consider now the three-point function of the N = 2 supercurrent

〈Jαα′(z1)Jββ′(z2)Jγγ′(z3)〉 = −D3
(1)αD

3
(2)βD

3
(3)γ〈Jα′(z1)Jβ′(z2)Jγ′(z3)〉| . (C.45)

The N = 3 supercurrent three-point correlation function is found in the form (C.33)

involving the tensor Hαβ
γ . For the following calculations it will be convenient to use the

form of this tensor with the pair of spinor indices αβ converted into a vector one m

Hm
γ = −1

2
γmαβH

αβ
γ = −i

6

X3
Θ3

γ(ΘΘ)m + i
18

X5
XmXpΘ3

γ(ΘΘ)p
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−i
2

X3
εpmq(γq)

µ
γΘ

3
µ(ΘΘ)p + i

8

X5
XmXrε

prq(γq)
µ
γΘ

3
µ(ΘΘ)p

+i
4

X5
εmrq(γq)

µ
γXrX

pΘ3
µ(ΘΘ)p + i

2

X5
XrX

qεmrq(γq)
µ
γΘ

3
µ(ΘΘ)p , (C.46)

where we employ the short-notation (ΘΘ)m for

(ΘΘ)m = − i

2
(γm)αβΘI

αΘ
J
βεIJ . (C.47)

We substitute (C.33a) into (C.45) and represent it as a sum of two parts with specific

distribution of covariant spinor derivatives on the factors

D3
(3)γD

3
(2)βD

3
(1)α

x13α′α′′x23β′β′′

x13
4x23

4
Hα′′β′′

γ′(X3,Θ3)| = A+B , (C.48a)

A =
x13α′α′′

x13
4

(
D3

(3)γD
3
(2)β

x23β′β′′

x23
4

)
D3

(1)αH
α′′β′′

γ′

−x23β′β′′

x23
4

(
D3

(3)γD
3
(1)α

x13α′α′′

x13
4

)
D3

(2)βH
α′′β′′

γ′ | , (C.48b)

B =
x13α′α′′x23β′β′′

x13
4x23

4
D3

(3)γD
3
(2)βD

3
(1)αH

α′′β′′

γ′ | . (C.48c)

One can check that in (C.48a) the terms in which the covariant spinor derivatives are

distributed in other ways vanish under the bar-projection. Now consider the computations

of contribution (C.48b) and (C.48c) separately.

In the part A given by (C.48b) we need the following relations

D3
(3)γD

3
(1)α

x13α′α′′

x13
4

| = 2i

x13
6
(x13αα′′x13α′γ + x13αγx13α′α′′) ,

D3
(3)γD

3
(2)β

x23β′β′′

x23
4

| = 2i

x23
6
(x23ββ′′x23β′γ + x23βγx23β′β′′) , (C.49)

which follow from the definition (2.8a). With the use of identities (2.28) we have

D3
(1)αH

α′β′γ(X3,Θ3)| = −x13αρ

x13
2
D3ρ

(3)H
α′β′γ(X3,Θ3)| ,

D3
(2)βH

α′β′γ(X3,Θ3)| =
x23βρ

x23
2
D3ρ

(3)H
α′β′γ(X3,Θ3)| . (C.50)

Taking into account (C.49) and (C.50) we represent the part A in the form

A =
x13αρx13α′ρ′x23βσx23β′σ′

x13
6x23

6
Hρρ′ σσ′

(A) γγ′(X3,Θ3) , (C.51)

where

Hρρ′ σσ′

(A) γγ′ = −4i(δσγD3ρHρ′σ′

γ′ + δσ
′

γ D3ρHρ′σ
γ′ + δργD3σHρ′σ′

γ′ + δρ
′

γ D3σHρσ′

γ′)| . (C.52)

In the expression (C.48c) we use the identities (2.28) to represent it in the form

D3
(3)γD

3
(2)βD

3
(1)αH

α′β′γ(X3,Θ3)| = ix−1
13ραx

−1
23σβD

3
(3)γu

3J
13u

3K
23 QKσDJρHα′β′γ(X3,Θ3)|

= i(x−1
13 )

ρ
α(x

−1
23 )

σ
βD

3
(3)γ [Q3

σD3
ρ + u3113Q3

σD1
ρ + u3213Q3

σD2
ρ
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+u3123Q1
σD3

ρ + u3223Q2
σD3

ρ]H
α′β′γ(X3,Θ3)| . (C.53)

Below we consider various terms in this expression separately.

For the first term in the square brackets in (C.53) we use explicit forms of generalised

spinor covariant derivative and the supercharge (2.29) to rewrite it as

D3
(3)γQ3

σD3
ρH

α′β′γ |

= [(x−1
13 )

µ
γ − (x−1

23 )
µ
γ ]

(
∂

∂Xσµ

∂

∂Θ3ρ
+

∂

∂Xσµ

∂

∂Θ3ρ
− ∂

∂Xρσ

∂

∂Θ3µ

)
Hα′β′γ | . (C.54)

Here we used the fact that in the bar-projection only those terms survive in which the

derivative D3
(3)γ acts on Θ3µ and produces the factor [(x−1

13 )
µ
γ − (x−1

23 )
µ
γ ]. As is pointed

out in [1], this factor cannot be expressed solely in terms of X3αβ and ΘI
3α, but it involves

the two-point structures as well

(x−1
13 )αβ − (x−1

23 )αβ = −X3αβ + i
εαβ
x23

2
θ223 + 2i(x−1

13 )αµθ
µ
13θ

ν
32(x

−1
32 )νβ . (C.55)

The last two terms here are non-covariant in the sense that they are expressed in terms

of two-point superconformal invariants rather than the three-point ones. Then taking into

account (C.55) we rewrite (C.54) as

D3
(3)γQ3

σD3
ρH

α′β′γ | = −X3
µ
γ

(
∂

∂Xσµ

∂

∂Θ3ρ
+

∂

∂Xσµ

∂

∂Θ3ρ
− ∂

∂Xρσ

∂

∂Θ3µ

)
Hα′β′γ |

+non-covariant terms, (C.56)

where the ‘non-covariant terms’ are those which correspond to the last two terms in (C.55).

Here we do not write down these terms explicitly as they cancel against the contributions

coming from the remaining terms in the square brackets in (C.53)15

D3
(3)γ [u

31
13Q3

σD1
ρ + u3213Q3

σD2
ρ + u3123Q1

σD3
ρ + u3223Q2

σD3
ρ]H

α′β′γ |

= 2

(
Θ1

γ

∂

∂Θ1σ

∂

∂Θ3ρ
+Θ2

γ

∂

∂Θ2σ

∂

∂Θ3ρ

)
Hα′β′γ | − non-covariant terms. (C.57)

Thus, when we take the sum of (C.56) and (C.57) these ‘non-covariant terms’ cancel and

we get the contribution to the N = 2 supercurrent correlation functions in the form

B =
x13αρx13α′ρ′x23βσx23β′σ′

x13
6x23

6
Hρρ′ σσ′

(B) γγ′(X3,Θ3) , (C.58)

where

Hρρ′ σσ′

(B) γγ′(X,Θ) = i

(
2Θ1

γ

∂

∂Θ1
ρ

∂

∂Θ3
σ

+ 2Θ2
γ

∂

∂Θ2
ρ

∂

∂Θ3
σ

−Xµγ
∂

∂Xσµ

∂

∂Θ3
ρ

−Xµγ
∂

∂Xρµ

∂

∂Θ3
σ

+Xµγ
∂

∂Xρσ

∂

∂Θ3
µ

)
Hρ′σ′

γ′(X,Θ)| . (C.59)

15This cancellation has been explicitly demonstrated in appendix C.1 of [1] for the case of superspace

reduction of theN = 2 supercurrent correlation function down toN = 1. In the present case the cancellation

of the non-covariant terms can be checked in the same way.
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Summarizing (C.51) and (C.58) we find the N = 2 supercurrent three-point correlation

function

〈Jαα′(z1)Jββ′(z2)Jγγ′(z3)〉 =
x13αρx13α′ρ′x23βσx23β′σ′

x13
6x23

6
Hρρ′ σσ′

γγ′(X3,Θ3) , (C.60)

where the tensor Hρρ′ σσ′

γγ′ is expressed in terms of derivatives of the tensor Hαβ
γ in the

N = 3 theory given by (C.33b)

Hρρ′ σσ′

γγ′ = Hρρ′ σσ′

(A) γγ′ +Hρρ′ σσ′

(B1) γγ′ +Hρρ′ σσ′

(B2) γγ′ +Hρρ′ σσ′

(B3) γγ′ , (C.61a)

Hρρ′ σσ′

(A) γγ′ = 2i

(
δσγ

∂

∂Θ3
ρ

Hρ′σ′

γ′ + δσ
′

γ

∂

∂Θ3
ρ

Hρ′σ
γ′

+δργ
∂

∂Θ3
σ

Hρ′σ′

γ′ + δρ
′

γ

∂

∂Θ3
σ

Hρσ′

γ′

)
| , (C.61b)

Hρρ′ σσ′

(B1) γγ′ = 2i

(
Θ1

γ

∂

∂Θ1
ρ

∂

∂Θ3
σ

+Θ2
γ

∂

∂Θ2
ρ

∂

∂Θ3
σ

)
Hρ′σ′

γ′ | , (C.61c)

Hρρ′ σσ′

(B2) γγ′ = −i

(
Xµγ

∂

∂Xσµ

∂

∂Θ3
ρ

+Xµγ
∂

∂Xρµ

∂

∂Θ3
σ

)
Hρ′σ′

γ′ | , (C.61d)

Hρρ′ σσ′

(B3) γγ′ = iXµγ
∂

∂Xρσ

∂

∂Θ3
µ

Hρ′σ′

γ′ | . (C.61e)

As a result, the problem is reduced to computing the derivatives of the tensor (C.33b).

Let us convert the spinor indices of Hρρ′ σσ′

γγ′ into the vector ones

Hmnk = −1

8
γmρρ′γ

n
σσ′(γk)γγ

′
Hρρ′ σσ′

γγ′ . (C.62)

It is known that the tensor Hmnk which defines the three-point correlation function of

N = 2 supercurrent can be represented in the form [1]

Hmnk = (ΘΘ)pC
mnp,k , (C.63)

where (ΘΘ)p is given in (C.47) and Cmnp,k is symmetric and traceless in the indices mnp,

Cmnp,k = C(mnp),k , ηmnC
mnp,k = 0 . (C.64)

Hence, the tensor Hρρ′ σσ′

γγ′ has the following symmetry property

Hρρ′ σσ′

γγ′ = H(ρρ′σσ′)
γγ′ . (C.65)

As a consequence, the relation (C.62) can equivalently be rewritten as

Hmnk = −1

8
γmρσγ

n
ρ′σ′(γk)γγ

′
Hρρ′ σσ′

γγ′ , (C.66)

and it appears to be more convenient to use the tensor (C.46) for further computations.

Indeed, the expression (C.61b) can be rewritten as a derivative of (C.46)

Hmnp
(A) = 2i(γn)ρσ(γ

k)γσ
∂

∂Θ3
ρ

Hm
γ = Cmnp,k

(A) (ΘΘ)p ,
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Cmnp,k
(A) = −24

(
1

X3
ηknηmp − 3

X5
ηnkXmXp

)

− 24

X5
(XmXkηnp +XkXpηmn) +

24

X5
(ηkpXmXn + ηkmXnXp) . (C.67)

In contrast to (C.64), the tensor Cmnp,k
(A) is not symmetric and traceless in the indices mnp.

However, when all contributions (C.61) are taken into account, the resulting tensor Cmnp,k

should obey the symmetry (C.64). Hence, it is sufficient for the following to consider only

the symmetric part of (C.67) in the indices mnp

C
(mnp),k
(A) = − 8

X3
(ηnkηmp + ηmkηnp + ηkpηmn)

+
40

X5
(ηknXmXp + ηkmXnXp + ηkpXmXn)

− 16

X5
(XkXmηnr +XkXnηmp +XkXpηmn) . (C.68)

In the same way using the tensor (C.46) we compute the expression (C.61c)–(C.61d),

Hmnk
(B1)

=
i

2
γnρσ(γ

k)γγ
′

(
Θ1

γ

∂

∂Θ1
ρ

∂

∂Θ3
σ

+Θ2
γ

∂

∂Θ2
ρ

∂

∂Θ3
σ

)
Hm

γ′ = Cmnp,k
(B1)

(ΘΘ)p , (C.69a)

Cmnp,k
(B1)

= − 12

X3
ηmnηkp +

36

X5
XmXnηkp

− 12

X5
(XkXmηnp +XkXnηmp) +

12

X5
(ηkmXnXp + ηknXmXp) , (C.69b)

Hmnk
(B2)

= − i

2
γnρσ(γ

k)γγ
′
X3µγ

∂

∂X3σµ

∂

∂Θ3
ρ

Hm
γ′ = Cmnp,k

(B2)
, (C.70a)

Cmnp,k
(B2)

=
6

X3
ηnkηmp +

12

X3
(ηmkηnp + ηmnηkp)

− 42

X5
ηnkXmXp − 78

X5
ηkmXnXp − 30

X5
ηkpXmXn

+
30

X5
ηmnXkXp +

6

X5
XmXkηnp +

24

X5
XnXkηmp , (C.70b)

Hmnk
(B3)

= − i

2
(γk)γγ

′
X3µγ

∂

∂X3n

∂

∂Θ3
µ

Hm
γ′ = Cmnp,k

(B3)
(ΘΘ)p , (C.71a)

Cmnp,k
(B3)

= − 12

X3
ηmkηnp +

12

X5
ηnkXmXp +

48

X5
ηmkXnXp

− 18

X5
(ηmpXkXn + ηmnXkXp)− 6

X5
ηnpXkXm +

30

X7
XmXnXkXp . (C.71b)

We need only symmetric parts of the tensors (C.69b), (C.70b) and (C.71b) in the indices

mnp:

C
(mnp)k
(B1)

= − 4

X3
(ηmnηkp + ηknηmp + ηkmηnp)

– 58 –



J
H
E
P
0
8
(
2
0
1
5
)
1
2
5

+
20

X5
(ηkpXmXn + ηkmXnXp + ηknXmXp)

− 8

X5
(XkXmηnp +XkXnηmp +XkXpηmn) , (C.72a)

C
(mnp)k
(B2)

=
10

X3
(ηkmηnp + ηknηmp + ηkpηmn)

− 50

X5
(ηknXmXp + ηkmXnXp + ηkpXmXp)

+
20

X5
(XkXpηmn +XkXnηmp +XkXmηnp) , (C.72b)

C
(mnp)k
(B3)

= − 4

X3
(ηkmηnp + ηknηmp + ηkpηmn)

+
20

X5
(ηknXmXp + ηkmXnXp + ηkpXmXp)

− 14

X5
(XkXpηmn +XkXnηmp +XkXmηnp) +

30

X7
XmXnXkXp . (C.72c)

The sum of (C.67) and (C.72) is

Cmnp,k = C
(mnp)k
A + C

(mnp)k
B1

+ C
(mnp)k
B2

+ C
(mnp)k
B3

= −6dN=3

[
1

X3
(ηkmηnp + ηknηmp + ηkpηmn)

− 5

X5
(ηkpXmXn + ηknXmXp)

− 5

X5
(ηkpXmXn + ηknXmXp + ηkmXnXp)

+
3

X5
(XkXmηnp +XkXnηmp +XkXpηmn)− 5

X7
XmXnXkXp

]
. (C.73)

Substituting this tensor back into (C.63) we find the N = 2 supercurrent correlation

function in the form (7.11) where the parameter dN=2 is related to dN=3 as

dN=2 = −6dN=3 . (C.74)
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