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1 Introduction

It is not surprising that supersymmetric AdS3×S2 solutions to 11D supergravity [1, 2] bear

a striking resemblance to theirAdS5×S2 counterparts [3]; obvious cosmetic differences, such

as supersymmetry and G-structures,1 are ultimately tied to dimensionality. In common, we

note that both spacetimes possess manifest SU(2) isometries, dual to the R-symmetries of

1Killing spinors, or supersymmetry variations, transform as a doublet under the SU(2) R-symmetry and

are tensored with the Killing spinors of AdSd+1, which have 2
d

2 complex components.
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the respective 2D N = (0, 4) [4, 5] and 4D N = 2 [6, 7] SCFTs, and that supersymmetric

geometries are in one-to-one correspondence with second-order PDEs. For the 1
2 -BPS

bubbling geometries of Lin, Lunin and Maldacena (LLM), one famously encounters the

3D continuous Toda equation [3], while a similar local analysis in [2] has revealed a 5D

analogue for 1
4 -BPS geometries:

y ∂y
(

y−1∂yJ
)

= d4
(

J · d4sech
2ζ
)

, (1.1)

where the internal space exhibits SU(2)-structure.2 Above ζ is a scalar depending on the

5D coordinates (y, xi), J is the Kähler-form of the 4D base and d4 denotes the pull-back of

the derivative to the base. The 4D base corresponds to an almost Calabi-Yau two-fold [8].

Finding explicit supersymmetric geometries is thus equivalent, at least locally, to solv-

ing these PDEs. Despite the difficulties, we have witnessed a growing number of AdS5×S2

geometries, and associated Toda solutions; starting with early constructions from gauged

supergravity [9], through examples found directly in 11D [10],3 recently a large number of

solutions have been constructed by exploiting an added isometry and a connection to elec-

trostatics [7, 12–14]. More recently, exotic solutions without an electrostatic, or with only

an emergent electrostatic description have been found [15, 16]. Relevant to this current

work, it is noteworthy that the SU(2) non-Abelian T-dual of AdS5 × S5 also corresponds

to a solution in this class [17].

In contrast, little is known about solutions to (1.1). Given the current literature, if we

eliminate geometries exhibiting more supersymmetry, which one can disguise as AdS3 ×S2

(see section 4 of [2]), there is no known 1
4 -BPS geometry that solves (1.1). In this paper,

after uplift to 11D, we identify the non-Abelian T-dual of AdS3×S3×CY2 [17] as the first

example in this class. Admittedly, this example solves (1.1) in the most trivial way, since

∂yJ = d4ζ = 0. That being said, it should be borne in mind that the linear supersymmetry

conditions are satisfied non-trivially. It is worth appreciating an obvious parallel to Abelian

T-duality, where the uplifted geometry is an example of an SU(3)-structure manifold,

namely Calabi-Yau.

Before proceeding, we touch upon the generality of (1.1). It is not clear if all su-

persymmetric 1
4 -BPS AdS3 × S2 solutions in 11D with SU(2)-structure satisfy (1.1). In-

deed, the analysis of LLM made the simplifying assumption that there are no AdS5 × S2

geometries with purely magnetic flux. Similarly, [2] precluded both purely electric and

magnetic fluxes [2], a choice that is supported by AdS-limits of wrapped M5-brane geome-

tries [1, 18]. For LLM, it can be explicitly shown that extra fluxes are inconsistent with

supersymmetry [19]4 and an attempt at a more general analysis for AdS3 × S2 geome-

tries appeared in [22], which derives the supersymmetry conditions in all generality, but

unfortunately fails to constrain the fluxes greatly. Using these conditions, one can show

that the existence of a single chiral spinor internally, corresponding to SU(3)-structure,

2SU(2)-structure in 6D is equivalent to two canonical SU(3)-structures.
3The 11D solution can be dimensionally reduced and T-dualised, where it becomes a quotient of AdS5×

S5. This provides no contradiction with a no-go result for 1
2
-BPS AdS5 in IIB ref. [11].

4Generalising the Killing spinor ansatz [20] allows one to also describe maximally supersymmetric 11D

solutions or 1
2
-BPS pp-waves, such as [21].
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implies Calabi-Yau.5 For SU(2)-structure manifolds, we note that the non-Abelian T-dual

of AdS3 × S3 × CY2 fits neatly into the classification of [2]. In contrast, the non-Abelian

T-dual of AdS3 × S3 × S3 × S1 preserves the same supersymmetry, N = (0, 4) in 2D, yet

falls outside this class, thus motivating future work to extract the more general class [24].

Non-Abelian T-duality has revealed itself as a powerful tool to construct explicit AdS

solutions that seemed unreachable by other means. In this work we present some further

examples. Interesting solutions generated this way6 are the only explicit AdS6 solution to

Type IIB supergravity constructed in [37]7 and the recentN = 2 AdS4 solution to M-theory

with purely magnetic flux constructed in [42], which provides the only such explicit solution

besides the Pernici-Sezgin background derived in the eighties [43]. Both these solutions

may play an important role as gravity duals of, respectively, 5d fixed point theories arising

from Type IIB brane configurations, probably from 7-branes as in [44] (see [45]), and of

3d SCFTs arising from M5-branes wrapped on 3d manifolds in the context of the 3d-3d

correspondence [46]. In turn, the new AdS3 backgrounds that we construct in this paper

may provide the holographic duals of new 2D large N = (0, 4) field theories arising from

D-brane intersections. Other AdS3 backgrounds dual to N = (0, 2) 2D field theories haven

been constructed recently in [28] (see also [47]) by compactifying on a 2D manifold the

Klebanov-Witten background, combined with Abelian and non-Abelian T-dualities.

An essential difference with respect to its Abelian counterpart, is that non-Abelian

T-duality has not been proved to be a symmetry of String Theory. In the context of the

AdS/CFT correspondence one could thus expect new AdS backgrounds from known ones

with very different dual CFTs. Furthermore, these CFTs are only guaranteed to exist

in the strong coupling regime, since there is no reason to expect that the transformation

should survive α′ or 1/N corrections.

Even if the understanding of the CFT interpretation of the transformation is today

very preliminary, some results point indeed in these directions. The non-Abelian T-dual of

the AdS5×S5 background constructed in [17] has been shown for instance to belong to the

family of N = 2 Gaiotto-Maldacena geometries [7], proposed as duals of the, intrinsically

strongly coupled, TN Gaiotto theories [6]. Similarly, the non-Abelian T-dual of the AdS5×

T 1,1 background [48] gives rise to an AdS5 background [49] that belongs to the general class

of N = 1 solutions in [50, 51], whose dual CFTs generalize the so-called Sicilian quivers

of [52], and are the N = 1 analogues of the N = 2 solutions in [6].

5A small caveat here is that one of the 6D spinors ǫ± was assumed to be chiral, however the supersym-

metry constraints on scalar bilinears are strong enough to ensure ǫ− = −iǫ+. The Calabi-Yau conditions

dJ = dΩ = 0 then follow. We thank D. Tsimpis for raising this loop-hole.
6See also [25–28] for further AdS solutions and [29–36] for a more varied sample of the NAT

duality literature.
7Supersymmetry imposes severe constraints to the existence of AdS6 solutions in ten and eleven dimen-

sions [38, 39]. Prior to [37] the only known explicit solution to Type II supergravities was the Brandhuber

and Oz background [41], which was shown to be the only possible such solution in (massive) IIA in [38].

Later [39] proved the non-existence of AdS6 solutions in M-theory and derived the PDEs that such solutions

must satisfy in Type IIB (see also [40]), to which the example in [37], constructed from the Brandhuber

and Oz solution via non-Abelian T-duality, provides the only known explicit solution (besides the Abelian

T-dual).
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Some works have tried to explore in more depth the CFT realization of AdS back-

grounds generated through non-Abelian T-duality in different dimensions [25, 45]–[28]. Its

interplay with supersymmetry [53] and phenomenological properties of the dual CFTs, such

as the type of branes generating the geometry, the behavior of universal quantities such as

the free energy, or the entanglement entropy, the realization of baryon vertices, instantons,

giant gravitons, are by now quite systematized (see [54]). Very recently, we have witnessed

as well an exciting and novel application in the exchange of particles with vortices [55].

In this paper we will analyze some of these properties in the 2D holographic duals to the

new AdS3 backgrounds that we generate. We will see that they fit in the general picture

observed in other dimensions.

Perhaps the most puzzling obstacle towards a precise CFT interpretation of non-

Abelian T-duality is the fact that even if the group used to construct the non-Abelian

T-dual background is compact, the original coordinates transforming under this group are

replaced in the dual by coordinates living in its Lie algebra. Non-compact internal direc-

tions are thus generated, which are hard to interpret in the CFT. We will also encounter

this problem for the backgrounds generated in this paper.

The paper is organized as follows. In section 2 we present the first explicit example of

an AdS3 × S2 geometry belonging to the general class of solutions [2]. This is constructed

by uplifting the non-Abelian T-dual of AdS3 × S3 ×CY2 derived in [17] to 11D. In section

3 we recall the basic properties of the AdS3 × S3 × S3 × S1 background that will be the

basis of the new solutions that we present in sections 4, 5 and 6. In section 4 we construct

the non-Abelian T-dual of this background with respect to a freely acting SU(2) on one

of the S3. By exploring the solution we derive some properties of the associated dual

CFT such as the central charge and the type of color and flavor branes from which it may

arise. We suggest a possible explicit realization in terms of intersecting branes. In section

5 we construct one further solution through Abelian T-duality plus uplift to 11D from the

previous one and show that it provides an explicit example of an AdS3 × S2 geometry in

11D belonging to a new class that is beyond the ansatz in [2]. In section 6 we present a new

AdS3 × S2 × S2 solution to Type IIB obtained by further dualizing the solution in section

3 with respect to a freely acting SU(2) on the remaining S3. By analyzing the same brane

configurations we argue that the field theory dual shares some common properties with the

CFT dual to the original AdS3×S3×S3×S1 background but in a less symmetric fashion.

In section 7 we analyze in detail the supersymmetries preserved by the different solutions

that we construct. We show that the solutions constructed through non-Abelian T-duality

from the AdS3×S3×S3×S1 background exhibit large N = (0, 4) supersymmetry. This is

supported by the analysis of the central charges performed in sections 4 and 6. Section 8

contains our conclusions. Finally, in the appendix we study in detail the effect of Hopf-fibre

T-duality in the AdS3×S3×S3×S1 background to further support our claims in the text

concerning the isometry supergroup of our solutions.

2 AdS3 × S2 geometries in 11D with SU(2)-structure

In this section we demonstrate that the non-Abelian T-dual of the D1-D5 near-horizon,

a solution that was originally written down in [17], uplifts to 11D, where it provides the

– 4 –
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first explicit example of a 1
4 -BPS AdS3 × S2 geometry with an internal SU(2)-structure

manifold. We recall that this class has appeared in a series of classifications [1, 2, 18, 22],

yet until now, not a single explicit example in this class was known. It is indeed pleasing

to recognise that the chain of dualities that generates this new example is no more than

a simple non-Abelian generalisation of a well-known mapping from the AdS3 × S3 × CY2
geometry of Type IIB supergravity into the 11D supergravity class AdS3 × S2 × CY3.

8

It is worth noting that until relatively recently [17] (also [49]), the workings of this new

mapping, which is made possible through non-Abelian T-duality, were also unknown.

We begin by reviewing the classification of ref. [22], which has an advantage over

other approaches [1], since it uses local techniques and is thus guaranteed to capture all

supersymmetric solutions. Moreover, this work also extends the ansatz of ref. [2] and

dispenses with the need for an analytic continuation from S3 × S2 to AdS3 × S2. Based

on symmetries, the general form for a supersymmetric spacetime of this type may be

expressed as

ds211 = e2λ
[

1

m2
ds2(AdS3) + e2Ads2(S2) + ds26

]

,

G4 = Vol(AdS3) ∧ A+Vol(S2) ∧H+ G, (2.1)

where λ,A denote warp-factors depending on the coordinates of the 6D internal space and

A,H and G correspond to one, two and four-forms, respectively, with legs on the internal

space. The constant m denotes the inverse radius of AdS3. The supersymmetry conditions,

which are given in terms of differential conditions on spinor bilinears, further built from

two a priori independent 6D spinors ǫ±, can be found in [22].

Setting A = G = 0, one finds that only a particular linear combination, ǫ̃ = ǫ+± iγ7ǫ−
appears in the effective 6D Killing spinor equations, allowing one to recover the work of [2].

In this simplifying case one can show that the internal space must be of the form [2, 22]

ds26 = gijdx
idxj + e−6λ sec2 ζdy2 + cos2 ζ(dψ + P )2 (2.2)

with P a one-form connection on the 4D base with metric gij . The SU(2)-structure is then

specified by 2 one-forms, K1 ≡ cos ζ(dψ+ P ), K2 ≡ e−3λ sec ζdy, the Kähler-form, J , and

the complex two-form, Ω, on the base.

The remaining two-form appearing in the field strength, G4, is fully determined by

supersymmetry,

H = −yJ −
1

2m
∂y(y sin

2 ζ)dy ∧ (dψ + P )

−
y

m
cos ζ sin ζd4ζ ∧ (dψ + P ) +

y cos2 ζ

2m
dP. (2.3)

8See appendix B of ref. [56] for a concrete realisation of the (Abelian) duality chain.
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The above class of geometries is subject to the supersymmetry conditions:

2my = e3λ sin ζ,

eA =
sin ζ

2m
,

d(e3λ cos ζΩ) = 0,

2md(e3λ+2AJ) = d4P ∧ dy. (2.4)

Details of how (1.1) is implied by these conditions can be found in [2].

In order to identify a solution in this class, we start by recalling the non-Abelian T-dual

of AdS3 × S3 × T 4 [17], which provides a solution to massive IIA supergravity,

ds2IIA = ds2(AdS3) + dρ2 +
ρ2

1 + ρ2
ds2(S2) + ds2(T 4),

B2 =
ρ3

1 + ρ2
vol(S2), Φ = −

1

2
ln(1 + ρ2),

m = 1, F2 =
ρ3

1 + ρ2
vol(S2),

F4 = vol(AdS3) ∧ ρdρ+ vol(T 4), (2.5)

where following [17], we have suppressed factors associated to radii for simplicity. As a

consequence, the AdS3 metric is normalised so that Rµν = −1
2gµν , whereas S

2 is canonically

normalised to unit radius.

We next perform two T-dualities along the T 4, the coordinates of which we label,

x1, . . . x4. Performing T-dualities with respect to x1 and x2, we can replace the Romans’

mass, m = 1, with higher-dimensional forms, while leaving the NS sector unaltered. In

addition to the NS two-form, the geometry is then supported by the following potentials

from the RR sector,

C1 =
1

2
(x1dx2 − x2dx1 + x3dx4 − x4dx3),

C3 =
ρ3

1 + ρ2
vol(S2) ∧ C1. (2.6)

We note that dC1 = J , where J is the Kähler form on T 4 and the Bianchi for F4, namely

dF4 = H3 ∧F2 is satisfied in a trivial way since F4 = dC3 = B2 ∧J . We can now uplift the

solution on a circle to 11D by considering the standard Kaluza-Klein ansatz,

ds211 = (1 + ρ2)
1
3

[

ds2(AdS3) +
ρ2

1 + ρ2
ds2(S2) + dρ2 + ds2(T 4)

]

+ (1 + ρ2)−
2
3Dz2,

G4 = vol(S2)

[

ρ3

1 + ρ2
J +

ρ2(ρ2 + 3)

(1 + ρ2)2
dρ ∧Dz

]

, (2.7)

where we have defined Dz ≡ dz + C1.

– 6 –
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Adopting m = 2, so that normalisations for AdS3 agree, and up to an overall sign in H,

which can be accommodated through the sign flip ρ ↔ −ρ, we find that the supersymmetry

conditions (2.4) are satisfied once one identifies accordingly

y = ρ, eλ = (1 + ρ2)
1
6 , eA =

ρ

(1 + ρ2)
1
2

, P = C1,

J = dx1 ∧ dx2 + dx3 ∧ dx4,

Ω = (dx1 + idx2) ∧ (dx3 + idx4). (2.8)

Thus the non-Abelian T-dual plus 11D uplift of the D1-D5 near horizon fits in the classifi-

cations [1, 2, 18, 22]. It is easy to see that one can replace T 4 with K3 and the construction

still holds. It is also easy to see that the above solution can be derived on the assumption

that the base is Calabi-Yau and that λ, ζ only depend on y. Indeed, this is a requirement

of the 6D SU(2)-structure manifold to be a complex manifold [22]. In this case, the super-

symmetry conditions imply e3λ cos ζ is a constant. We can then solve for λ, ζ and A giving

us the above solution.

Another interesting feature of the 11D solution is that in performing the classification

exercise using Killing spinor bilinears [2, 22], one finds a U(1) isometry that emerges from

the analysis for free. Often this U(1) corresponds to an R-symmetry, for example [3, 23],

but in this setting, the relevant superconformal symmetry in 2D either corresponds to small

superconformal symmetry with R-symmetry SU(2), or large superconformal symmetry with

R-symmetry SU(2)×SU(2). There appears to be no place for a U(1) R-symmetry and it is

an interesting feature of solutions fitting into the class of [2] that the U(1) is the M-theory

circle and the Killing spinors are uncharged with respect to this direction.9

In the rest of this paper, we study non-Abelian T-duals of another well-known 1
2 -BPS

AdS3 solution with N = (4, 4) supersymmetry, namely AdS3×S3×S3×S1, where we will

find a new supersymmetric solution that does not fit into the class in [2].

3 The AdS3 × S3 × S3 × S1 background with pure RR flux

In this section we recall the basic properties of the AdS3×S3×S3×S1 background [57]–[58],

which will be the basis of our study in the following sections.

The AdS3 × S3 × S3 × S1 background is a half-BPS solution of Type II string theory

supported by NS5-brane and string flux. In this paper we will be interested in its realization

in Type IIB where it is supported by D5 and D1-brane fluxes [59]. This description arises

after compactifying on a circle the AdS3×S3×S3×R near horizon geometry of a D1-D5-

D5’ system where the two stacks of D5-branes are orthogonal and intersect only along the

line of the D1-branes [57, 60, 61]. How to implement the S1 compactification has remained

unclear (see [59]), and it has only been argued recently [62] that the R instead of the S1

9In 11D one can identify the two projection conditions to verify that supersymmetry is not en-

hanced. From CY2 directions, we inherit Γ6789η = −η, the rotation on the 11D spinor becomes

η = exp[− 1
2
tan−1

(

1
ρ

)

Γχξz]η̃. One finds the additional projector, Γρz67η̃ = −η̃, thus confirming that

the 11D solution is indeed 1
4
-BPS.

– 7 –
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factor arising in the near horizon limit could just be an artefact of the smearing of the

D1-branes on the transverse directions prior to taking the limit. This reference has also

provided the explicit N = (4, 4) CFT realization conjectured in [58, 59, 63] for the field

theory dual. This CFT arises as the infrared fixed point of the N = (0, 4) gauge theory

living on the D1-D5-D5’ intersecting D-branes.

The AdS3 × S3
+ × S3

− × R metric is given by

ds2IIB = L2ds2(AdS3) +R2
+ds

2(S3
+) +R2

−ds
2(S3

−) + dx2 (3.1)

with

ds2(AdS3) = r2(−dt2 + dx21) +
dr2

r2
(3.2)

in Poincaré coordinates. Plus, the background is supported by a single non trivial RR flux

F3 = 2L2Vol(AdS3) + 2R2
+Vol(S

3
+) + 2R2

−Vol(S
3
−), (3.3)

with Hodge dual

F7 =

{

2L3Vol(AdS3) ∧

(

−
R3

+

R−
Vol(S3

+) +
R3

−

R+
Vol(S3

−)

)

+
2R3

+R
3
−

L
Vol(S3

+) ∧Vol(S3
−)

}

∧ dx (3.4)

We take gs = 1 such that the dilaton is zero and Einstein’s equations are satisfied only when

1

L2
=

1

R2
+

+
1

R2
−

. (3.5)

This background has a large invariance under SO(4)+ × SO(4)− spatial rotations.

Of these SU(2)+R × SU(2)−R correspond to the R-symmetry group of the N = (0, 4) field

theory living at the D1-D5-D5’ intersection, and SU(2)+L × SU(2)−L to a global symmetry.

The field theory has gauge group U(N1), with N1 the number of D1-branes, and a global

symmetry SU(N+
5 ) × SU(N−

5 ), with N+
5 and N−

5 the number of D5 and D5’ branes. The

two R-symmetries give rise to two current algebras at levels depending on the background

charges, and to a large N = (4, 4) superconformal symmetry in the infra-red [58, 59, 62, 63].

The study of the supergravity solution allows to derive properties of the dual field

theory that we will be able to mimic after the non-Abelian T-duality transformation. In

the next subsections we analyze the quantized charges, some brane configurations such as

baryon vertices and ’t Hooft monopoles, and the central charge associated to the AdS3 ×

S3 × S3 × S1 background.

3.1 Quantized charges

The F7 and F3 fluxes generate D1 and D5-brane charges given by:

N1 =
1

2πκ210T1

∫

(−F7) =
R3

+R
3
−δx

8Lπ2
, (3.6)

– 8 –
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where δx is the length of the x-direction interval, which should be chosen such that N1 is

quantized, and

N+
5 =

1

2πκ210T5

∫

S3
−

(−F3) = R2
− , N−

5 =
1

2πκ210T5

∫

S3
+

(−F3) = R2
+ , (3.7)

which should also be quantized. Accordingly, one can find D1 and D5 BPS solutions. The

D1 are extended along the {t, x1} directions and couple to the potential

C2 = L2r2dt ∧ dx1 . (3.8)

Changing coordinates to














r = r+ r−

x =
R2

+
√

R2
+ +R2

−

log r+ −
R2

−
√

R2
+ +R2

−

log r− ,
(3.9)

the metric becomes the near horizon limit of the intersecting D1-D5-D5’ configuration [57,

60, 61]:

N+
5 D5 : 012345

N−
5 D5′ : 016789

N1D1 : 01 (3.10)

with dx22 + · · · + dx25 = dr2+ + r2+ds
2(S3

+), dx
2
6 + · · · + dx29 = dr2− + r2−ds

2(S3
−), with the

D1-branes smeared on these directions:

ds2IIB = L2r2+r
2
−(−dt2 + dx21) +R2

+

dr2+
r2+

+R2
−

dr2−
r2−

+R2
+ds

2(S3
+) +R2

−ds
2(S3

−) . (3.11)

The BPS D5-branes are then found lying on the (t, x1, r+, S
3
+), (t, x1, r−, S

3
−) directions.

The 2D N = (0, 4) gauge theory living on the worldvolume of the D1-branes and

intersecting D5-branes has been identified recently in [62]. A key role is played by the

chiral fermions of the D5-D5’ strings that lie at the intersection. Quite remarkably the

central charge of the N = (4, 4) CFT to which this theory flows in the infra-red has been

shown to coincide with the central charge of the supergravity solution, that we review in

subsection 3.4.

3.2 Instantons

The previous configuration of D5, D5’ branes joined in a single manifold, where the D1-

branes lie, admits a Higgs branch where the D1-branes are realized as instantons in the

D5-branes [58]. One can indeed compute the quadratic fluctuations of the D5-branes to

obtain the effective YM coupling:

SD5
fluc = −

∫

1

g2D5

F 2
µν with

1

g2D5

=
L2r2+r

2
−

4(2π)3
(3.12)

and check that the DBI action of the D1-branes satisfies

SD1
DBI = −

∫

16π2

g2D5

(3.13)

as expected for an instantonic brane.
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3.3 Baryon vertices and ’t Hooft monopoles

A D7-brane wrapped on S3
+×S3

−×S1 realizes a baryon vertex in the AdS3×S3
+×S3

−×S1

geometry, since it develops a tadpole of N1 units, as it is inferred from its CS action:

SD7
CS = 2π T7

∫

C6 ∧ F = −2π T7

∫

S3
+×S3

−
×S1

F7

∫

dtAt = −N1

∫

dtAt , (3.14)

where δx is taken to satisfy that N1 is an integer as in (3.6).

Similarly, there are two t’Hooft monopoles associated to the ranks of the two flavor

groups that are realized in the AdS3×S3
+×S3

−×S1 background as D3-branes wrapping the

S3
±. The corresponding Chern-Simons terms show that these branes have tadpoles of N∓

5

units that should be cancelled with the addition of these numbers of fundamental strings:

SD3±

CS = −2πT3

∫

S3
±

F3

∫

dtAt = N∓
5

∫

dtAt . (3.15)

3.4 Central charge

The central charge associated to the AdS3 × S3
+ × S3

− × S1 background can be computed

using the Brown-Henneaux formula [64], giving [58, 59]:

c = 2N1
N+

5 N−
5

N+
5 +N−

5

. (3.16)

This expression agrees with the central charge for a large N = (4, 4) CFT with affine

SU(2)± current algebras at levels k±: c = 2k+k−/(k+ + k−) [65], with k± = N1N
±
5 . A

strong check of the validity of the N = (0, 4) field theory in the D1-branes proposed in [62]

is that it correctly reproduces (3.16) at the infrared fixed point (see also [58]).

4 Non-Abelian T-dual AdS3 × S3 × S2 solution in IIA

In this section we dualize the AdS3 × S3
+ × S3

− × S1 solution with respect to the SU(2)−L
acting on the S3

−. This dualization was reported in [53] to produce a new AdS3 solution

preserving 16 supercharges. As we shall demonstrate in section 7 [53] overlooked an extra

implied condition and the preserved supersymmetry is in fact 8 supercharges. The solution

thus preserves large N = (0, 4) supersymmetry in 2D. In this section we present a detailed

study of the geometry and infer some properties about the field theory interpretation of

this solution.

4.1 Background

Applying the general rules in [66] (see also [53]) we find a dual metric

ds2IIA = L2ds2(AdS3) +R2
+ds

2(S3
+) +

4

R2
−

(

dρ2 +
R6

−ρ
2

64∆

(

dχ2 + sin2 χdξ2
)

)

+ dx2, (4.1)

where

∆ =
R6

− + 16R2
−ρ

2

64
. (4.2)
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The dual dilaton is given by

e−2Φ = ∆, (4.3)

while the NS 2-form is simply

B2 =
R2

−ρ
3

4∆
Vol(S2) (4.4)

where S2 refers to the 2-sphere parametrised by 0 ≤ χ ≤ π, 0 ≤ ξ < 2π in (4.1).

The dual RR-sector is given by

m =
R2

−

4
,

F̂2 = 0,

F̂4 = −
R3

−

4LR+

(

L4Vol(AdS3) +R4
+Vol(S

3
+)

)

∧ dx

+2ρ
(

L2Vol(AdS3) +R2
+Vol(S

3
+)

)

∧ dρ,

F̂6 = −2L2ρ2Vol(AdS3) ∧Vol(S2) ∧ dρ− 2R2
+ρ

2Vol(S3
+) ∧Vol(S2) ∧ dρ,

F̂8 = −
2L3R3

+ρ

R−
Vol(AdS3) ∧Vol(S3

+) ∧ dx ∧ dρ,

F̂10 =
2L3R3

+ρ
2

R−
Vol(AdS3) ∧Vol(S3

+) ∧Vol(S2) ∧ dx ∧ dρ.

Here F̂ = Fe−B2 and Fp = dCp−1 −H3 ∧Cp−3. Page charges will be computed from these

F̂ according to d ∗ F̂ = ∗jPage.

Applying the results in [66] this background is guaranteed to satisfy the (massive)

IIA supergravity equations of motion. Given that the S3 on which we have dualized has

constant radius the non-Abelian T-dual solution is also automatically non-singular. An

open problem though is the range of the new coordinate ρ, which as a result of the non-

Abelian T-duality transformation lives in R
+.

The generation of non-compact directions under non-Abelian T-duality is indeed a

generic feature that does not occur under its Abelian counterpart. In the last case the

extension of the transformation beyond tree level in string perturbation theory determines

uniquely the global properties of the, in principle non-compact, coordinate that replaces the

dualized U(1) direction. How to extend non-Abelian T-duality beyond tree level is however

a long standing open problem (see [67] for more details), and as a result we are lacking

a general mechanism that allows to compactify the new coordinates. For freely acting

SU(2) examples we need to account in particular for the presence of the non-compact ρ-

direction in the dual internal geometry, which poses a problem to its CFT interpretation,

where we can expect operators with continuous conformal dimensions. Note that in the

AdS3 × S2 × S1 duals under consideration in this paper one cannot hope that the same

mechanism that should be at work for compactifying the R factor arising in the original

AdS3×S3×S3×R geometry should be applicable. As argued in [62], the R instead of the

– 11 –
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S1 factor arising in the near horizon limit could be due to the smearing of the D1-branes

on the transverse directions prior to taking the limit, and could presumably be avoided

with a supergravity solution describing localized branes. This is not directly applicable to

our situation because ρ is not an isometric direction.

Previous approaches in the recent non-Abelian T-duality literature have tried to infer

global properties through imposing consistency to the dual CFT [45, 54]. We will also

follow this approach in this paper. We should start noticing that the new AdS3 metric

described by (4.1) is perfectly regular for all ρ ∈ [0,∞), with the 3d space replacing the

S3
− in the original background becoming R

3 for small ρ and R× S2 for large ρ. As shown

in [45, 54] the definition of large gauge transformations in the dual geometry can give

however non-trivial information about its global properties.

4.2 Large gauge transformations

The relevance of large gauge transformations is linked to the existence of non-trivial 2-cycles

in the geometry, where
1

4π2

∣

∣

∣

∣

∫

2−cycle
B2

∣

∣

∣

∣

∈ [0, 1) . (4.5)

In our non-singular metric we can only guarantee the existence of a non-trivial S2

for large ρ. For finite ρ and given the absence of any global information, we will resort

to the most general situation in which the cycle remains non-trivial and we need to care

about large gauge transformations. We will see that consistency of the CFT in this most

general situation will lead to the condition of vanishing large gauge transformations, which

is compatible with the original situation in which the two-cycle may in fact be trivial at

finite ρ.

Assuming the existence of a non-trivial two-cycle at finite ρ, the ρ dependence of B2

in (4.4) implies that large gauge transformations must be defined such that (4.5) is satisfied

as we move in this direction. This implies that for ρ ∈ [ρn, ρn+1] with ρn determined by

16ρ3n/(R
4
− + 16ρ2n) = nπ, B2 must be given by

B2 =

(

R2
−ρ

3

4∆
− nπ

)

Vol(S2) . (4.6)

The fluxes from which the Page charges are computed then change in the different

intervals to
F̂2 → F̂2 + nπ F̂0Vol(S

2)

F̂6 → F̂6 + nπ F̂4 ∧Vol(S2) ,
(4.7)

which will affect the values of the Page charges that we compute next.

4.3 Quantized charges

The transformation of the RR fluxes under non-Abelian T-duality implies that the D1 color

branes of the original background transform into D2-branes extended on {t, x1, ρ} and D4-

branes on {t, x1, ρ, S2}. Analogously, the D5 flavor branes wrapped on the S3
− are mapped

into D2 and D4 branes wrapped on {t, x1, r−} and {t, x1, r−, S2} respectively, and the D5

transverse to the S3
− are transformed into D6 and D8 branes wrapped on {t, x1, r+, S3

+, ρ}

and {t, x1, r+, S3
+, ρ, S

2}, respectively. We show in this section that there are quantized

charges in the non-Abelian T-dual background that can be associated to these branes.

– 12 –
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4.3.1 Color branes

It is possible to define N2 and N4 quantized charges in the dual background that should

be associated to D2 and D4 color branes:

N4 =
1

2πκ210T4

∫

S3
+×S1

F̂4 =
R3

+R
3
−

16πL
δx , (4.8)

N2 =
1

2πκ210T2

∫

S3
+×S2×S1

F̂6 = nN4 , (4.9)

where n is the parameter labeling large gauge transformations. (4.9) is the value of the

D2 charge in the ρ ∈ [ρn, ρn+1] interval. Note that, as it seems to be quite generic under

non-Abelian T-duality, the condition imposed on the geometry by (4.8) is different, and in

fact incompatible, from the one that the original background satisfied, given by (3.6). A

re-quantization must thus be done in the new background.

Let us now analyze the condition (4.9). We first see that for zero n the charge associated

to the D2-branes vanishes. Second, as we change interval, N2 undergoes a transformation,

N2 → N2 −N4, that is very reminiscent of Seiberg duality [68]. This was proposed in [54]

as a way to relate the CFTs dual to the solution as we move in ρ. As stressed in [28]10 this

cannot be however the full story since there is a change in the number of degrees of freedom

as we move in ρ. This is explicit in the holographic free energies. The precise realization

in the CFT of the running of ρ remains at the very heart of our full understanding of the

interplay between non-Abelian T-duality and AdS/CFT. We hope we will be able to report

progress in this direction in future publications.

For the particular background considered in this paper it is only possible to find BPS

color and flavor branes when n = 0. In particular, color branes are D4-branes wrapped

on the {t, x1, ρ, S2} directions. Thus, we will take the view that ρ is restricted to the

fundamental region [0, ρ1], with ρ1 satisfying 16ρ31/(R
4
− + 16ρ21) = π. Choosing to end the

geometry at a regular point presents however other problems, now for the geometry, where

extra localized sources should be included. It was proposed in [28] that at these transition

points new gauge groups would be added to the CFT through an “unhiggsing” mechanism

not associated to an energy scale. Given that this mechanism relies in the existence of large

gauge transformations it does not seem applicable to our background. A full understanding

of the “unhiggsing” mechanism and its precise realization in the absence of an energy scale

remains as an interesting open problem.

4.3.2 Flavor branes

Let us now examine flavor branes in the dual background. We find the following quantized

charges in the dual background that should be associated to flavor branes:

Nf
8 = 2πF0 =

π

2
R2

− , Nf
6 =

1

2πκ210T6

∫

S2

F̂2 = nNf
8 , (4.10)

Nf
4 =

1

2πκ210T4

∫

S3
+

∫ ρn+1

ρn

dρ F̂4 , Nf
2 =

1

2πκ210T2

∣

∣

∣

∣

∣

∫

S3
+×S2

∫ ρn+1

ρn

dρ F̂6

∣

∣

∣

∣

∣

. (4.11)

10We would also like to acknowledge fruitful conversations with D. Rodŕıguez-Gómez on this issue.
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Here we have made explicit the interval on which the ρ direction has to be integrated and

we have not restricted ourselves to vanishing large gauge transformations.

The first two charges in (4.10) correspond to the D8 and D6 flavor branes that originate

on the N+
5 D5-branes of the original background. Thus, our expectation is to find BPS D8

wrapped on {t, x1, r+, S
3
+, ρ, S

2} and BPS D6 wrapped on {t, x1, r+, S
3
+, ρ}. However, as

for the color branes, we also find that the D6 are never BPS unless R− = 0 and that the D8

(anti-D8 in our conventions) are BPS only in the absence of large gauge transformations.

This is again suggestive of a dual background where large gauge transformations are not

possible. In the absence of these the D5 flavor branes give rise to just D8 flavor branes in

the dual background.

The D5’ branes of the original background give rise in turn to D4-branes wrapped on

{t, x1, r−, S
2} and D2-branes wrapped on {t, x1, r−}, which turn out to be BPS only when

located at ρ = 0. In this position however both the DBI and CS actions of the D4 vanish,

leaving just D2-branes as candidate flavor branes.

4.3.3 A possible brane intersection?

Summarizing, we have found that there are only BPS color and flavor branes in the absence

of large gauge transformations, in which case there is only one color or flavor brane in the

non-Abelian T-dual background associated to each color or flavor brane of the original

theory. Note that this is essentially different from previous examples in the literature (for

instance [45, 54]) where both types of color and flavor branes were guaranteed to exist for

all n. We argue in the conclusions that this could be explained by the absence of non-trivial

2-cycles in our particular dual geometry.11

We have shown that the D1-branes are replaced by D4-branes wrapped on

{t, x1, ρ, S
2} and the D5 and D5’ flavor branes are replaced by D8-branes wrapped on

{t, x1, r+, S
3
+, ρ, S

2} and D2-branes wrapped on {t, x1, r−}, respectively. This is summa-

rized pictorially as

✟
✟D2

D1

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D4

✟
✟D6

D5

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D8

✟
✟D4

D5′

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D2

Here we have also indicated the brane that turns out not to occur as a BPS configuration

even if expected a priori from the analysis of the fluxes.

Note that precisely a D1 → D4, D5 → D8, D5′ → D2 map is what one would

have obtained after (Abelian) T-dualizing the D1, D5, D5’ system along three directions

transverse to the D1 and the D5 and longitudinal to the D5’. This suggests a dual geometry

coming out as the near horizon limit of the brane intersection:

Nf
8 D8 : 012345789

Nf
2 D2 : 016

N4D4 : 01789 (4.12)

11In the examples in [45, 54] non-trivial S2 were guaranteed to exist due to the presence of singularities.
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In this brane intersection the SO(4)+ × SO(4)− symmetry of the original field theory is

replaced by a SO(4)+ × SU(2) symmetry. Of this, SU(2)+R × SU(2)R would correspond to

the R-symmetry group of a large N = (0, 4) field theory living at the intersection, and

the remaining SU(2)+L to a global symmetry. This is consistent with the central charge

computation in subsection 4.6 and with the supersymmetry analysis in section 7 (see also

the appendix). The field theory would moreover have gauge group U(N4) and a global

symmetry SU(Nf
8 ) × SU(Nf

2 ). Some field theory configurations that we present next are

compatible with this brane realization.

4.4 Instantons

A very similar calculation to the one in subsection 3.2 shows that the D4 color branes can

be realized as instantons in the D8 flavor branes. In this case

SD8
fluc = −

∫

1

g2D8

F 2
µν with

1

g2D8

=
L2r2+r

2
−ρ

2

(2π)6
(4.13)

and the DBI action of the D4-branes satisfies

SD4
DBI = −

∫

16π2

g2D8

, (4.14)

as expected for an instantonic brane.

4.5 Baryon vertices and t’Hooft monopoles

The original D7-brane baryon vertex configuration is mapped after the duality into a

D4-brane wrapped on S3
+ × S1 and a D6-brane wrapped on S3

+ × S1 × S2. The second

one however has vanishing tadpole charge in the absence of large gauge transformations,

given that

SD6
CS = 2π T6

∫

(C5 −B2 ∧ C3) ∧ F = −2π T6

∫

S3
+×S1×S2

F̂6

∫

dtAt

= −nN4

∫

dtAt . (4.15)

For the D4 wrapped on S3
+ × S1 we find

SD4
CS = −2π T4

∫

S3
+×S1

F̂4

∫

dtAt = −N4

∫

dtAt . (4.16)

As a result, there is one candidate for baryon vertex in the non-Abelian T-dual background,

realized as a D4-brane wrapped on S3
+ × S1.

Similarly, in the original background we had D3±-branes wrapped on S3
± t’Hooft

monopoles whose tadpole charges were given by the ranks of the flavor groups. The D3+ is

mapped after the duality into a D4 wrapped on {S3
+, ρ} and a D6 wrapped on {S3

+, ρ, S
2}

with tadpole charges

SD4
CS = −2π T4

∫

S3
+

∫ ρn+1

ρn

dρF̂4

∫

dtAt = Nf
4

∫

dtAt , (4.17)
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and

SD6
CS = −2πT6

∫

S3
+×S2

∫ ρn+1

ρn

dρF̂6

∫

dtAt = −Nf
2

∫

dtAt . (4.18)

Given that Nf
4 is not associated to a BPS D4-brane in the absence of large gauge trans-

formations it is sensible to also not associate to it a ’t Hooft monopole configuration. The

D6-brane thus remains as the candidate ’t Hooft monopole, with tadpole charge given by

the charge of the D2 flavor brane.

The D3− ’t Hooft monopole of the original background is in turn mapped into a D0-

brane and a D2-brane wrapped on the S2. We indeed find that these branes have tadpoles

with charges

SD0
CS = −2π T0m

∫

dtAt = −N8

∫

dtAt , (4.19)

and

SD2
CS = −2π T2

∫

S2

F̂2

∫

dtAt = −nN8

∫

dtAt . (4.20)

Clearly the second brane does not carry any tadpole charge in the absence of large gauge

transformations. Thus, only the D0-brane remains as candidate ’t Hooft monopole, with

tadpole charge given by the charge of the D8 flavor brane.

Consistently with our previous results we find two ’t Hooft monopole configurations

in the dual background whose tadpole charges are given by the charges of the two D2 and

D8 dual flavor branes.

4.6 Central charge

Finally in this section we compute the central charge of the dual supergravity solution. We

show that as in the original theory it is possible to define two R-symmetry currents from

which

c = 2
k+k−

k+ + k−
(4.21)

as in [65]. We take the general expressions in [70], to which the reader is referred for more

details.

Rewriting the original IIB metric as

ds2str = α(r)β(r)dr2 + α(r)dx21,1 + gijdy
idyj , (4.22)

we read off

α = L2r2, β =
1

r4
. (4.23)

Substituting these in the expressions for the internal volume12 and r-dependent quantity

κ we obtain

Vint =

∫

d7y e−2Φ
√

det(gij) = 4π4R3
+R

3
−δx (4.24)

κ = V 2
int α(r) = V 2

intLr.

12We have generalized these as in [54] to account for the y-dependent dilaton in the dual background.
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The central charge of the original theory can then be computed as

c ∼ βd/2κ3d/2(κ′)−d (4.25)

where d = 1 in our case and κ′ ≡ dκ/dr, to obtain

c =
1

(2π)2
LR3

+R
3
− δx = 2L2N1 = 2N1

N+
5 N−

5

N+
5 +N−

5

, (4.26)

where we have substituted δx from (3.6), L2 = N+
5 N−

5 /(N+
5 + N−

5 ), and have fixed the

normalization factor in (4.25) to agree with the central charge computed in [65], with

k± = N1N
±
5 .

Similarly for the non-Abelian T-dual solution we find

Ṽint =

∫

d7y e−2Φ
√

det(g̃ij) =
1

3
π6R3

+R
3
−δx , (4.27)

from where, taking the same normalization factor as in (4.26),

c̃ =
1

48
LR3

+R
3
− δx =

π

3
L2N4 = 2N4

Nf
2 N

f
8

3Nf
2 +Nf

8

. (4.28)

Note that it is not possible to bring the dual central charge into the form (4.21) unless we

change the normalization factor. Indeed, the change in the internal volume produced by the

non-Abelian T-duality transformation translates generically into central charges differing

by constant factors (see for instance [45, 49]). Still, up to this normalization factor, the

central charge is of the form (4.21), with two levels that depend differently on the products

of color and flavor charges. We denote these by k+ = 3N4N
f
2 , k

− = N4N
f
8 . Note that

consistently with the form of the dual geometry, the + ↔ − symmetry of the original

background has now disappeared. It would be interesting to understand the field theory

origin of the values for the two levels that we obtain. The central charge is thus compatible

with a large N = (0, 4) superconformal theory dual to our solution.

5 Example in new class of AdS3 × S2 geometries in 11D

In this section, following section 2, we manipulate the massive IIA solution of the previous

section by performing two Abelian T-dualities, in the process rendering it as a solution

to massless IIA supergravity. We will then be in a position to uplift the solution to

11D supergravity. As we detail in section 7, while not entirely obvious, there are indeed

two manifest global U(1) isometries, namely the overall transverse x-direction and the

remaining Hopf-fibre, which becomes a global symmetry after the initial T-duality.

Performing the T-duality on the x-direction, the NS sector is unchanged, while the

T-dual RR sector becomes

F1 =
R2

−

4
dx,

F3 =
4R2

− ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ ∧ dx−
R3

−

4R+L
[L4Vol(AdS3) +R4

+Vol(S
3
+)],
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F5 = [2L2Vol(AdS3) + 2R2
+Vol(S

3
+)] ∧ ρ dρ ∧ dx

−
4R3

− ρ3

LR+(16ρ2 +R4
−)

[L4Vol(AdS3) +R4
+Vol(S

3
+)] sinχdχ ∧ dξ. (5.1)

We can further T-dualise on the Hopf-fibre direction, which we parametrise through the

coordinate ψ, to get the massless IIA solution:

dŝ2 = L2ds2(AdS3) +
R2

+

4
(dθ2 + sin2 θdφ2) + dx2 +

4

R2
+

dψ2

+
4

R2
−

dρ2 +
4R2

− ρ2

16ρ2 +R4
−

(dχ2 + sin2 χdξ2),

B̂ =
16ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ + cos θdφ ∧ dψ,

e−2Φ̂ =
R2

−R2
+

256
(16ρ2 +R4

−),

F2 = −
R2

−

4
dx ∧ dψ −

R3
−R3

+

32L
sin θdθ ∧ dφ,

F4 = −
4R2

− ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ ∧ dx ∧ dψ +
R3

−L
3

4R+
vol(AdS3) ∧ dψ,

+
ρR2

+

4
sin θdθ ∧ dφ ∧ dρ ∧ dx−

R3
−R3

+ ρ3

2L(16ρ2 +R4
−)

sin θdθ ∧ dφ ∧ sinχdχ ∧ dξ.

Uplifting to 11D, we get:

ds211 = e2λ
[

L2ds2(AdS3) + e2A(dχ2 + sin2 χdξ2) + ds26

]

,

G4 = −
4R2

− ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ ∧ dx ∧ dψ +
R3

−L
3

4R+
vol(AdS3) ∧ dψ,

+
R2

+

4
sin θdθ ∧ dφ ∧ ρdρ ∧ dx−

R3
−R3

+ ρ3

2L(16ρ2 +R4
−)

sin θdθ ∧ dφ ∧ sinχdχ ∧ dξ

+

[

16ρ2(16ρ2 + 3R4
−)

(16ρ2 +R4
−)

2
dρ ∧ sinχdχ ∧ dξ − sin θdθ ∧ dφ ∧ dψ

]

∧Dz, (5.2)

where we have defined

e2λ = e−
2
3
Φ̂, e2A =

4R2
− ρ2

16ρ2 +R4
−

,

ds26 =
R2

+

4
(dθ2 + sin2 θdφ2) + dx2 +

4

R2
+

dψ2 +
4

R2
−

dρ2 +
256

R2
−R

2
+(16ρ

2 +R4
−)

Dz2,

Dz ≡ dz + C1,

C1 = −
R2

−

8
(xdψ − ψdx) +

R3
−R

3
+

32L
cos θdφ. (5.3)

One can check that the Bianchi identity and the equations of motion are satisfied. As we

argue in section 7, this uplifted geometry is expected to be 1
4 -BPS. What is particularly
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interesting about this uplift is that the internal manifold exhibits SU(2)-structure, yet

it is beyond the scope of the ansatz in [2], since A and G in (2.1) are clearly non-zero.

This opens up the possibility that we can read off the relation between the 6D Killing

spinors appearing in the more general classification [22], feed them into supersymmetry

conditions and identify a more general class of supersymmetric AdS3 × S2 solutions in

11D supergravity with SU(2)-structure manifolds. One can then use the supersymmetry

conditions to find further explicit solutions, some of which may be, in contrast to non-

Abelian T-duals, compact. We hope to report on this in future work [24].

6 A new IIB AdS3 × S2 × S2 solution

In this section we dualize once more the AdS3 × S3 × S2 solution of section 4 with respect

to the SU(2)+L acting on the S3
+. We show that this dualization produces a new AdS3

solution, this time in Type IIB. As we discuss in section 7, and further in appendix A,

the new solution we generate will be 1
4 -BPS and still preserve N = (0, 4) supersymmetry

in 2D.13

The new background is given by

ds2IIB = L2ds2(AdS3) + dx2 +
4

R2
+

(

dρ2+ +
R6

+ρ
2
+

64∆+

(

dχ2
+ + sin2 χ+dξ

2
+

)

)

+
4

R2
−

(

dρ2− +
R6

−ρ
2
−

64∆−

(

dχ2
− + sin2 χ−dξ

2
−

)

)

, (6.1)

where we have introduced (ρ−, χ−, ξ−) to equal our previous (ρ, χ, ξ) after the first du-

alization on S3
−, and (ρ+, χ+, ξ+) to denote the new coordinates arising after the second

dualization on S3
+. ∆± are given by

∆± =
R6

± + 16R2
±ρ

2
±

64
. (6.2)

The corresponding dilaton is just

e−2Φ = ∆+∆−, (6.3)

and the new NS-NS 2-form is given by

B2 =
R2

+ρ
3
+

4∆+
Vol(S2

+) +
R2

−ρ
3
−

4∆−
Vol(S2

−) (6.4)

where S2
± are the 2-spheres parameterized by (χ±, ξ±), respectively. The dual RR sector

is given by14

F̂1 =
R3

−R
3
+

32L
dx+

1

4
R2

−ρ+dρ+ −
1

4
R2

+ρ−dρ−,

F̂3 =
1

4
R2

+ρ
2
− dρ− ∧Vol(S2

−)−
1

4
R2

−ρ
2
+ dρ+ ∧Vol(S2

+),

13The only subtlety here would appear to be the correct identification of the global SU(2) with respect

to which one T-dualises.
14Note that these are the fluxes associated to the Page charges.
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F̂5 = 2L2ρ−ρ+Vol(AdS3) ∧ dρ− ∧ dρ+

−
L3

4
Vol(AdS3) ∧ dx ∧

(

R3
+

R−
ρ− dρ− +

R3
−

R+
ρ+ dρ+

)

,

F̂7 =
L3

4
Vol(AdS3) ∧ dx ∧

(

R3
+

R−
ρ2−dρ− ∧Vol(S2

−) +
R3

−

R+
ρ2+dρ+ ∧Vol(S2

+)

)

,

− 2L2ρ−ρ+Vol(AdS3) ∧ dρ− ∧ dρ+ ∧
(

ρ−Vol(S
2
−) + ρ+Vol(S

2
+)

)

,

F̂9 = 2L2ρ2−ρ
2
+Vol(AdS3) ∧ dρ− ∧Vol(S2

−) ∧ dρ+ ∧Vol(S2
+). (6.5)

This solution satisfies the IIB equations of motion and preserves eight supersymmetries.

As our previous massive AdS3 solution, it is perfectly regular, with the range of the new

R
+ direction, ρ+, also to be determined. As we did after the first dualization, we link

the running of both non-compact directions ρ± to large gauge transformations in this

background. The ranges of these coordinates must then be divided in [ρ±(n±), ρ±(n±+1)]

intervals in which large gauge transformations with n± parameters on the non-trivial S2
±

cycles ensure that B2 lies in the fundamental region.

The field theory analysis that can be made from this supergravity solution follows very

closely the one we made for the previous massive AdS3 solution, so we will omit the details.

As in that case each of the brane configurations that we described in section 2 is mapped

to a single brane configuration in the dual for n± = 0, and no dual configurations exist

otherwise unless R− = R+ = 0. For n± = 0 we find the brane configurations:

• Color branes: D7 on {t, x1, ρ−, S
2
−, ρ+, S

2
+}

• Flavor branes: D5 on {t, x1, r−, ρ+, S
2
+} (at ρ− = 0)

D5’ on {t, x1, r+, ρ−, S
2
−} (at ρ+ = 0)

This can be summarized pictorially as

✟
✟D5

D4

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D7

✟
✟D7

D8

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗

D5′

✟
✟D3

D2

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D5

where we have crossed out the branes not occurring as BPS configurations but expected

a priori from the analysis of the fluxes. The charges of the surviving BPS D7, D5 and

D5’ are:

N7 = +
1

2κ210T7

∫

S1

F̂1 =
R3

+R
3
−

32L
δx (6.6)

N+
5 = −

1

2κ210T5

∫

S2
−

∫ ρ−(1)

0
dρ− F̂3 (6.7)

N−
5 = +

1

2κ210T5

∫

S2
+

∫ ρ+(1)

0
dρ+ F̂3 (6.8)
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where once again δx is the hand-set length of the x-direction. ρ±(1) satisfy 16ρ3
±(1)/(R

4
± +

16ρ2
±(1)) = π. Hence, a candidate brane intersection is:

N+
5 D5 : 013456

N−
5 D5′ : 012789

N7D7 : 01345789 (6.9)

which realizes the SU(2)+ × SU(2)− symmetries of the background. As shown in section

7 (see also the appendix) these correspond to R-symmetries in the dual theory. Thus, the

dual field theory is still a large N = (0, 4) SCFT. The field theory living at the intersection

would have gauge group U(N7) and a global symmetry SU(N+
5 )× SU(N−

5 ).

Consistently with this picture we also have:

• Baryon vertices: D1 on {t, S1} with tadpole charge N7

• ’t Hooft monopoles: D3± on {t, ρ±, S
2
±} with tadpole charge N∓

5

• Central charge:

c =
2

3
N7

N+
5 N−

5

N+
5 +N−

5

(6.10)

This form for the central charge agrees with a large N = (0, 4) dual CFT with affine

SU(2)± current algebras at levels k± = N7N
±
5 , even if with a different overall factor

compared to [65]. This is consistent with the supersymmetry analysis. Together with

the analysis of brane configurations this suggests a dual field theory in which D7 branes

substitute the D1-branes of the original field theory dual to the AdS3 × S3
+ × S3

− × S1

solution. In this theory the global SU(2)L+×SU(2)L− symmetries have disappeared. It would

be interesting to see if one can indeed derive these properties from the brane intersection

given by (6.9).

7 Comments on supersymmetry

In this section we comment on the number of supersymmetries the various solutions to 10D

Type II supergravity preserve. To make the text self-contained, we start by recalling our

supersymmetry conventions [66, 71]. The fermionic supersymmetry variations for Type

IIA and Type IIB supergravity are respectively

δλ =
1

2
/∂Φη −

1

24
/H3σ3η +

1

8
eΦ

[

5mσ1 +
3

2
/F 2iσ2 +

1

24
/F 4σ1

]

η,

δΨµ = ∇µη −
1

8
H3µνρΓ

νρσ3 +
1

8
eΦ

[

mσ1 +
1

2
/F 2iσ2 +

1

24
/F 4σ1

]

Γµη, (7.1)

and

δλ =
1

2
/∂Φη −

1

24
/H3σ3η +

1

2
eΦ

[

/F 1iσ2 +
1

12
/F 3σ1

]

η,

δΨµ = ∇µη −
1

8
H3µνρΓ

νρσ3 −
1

8
eΦ

[

/F 1iσ2 +
1

6
/F 3σ1 +

1

240
/F 5iσ2

]

Γµη, (7.2)
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where λ denotes the dilatinos, Ψµ the gravitinos and η is a Majorana-Weyl spinor

η =

(

ǫ+
ǫ−

)

. (7.3)

The supersymmetry preserved by the non-Abelian T-dual of AdS3 ×S3 ×CY2 is well-

documented [17, 66] and analysis leads to the conclusion that half the supersymmetry is

broken in the transformation. Therefore, for the geometries exhibited in section 2, all

solutions preserve eight supersymmetries, or N = (0, 4) supersymmetry in 2D. We have

noted that the 11D uplift fits into the classification of [2] and further demonstrated that

supersymmetry is not enhanced beyond 1
4 -BPS in 11D, thus providing the first concrete

example in the class of [2].

For the geometry AdS3 × S3 × S3 × S1, supersymmetry breaking is not a foregone

conclusion. To see why this may be the case, we recall that the geometry AdS3 × S3 ×

S3×S1 possesses an SU(2)×SU(2) R-symmetry, yet is manifestly SO(4)×SO(4)-invariant.

Therefore, it could be expected that a judicious choice of the T-duality SU(2) factor would

result in a geometry preserving the same amount of supersymmetry as the original solution.

This intuition is based on ref. [37], where T-duality with respect to a global SU(2) isometry

generated a surprising new supersymmetric AdS6 solution to IIB supergravity.

Here we correct statements in the literature15 and show that picking out a left or right-

acting SU(2) isometry from one of the three-spheres leads to broken supersymmetry in an

analogous fashion to AdS3 × S3 ×CY2 non-Abelian T-duals. For completeness, we do this

in two ways, uncovering a consistent picture.

Firstly, and most easily, we can import the findings of ref. [66]. We recall for spacetimes

with SO(4) isometry - with generalisations to SU(2) isometry [53] - that supersymmetry

breaking is encoded in a single condition, namely (3.11) of ref. [66],

[

−
1

2R−
Γχξσ3 −

1

4R−
Γχξρiσ2 −

1

4

(

1

L
Γ012 +

1

R+
Γ678

)

σ1

]

η̃ = 0, (7.4)

where, assuming we T-dualise from the IIB form for the geometry, η̃ is related by a factor

to the Killing spinor of IIA supergravity η,

η̃ ≡ e−Xη = exp

(

1

2
tan−1

(

R2
−

4ρ

)

Γχξσ3

)

η. (7.5)

Using (3.5), we can rewrite these conditions as:

[

−
1

R−
Γχξ +

1

L
Γ012ρ +

1

R+
Γ678ρ

]

ǫ̃+ = 0,

[

1

R−
Γρχξ −

1

L
Γ012 −

1

R+
Γ678

]

ǫ̃− = 0, (7.6)

15It was initially reported in ref. [53] that an application of non-Abelian T-duality to an SU(2) factor

in one of the SO(4) isometries resulted in a T-dual preserving sixteen supersymmetries. The analysis of

ref. [53] failed to take account of an additional condition, which breaks supersymmetry to eight.
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and further using (3.14) of ref. [66], which in this case reads,

ǫ̃+ = Γρǫ+, ǫ̃− = −ǫ−, Γρχξ = −Γ345, (7.7)

we recover what turns out to be the original projection condition of the IIB geometry (3.1)

[

1

L
Γ012 +

1

R+
Γ345 +

1

R−
Γ678

]

η = 0. (7.8)

We observe that squaring this expression, we recover (3.5). We note also that in the process

of redefining the spinors, the chirality of ǫ̃+ is flipped so that it now corresponds to a Killing

spinor of Type IIB supergravity. On its own, this projection condition would suggest the

background is 1
2 -BPS, however we also find that the following identification is also implied

ǫ+ = ǫ−. (7.9)

This constitutes an additional condition, which breaks supersymmetry to 1
4 -BPS, or eight

supersymmetries.

To develop a better understanding of what has just happened, it is also useful to

explicitly work out the Killing spinors for the original solution (3.1). Following a calculation

similar to ref. [61], except translated into our conventions, and making use of the projection

condition (7.8), which falls out from the analysis, we can determine the precise form of the

Killing spinors in their original IIB setting:

ǫ+ =
[

r
1
2 + r−

1
2 (tΓ 2

0 + xΓ 2
1 )

]

(α1 +Ωβ1) + r−
1
2 (Ωα2 + β2),

ǫ− =
[

r
1
2 + r−

1
2 (tΓ 2

0 + xΓ 2
1 )

]

(α1 − Ωβ1)− r−
1
2 (Ωα2 − β2), (7.10)

where we have defined the constant spinors, Γ01αi = αi, Γ
01βi = −βi, and the matrix,

Ω = e−
1
2
ψ1Γ34

e−
1
2
θ1Γ53

e−
1
2
φ1Γ34

e−
1
2
ψ2Γ67

e−
1
2
θ2Γ86

e−
1
2
φ2Γ67

, (7.11)

where the angular dependence follows for the explicit form of left-invariant one-forms τα,

which satisfy dτα = 1
2ǫαβγτ

β ∧ τγ . The existence of Poincaré supersymmetries of both

chirality with respect to Γ01 indicates that supersymmetry is N = (4, 4) in 2D.

We now can appreciate that the identification (7.9) is a by-product of the fact that all

Killing spinors with angular dependence get projected out under the non-Abelian T-duality.

It is worth noting that a single Hopf-fibre T-duality also results in the same supersymmetry

breaking, although one can consider a linear combination of the Hopf-fibres, which preserves

additional supersymmetries [72].16

This final observation that angular dependence gets projected out presents us with a

small puzzle. Namely, how can the loss of angular dependence be reconciled withN = (0, 4)

supersymmetry, which requires, at a very least, the geometric realisation of an associated

16That the T-dual geometry in this special case must preserve twelve supersymmetries, and not the

generic eight, can be most easily seen by resorting to the Kosmann spinorial-Lie-derivative [73]. One can

then use the powerful result in ref. [53] that the supersymmetries uncharged under the T-duality direction

are preserved.
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SU(2) R-symmetry? To answer this question, we need to recall that an SU(2) transfor-

mation on a round three-sphere results in a residual S2 factor in the metric. This then is

one candidate SU(2) R-symmetry. As we shall appreciate later, the Killing spinors of the

non-Abelian T-dual also have dependence on SU(2)R of the remaining three-sphere. This

suggests the presence of large N = (0, 4) supersymmetry where the corresponding isometry

group is D(2, 1|γ) × SL(2,R) × SU(2), which as we explain in the appendix, is analogous

to the Abelian T-dual, i.e. the geometry AdS3 × S3 × S2 × T 2.

In a bid to make this work self-contained, we now explicitly check that the residual S2

becomes the SU(2) R-symmetry, that the remaining SO(4) has an SU(2)L global symmetry

and that supersymmetry is indeed N = (0, 4), as claimed. To do so, we solve the Killing

spinor equations for IIA supergravity in the T-dual geometry.

We begin by introducing a frame for the remaining three-sphere,

ds2(S3
+) =

1

4
[(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2]. (7.12)

We next introduce the natural dreibein, e6 = R+

2 (dψ+cos θdφ), e7 = R+

2 dθ, e8 = R+

2 sin θdφ

and reverse the overall sign of the RR sector relative to (4.5), so we can import results

from ref. [66], where expressions are given in terms of spherical coordinates, which are best

suited to the current example. We note that H3 = dB2 has no legs along the ψ-direction,

so the gravitino variation in this direction simply reads:

e−XδΨ6 =
2

R+
∂ψη̃ +

1

2R+
Γ78η̃ +

e−2X

R−

√

16ρ2 +R4
−

[

−
R2

−

4
σ1 − ρΓχξiσ2

−ρ

(

R−

L
Γ012ρ +

R−

R+
Γ678ρ

)

σ1 −
R3

−

4

(

1

R+
Γ0129 +

1

L
Γ6789

)

σ1

]

Γ6η̃, (7.13)

where we have multiplied by the matrix e−X and redefined the original Killing spinor as

in (7.5). The Killing spinor η̃ is a IIA spinor satisfying the projection conditions

(

R−

L
Γ012χξiσ2 +

R−

R+
Γ678χξiσ2

)

η̃ = η̃,

Γρσ1η̃ = −η̃, (7.14)

hopefully making it obvious, through the appearance of two projection conditions, that the

number of preserved supersymmetries is eight.

Bearing in mind that η̃ is comprised of Majorana-Weyl spinors of opposite chirality,

we can dualise gamma matrices as follows

Γ012xσ1η̃ = Γ678ρχξiσ2η̃, Γ678xσ1η̃ = Γ012ρχξiσ2η̃. (7.15)

Then using the above expressions, one can rewrite (7.13) as

e−XδΨ6 =
2

R+
∂ψη̃ +

1

2R+
Γ78η̃ +

e−2X

R+

√

16ρ2 +R4
−

Γ78

[

−2ρ+
R2

−

2
Γχξσ3

]

η̃. (7.16)

– 24 –



J
H
E
P
0
8
(
2
0
1
5
)
1
2
1

Finally, we insert the expression for e−2X ,

e−2X =
1

√

16ρ2 +R4
−

(4ρ+R2
−Γ

χξσ3), (7.17)

to reach the conclusion that ∂ψη = ∂ψ(e
X η̃) = 0, so after an SU(2) transformation the

Killing spinors are independent of the Hopf-fibre, meaning that we can Abelian T-dualise

later with respect to this direction. Similar calculations for the θ and φ-directions show

that the Killing spinors also do not depend on these. We therefore see in an explicit fashion

that the second three-sphere is now comprised of a global SU(2)L symmetry, yet with the

Killing spinors still dependent on SU(2)R. In analogy with the Abelian case, we have an

D(2|1, γ)× SL(2,R)× SU(2) symmetry algebra.

To extract the R-symmetry dependence on the residual S2, we consider e−XδΨα, where

α ∈ {χ, ξ}. We find

e−XδΨχ =

√

16ρ2 +R4
−

2R−ρ
∂χη̃ +

e−2X

(16ρ2 +R4
−)

(

−
R5

−

4ρ
Γχσ1 +

(16ρ2 + 3R4
−)

2R−
Γξiσ2

)

η̃

+
1

R−

√

16ρ2 +R4
−

(

−
R2

−

2
Γχσ1 + 2ρΓξiσ2

)

η̃,

=

√

16ρ2 +R4
−

2R−ρ

(

∂χη̃ +
1

2
Γξiσ2

)

η̃, (7.18)

where in the second line we have expanded e−2X . A similar calculation for e−XδΨξ, after

simplifications leads to

e−XδΨξ =

√

16ρ2 +R4
−

2R−ρ

(

1

sinχ
∂ξη̃ +

1

2

cosχ

sinχ
Γξχ −

1

2
Γχiσ2

)

η̃. (7.19)

Up to the inclusion of the Killing spinors for AdS3, we can then write the explicit form for

the IIA Killing spinor

η = eXe−
1
2
χΓξiσ2e−

1
2
ξΓχξ

η̃AdS3 (7.20)

where η̃AdS3 denotes the Killing spinors for AdS3,

∇µη̃ =
1

2
γ3Γµη̃, (7.21)

where we have defined γ3 ≡ Γ012. A calculation similar to appendix A, then shows that

supersymmetry is indeed N = (0, 4). Similar calculations to above show that the dilatino

variation vanishes. Again these results are all expected and follow from the analysis pre-

sented in [66], and more generally [53].

To go from the massive IIA solution of section 4 to the massless solution in section 5,

we perform two T-dualities with respect to both the overall transverse direction x and the

Hopf-fibre of the remaining three-sphere. As we have argued, both correspond to global

U(1) isometries and it is expected that supersymmetry will be preserved. As one further
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final check that this is indeed the case, we record some of the gravitino variations after

these two Abelian T-dualities. The gravitino variations in the x-direction and ψ-direction,

notably those featuring in the T-duality, are respectively

e−XδΨx =
1

4L
Γθφχξ

[

−
L

R−
Γθφxψ +

L

R+
Γρχξx − 1

]

σ1η̃, (7.22)

and

e−XδΨψ =
1

2R+
Γθφσ3

[

Γρxψiσ2 + 1
]

η̃ +
1

4L
Γψθφχξ

[

−
L

R−
Γθφxψ +

L

R+
Γρχξx − 1

]

σ1η̃,

(7.23)

leading to good, commuting projection conditions. Furthermore, up to a redefinition in

ǫ̃+, namely ǫ̃+ → −Γxψ ǫ̃+, with ǫ− unchanged so it maintains its chirality, these projection

conditions can be mapped back to (7.14), so we see that they are consistent. Yet again, by

analogy with the Abelian T-duals discussed in the appendix, the isometry group for this

geometry is expected to be D(2|1, γ)× SL(2,R).

8 Conclusions

Non-Abelian T-duality is a symmetry of the equations of motion of type II supergrav-

ity. This has been shown explicitly for SO(4)-invariant spacetimes via dimensional reduc-

tion [66], results of which featured prominently in this current work. For spacetimes with

less symmetry, e. g. the class of Bianchi IX spacetimes with SU(2) isometry, partial results

exist [53, 74], but given the number of examples explored to date, it is safe to assume that

the non-Abelian T-duality procedure with RR fluxes outlined in [17], and generalised to

larger non-Abelian groups in [75], will take Type II supergravity solutions into each other.

We have made use of this solution-generating property in this paper to provide sample

geometries for a class of 1
4 -BPS AdS3 × S2 spacetimes in 11D supergravity, where the

internal space is an SU(2)-structure manifold. Despite a number of studies asserting that

the class exists [1, 18, 22], most notably the classification in [2], there was no explicit

example known. Not only have we demonstrated that the non-Abelian T-dual of the well-

known geometry AdS3 × S3 × CY2 provides an example in this class, we have exhibited

non-Abelian T-duals of a related geometry, AdS3×S3×S3×S1, which fall outside this class.

This suggests that the general supersymmetry conditions of ref. [22] can be mined further

to extract a larger class of supersymmetric solutions based on SU(2)-structure manifolds,

thus extending the [2] class. It may be hoped that the non-Abelian T-duals, despite being

manifestly non-compact, may serve to identify compact solutions via ansatz when the full

class of supersymmetric AdS3 × S2 solutions of 11D supergravity are identified.

On a related note, the 1
4 -BPS AdS3 solutions we generate involve a Romans’ mass.

Therefore, they will serve as a test of an ongoing program of work classifying the AdS

solutions of massive IIA supergravity [38, 76, 77]. Furthermore, it may be interesting to

consider non-Abelian T-duals of general AdS3 × S3 × S3 ×Σ2 solutions to 11D supergrav-

ity [78], where Σ2 is a Riemann surface.

We have discussed some properties of the field theories associated to the AdS3×S3×S2

and AdS3×S2×S2 backgrounds that we construct with an aim at testing the general ideas
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on the CFT interpretation of non-Abelian T-duals in [54] (see also [45]). We have seen that

as in previous examples there seems to be a doubling of charges after the transformation.

In our AdS3 cases however the branes responsible for the extra charges turn out to be

supersymmetric only in the absence of large gauge transformations, in which case the

extra charges vanish. The absence of large gauge transformations can be explained in turn

either by the non-existence of non-trivial 2-cycles in the dual geometry at finite ρ, or, else,

by a geometry terminating at a regular point. As in [45] the termination of the geometry at

a regular point is intimately related to the depletion of the rank of one of the gauge groups.

An important piece of information about the CFT duals to the new solutions comes

from the analysis of their central charges. We have shown that as in the original theory it

is possible to define two R-symmetry currents from which the central charges exhibit the

expected c ∼ k+k−/(k+ + k−) behaviour for a large N = (0, 4) superconformal algebra, in

full agreement with the supersymmetry properties of the solutions.
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T-DUALITIES.

A Hopf-fibre T-duality for AdS3 × S3 × S3 × S1

To support claims in the text concerning the isometry supergroup for non-Abelian T-

duals, here we present simpler Hopf-fibre T-duals in an analogous fashion. Abelian Hopf-

fibre T-duals of the related IIB geometry with small superconformal symmetry, namely

AdS3 × S3 × CY2, were considered in [79]. There it was noted that supersymmetry can

be preserved completely. Here we explicitly show that this is not the case when one starts

with a geometry with large superconformal symmetry. Moreover, following [79], we could

extend our analysis here to geometries supported by both NS and RR fields, where T-

duality results not in S1 × S2, but in (squashed) Lens spaces, S3/Zp, however we focus on

the simplest case with just RR fields.

Starting from AdS3×S3×S3×S1 (3.1), it is known that Abelian T-duality on a given

Hopf-fibre will produce a 1
4 -BPS AdS3 × S3 × S2 × T 2 geometry, where the corresponding

supergroup is D(2|1, γ) × SL(2,R) × SU(2) [60, 61]. Here γ is a real parameter equating
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to the ratio of the radii of the three-sphere and two-sphere.17 Recalling that the bosonic

subgroup of the supergroup D(2|1, γ) is SL(2,R) × SU(2) × SU(2), we recognise that the

symmetries simply correspond to the isometries of AdS3 × S3 × S2.

Assuming we begin in Type IIB with the solution (3.1), the geometry resulting from

a Hopf-fibre T-duality may be written as

ds2 = L2ds2AdS3
+

4

R2
+

dψ2 +
R2

+

4
(dθ2 + sin2 θdφ2) +R2

−ds
2
S3
−

+ dx2,

B2 = cos θdφ ∧ dψ, eΦ =
2

R+
,

F2 = −
R2

+

4
sin θdθ ∧ dφ,

F4 =
[

2L2Vol(AdS3) + 2R2
−Vol(S

3
−)

]

∧ dψ. (A.1)

As with the original geometry, the Bianchis and the equations of motion are trivially

satisfied. Plugging this solution into the dilatino variation, one can extract two commuting

projection conditions,

(

−
1

R+
Γθφiσ2 +

1

L
Γ012ψσ1 +

1

R−
Γ678ψσ1

)

η = (Γψσ1 − 1)η = 0, (A.2)

confirming that we now have eight preserved supersymmetries versus the original sixteen.

As a consistency check, we observe that squaring the first projection condition, we recover

the constraint on the radii (3.5). Solving for the Killing spinor along the internal directions,

we find

η = e−
1
2
θΓφiσ2e

1
2
φΓθφ

η̃, (A.3)

where η̃ denotes the Killing spinor for AdS3. Employing the left-invariant one-forms for

the inert three-sphere, we see that angular dependence drops out, so we have an SU(2)L
global symmetry, just as we witnessed in the non-Abelian case. As a direct consequence,

the Killing spinors are independent of the Hopf-fibre and we can perform a further Abelian

T-duality. It is an interesting feature of this geometry that uplifting on the M-theory circle

to 11D, we recover the AdS3 × S3 × S3 × T 2 geometry in 11D, so that supersymmetry is

restored to 1
2 -BPS.

18 This uplift should be contrasted with the more trivial T-duality on

the x-direction and uplift, which leads to the same upstairs solution.

It is instructive to perform another Hopf-fibre T-duality, thus mirroring the combina-

tion of non-Abelian transformations in section 6. Doing so with respect to the ψ2-direction,

we get

ds2 = L2ds2AdS3
+

4

R2
+

dψ2
1 +

R2
+

4
(dθ21 + sin2 θ1dφ

2
1) +

4

R2
−

dψ2
2

+
R2

−

4
(dθ22 + sin2 θ2dφ

2
2) + dx2,

17Prior to T-duality, this is just the ratio of the radii of the three-spheres.
18This is the reverse of the dimensional reduction considered in ref. [61].
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B2 = cos θ1dφ1 ∧ dψ1 + cos θ2dφ2 ∧ dψ2, eΦ =
4

R+R−
,

F3 =
R2

+

4
sin θ1dθ1 ∧ dφ1 ∧ dψ2 −

R2
−

4
sin θ2dθ2 ∧ dφ2 ∧ dψ1,

F5 = (1 + ∗10)
[

−2L2Vol(AdS3) ∧ dψ1 ∧ dψ2

]

, (A.4)

where we have added subscripts to distinguish the angular coordinates. We note that the

NS sector is even under an exchange of angular coordinates, whereas the RR sector is

odd. We now check the remaining supersymmetry. From the dilatino variation, we get the

projection condition:

Γψ1ψ2iσ2η = −η. (A.5)

From the gravitino variations along the x, ψ1 and ψ2 directions, we get the

additional projection
[

L

R+
Γ012θ1φ1ψ2 −

L

R−
Γ012θ2φ2ψ1

]

σ1η = −η. (A.6)

One can check that the two projection conditions we have indeed commute, so supersym-

metry is not broken further.

We can once again solve for angular dependence, getting

η = e−
1
2
θ1Γφ1ψ1σ3e−

1
2
φ1Γφ1θ1

e−
1
2
θ2Γφ2ψ2σ3e−

1
2
φ2Γφ2θ2

η̃, (A.7)

where η̃ is expected to be the Killing spinor for AdS3. Indeed, one can check that the

remaining equation is just the Killing spinor equation for AdS3, ∇µη = 1
2γ3Γµη, where we

have defined γ3 ≡ Γ012. Solving the AdS3 Killing spinor equation, we find

η̃ =
(

r
1
2 + r−

1
2 (tΓ 2

0 + x1Γ
2
1 )

)

η̃+ + r−
1
2 η̃−, (A.8)

where η̃± are constant spinors subject to (A.5) and (A.6) satisfying Γ01η̃± = ±η̃±. We

clearly see that the preserved supersymmetry is N = (0, 4), since the Killing spinors sepa-

rate into the usual Poincaré and superconformal Killing spinors, each with a different chiral-

ity. The same conclusion can be drawn for the non-Abelian T-dual in section 6. However,

in contrast to the usual small superconformal symmetry, we appear to have SU(2)×SU(2)

R-symmetry, which is suggested from the angular dependence of the Killing spinors.

To further check the R-symmetry, we can also analyse the isometry algebra in our

conventions in 10D, following a procedure outlined in ref. [61]. The first step is to identify

the corresponding generic 10D Killing vector field, whose existence is always guaranteed

for supersymmetric geometries. Using the Killing spinor equations presented in section 7,

standard arguments show that

V =
1

2

(

ǭ+Γ
M ǫ+ + ǭ−Γ

M ǫ−
)

∂M (A.9)

is always Killing. Note, we define ǭ ≡ ǫ†Γ0, with (Γ0)† = −Γ0 and (Γi)† = Γi, i = 1, . . . , 9.

From (A.5), we have ǫ− = Γψ1ψ2ǫ+, and as a result,

V M =
1

2

(

ǭ+Γ
M ǫ+ − ǭ+Γ

ψ1ψ2ΓMΓψ1ψ2ǫ+

)

. (A.10)
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We immediately recognise that V ψi = 0, which is as expected, since these components of the

vector field drop out when we reduce on a Hopf-fibre from 11D [61]. Thus, V M = ǭ+Γ
M ǫ+,

only depends on one of the Majorana-Weyl spinors.

It is then a simple exercise to determine the internal components of V ,

Vint =
2

R+
ǭ+Γ

θ1ǫ− ξ+1 +
2

R+
ǭ+Γ

φ1ǫ−ξ
+
2 +

2

R−
ǭ+Γ

θ2ǫ−ξ
−
1 +

2

R−
ǭ+Γ

φ2ǫ−ξ
−
2

−
2

R+
ǭ+Γ

ψ1ǫ−ξ
+
3 −

2

R−
ǭ+Γ

ψ2ǫ−ξ
−
3 + (+ ←→ −), (A.11)

where we have relabeled ǫ̃ simply ǫ for convenience and have defined the following two-

sphere Killing vectors:

ξ+1 = cosφ1∂θ1 − sinφ1 cot θ1∂φ1 , ξ+2 = sinφ1∂θ1 + cosφ1 cot θ1∂φ1 , ξ+3 = ∂φ1 ,

with ξ−i similarly defined in terms of the coordinates (θ2, φ2). Note the Killing vectors

satisfy the expected SU(2) commutation relations, [ξ
(+)
i , ξ

(+)
j ] = −ǫijkξ

(+)
k , etc.

The subscripts on ǫ refer to chirality with respect to Γ01. It is straightforward to show

that other combinations of spinors cannot contribute to these vector bilinears. We note

that since we have eight supersymmetries, there is a priori no relation between say ǭ+Γ
θ1ǫ−

and ǭ+Γ
θ2ǫ− etc., so the SU(2) symmetries should be viewed as being independent. This

suggests an N = (0, 4) SCFT with SU(2)× SU(2) R-symmetry.

Evaluating the external AdS3 components of the Killing vector V , we find

Vext = (ǭ+Γ
2ǫ− + ǭ−Γ

2ǫ+) (M01 +D) + ǭ−Γ
0ǫ−(P0 − P1) + ǭ+Γ

0ǫ+(K0 +K1),

where now ǫ denotes the constant chiral spinors appearing in the expression for the AdS3

Killing spinor (A.8), and we have defined the AdS3 Killing vectors in Poincaré patch as

P0 = ∂t, P1 = −∂x,

M01 = x ∂t + t ∂x, D = r ∂r + t ∂t + x ∂x,

K0 = (t2 + x2 + r2)∂t + 2t(r∂r + x∂x),

K1 = (t2 + x2 − r2)∂x + 2x(r∂r + t∂t). (A.12)

These satisfy the usual conformal algebra:

[Mµν , Pρ] = −(ηµρPν − ηνρPµ), [Mµν ,Kρ] = −(ηµρKν − ηνρKµ),

[Mµν , D] = 0, [D,Pµ] = −Pµ, [D,Kµ] = Kµ,

[Pµ,Kν ] = 2Mµν − 2ηµνD, (A.13)

with µ, ν = 0, 1.

Recalling the bosonic subgroup of D(2|1, γ), we come to the conclusion that after two

Hopf-fibre T-dualities, the isometry supergroup of the AdS3 × S3 × S3 geometry, namely

D(2|1, γ) × D(2|1, γ) becomes simply D(2|1, γ) × SL(2,R), where γ is the ratio of the

two-sphere radii.
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