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symmetry. The Z2 and Z̃2 symmetries are introduced to guarantee the stability of a dark

matter candidate and to forbid the flavour changing neutral current at the tree level,

respectively. The dominant form factor FZ of the H±W∓Z vertex can be enhanced by

effects of extra scalar boson loop contributions. We find that, in such a model, |FZ |2 can

be one order of magnitude larger than that predicted in two Higgs doublet models, under

the constraints from vacuum stability, perturbative unitarity and the electroweak precision
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can be of order 10 (1)% level when the mass of H± is below the top quark mass. Such a

light H± is allowed by the so-called Type-I and Type-X Yukawa interactions which appear
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calculate the cross sections for the processes H± → W±Z and H± → W±γ onset by the

top quark decay t→ H±b and electroweak H± production at the LHC.
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1 Introduction

Although the discovery of the Standard Model (SM) like Higgs boson at the Large Hadron

Collider (LHC) [1–4] suggests that there is an isospin doublet scalar field in the Higgs

sector, the possibility of that more Higgs doublets exist. In fact, a second doublet is often

introduced in new physics models such as the Minimal Supersymmetric SM (MSSM) [5]. In

addition, models with a multi-doublet structure have also been discussed based upon var-

ious physics motivations, e.g., to explain tiny neutrino masses via radiative generation [6],

to provide a dark matter (DM) candidate [7] and to supply extra CP violating phases [8, 9]

for the explanation of the baryon asymmetry of Universe. Thus, testing the existence of

additional doublet fields is quite important to probe new physics scenarios beyond the SM.

One of the most important features of models with multi-Higgs doublets is the appear-

ance of physical extra scalar bosons such as charged Higgs bosons H±. In particular, the
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properties of H± states strongly depend on the structure of the Higgs sector, e.g., the sym-

metries of the model, the actual number of doublets, the mass spectrum, etc. Therefore,

through the detection of H± and by measuring those properties, e.g., the mass, couplings,

production cross sections and decay rates, one can directly probe the existence of additional

doublets as well attempt extracting the structure of the Higgs sector.

Among the various observables related to H±, studying the H±W∓Z vertex is quite

interesting because of the following features. Firstly, it has been known that the H±W∓Z

vertex does not appear at the tree level1 in multi-doublet models [10], because of an ap-

proximate global SU(2) symmetry known as the custodial symmetry2 in the kinetic terms

for the doublet fields. Secondly, although the H±W∓Z vertex is loop induced, its mag-

nitude can be enhanced by effects of particles running in the loop, especially for the case

where they come from the sector which breaks the custodial symmetry. For example, the

top and bottom quark loop contributions to the H±W∓Z vertex give the quadratic depen-

dence upon the top quark mass [11], which is responsible for the violation of the custodial

symmetry in the Yukawa sector. In refs. [12, 13], the impact of extra Higgs boson loop

contributions on the H±W∓Z vertex has been evaluated in the 2-Higgs Doublet Model

(2HDM) [5]. It has been shown that a large mass splitting between the CP-odd Higgs bo-

son and the charged one gives a sizable correction to the H±W∓Z vertex. From the above

reasons, it is clear that the strength of the H±W∓Z vertex measures the effects of the

violation of the custodial symmetry in the model embedding it. Therefore, by measuring

this vertex, we can indirectly observe such a new physics effect.

Feasibility studies to measure the H±W∓Z vertex have been performed in ref. [14–16]

for the LHC and in ref. [17] for future linear colliders.

In this paper, we calculate the magnitude of the H±W∓V (V = Z, γ) vertices at

the one-loop level in the 3-Higgs Doublet Model (3HDM), in which the Higgs sector is

composed of two active (with a non-zero Vacuum Expectation Value (VEV)) and one

inert (without a non-zero VEV) doublet scalar fields. This corresponds to the simplest

version of the multi-doublet model in which there is a DM candidate and an explicit CP-

violating coupling in the Higgs sector. In this model, the scalar bosons from the inert

doublet field give an additional contribution to the H±W∓V vertex with respect to the

top/bottom quarks and scalar bosons from the active doublet loop contributions. As

a phenomenological application, we also discuss how such new contributions change the

decay branching fractions of the H± → W±Z and H± → W±γ modes and, consequently,

the production cross sections involving these decay processes at the LHC.

This paper is organized as follows. In section 2, we define the Lagrangian of the 3HDM,

i.e., the scalar potential and the Yukawa interactions. In section 3, we introduce the form

factors of the H±W∓V vertices and discuss relationships between these form factors and

effective operators. We then explain how to calculate these form factors at the one-loop

level. In section 4, we summarise various constraints on the parameters of our model. From

the theoretical point of view, we consider vacuum stability and perturbative unitarity. As

1The H±W∓γ vertex does also not appear at the tree level in any models with the U(1)em symmetry.
2In fact, the custodial symmetry is broken by the U(1)Y coupling in the kinetic sector which generates

the mass difference between the W and Z bosons.
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(Z2, Z̃2) charge Mixing factor

Φ1 Φ2 η QL LL uR dR eR ξu ξd ξe

Type-I (+,+) (+,−) (−,+) (+,+) (+,+) (+,−) (+,−) (+,−) cotβ cotβ cotβ

Type-II (+,+) (+,−) (−,+) (+,+) (+,+) (+,−) (+,+) (+,+) cotβ − tanβ − tanβ

Type-X (+,+) (+,−) (−,+) (+,+) (+,+) (+,−) (+,−) (+,+) cotβ cotβ − tanβ

Type-Y (+,+) (+,−) (−,+) (+,+) (+,+) (+,−) (+,+) (+,−) cotβ − tanβ cotβ

Table 1. Charge assignments of the unbroken Z2 symmetry and the softly-broken Z̃2 symmetry.

The mixing factors in the Yukawa interaction terms in eq. (2.14) are also shown.

experimental constraints, we take into account the bounds from the Electro-Weak (EW) S,

T and U parameters, the flavour experiments and direct searches for H± states from LEP-

II and the LHC Run-I. In section 5, we show numerical results for the form factors of the

H±W±V vertices, branching fractions of H± and their signal cross sections at the LHC.

Our conclusion is given in section 6. In appendix, we present the full analytic expressions

for the form factors of the H±W∓V vertices.

2 The model

We give a brief review of the 3HDM3 of which the Higgs sector is composed of two active

and one inert isospin doublet scalar fields [18, 19] with the hypercharge4 Y = +1/2. We

represent the active doublets as Φ1 and Φ2 whereas the inert doublet as η. Such an inert

nature can be realised by assuming an unbroken Z2 symmetry in the scalar potential, in

which only η has an odd parity while all the other fields are assigned to be even. One of

the important consequences of imposing such a Z2 symmetry is that the lightest neutral

scalar component in η can be a DM candidate, because it cannot decay into SM particles.

In addition to the Z2 symmetry, we impose another Z2 symmetry, denoted by Z̃2 to

distinguish it from the above one, which is required to forbid the Flavour Changing Neutral

Current (FCNCs) at the tree level. This prescription is the same as that in the 2HDM [22].

For the Z̃2 symmetry, we consider the softly-broken case, since avoidance of tree level

FCNCs can already be achieved in this case. Under the Z̃2 symmetry, four independent

types of Yukawa interactions (Type-I, -II, -X and -Y) [23–26] are allowed depending on

the assignment of the Z̃2 charge to the SM fermions. In table 1, we show the charge

assignments required by the Z2 and Z̃2 symmetries for the three scalar doublets Φ1, Φ2

and η and all the SM fermions, where LL (eR) is the left (right)-handed lepton doublet

(singlet) and QL (uR, dR) is the left (right)-handed quark doublet (up-type and down-type

quark singlets).

3The model with two inert plus one active doublets have been discussed in refs. [20, 21].
4We use the notation that the electric charge Q is given by Q = T3+Y with T3 being the third component

of the isospin.

– 3 –



J
H
E
P
0
8
(
2
0
1
5
)
1
1
6

2.1 The scalar potential

The most general scalar potential under the SU(2)L×U(1)Y ×Z2×Z̃2 symmetry is given by

V (Φ1,Φ2, η) = µ2
ηη
†η + µ2

1Φ†1Φ1 + µ2
2Φ†2Φ2 − (µ2

3Φ†1Φ2 + h.c.)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4|Φ†1Φ2|2 +

1

2
[λ5(Φ†1Φ2)2 + h.c.]

+
1

2
λη(η

†η)2 + ρ1(Φ†1Φ1)(η†η) + ρ2|Φ†1η|
2 +

1

2
[ρ3(Φ†1η)2 + h.c.]

+ σ1(Φ†2Φ2)(η†η) + σ2|Φ†2η|
2 +

1

2
[σ3(Φ†2η)2 + h.c.], (2.1)

where µ2
3, λ5, ρ3 and σ3 are complex parameters in general. Throughout the paper, we

take these parameters to be real for simplicity. The scalar fields can be parameterised as

Φi =

[
w+
i

1√
2
(hi + vi + izi)

]
, (i = 1, 2), η =

[
η+

1√
2
(ηH + iηA)

]
, (2.2)

where vi are the VEVs of Φi with v2
1 + v2

2 = v2 ' (246 GeV)2. The ratio of the two VEVs

is parameterized as the usual way by tan β = v2/v1.

The mass formulae for the active sector are exactly the same as those in the 2HDM at

the tree level. The mass eigenstates for the active scalar bosons are given as:(
w±1
w±2

)
= R(β)

(
G±

H±

)
,

(
z1

z2

)
= R(β)

(
G0

A

)
,

(
h1

h2

)
= R(α)

(
H

h

)
,

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
, (2.3)

where G± and G0 are the Nambu-Goldstone (NG) bosons which are absorbed as their

longitudinal components by the W± and Z bosons, respectively. We define the h state to

be the SM-like Higgs boson with a mass of about 125 GeV discovered at the LHC.

The squared masses of the H± and A states are then calculated as

m2
H± = M2 − v2

2
(λ4 + λ5), m2

A = M2 − v2λ5, (2.4)

where M2 describes the soft breaking scale of the Z̃2 symmetry defined as follows

M2 =
µ2

3

sinβ cosβ
. (2.5)

The squared masses for the CP-even scalar states and the mixing angle α are expressed by

m2
H = cos2(α− β)M2

11 + sin2(α− β)M2
22 + sin 2(α− β)M2

12, (2.6)

m2
h = sin2(α− β)M2

11 + cos2(α− β)M2
22 − sin 2(α− β)M2

12, (2.7)

tan 2(α− β) =
2M2

12

M2
11 −M2

22

, (2.8)
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where M2
ij (i, j = 1, 2) are the mass matrix elements in the basis of (h′1, h

′
2) defined in

eq. (3.6):

M2
11 = v2(λ1 cos4 β + λ2 sin4 β) +

v2

2
(λ3 + λ4 + λ5) sin2 2β,

M2
22 = M2 + v2 sin2 β cos2 β [λ1 + λ2 − 2(λ3 + λ4 + λ5)] ,

M2
12 =

v2

2
sin 2β(−λ1 cos2 β + λ2 sin2 β) +

v2

2
sin 2β cos 2β(λ3 + λ4 + λ5). (2.9)

Because of the unbroken Z2 symmetry, the scalar bosons from η do not mix with those

from Φ1 and Φ2. Thus, the mass formulae of the inert scalar bosons are simply given by

m2
η± = µ2

η +
v2

2

[
ρ1 cos2 β + σ1 sin2 β

]
, (2.10)

m2
ηH

= µ2
η +

v2

2

[
(ρ1 + ρ2 + ρ3) cos2 β + (σ1 + σ2 + σ3) sin2 β

]
, (2.11)

m2
ηA

= µ2
η +

v2

2

[
(ρ1 + ρ2 − ρ3) cos2 β + (σ1 + σ2 − σ3) sin2 β

]
. (2.12)

2.2 The Yukawa Lagrangian

The most general form that is invariant under the Z̃2 symmetry is given by

−LY =YuQLiσ2Φ∗uuR + YdQLΦddR + YeLLΦeeR + h.c., (2.13)

where Φu,d,e are Φ1 or Φ2 depending on the Z̃2 charge assignment (see table 1). The

interaction terms are expressed in terms of mass eigenstates of the Higgs bosons as

−Lint
Y =

∑
f=u,d,e

mf i

v

(
ξfhf

i
f ih+ ξfHf

i
f iH − 2iT f3 ξff

i
γ5f

iA
)

(2.14)

+

√
2

v

[
ui
(
ξd V

ij
CKMmdjPR − ξumui V

ij
CKM PL

)
dj H+ +meiξeν

iPRe
iH+ + h.c.

]
,

where T f3 is the third component of the isospin for a fermion f , V ij
CKM is the Cabibbo-

Kobayashi-Maskawa matrix element, and the superscripts i and j denote the flavour indices.

In eq. (2.14), ξfh and ξfH are defined by

ξfh = sin(β − α) + ξf cos(β − α), (2.15)

ξfH = cos(β − α)− ξf sin(β − α), (2.16)

and ξf in each type of Yukawa interactions are listed in table 1.

It is important to mention here that there is the so-called SM-like limit or alignment

limit defined by sin(β − α) → 1 [27, 28]. In this limit, all the h coupling constants to the

SM particles acquire the same values as in the SM. In fact, the ratios of hff̄ and hV V

couplings in our model to those in the SM are respectively given as ξfh given in eq. (2.15)

and sin(β − α).
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3 The H±W∓V vertex

The amplitude of H± →W±V (relevant diagrams are shown in figure 8 in appendix A) is

expressed as

iM(H± →W±V ) = igmWV
µν
V εWµ(pW )εV ν(pV ), for V = Z, γ, (3.1)

where V µν
V is written in terms of the following three dimensionless form factors:

V µν
V = gµνFV +

pµV p
ν
W

m2
W

GV + iεµνρσ
pV ρpWσ

m2
W

HV , (3.2)

with pµW and pµV being the incoming momenta for W± and V , respectively. For the case of

V = γ, the Ward identity guarantees the following relation;

V µν
γ pγν = 0. (3.3)

From this relation, the form factor Fγ is written as

Fγ =
Gγ
2

(
1−

m2
H±

m2
W

)
, (3.4)

where we use p2
W = m2

W and (pW + pγ)2 = m2
H± .

In our model, the H±W∓V vertices do not appear at the tree level, just like in the

2HDM. This is clearly seen by introducing the so-called Higgs basis of the active scalar

doublets defined as (
Φ1

Φ2

)
= R(β)

(
Φ

Ψ

)
, (3.5)

where

Φ =

[
G+

1√
2
(h′1 + v + iG0)

]
, Ψ =

[
H+

1√
2
(h′2 + iA)

]
, (3.6)

with h′1 = H cos(β−α) + h sin(β−α) and h′2 = −H sin(β−α) + h cos(β−α). The kinetic

Lagrangian for Φ1 and Φ2 is then rewritten as

Lkin = |DµΦ1|2 + |DµΦ2|2 = |DµΦ|2 + |DµΨ|2, (3.7)

where Dµ is the covariant derivative. Since the gauge-gauge-scalar type vertex is pro-

portional to the Higgs VEV v, these vertices come from the |DµΦ|2 term as only Φ has a

non-zero VEV. However, the physical charged Higgs bosons H± are contained in the |DµΨ|2

term. Therefore, the H±W∓Z vertex is absent at the tree level.5 The above statement

5If we consider models which contain scalar fields with isospin larger than 1/2 such as triplets, the

H±W∓Z vertex can appear at tree level. The expression for the H±W∓Z vertex can be found in

refs. [10, 17] in the general extended Higgs sector which contains Higgs multiplets with the isospin T

and the hypercharge Y . In addition, it has been known that in models with an extension of the gauge

sector such as SU(2)× SU(2)×U(1) [29], the H±W∓Z vertex also appears at the tree level.
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can be generalised to a model with N active doublet scalar fields. In that case, we can also

define a base transformation similar to the one of eq. (3.5). Regarding the H±W∓γ vertex,

it does not appear at tree level in any models based on the SU(2)L × U(1)Y → U(1)em

gauge theory, because of the U(1)em invariance and the consequent Ward identity.

The form factors defined in eq. (3.2) are introduced from the following effective La-

grangian [11, 12]:

Leff = fZH
+W−µ Z

µ + gVH
+FµνW FV µν + ihV εµνρσH

+FµνW F ρσV + h.c., (3.8)

where FµνW and FµνV are the field strength tensors for W± and V , respectively. It can be

seen that the coefficient fZ has mass dimension one whereas gH±WV and hZ have mass

dimension minus one. Hence, the coefficient fZ can be proportional to a squared mass

(M2
i ) of a particle running in the loop according to a dimensional analysis:

fZ ∼ ggZ
M2
i

v
F(M2

i ), (3.9)

where F is a dimensionless function. Typically, it is expressed by the logarithmic function

of M2
i . On the other hand, gZ and hZ can be expressed as

gZ , hZ ∼
ggZ
v
G(M2

i ), (3.10)

where G is another dimensionless function of M2
i . Therefore, only the coefficient fH±WZ

can be enhanced significantly due to the M2
i dependence, so that the form factor FZ gives

the dominant contribution to the H±W∓Z vertex. In fact, it has been pointed out in

ref. [11] that the top/bottom loop contribution to the form factor FZ is proportional to m2
t

only, as mt � mb. The origin of the quadratic dependence can be understood in terms of

the Yukawa coupling H+tb̄, which is proportional to mt/v as in eq. (2.14), and of another

mt coming from the chirality flipped effect. Similarly, the quadratic mass dependence

appears in the extra Higgs boson loop contribution as discussed in ref. [12]. This too can

be understood, as the trilinear H±SS′ (S and S′ being extra scalar bosons) couplings can

be rewritten by squared masses of extra scalar bosons.

Another important reason for the appearance of a M2
i dependence in FZ is in relation

to a violation of the custodial SU(2)V symmetry. As it has been discussed in ref. [12], the

dimension three term in eq. (3.8) comes from the following operator6

Tr[σ3(DµΦ)†DµΨ], (3.11)

where Φ = (Φc,Φ) and Ψ = (Ψc,Ψ) with Φc = iσ2Φ∗ and Ψc = iσ2Ψ∗ are the 2 ×
2 representation form of the Higgs doublets. They are translated under the SU(2)L ×
SU(2)R symmetry by Φ→ ULΦU †R and Ψ→ ULΨU †R, where UL and UR are respectively

the SU(2)L and SU(2)R unitary transformation matrices. We can see that the operator

given in eq. (3.11) is not invariant under the SU(2)R transformation, so that this operator

6The operator Tr[DµΦD
µΨ] also gives the H±W∓Z term in the effective Lagrangian which is propor-

tional to sin2 θW . However, such an effect is cancelled by the counter term of the H±WZ vertex.
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breaks the SU(2)R invariance. Since the custodial SU(2)V symmetry corresponds to the

remaining symmetry after the EW symmetry breaking, i.e., SU(2)L × SU(2)R → SU(2)V
and a violation of the SU(2)R symmetry means a violation of the SU(2)V symmetry.

Therefore, the quadratic mass dependence in FZ can be understood as a result of the

custodial symmetry breaking. In fact, it has been known that the mass difference between

the top and bottom quarks gives the violation of the custodial symmetry in the Yukawa sec-

tor. In addition, that between A and H± also gives the violation of the custodial symmetry

in the Higgs potential [30]. Since the top quark mass is already known by experiments,

the top quark loop contribution to the H±W∓Z vertex is determined by its mass.7 In

contrast, parameters in the scalar sector have not yet determined by experiments except

for the Higgs boson mass of about 125 GeV, so that we can expect a sizable enhancement

of the H±W∓Z vertex from scalar boson loop effects in suitable regions of the 3HDM

parameter space.

In the following, we discuss how we calculate the form factors of the H±W∓V vertices.

We can separately consider the one-loop contributions to the vertices from the 1PI diagrams

and the counter terms as

(FV , GV , HV ) = (F 1PI
V + δFV , G

1PI
V + δGV , H

1PI
V + δHV ), (3.12)

where X1PI
V and δXV are respectively the 1PI and the counter term contributions to the

form factor XV (X = F, G and H). Their analytic expressions are given in appendix A.

The counter term contributions are obtained as follows. First, we define the renormal-

ized two point function for the W±-H± mixing as

Γ̂µWH(p2) = (−ipµ)Γ̂WH(p2), (3.13)

where pµ is the incoming four momentum of H±. The renormalised form factor Γ̂WH is

given by

Γ̂WH(p2) = imW δGH + Γ1PI
WH(p2), (3.14)

where δGH is the counter term for the G±-H± mixing, and Γ1PI
WH is the 1PI diagram

contribution to the W±-H± mixing as shown in figure 9. The analytic expression of Γ1PI
WH

is given in appendix A. The counter term is obtained by the shift of the charged NG boson

field G±:

G± → (1 + δZG/2)G± + δGHH
±. (3.15)

By imposing the on-shell renormalisation condition [31, 32]

Γ̂WH(p2 = m2
H±) = 0, (3.16)

we can determine the counter term

δGH = i
Γ1PI
WH(p2 = m2

H±)

mW
. (3.17)

7In our model, the top quark loop contribution also depends on tan β, and in all the four types of Yukawa

interactions, its dependence is given by cot β.
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We then obtain the counter term contribution to the H±W∓V vertex as

LGWV = − g

cW
mW s

2
WG

+W−µ Z
µ + emWG

+W−Aµ + h.c.

→ − g

cW
mW s

2
W δGWH

+W−µ Z
µ + emW δGWH

+W−µ A
µ + · · · , (3.18)

where sW = sin θW and cW = cos θW with θW being the weak mixing angle. From

eqs. (3.17) and (3.18), δFV is given by

δFZ = −i
s2
W

cW

Γ1PI
WH(p2 = m2

H±)

mW
, δFγ = isW

Γ1PI
WH(p2 = m2

H±)

mW
. (3.19)

We then obtain the finite results for the form factors of the H±W∓Z and H±W∓γ

vertices. In the case of sin(β − α) = 1, mH = mA, mA � mH± , mηH
= mηA

and

mηA
� mη± , we obtain

FZ '
cotβ

16π2v2cW

[
Ncm

2
t +

M2 −m2
A

2
(tan2 β − 1) +

(
m2
ηA
−m2

η± −
v2

2
ρ2

)]
, (3.20)

where the first, second and third terms correspond to the contributions from t-b, active

and inert scalar boson loops, respectively. We here note that the parameter M2 defined in

eq. (2.5) appearing in the second term in eq. (3.20) is not relevant to the Higgs VEV, and

if M2 < v2, the masses of extra active scalar bosons are mainly given from v2. From the

above expression, we can clearly see the quadratic mass dependences m2
t , m

2
A and m2

ηA
.

However, as it will be discussed in the next section, the case considered in the above, i.e.,

mH = mA � mH± and mηH
= mηA

� mη± also gives the similar quadratic dependence

in the EW T parameter. Therefore, too large mass difference between H± and A (with

mH = mA) and that between η± and ηA (with mηH
= mηA

) are not allowed. Instead of

taking the above case, we can consider the case with sin(β − α) = 1, mA � mH±(= mH)

and mηA
� mη±(= mηH

), where the contribution to the T parameter from extra scalar

boson loops is cancelled. We then obtain

FZ '
cotβ

16π2v2cW

[
Ncm

2
t + (M2 −m2

H±)(tan2 β − 1)F

(
m2
H±

m2
A

)
− v2

2
(ρ2 + ρ3)F

(
m2
η±

m2
ηA

)]
,

(3.21)

where Nc = 3 is the color factor, and the function F is given by

F (r) = − 1

4(1− r)2

[
3− 4r + r2 + 2(2− r)r ln r

]
− 1

2
ln r. (3.22)

This function has the following asymptotic behavior:

F (r) ' −3

4
− 1

2
ln r for r � 1, F (r) ' −1

4
for r � 1, F (r) ' 1− r

2
for r ' 1.

(3.23)

In this case, although the quadratic dependence of FZ on m2
A and m2

ηA
disappears, there

still remains their logarithmic dependence.
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4 Constraints

4.1 Vacuum stability

The stability condition for the Higgs potential is given by requiring that the Higgs potential

is bounded from below in any direction of the scalar boson space. The necessary and

sufficient condition to guarantee such a positivity of the potential has been derived in

ref. [19] as

λη > 0, λ1 > 0, λ2 > 0, (4.1)√
λ1λ2 + λ̄ > 0,

√
ληλ1 + ρ̄ > 0,

√
ληλ2 + σ̄ > 0, (4.2)√

ληλ̄+
√
λ1σ̄ +

√
λ2ρ̄ > 0 or ληλ̄

2 + λ1σ̄
2 + λ2ρ̄

2 − ληλ1λ2 − 2λ̄ρ̄σ̄ < 0, (4.3)

λ̄ = λ3 + MIN(0, λ4 + λ5, λ4 − λ5),

ρ̄ = ρ1 + MIN(0, ρ2 + ρ3, ρ2 − ρ3),

σ̄ = σ1 + MIN(0, σ2 + σ3, σ2 − σ3). (4.4)

4.2 Unitarity

Some combinations of scalar quartic couplings are constrained from perturbative unitarity.

In the 3HDM, the s wave amplitude matrix for all the 2-to-2 body scalar boson elastic

scatterings have been calculated in ref. [33] in the high energy limit. We obtain the following

independent eigenvalues or sub-matrices for the s wave amplitude matrix as

X1 =

 3λη 2ρ1 + ρ2 2σ1 + σ2

2ρ1 + ρ2 3λ1 2λ3 + λ4

2σ1 + σ2 2λ3 + λ4 3λ2

 , X2 =

λη ρ2 σ2

ρ2 λ1 λ4

σ2 λ4 λ2

 , X3 =

λη ρ3 σ3

ρ3 λ1 λ5

σ3 λ5 λ2

 , (4.5)

y±1 = λ3 + 2λ4 ± 3λ5, (4.6)

y±2 = ρ1 + 2ρ2 ± 3ρ3, (4.7)

y±3 = σ1 + 2σ2 ± 3σ3, (4.8)

y±4 = λ3 ± λ5, (4.9)

y±5 = ρ1 ± ρ3, (4.10)

y±6 = σ1 ± σ3, (4.11)

y±7 = λ3 ± λ4, (4.12)

y±8 = ρ1 ± ρ2, (4.13)

y±9 = σ1 ± σ2. (4.14)

We then require the following condition:

|xi| < 8π, |y±j | < 8π, (i, j = 1, . . . 9), (4.15)

where xi are the eigenvalues of X1, X2 and X3.
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4.3 S, T and U parameters

The EW oblique parameters S, T and U [34] can be modified from the SM prediction by

the extra scalar boson loop contributions and the modified SM-like Higgs boson couplings.

The differences in the predictions of the S, T and U parameters in the 3HDM and those

in the SM are given in the case with sin(β − α) = 1, mH = mA, mηH
= mη± as

∆T ' 1

24π2αemv2
(mH± −mA)2, (4.16)

∆U ' 1

12π

(
ln

m2
A

m2
H±

+
2mH±

mA
− 2
)
' 0, (4.17)

assuming mA ' mH± , and

∆S ' 1

12π

(
ln

m2
A

m2
H±

+ ln
m2
ηA

m2
η±
− 5

6

)
, for mηA

� mη± , (4.18)

∆S ' 1

12π

(
ln

m2
A

m2
H±
− 5

6

)
, for mη± � mηA

, (4.19)

∆S ' 1

12π

(
ln

m2
A

m2
H±

+
mηA

m
η±
− 1
)
' 0, for mη± ' mηA

. (4.20)

The general expression is given in ref. [33]. From the global fit of the EW precision data,

∆S and ∆T are extracted by fixing ∆U = 0 as

∆S = 0.05± 0.09, ∆T = 0.08± 0.07, (4.21)

with the correlation coefficient of +0.91 [35].

In figure 1, we show the constraint from the S and T parameters on the mA-mηA

plane. We take sin(β − α) = 1, mH = mA and mη± = mηH
= mA/2, which is also taken

in the numerical results shown in section 5. In the left and right panel, mH± is fixed to

be 150 GeV and 200 GeV, respectively. We can see that, for mηA
' mη± , a magnitude of

the mass splitting between A and H± to be larger than about 75 GeV is excluded by the

T parameter due to the quadratic dependence of the mass splitting shown in eq. (4.16). In

this case, the contribution to ∆S is almost zero as it is seen in eq. (4.20). Conversely, in

the case of mηA
� mη± , the positive logarithmic contribution to ∆S appears as shown in

eq. (4.18) and a too large mass splitting between ηA and η± is excluded by ∆S. However,

the constraint from ∆S is getting milder when there is a positive contribution to ∆T ,

because of the positive correlation between ∆S and ∆T . Therefore, in order to have a large

mass splitting between ηA and η±, which is required to obtain a significant contribution to

the H±W∓Z vertex, we need a mass splitting between A and H±.

4.4 Flavour constraints

We can apply the same constraints from the B physics measurements as those in the 2HDM

to our 3HDM, because of the same structure of the active sector. From the b→ sγ process,

the mass bound of mH± & 480 GeV [36] is given at 95% confidence level (CL) in models
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Figure 1. Constraint from the S and T parameters on the mA-mηA plane in the case of mH = mA,

sin(β − α) = 1 and mη± = mηH = mA/2. The charged Higgs boson mass is fixed to be 150 GeV

(left panel) and 200 GeV (right panel). The 95% CL excluded regions are indicated in the figure.

with the Type-II and Type-Y Yukawa interactions with tan β & 2 via the next-to-next-to-

leading order calculation [36–38]. This bound is getting stronger when a smaller value of

tanβ is considered. In models with Type-I and Type-X Yukawa interactions, the constraint

from b → sγ is only important in the small tan β case. For instance, the lower limit on

mH± is given to be about 100, 200 and 800 GeV at 95% CL in the cases of tan β = 2.5, 2

and 1, respectively [38].

The B0-B̄0 mixing also gives a bound on mH± , especially for small tan β’s. In the

case of tan β = 1, mH± . 500 GeV is excluded at 95% CL in models with all the types of

Yukawa interactions [39], which is stronger than the constraint from b→ sγ for the Type-II

and Type-Y cases. This bound becomes rapidly weaker when we consider tan β & 1, e.g.,

for tan β = 1.5 (2), the limit is mH± . 300 (100) GeV at 95% CL.

4.5 Direct search at LEP II

At the LEP II experiment, charged Higgs bosons have been searched via the e+e− →
Z∗/γ∗ → H+H− process [40]. From the non-observation of a significant excess, the

lower mass limit has been taken to be about 80 GeV at 95% CL under the assumption

of BR(H± → τ±ν) + BR(H± → cs) = 1. The slightly stronger bound mH± & 90 GeV can

be obtained assuming BR(H± → τ±ν) = 1.

4.6 Direct search at LHC Run-I

At the LHC, H± searches have been performed for the two cases: the low mass region

mH± < mt+mb and the high mass region mH± > mt+mb. For the low mass case, the t→
H+b decay is used as the H± production mode and the full process pp → tt̄ → bb̄H±W∓

with the H± → τ±ν decay has thus been analysed. Using the data obtained at
√
s = 8 TeV

after 19.5 fb−1 of the integrated luminosity, the upper limit on the product of branching

ratios BR(t → H±b)×BR(H± → τ±ν) has been obtained to be between 0.23% and 1.3%

at 95% CL for mH± in the range of 80 GeV to 160 GeV [41].
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Figure 2. (Left panel) The product of branching fractions BR(t → H+b)×BR(H+ → τ+ν) as a

function of tan β in the Type-I (red curves) and Type-X (blue curves) 2HDMs/3HDMs. We take

mH± = mA = mH = M and sin(β − α) = 1 in this plot. The dashed and solid curves respectively

show the cases of mH± =100 GeV and 150 GeV. The horizontal dotted lines show the upper limits

(0.23% and 1.3%) from the LHC data. (Right) Excluded parameter regions on the tan β-mH± plane

in the Type-I and Type-X 2HDMs/3HDMs. Regions inside from each curve are excluded at 95%

CL by the measurement of top decay t→ H±b→ τ±bν. The solid and dashed curves are the results

using the upper limit on BR(t→ H+b)×BR(H+ → τ+ν) to be 0.23% and 1.3%, respectively.

In the left panel of figure 2, the above product of branching ratios is shown as a

function of tan β in the Type-I and Type-X 2HDMs. Because the light H± scenario, i.e.,

mH± < mt, in the Type-II and Type-Y 2HDMs has already been excluded by b → sγ

data as explained in section 4.4, we here only show the Type-I and Type-X cases. In

the Type-X 2HDM, the product of the branching fractions is slightly larger than that in

the Type-I 2HDM. This can be understood in such a way that in the Type-X 2HDM the

branching fraction of H± → τ±ν is enhanced as tan β is increased, while it does not depend

on tanβ in the Type-I 2HDM. For example, BR(H+ → τ+ν) can be almost 100% when

tanβ & 3 in the Type-I 2HDM, but it is about 40% in the Type-I 2HDM. In contrast, the

branching ratio of t→ H+b is given by the same value in both Type-I and Type-X 2HDMs.

Therefore, a bit stronger bound on tan β for a fixed value of mH± is obtained in the Type-X

2HDM. For example, if we use the stronger bound for BR(t → H±b)×BR(H± → τ±ν),

i.e., 0.23%, tan β . 6 (4) and 15 (10) are excluded for mH± = 100 and 150 GeV in the

Type-X (Type-I) 2HDM.

For the high H± mass region, i.e., mH± > mt, the production process gb→ tH± (i.e.,

H±-strahlung) can be used instead of the top quark decay.8 The 95% CL upper limit on

the cross section times branching ratio σ(pp → tH± + X) × BR(H± → τ±ν) has been

given to be between 0.76 pb and 4.5 fb in the range of mH± =180 GeV to 1 TeV [41]. This

limit gives an upper limit on tan β for a fixed value of mH± in the 2HDMs. For example,

tanβ & 50 (60) at mH± = 200 (230) GeV can be excluded at 95% CL in the MSSM [41],

where a similar bound is expected to be obtained in the Type-II 2HDM because of the same

8Notice that we have emulated both the top quark production and the decay as well as H±-strahlung

through the single gg → tbH± mode, in the spirit of [42].
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Experiment 95% CL lower lim. on mH± tanβ Type Comments

b→ sγ 480 GeV - II and Y

(800, 200, 100) GeV (1, 2, 2.5) I and X

B0-B̄0 (500, 300, 100) GeV (1, 1.5, 2) All

LEP II (80, 90) GeV - All Bτν + Bcs = 1, Bτν = 1

t→ H±b (160, 140, 100) GeV (1, 2, 4) I Using 1.3% (See figure 2)

at the LHC Run-I (160, 150, 130) GeV (1, 2, 4) X Using 1.3% (See figure 2)

Table 2. The 95% CL lower bound on mH± in the 2HDMs/3HDMs from various experimental

measurements for a fixed value of tan β. For the row of LEP II, 80 (90) GeV is given for the case

of Bτν + Bcs = 1, (Bτν = 1), where Bτν and Bcs are the branching fractions of H± → τ±ν and

H± → cs modes, respectively.

structure of the Yukawa interaction.9 In the Type-I and Type-X 2HDMs, the production

cross section of pp → tH± + X is significantly suppressed by a factor cot2 β, so that we

cannot expect to obtain an important bound in the high mass region.

4.7 Summary of the constraints on mH±

In table 2, we present the summary of the current experimental bounds on mH± in the

2HDMs/3HDMs with the four types of Yukawa interactions from various experimental

observations.

5 Numerical results

In this section, we perform numerical evaluations for the H±W∓V vertices and related

observables. In particular, we focus on the light H± case, i.e, mH± = O(100) GeV, because

of its phenomenological interest. As we discussed in section 4, such a scenario is allowed in

the Type-I and Type-X Yukawa interactions from flavour constraints, so that we consider

these types only in this section. First, we evaluate the form factors of the H±W∓Z and

H±W∓γ vertices. For the H±W∓γ vertex, since the form factor Fγ is related to Gγ by

the Ward identity, we only show Gγ and Hγ . Second, we show all the branching fractions

of H±, including the H± → W±Z and H± → W±γ modes. Finally, we discuss cross

sections for various signal processes involving the H± →W±Z and H± →W±γ decays at

the LHC.

In our model, there are 16 independent parameters in the potential given in eq. (2.1),

namely, µ2
1-3, µ2

η, λ1-5, λη, ρ1-3 and σ1-3. They are divided into 8 parameters in the active

sector (µ2
1-3 and λ1-5) and the remaining 8 parameters (µ2

η, λη, ρ1-3 and σ1-3).

After the tadpole conditions are imposed, the former 8 parameters can be expressed

by v, tanβ, sin(β − α) mh, mH , mA, mH± and M2. Two of the 8 parameters, v and mh,

9In the Type-Y 2HDM, although the same production cross section of pp→ tH± +X is obtained as in

the Type-II case, the branching fraction of H± → τ±ν is significantly suppressed due to the enhancement

of the decay rate of the H± → bc mode [43, 44]. Therefore, the bound in the Type-Y 2HDM can be much

weaker than that in the Type-II case.
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should be used to reproduce the gauge boson masses and the observed Higgs boson mass,

i.e., v ' 246 GeV and mh ' 125 GeV. Furthermore, the Higgs boson search data at the

LHC suggests that the observed Higgs boson is SM-like [1–4], so that taking sin(β−α) ≈ 1

gives a good benchmark scenario as we explained in section 2. We thus take sin(β−α) = 1

in the following calculation.

Regarding the latter 8 parameters, we proceed as follows. First, we take λη = 0, as

this gives a four-point interaction among the inert scalar bosons that does not affect the

following analysis. Second, we take ρ1 and σ1 so as to satisfy the vacuum stability condition

given in eqs. (4.2) and (4.3) for given values of ρ2,3 and σ2,3:

ρ1 = MIN(0, ρ2 + ρ3, ρ2 − ρ3), σ1 = MIN(0, σ2 + σ3, σ2 − σ3). (5.1)

Finally, the remaining 5 parameters can be expressed in terms of three masses of the inert

scalar bosons (mη± , mηA
and mηH

) and the ρ2 and ρ3 parameters. In this parametrisation,

the σ2 and σ3 parameters are given as the outputs:

σ2 = −ρ2 cot2 β +
1

v2 sin2 β

(
m2
ηA

+m2
ηH
− 2m2

η±

)
, (5.2)

σ3 = −ρ3 cot2 β +
1

v2 sin2 β

(
m2
ηH
−m2

ηA

)
. (5.3)

Therefore, to recap, we are left with 5 new parameters in the active sector (tan β, mH± ,

mA, mH and M2) and 5 new ones in the inert sector too (mη± , mηA
, mηH

, ρ2 and ρ3) and

we will scan over these. Regarding the SM inputs, we use the following values [45, 46]:

mZ = 91.1876 GeV, mW = 80.385 GeV, GF = 1.1663787×10−5 GeV−2,

mt = 173.07 GeV, mb = 3.0 GeV, mc = 0.677 GeV, V cb
CKM = 0.0409, V ts

CKM = 0.0429,

mτ = 1.77684 GeV, mµ = 0.105658367 GeV, mh = 125 GeV. (5.4)

where the quark masses mb and mc are given at the mZ scale as quoted from ref. [46].

The form factors depend on the three momenta pµW , pµV and qµ = pµW + pµV for W ,

V (= Z, γ) and H±, respectively. In the numerical calculation, when mH± ≥ mW + mZ ,

we take p2
W = m2

W , p2
Z = m2

Z and q2 = m2
H± while when mH± < mW + mZ , we take

p2
W = (mH± −mZ)2, p2

Z = m2
Z and q2 = m2

H± (thereby allowing for below threshold H±

decays too). For the H±W∓γ vertex, we take p2
W = m2

W , p2
γ = 0 and q2 = m2

H± .

5.1 Form factors

We start by showing the numerical results of the form factors of the H±W∓Z and H±W∓γ

vertices. In order to see how the inert scalar boson loops can change the prediction, we

first show the result in the 2HDM under the constraints from unitarity, vacuum stability

and the EW parameters as discussed in section 4. Then, we move on to the 3HDM.

In figure 3, the values of |XZ |2 (X = F, G and H) and |Yγ |2 (Y = G and H) are

respectively plotted in the upper and lower panels as a function of tan β in the case of sin(β−
α) = 1 and mH = mH± . The left (right) panel shows the case of mH± = 150 (200) GeV.

The solid, dashed and dotted (dashed and dotted) curves respectively show the fermion loop
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Figure 3. Values of |XZ |2 (X = F, G and H) (upper panels) and |Yγ |2 (Y = G and H) (lower

panels) as a function of tan β in the 2HDM with the Type-I or Type-X Yukawa interactions. We

take mH± = 150 GeV (left panels) and 200 GeV (right panels). In both the panels, mH = mH± and

sin(β−α) = 1 are taken. The values of M2 and m2
A are scanned over the ranges of −4002 < M2 <

+4002 GeV2 and 100 < mA < 260 (350) GeV in the left (right) panels, respectively. The solid,

dashed and dotted (dashed and dotted) curves respectively show the fermion loop contribution to

|FZ |2, |GZ |2 and |HZ |2 (|Gγ |2 and |Hγ |2), while the scatter plots show the total contribution.

contribution to |FZ |2, |GZ |2 and |HZ |2 (|Gγ |2 and |Hγ |2) whereas the black and blue (blue)

scatter plots are the total contribution to |FZ |2 and |GZ |2 (|Gγ |2), respectively. For the

boson loop contribution, we scan the parameters over the intervals −4002 GeV2 < M2 <

4002 GeV2 and 100 GeV < mA < 260 (350) GeV in the left (right) panels. We note that

mA & 260 (350) GeV when mH±(= mH) = 150 (200) GeV is excluded by the constraint

from the S parameter at 95% CL. We also note that only the fermion loop contributes to

HZ and Hγ .

We can see that the value of |FZ |2 is the biggest of all the form factors as we expected

in section 3, because of the m2
t dependence. Typically, |FZ |2 is more than one order of

magnitude larger than |GZ |2 and |HZ |2. In addition, all the squared form factors decrease

as tanβ is getting larger, because the top Yukawa coupling is proportional to cot β. The

maximal allowed value of |FZ |2 is obtained to be about 10−4 at tanβ ' 2.5 in both the

cases of mH± = 150 GeV and 200 GeV. For the H±W∓γ vertex, the maximal allowed

values of |Gγ |2 and |Hγ |2 are order of 10−6 at tanβ ' 2.
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Regarding the 3HDM, as we see from eq. (3.21), FZ is logarithmically enhanced by

mηA
in the case of mη± = mηH

. However, a too large mass difference between ηA and

η± is excluded by the S parameter as shown in figure 1 in the case of mH± = mA = mH

or ∆T = 0. We thus take a mass difference between H± and A/H with mH = mA to

avoid the constraint by the effect of non-zero ∆T . From the above reason, we consider the

following parameter conditions in the following calculations:

mA = mH = mH± + 50 GeV, M2 = m2
H± ,

mη± = mηH
=

1

2
mA, mηA

> mη± , −10 < ρ2, ρ3 < 10. (5.5)

We note that, in this setup, ηH corresponds to the DM candidate. The measured relic

abundance of DM10 can be satisfied by the resonant process of ηHηH → A/H → ff̄ .

In figure 4, the values of |XZ |2 (X = F, G and H) and |Yγ |2 (Y = G and H) are

respectively shown in the upper and lower panels as a function of tan β with mηA
=

400 GeV. The left (right) panel shows the case of mH± = 150 (200) GeV. In the upper

panel, the black scatter plots show the values of |FZ |2. In all the panels, the blue scatter

plot and the solid curve respectively represent |GV |2 and |HV |2 (V = Z, γ). Similar to the

results in the 2HDM, |FZ |2 is the biggest of all the squared form factors also in the 3HDM,

and all the squared form factors become smaller when tan β becomes large. Remarkably,

at tanβ = 2, we obtain |FZ |2 ' 10−3, which is one order of magnitude larger than |FZ |2

in the 2HDM.

In figure 5, we show the mηA
dependence of the squared form factors in the case of

tanβ = 2.5. We take mH± = 150 (200) GeV in the left (right) panel. The description of

the objects in the figure is the same as in figure 4. Clearly, we can see that only |FZ |2 is

enhanced as mηA
is getting larger. The maximal allowed value of |FZ |2 is about 10−3 at

mηA
' 500 GeV.

5.2 Branching fractions of H±

Next, we discuss the decay branching ratios of H±. As we see in figures 4 and 5 that the

form factor FZ is much larger than GZ and HZ , we only keep the term proportional to |FZ |2

for the H± → WZ decay. When mH± > mW + mZ , the on-shell decay of H± → W±Z

opens and its decay rate is calculated as

Γ(H± →W±Z) =

√
2GF
16π

m3
H±λ

1/2(xW , xZ)c2
W [λ(xW , xZ) + 12xWxZ ]|FZ |2, (5.6)

where xW = m2
W /m

2
H± and xZ = m2

Z/m
2
H± . If mH± is smaller than mW +mZ , the off-shell

decay modes H± →W±Z∗ and H± →W±∗Z are allowed. The decay rate with three body

10Because the DM phenomenology is not the main topic of this paper, we do not perform the detailed

analysis such as the calculation of the (co)annihilation cross sections of the DM candidate.
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Figure 4. Values of |XZ |2 (X = F, G and H) (upper panels) and |Yγ |2 (Y = G and H) (lower

panels) as a function of tan β in the 3HDM with mηA = 400 GeV. We take mH± = 150 GeV (left

panels) and 200 GeV (right panels). All the other parameters are taken as given in eq. (5.5). In

the upper panel, the black scatter plot shows the values of |FZ |2. In all the panels, the blue scatter

plot and the solid curve respectively represent |GV |2 and |HV |2 (V = Z, γ).

final states is given by∑
f,f ′

Γ(H± →W±∗Z → Zff̄ ′)=
9g4m2

W

256π3mH±
|FZ |2F3 (xZ , xW ) , (5.7)

∑
f

Γ(H± →W±Z∗ →Wff̄)=
3g4m2

Z

512π3mH±
|FZ |2

(
7− 40

3
s2
W +

160

9
s4
W

)
F3 (xW , xZ) , (5.8)

where

F3(x, y∗)=

arctan

[
(1−x)

√
−λ(x,y∗)

y∗(1+x)−(1−x)2

]
+ π

4x
√
−λ(x, y∗)

[
(1− y∗)3−3x3+(9y∗+7)x2−5(1−y∗)2x

]
(5.9)

+
1

24xy∗

{
(x−1)[6y∗2+y∗(39x−9)+2(1−x)2]−3y∗[y∗2+2y∗(3x−1)−x(3x+4)+1] ln x

}
.

We note that the argument y∗ is for the ratio of squared masses of a virtual gauge boson

to that of H±, e.g., for the H± → W±∗Z case, we should use F3(m2
Z/m

2
H± ,m

2
W /m

2
H±).
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Figure 5. Values of |XZ |2 (X = F, G and H) (upper panels) and |Yγ |2 (Y = G and H) (lower

panels) as a function of mηA
in the 3HDM with tan β = 2.5. We take mH± = 150 GeV (left panels)

and 200 GeV (right panels). All the other parameters are taken as given in eq. (5.5). In the upper

panel, the black scatter plot shows the values of |FZ |2. In all the panels, the blue scatter plot and

the solid curve respectively represent |GV |2 and |HV |2 (V = Z, γ).

The decay rate for H± →W±γ is given by

Γ(H± →W±γ) =

√
2GF
8π

m3
H±(1− xW )3

(
|Gγ |2 + |Hγ |2

)
. (5.10)

In figure 6, we show the branching fractions of H± as a function of mηA
in the 3HDM

with the Type-I Yukawa interaction. We take mH± = 150 (left), 170 (center) and 200 GeV

(right). The value of tan β is fixed to be 2.5 in all the panels. In these plots, we scan the

values of ρ2 and ρ3 in the range of −10 to +10 and extract the set of (ρ2, ρ3) combinations

giving the maximal value of the decay rate Γ(H± → WZ). Further, for the case of

mH± < mW + mZ , we show the branching fraction of H± → W±Z as the sum of the

branching fractions of H± → W±Z∗ and H± → W±∗Z. In all the plots, the behavior of

mηA
in the H± → W±Z decay is similar to that of |FZ |2 shown in figure 5. In the case

of mH± = 150 GeV, although BR(H± → W±Z) benefits from the enhancement of |FZ |2,

its rate is smaller than BR(H± → W±γ) when mηA
. 300 GeV. This can be understood

by the suppression of the decay rate of H± → W±Z due to the off-shell effect of the

W± or Z bosons. Therefore, we obtain a larger value of BR(H± → W±Z) in the case of
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Figure 6. Branching fractions of H± as a function of mηA in the Type-I Yukawa interaction with

tanβ = 2.5. We take mH± = 150 GeV (left), 170 GeV (center) and 200 GeV (right).
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Figure 7. Branching fractions of H± as a function of mηA in the Type-X Yukawa interaction with

tanβ = 2.5. We take mH± = 150 GeV (left), 170 GeV (center) and 200 GeV (right).

mH± = 170 GeV because of the smaller off-shell effect. However, once mH± exceeds the top

quark mass, both the branching fractions of H± →W±Z and H± →W±γ are significantly

suppressed by the H± → tb decay. We find that the maximal value of BR(H± → W±Z)

is about 4%, 40% and 0.4% in the cases of mH± = 150, 170 and 200 GeV, respectively.

In figure 7, we also show the branching fraction of H± in the Type-X Yukawa inter-

action with tan β = 2.5. Although we observe a similar behavior of BR(H± →W±Z) and

BR(H± → W±γ) as seen in figure 6, their maximal values are smaller than those in the

case of the Type-I Yukawa interaction. This is because in the Type-X Yukawa interaction,

the decay rate of the H± → τ±ν mode is enhanced by tan2 β. Here, the maximal value

of BR(H± → W±Z) is about 0.2%, 2% and 0.3% in the cases of mH± = 150, 170 and

200 GeV, respectively.

5.3 Cross sections at the LHC

Finally, we discuss the signature of the H± →W±Z and H± →W±γ decays at the LHC.

As we showed in section 5.2, when we consider the case of mH± > mt + mb both the

branching fractions of H± → W±Z and H± → W±γ are significantly suppressed by the

appearance of the H± → tb decay. In addition, if the H± mass is below the top quark

mass, the top decay t→ H±b is the dominant production mode of H± while above it H±-

strahlung becomes dominant. In reality, the latter is never significant as a means of enabling
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H± → W±Z and H± → W±γ detection. We thus focus on the case of mH± < mt + mb

with the Type-I and Type-X Yukawa interactions in this subsection.

In this case, we expect the signature pp → bb̄H±W∓ → bb̄W±W∓V whose cross

section σtop
S is estimated by

σtop
S,V = 2× σtt̄ × [1− BR(t→ H±b)]× BR(t→ H±b)× BR(H± →W±V ), (5.11)

where σtt̄ is the top quark pair production cross section at the LHC. In ref. [47], σtt̄ = 923.0

pb has been obtained with mt = 171 GeV and
√
s = 14 TeV at the next-to-next-to leading

order using CTEQ6.6 parton distribution function [48]. As alternative production modes

of H± states, especially helpful when the charged Higgs mass is larger than the top quark

mass, one should also count the EW productions, e.g., pp → H±A, pp → H±H and

pp→ H+H− whose cross sections are determined by the masses of extra Higgs bosons. The

cross sections for H±A and H±H productions are the same as long as we take mA = mH

and sin(β−α) = 1. By using these production modes, we can consider pp→ H±A/H±H →
W±V +X0 and pp→ H+H− →W±V +X∓, where X0 and X± are respectively the decay

product of A/H and H±. The signal cross section via the EW production modes are

estimated by

σEW
S,V = (σH±A + σH±H + 2σH+H−)× BR(H± →W±V ), (5.12)

where σH±A, σH±H and σH+H− are respectively the cross sections of pp → H±A, pp →
H±H and pp → H+H−. In the cases of mH± = 130, 150 and 170 GeV, we obtain

σH±A (σH+H−) = 84 (89), 54 (53) and 36 (34) fb , respectively, at
√
s = 14 TeV using

CTEQ6L. For σH±A (= σH±H), the above numbers are obtained by summing the H+A and

H−A processes.

In tables 3 and 4, we show the branching fractions of the t → H±b, H± → W±Z

and H± → W±γ modes and the overall signal cross sections of both the top decay and

EW processes estimated by using eqs. (5.11) and (5.12), respectively. The results with the

Type-I (X) Yukawa interaction are given in table 3 (4). For the top decay process, the

production cross section gets smaller when mH± approaches mt because of the phase space

suppression. Conversely, the branching fraction for H± → W±Z becomes larger as we

already seen in figures 6 and 7. As a result, σtop
S,Z attains a maximal value around mH± '

150 GeV, while σtop
S,γ is simply reduced as mH± becomes larger since BR(H± →W±γ) does

not encounter any threshold (as mH± > mW±). For the EW processes, the reduction of

the production cross section (σH±A, σH±H and σH+H−) is milder than that of the top

decay process (σtt̄×Br(t→ H±b)). Therefore, the signal cross section of the EW processes

become larger than the top decay process at mH± = 170 GeV. Finally, we note that the

signal cross sections in the Type-X case is more than one order of magnitude smaller than

those in the Type-I case.

6 Conclusion

We have computed the strength of the H±W∓Z and H±W∓γ vertices at the one-loop

level in the 3HDM under a Z2 × Z̃2 symmetry, which defines a Higgs sector with two

active doublets and one inert one. We have discussed all the four types of the Yukawa
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Type-I Type-X

Br(t→ H±b) [%] ( 3.3, 1.10, 4.7×10−3) (3.3, 1.1, 4.7×10−3)

Br(H± →W±Z) [%] (0.66, 3.5, 33) (0.025, 0.14, 1.8 )

Br(H± →W±γ) [%] (1.6, 2.1, 1.6) (0.059, 0.081, 0.087)

σtop
S,Z [fb] (390, 700, 29) (15, 28, 1.6)

σtop
S,γ [fb] (940, 420, 1.4) (35, 16, 0.075)

σEW
S,Z [fb] (2.3, 7.5, 46) (0.087, 0.30, 2.5)

σEW
S,γ [fb] (5.5, 4.5, 2.2) (0.20, 0.17, 0.12)

Table 3. The branching fractions and the cross sections in the 3HDM with a Type-I and Type-

X Yukawa interaction. We take tan β = 2.5 and mηA
= 400 GeV. The numbers in the bracket

correspond to the result of mH± =130, 150 and 170 GeV from left to right.

Type-I Type-X

Br(t→ H±b) [%] (1.3, 0.43, 1.8×10−3) (1.3, 0.43, 1.8×10−3)

Br(H± →W±Z) [%] (0.52, 2.7, 26) (3.0×10−3, 0.016, 0.21)

Br(H± →W±γ) [%] (1.1, 1.5, 1.2) (6.5×10−3, 8.6×10−3, 9.3×10−3)

σtop
S,Z [fb] (120, 210, 8.6) (0.71, 1.3, 0.070)

σtop
S,γ [fb] (260, 120, 0.40) (1.5, 0.68, 3.1×10−3)

σEW
S,Z [fb] (1.8, 5.8, 36) (0.010, 0.034, 0.29)

σEW
S,γ [fb] (3.8, 3.2, 1.7) (0.022, 0.018, 0.013)

Table 4. Same as table 3 but for tan β = 4.

interactions which are defined by the Z̃2 charge assignment to the SM fermions. We have

taken into account vacuum stability and perturbative unitarity as theoretical constraints,

and have considered the bounds from the EW S, T and U parameters, flavour experiments

and direct searches for H± states at LEP-II and LHC Run-I. We have seen that the mass

of the H± can be smaller than the top quark mass in models with the Type-I and Type-

X Yukawa interactions, but not in Type-II and Type-Y. Further, we have shown that,

among all the form factors, only FZ can be enhanced with respect to the 2HDM by taking

large mass splittings between ηA and η±, because of the effect of the inert scalar boson

loop contributions.

In particular, we have found that in the 3HDM the squared form factor |FZ |2 can be

one order of magnitude larger than that predicted in the 2HDM under the aforementioned

theoretical and experimental constraints. In addition, the branching fraction of the H± →
W±Z mode can be about 4 (0.2)%, 40 (2)% and 0.4 (0.3)% in the cases of mH± = 150,

170 and 200 GeV, respectively with the Type-I (Type-X) Yukawa interactions. In contrast,

the branching fraction of the H± →W±γ mode is at the few percent level as long as mH±

is smaller than the top quark mass in the Type-I and Type-X cases, thus benefiting from
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very little enhancement with respect to the 2HDM. Such increased rates in the 3HDM

stem from loop contributions due to inert Higgs states that are absent in the 2HDM.

Finally, we have discussed signal processes embedding H± → W±Z and H± → W±γ

decays at the LHC. In the light H± scenario, i.e., mH± < mt, with the Type-I and Type-X

Yukawa interactions, the top quark decay process t → H±b is the dominant production

mode for H± except for the extreme case of mH± . mt. In the heavy H± scenario, i.e.,

mH± > mt, this channel is no longer viable and we have resorted to the bg → tH± mode.

(Herein, we have emulated top production plus decay and H±-strahlung via gg → tbH±.)

In fact, there are also EW production modes, such as pp → H+H−, pp → H±A and

pp → H±H. By combining the production and decay of H±’s, we have considered the

signal processes pp → bb̄W±H∓ → bb̄W+W−V , pp → H+H− → W±V X∓ and pp →
H±A/H±H →W±V X0. We have thus computed the ensuing cross sections in all cases and

shown that the LHC Run-II has the potential to access H± → W±Z and/or H± → W±γ

decays, certainly for light H±’s (at standard luminosity) and possibly for heavy H±’s (at

very high luminosity). To establish one or the other such signals at the CERN machine

may represent circumstantial evidence of a 3HDM sector, as opposed to a 2HDM.
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A 1PI contributions

Here, we give the analytic expressions for the 1PI diagram contributions to the form factors

of the H±W∓V (V = Z, γ) vertices and those for the W±-H± mixing Γ1PI
WH . The fermion

loop contribution to the H±W∓V vertices has been calculated in ref. [11] whereas the

boson contribution in the 2HDM has been evaluated in refs. [12, 13]. In addition to these

contributions, there are inert scalar boson loop contributions as shown in figure 8.

In the following, we separately show the fermion and boson loop contributions to the

form factors denoted by X1PI
V,F and X1PI

V,B (X = F,G and H), respectively. Regarding the

boson loop contribution, we only show the contributions from pure scalar loop diagrams,

where scalar bosons are running in the triangle and circle type diagrams (see figure 8).

There are additional gauge-scalar mixed type diagrams, where one gauge and two active

scalar bosons or two gauge and one active scalar bosons run in the triangle part. Because

these contributions are proportional to cos(β − α), they vanish or become negligible by

taking the SM-like limit sin(β − α) → 1 or taking the SM-like regime sin(β − α) ' 1,

respectively. We thus neglect them here.11

In order to express loop functions, we use the Passarino-Veltman functions [49]. Here,

we give the integral formulae of some of the functions which we use in the following

11The contributions from the gauge-scalar mixed type diagrams are given in ref. [12].
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Figure 8. The 1PI diagrams for the H±W∓Z and H±W∓γ vertices. The diagrams which vanish

in the limit sin(β − α) = 1 are not displayed.

Figure 9. Diagrams giving the H±-W∓ mixing. The diagrams which vanish in the limit sin(β −
α) = 1 are not displayed.

discussion:

B0(p2;m1,m2) = ∆−
∫ 1

0
dx ln ∆B, (A.1a)

B1(p2;m1,m2) = −∆

2
+

∫ 1

0
dx(1− x) ln ∆B, (A.1b)

C0(p2
1, p

2
2, q

2;m1,m2,m3) = −
∫ 1

0
dx

∫ 1

0
dy

y

∆C
, (A.1c)

C11(p2
1, p

2
2, q

2;m1,m2,m3) = −
∫ 1

0
dx

∫ 1

0
dy
y(xy − 1)

∆C
, (A.1d)

C12(p2
1, p

2
2, q

2;m1,m2,m3) = −
∫ 1

0
dx

∫ 1

0
dy
y(y − 1)

∆C
, (A.1e)

C21(p2
1, p

2
2, q

2;m1,m2,m3) = −
∫ 1

0
dx

∫ 1

0
dy
y(1− xy)2

∆C
, (A.1f)

C22(p2
1, p

2
2, q

2;m1,m2,m3) = −
∫ 1

0
dx

∫ 1

0
dy
y(1− y)2

∆C
, (A.1g)
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C23(p2
1, p

2
2, q

2;m1,m2,m3) = −
∫ 1

0
dx

∫ 1

0
dy
y(1− xy)(1− y)

∆C
, (A.1h)

C24(p2
1, p

2
2, q

2;m1,m2,m3) =
∆

4
− 1

2

∫ 1

0
dx

∫ 1

0
dy y ln ∆C , (A.1i)

where

∆B = −x(1− x)p2 + xm2
1 + (1− x)m2

2, (A.2)

∆C = y2(p1x+ p2)2 + y[x(p2
2 − q2 +m2

1 −m2
2) +m2

2 −m2
3 − p2

2] +m2
3 . (A.3)

In eq. (A.1), ∆ is given by

∆ ≡ 1

ε
− γE + ln 4π + lnµ2, (A.4)

where ε appears in the D(= 4 − 2ε) dimensional integral, µ is an arbitrary dimensionful

parameter and γE is the Euler constant. In the four dimension limit ε → 0, ∆ is diver-

gent. We note that this divergent part ∆ appears in the following expressions, but it is

exactly cancelled in the renormalized variables such as XZ and Xγ (X = F, G and H).

We use the shorthand notations like Bi(p
2;A,B) = Bi(p

2;mA,mB) and Ci, ij(A,B,C) =

Ci, ij(p
2
1, p

2
2, q

2;mA,mB,mC).

The fermion loop contribution to X1PI
Z is given by

F 1PI
Z,F =

2Nc

16π2v2cW

{
+m2

t ξt(vb+ab)
[
4C24(t, b, b)−B0(q2;mt,mb)−B0(p2

W ;mb,mt)−(2m2
b−p2

Z)C0(t, b, b)
]

−m2
bξb(vb+ab)

[
4C24(t, b, b)−B0(p2

Z ;mb,mb)−B0(q2;mt,mb)−(m2
t +m2

b−p2
W )C0(t, b, b)

]
−m2

bξb(vb−ab)
[
B0(p2

Z ;mb,mb)+B0(p2
W ;mt,mb)+(m2

t +m2
b−q2)C0(t, b, b)

]
+ 2m2

tm
2
bξt(vb−ab)C0(t, b, b)

}
+(mt, ξt, vb, ab)↔ (mb,−ξb, vt, at), (A.5)

G1PI
Z,F =

4Ncm
2
W

16π2v2cW

[
m2
t ξt(vb+ab)(2C23+2C12+C11+C0)

−m2
bξb(vb+ab)(2C23+C12)−m2

bξb(vb−ab)(C12−C11)
]
(t, b, b)

+ (mt, ξt, vb, ab)↔ (mb,−ξb, vt, at), (A.6)

H1PI
Z,F =

4Ncm
2
W

16π2v2cW

[
m2
t ξt(vb+ab)(C0+C11)−m2

bξb(vb+ab)C12

+m2
bξb(vb−ab)(C12−C11)

]
(t, b, b)

+ (mt, ξt, vb, ab)↔ (mb,+ξb, vt, at), (A.7)

where

vf =
1

2
T f3 − s

2
WQf , af =

1

2
T f3 . (A.8)
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That to X1PI
γ is given by

F 1PI
γ,F =

2NcQb
16π2v2cW

{
+m2

t ξt

[
4C24(t, b, b)−B0(q2;mt,mb)−B0(p2

W ;mb,mt)−(2m2
b−p2

γ)C0(t, b, b)
]

−m2
bξb

[
4C24(t, b, b)−B0(p2

Z ;mb,mb)−B0(q2;mt,mb)−(m2
t +m2

b−p2
W )C0(t, b, b)

]
−m2

bξb

[
B0(p2

Z ;mb,mb)+B0(p2
W ;mt,mb)+(m2

t +m2
b−q2)C0(t, b, b)

]
+ 2m2

tm
2
bξtC0(t, b, b)

}
+(mt, ξt, Qb)↔ (mb,−ξb, Qt), (A.9)

G1PI
γ,F =

4NcQbm
2
W

16π2v2cW

[
m2
t ξt(2C23+2C12+C11+C0) (A.10)

−m2
bξb(2C23+C12)−m2

bξb(C12−C11)
]
(t, b, b)+(mt, ξt, Qb)↔ (mb,−ξb, Qt),

H1PI
Z,F =

4NcQbm
2
W

16π2v2cW

[
m2
t ξt(C0+C11)−m2

bξbC12+m2
bξb(C12−C11)

]
(t, b, b)

+ (mt, ξt, Qb)↔ (mb,+ξb, Qt). (A.11)

The boson loop contribution is given by

F 1PI
Z,B =

1

16π2vcW

{
(A.12)

+ λH+H−H sin(β−α)
[
(2−4s2

W )C24(H,H±, H±)

− 2C24(H±, A,H)+s2
WB0(q2;H±, H)

]
− λH+η−ηH

[
(2−4s2

W )C24(ηH , η
±, η±)−2C24(η±, ηA, ηH)+s2

WB0(q2; η±, ηH)
]

− λH+η−ηA

[
(2−4s2

W )C24(ηA, η
±, η±)−2C24(η±, ηH , ηA)+s2

WB0(q2; η±, ηA)
]}
,

G1PI
Z,B =

m2
W

16π2vcW

{
+ λH+H−H sin(β−α)

[
(2−4s2

W )(C12+C23)(H,H±, H±)−2(C12+C23)(H±, A,H)
]

− λH+η−ηH

[
(2−4s2

W )(C12+C23)(ηH , η
±, η±)−2(C12+C23)(η±, ηA, ηH)

]
− λH+η−ηA

[
(2−4s2

W )(C12+C23)(ηA, η
±, η±)−2(C12+C23)(η±, ηH , ηA)

]}
, (A.13)

F 1PI
γ,B =

sW
16π2v

{
λH+H−H sin(β−α)[4C24(H,H±, H±)−B0(q2;H±, H)]

− λH+η−ηH
[4C24(ηH , η

±, η±)−B0(q2; η±, ηH)]

− λH+η−ηA
[4C24(ηA, η

±, η±)−B0(q2; η±, ηA)]
}
, (A.14)

G1PI
γ,B =

4m2
W sW

16π2v

[
λH+H−H sin(β−α)(C12+C23)(H,H±, H±)

− λH+η−ηH
(C12+C23)(ηH , η

±, η±)−λH+η−ηA
(C12+C23)(ηA, η

±, η±)
]
, (A.15)
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and

H1PI
Z,B = H1PI

γ,B = 0, (A.16)

where

λH+H−H =
1

v

[
(m2

H−M2)(cot β−tanβ) sin(β−α)−(2m2
H±+m2

H−2M2) cos(β−α)
]
,

(A.17)

λH±η∓ηH =
v

4
(ρ2+ρ3−σ2−σ3) sin 2β, (A.18)

λH±η∓ηA = ±v
4

(ρ2−ρ3−σ2+σ3) sin 2β. (A.19)

We note that the above expressions are obtained by extracting the coefficient of the scalar

trilinear vertex, i.e., L = +λφ1φ2φ3φ1φ2φ3 + · · · .
The fermion and boson loop contributions to the W±-H± mixing, i.e., Γ1PI

WH(p2)F and

Γ1PI
WH(p2)B, respectively, are given by:

Γ1PI
WH(p2)F =

i

16π2

4mW

v2
Nc[m

2
t ξt(B0 +B1)−m2

bξbB1](p2;mt,mb), (A.20)

Γ1PI
WH(p2)B =

i

16π2

mW

v

[
λH+H−H sin(β − α)(2B1 +B0)(p2;mH± ,mH) (A.21)

+ λη+η−ηH (2B1 +B0)(p2;mη± ,mηH
) + iλη+η−ηA(2B1 +B0)(p2;mη± ,mηA

)
]
.

The counter term contribution is then obtained from the above W±-H± mixing via

eq. (3.19):

δFZ,F =
4s2
WNc

16π2v2cW
[m2

t ξt(B0 +B1)−m2
bξbB1](q2; t, b), (A.22)

δFZ,B =
s2
W

16π2vcW

[
λH+H−H sin(β − α)(2B1 +B0)(q2;H±, H)

− λH+η−ηH (2B1 +B0)(q2; η±, ηH)− λH+η−ηA(2B1 +B0)(q2; η±, ηA)
]
, (A.23)

δFγ,F/B = −
cW
sW

δFZ,F/B. (A.24)

Using the above analytic expressions, we can directly check the relation from the Ward

identity in eq. (3.16), i.e., (F 1PI
γ + δFγ) = G1PI

γ (1−m2
W /m

2
H±)/2.
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