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Freedman bound and impose a general boundary condition for the bulk scalar field at

AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field

perturbations under our more general boundary condition. Next we construct a rotating

hairy black hole perturbatively with respect to a small amplitude ε of the scalar field, up to

O(ε4). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the

non-linearly perturbed geometry break axial symmetry, thus providing the first example

of a rotating black hole whose metric admits only one Killing vector field. Furthermore,

we numerically show that the entropy of our hairy black hole is larger than that of the

BTZ black hole with the same energy and the angular momentum. We briefly discuss if

our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.
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1 Introduction

After the discovery of the gauge-gravity duality [1], Anti-de Sitter (AdS) spacetime has at-

tracted significant interest in both the gravity and high energy physics community. Asymp-

totically AdS space-times exhibit a number of characteristic features which are absent in

asymptotically flat or de Sitter spacetimes. One of such key features is the occurrence of

particular types of instability, such as weakly turbulent instability [2] and superradiant

instability [3] (see also ref. [4] and references therein), in which the AdS boundary plays

a crucial role as a confining box. It is clearly important to consider consequences — in

particular, possible final states — of such instabilities.

Consider, for example, superradiant instability of a rotating AdS black hole with an-

gular velocity Ω. Suppose a monochromatic wave of the form e−i(ωt−kϕ) falls into the black

hole. If Re[ω] < kΩ, then such an incident wave gets amplified by the black hole rotation

and reflected at AdS infinity towards the black hole where it again gets amplified, and the

process repeats. It was suggested that the end point of this superradiant instability may be

a rotating black hole which admits only one Killing vector field [5]. In fact, the possibility of

such a less symmetric black hole was first suggested in [6] in the context of asymptotically

flat black holes in higher dimensions. Motivated by this, rotating black hole solutions with

complex scalar hair that break axial symmetry were numerically constructed [7, 8, 10]. The

proposed solutions are, however, not completely satisfactory in the sense that although the

scalar field configuration is indeed invariant only under one Killing vector field, the metric

itself admits more than one Killing vector field.

In this paper, we address this issue in a three-dimensional setup and construct, for the

first time, a rotating AdS black hole whose metric possesses only a single Killing vector

field. For this purpose, we first consider scalar field perturbation of a rotating BTZ black
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hole [13], which is the simplest model of rotating AdS black holes.1 When the mass-squared

of the scalar field takes a certain negative value, we can impose, rather than the Dirichlet

condition, more general boundary conditions at AdS infinity under which the rotating BTZ

black hole exhibits instabilities. Next, by inspecting quasi-normal modes of the scalar field,

we identify the marginally stable BTZ solution. Then, based on that, we perturbatively

construct a rotating AdS black hole whose metric possesses only one Killing vector field.

Interestingly, we find that the total energy of our lumpy black hole is lower than that of the

BTZ black hole with the same entropy and the angular momentum. This in turn implies

that our hairy black hole is entropically more favorable than the background BTZ black

hole with the same mass and angular momentum.

2 “Superradiant” instability of rotating BTZ black hole

Consider the three-dimensional model with Lagrangian

L = R+
2

l2
− 2(∇µφ∇µφ+m2φ2 + ηφ4), (2.1)

where l represents the AdS scale, R the Einstein-Hilbert term, and φ a real scalar field with

some constants m and η. In the absence of the real scalar field, our model (2.1) admits a

rotating BTZ black hole [13] with the metric

ds2 = −
(r2+−r2−)2z

l2(1−z)(r2+−r2−z)
dt2+

l2

4z(1−z)2
dz2+

r2+−r2−z
1−z

(
dϕ− r+r−(1−z)

l(r2+−r2−z)
dt

)2

, (2.2)

where the outer horizon and the infinity (i.e., boundary) are located at z = 0 and z =

1 as in [15], and ϕ is the angular coordinate with period 2π, and r+ (r−) denotes the

outer (inner) horizon radius.

Making the ansatz φ = Re[Π1(z)] cos(ωt − kϕ) and for the meantime setting η = 0,

we find the general solution for Π1(z) on the background (2.2) expressed in terms of the

hypergeometric function [15],

Π1 = C1z
ζi(1− z)

1−σ
2 2F1 (a, b, c; z) + C2z

−ζi(1− z)
1−σ
2 2F1(1 + a− c, 1 + b− c, 2− c; z),

a =
il(lω − k)

2(r+ − r−)
+

1− σ
2

, b =
il(lω + k)

2(r+ + r−)
+

1− σ
2

,

c = 1 + 2iζ, σ =
√

1 +m2l2, ζ =
l(lr+ω − kr−)

2(r2+ − r2−)
. (2.3)

Imposing an ingoing boundary condition on the horizon, we set C1 = 0. Then, with the

help of [16], the asymptotic behavior is given by

Π1 ' α(1− z)
1−σ
2 + β(1− z)

1+σ
2 , (2.4)

α =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
, β =

Γ(2− c)Γ(a+ b− c)
Γ(1 + a− c)Γ(1 + b− c)

,

1Compare [11, 12] for some attempts in three-dimensions along the same line of [7].
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Figure 1. The horizontal line represents ωR − Ω+, while the vertical line represents ωI . The

parameters are chosen as r− = 3, k = l = 1, and κ = −0.414.

where we have set C2 = 1. The Breitenlohner-Freedman (BF) bound [17] corresponds to

the case m2l2 = −1. In the range −1 < m2l2 < 0, both the modes are normalizable near

the infinity and therefore we can impose a more general boundary condition at infinity

given by α = κ−1β with κ being some constant. Such a more general boundary condition

corresponds to adding a double-trace interaction ∼ (1/2κ2)
∫
dx2O2 to the dual field the-

ory [14], where O is an operator dual to φ. We will see later that the total energy defined

in an appropriate manner [18] is indeed conserved. Therefore, in the present context, there

is nothing wrong with imposing such a more general boundary condition.

Now we are concerned with the behavior of quasi normal modes, which can be com-

puted by fixing the geometric parameters, say r−, k, l, and by imposing the ingoing condi-

tion at the horizon and our more general boundary condition at infinity. For the purpose

of numerical computation below, let us set m2 = −8/9l2, l = 1 = k, r− = 3, and choose κ

as the following particular value:

κ = −
4
√

3π3
(
cosh π

5 + 1
2

)−1(
Γ
(
1
3

))2 ∣∣Γ (13 + i
10

)∣∣4 = −0.414 . (2.5)

In this setup, we compute quasi normal modes ω = ωR + iωI and plot some of our results

in figure 1.

Note that the outer horizon radius r+ (and thus the angular velocity Ω+) also varies

depending on the value of ω. In particular, we can find that when r+ = 5, ω becomes real

and equal to Ω+ = 3/5 as shown in figure 1, and also that there is no flux across the horizon.

In fact, to achieve this, we have purposely chosen the particular value of κ in eq. (2.5).

Thus the rotating BTZ black holes become unstable under our more general boundary

condition against modes with ωI > 0 shown in figure 1. In particular, the solution with

r+ = 5 and r− = 3 can be viewed as the marginally stable solution. This is not the case

under the standard Dirichlet boundary conditions [19](see also [20]). We also note that

the BTZ background admits a Killing vector field which is causal everywhere outside the

event horizon, and therefore there would not be superradiant instability in the standard

sense, according to the argument of [9]. However note also that our model violates the
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dominat energy condition and thus the agument of [9] does not straightforwardly apply to

the present case. Since our unstable modes ωI > 0 appear only when ωR < Ω+, i.e., the

standard superradiant condition is apparently satisfied as can be seen in figure 1, we loosely

call our instability “superradiant instability” in the rest of the paper. This instability might

also be called a “scalar condensation instability” [23] as it can occur due to our general

boundary condition.

3 Perturbative construction of a hairy black hole in lumpy geometry

Having obtained the marginally stable solution, we can expect that there should exist a

hairy black hole solution dressed with a condensed real scalar field. We perturbatively

construct such a hairy black hole solution by expanding the metric functions and scalar

field in a series of small amplitude ε of the scalar field, up to O(ε4), starting from our

marginal solution.

In the probe limit of the scalar field, where the backreaction onto the spacetime is

ignored, φ depends on the coordinate (r−/r+l)t−ϕ and z only, we expect that the resultant

hairy black hole also depends only on y = ω∗t−ϕ and z. Thus, we make the metric ansatz as

ds2 = −f(y, z)e−2δ(y,z)dt2 +
g′(z)2dz2

4g(z)f(y, z)
+ g(z)(dϕ− Ω(y, z)dt)2 , (3.1)

where f = 0 on the horizon z = 0. The scalar field φ and the metric functions, collectively

denoted by F , can be expanded as

φ(y, z) = εφ1(y, z) + ε3φ2(y, z) + · · · ,
F = F0(y, z) + ε2F1(y, z) + ε4F2(y, z) + · · · ,

ω∗ =
3

5l
+ ε2ω1 + · · · , F = f, g, Ω, δ, (3.2)

where F0 and the leading term of ω∗ respectively denote the corresponding values of the

marginal BTZ black hole. (Remember that we have set r+ = 5, r− = 3, l = 1.) We require

the following asymptotic conditions for the metric functions,

lim
z→1

Ω = lim
z→1

δ = 0 (3.3)

and the condition (2.5) for φ. Near the horizon, the scalar curvature R becomes R ∼
(ω∗ − Ω)2(∂yφ)2/f . To remove the singularity on the horizon, we require

ω∗ = Ω
∣∣
z=0

, (3.4)

where Ω
∣∣
z=0

is in fact independent of y as well, thus a true constant as can be seen in

eq. (3.6) below. The solution for φ1 is given by φ1 = Π1(z) cos(ky) and using (3.4),

the equation of motion for Π1(z) reduces to LkΠ1 = 0 with Lk being the k-dependent

differential operator

Lk := z∂2z + ∂z −
l2(m2r2+ + k2(1− z))

4r2+(1− z)2
. (3.5)
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Note that the solution to this equation corresponds to eq. (2.3) with η = 0. From the

structure of the Einstein equations, F1(y, z) can be expanded as

f1(y, z) = z(P (z) cos(2ky) +Q(z)) + a1f
(1)
btz(z),

δ1(y, z) = R(z) cos(2ky) + S(z), g1(z) = a1g
(1)
btz(z),

Ω1(y, z) = zT (z) cos(2ky) + U(z), (3.6)

where f
(1)
btz(z) and g

(1)
btz(z) are trivial perturbed solutions2 of the BTZ black hole (2.2) such

that r+ → r+ + a1ε
2 + a2ε

4 + · · · and r− → r−+ a1r−/r+ε
2 + · · · . Note that this deviation

does not change the velocity of the black hole. Then, the parameter a1 is not included in

the perturbed functions (P,Q,R, S, T, U).

The functions (P, R, T ) representing an oscillating mode are decoupled from the zero

mode functions (Q, S, U) at O(ε2). From the tz, ϕz, and ϕϕ components of the Einstein

equations, we obtain a master equation for the oscillating mode

zT ′′ +

(
4 +

2k2l2

r2+ − r2−
−

2r2+
r2+ − r2−z

)
T ′ −

2r2−(r2+ − r2− + k2l2)

(r2+ − r2−)(r2+ − r2−z)
T = ST (Π1,Π

′
1). (3.7)

P and R are expressed by T , T ′, Π1, and Π′1 only [See appendix].

Similarly, we obtain the equations of motion for the zero mode and find the regular

solutions satisfying (3.3) as

h(z) = −
k2r2−
r2+

∫ z

0

Π2
1

1− z
dz −

4r2+
l2

∫ z

0
(1− z)Π′21 dz

+
2r+r−
l

[U(z)− U(0)]−
2r2+(r2+ − r2−)

l2

[
S(z)

r2+ − r2−z
− S(0)

r2+

]
,

S =
1

r2+ − r2−

∫ 1

z

[
k2r2−l

2

2r2+
Π2

1 + 2(1− z)(r2+ − r2−z)Π′21

]
dz,

U =
r4+(z − 1)B

(r2+ − r2−z)(r2+ − r2−)
+

z − 1

(r2+ − r2−z)(r2+ − r2−)

∫ z

0
(r2+ − r2−z′)2SU (z′)dz′,

+
1

r2+ − r2−

∫ 1

z
(r2+ − r2−z′)(z′ − 1)SU (z′)dz′, (3.8)

SU = − r−lk
2

2r+(1− z)(r2+ − r2−z)
Π2

1 −
2r+r−(1− z)

l(r2+ − r2−z)
Π′21 ,

where h = zQ +
2(r2+−r2−)z

l2
Π1Π

′
1 and B is an integration constant. For simplicity, setting

B = 0, we easily find that

h(1) = 2Ω+(r2+ − r2−)U ′(1), Ω+ =
r−
r+l

. (3.9)

As shown later, this relation agrees with the first law of our hairy black hole.

2Here we mean that f
(1)
btz(z) and g

(1)
btz(z) are solutions of source-free differential equations for metric

perturbation.
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Figure 2. D = φ21 (solid, blue), D = φ23/2 (dashed, green), and D = Ω20 (dotted, red),

D = 10−3 · h20 (dotdashed, orange) for the parameter choice r+ = 5, r− = 3, k = 1, l = 1,

and η = 1.

4 Higher order solutions for ε

The equations of motion for φ2(y, z) are given by

φ2(y, z) = φ21(z) cos(ky) + φ23(z) cos(3ky),

Lkφ21 = Sφ1, L3kφ23 = Sφ3, (4.1)

where the source terms Sφ1 and Sφ3 include the metric functions for O(ε2), Π1, and the

parameters a1, B. Here we simply omit the precise expression of those source terms, as

their explicit form is rather complicated and not essential for the rest of our arguments.

Here, ω1 is replaced by U(0) by eq. (3.4). Again just for simplicity, we hereafter set B = 0.

The second equation can be formally solved by constructing two independent homogeneous

solution λi (i = 1, 2) satisfying L3kλi = 0, i = 1, 2, where λ1 and λ2 are solutions satisfying

our more general boundary condition (2.5) at infinity and the regularity at the horizon.

The explicit form of φ23 is given in appendix.

The solution for φ21 in (4.1) cannot be obtained by using a similar manner of the case

φ23. This is because there is no regular homogeneous solution, independent of Π1.
3 By

shooting the parameter a1, however, we can numerically find the regular solution satisfying

our more general boundary condition. Figure 2 shows the numerical data for φ23 and φ21
for r+ = 5, r− = 3, k = 1, l = 1, and η = 1. a1 is approximately ' 473. The asymptotic

functions of φ21 and φ23 are well approximated as φ21 ' −4.31(1− z)
1
3 + 1.79(1− z)

2
3 and

φ23 ' −12.5(1− z)
1
3 + 5.18(1− z)

2
3 near infinity, agreeing with our more general boundary

condition (2.5).

Similarly, we also numerically construct the metric functions for O(ε4). Since we

are interested in the energy difference between the hairy BH and BTZ solution, we only

construct the zero mode solution (F2 solutions which are independent of y) at O(ε4).

Denoting Ω20, f20 as the zero mode solutions of Ω2, f2, figure 1. shows the functions of

3Note that Π1 is the homogeneous regular solution satisfying our more general boundary condition (2.5).
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Ω20 and h20 for the same parameter choice, where h20 is defined by

h20(z) := f20 +
2(r2+ − r2−)

l2

(
Π1φ21 +

a1
r+

Π2
1

)′
. (4.2)

Note that h20 becomes finite at z → 1 since the divergent term in f20;

f20 '
4(r2+ − r2−)

3r+l2
α(a1α+ r+α2)(1− z)−

1
3 , (4.3)

cancels with the second divergent term in (4.2), where α2 is the asymptotic leading coeffi-

cient of φ21 ' α2(1− z)1/3.

5 Calculation of effective holographic energy

Following the re-normalization method [21] and [18], we calculate the effective holographic

energy momentum tensor

Tij = Kij −Khij −
1

l
hij −

√
z(1− z){(1− σ)(1− z)−σ + 2κ} α̃2 hij

l
, (5.1)

where hij and Kij := −∇(inj) (i, j = t, ϕ) are the induced metric and the extrinsic cur-

vature defined on a z = const. surface with nµ being the outward pointing unit normal

vector to it, and then the limit z → 1 is taken in eq. (5.1) as a whole. Here α̃ is the

leading coefficient of the asymptotic scalar field φ ' α̃(t, ϕ)(1 − z)
1
3 + κα̃(t, ϕ)(1 − z)

2
3 .

Note that the terms in the second line in eq. (5.1) come from our deformation of the dual

field theory by the double-trace interaction. Since the divergent term in the first line in Tij
cancels with the divergent term in the second line in eq. (5.1), Tij is well defined on the

dual field theory side (note that h and h20 in (3.8), (4.2) do not diverge asymptotically).

Furthermore, for an arbitrary function α̃, it can be easily shown that Tij is conserved by

Codacci’s equation [22], i. e. , ∇iT ij = 0. Thus, in this paper, we adopt Tij as the definition

of the effective holographic energy momentum tensor. Let us define the spatially averaged

quantity H as H :=
∫ 2π
0 H(t, ϕ)dϕ/(2π). Then, at O(ε2), we find that

E
(2)
hair := T (2)

tt ' −
h(1)

2l
ε2 +

r2+ + r2−
r+l3

ε2a1,

J
(2)
hair := −T (2)

tϕ = −ε2
(
r2+ − r2−

l
U ′(1)− 2a1r−

l2

)
. (5.2)

Combining with (3.9) yields the first law of the hairy black hole;

E
(2)
hair = TS

(2)
hair + Ω+J

(2)
hair, T :=

r2+ − r2−
2πr+l2

, (5.3)

where T is the temperature and S
(2)
hair is the deviation of the entropy of the black hole given

by S
(2)
hair = 2πa1ε

2/l.

Now, let us derive the fourth order corrections of the energy E
(4)
hair and compare with

the energy of BTZ black hole with the same angular momentum and entropy. For the

– 7 –
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outer (inner) horizon radius R+ and R−, the energy, the angular momentum, and the

entropy of the BTZ black hole are

Ebtz =
R2

+ +R2
−

2l3
, Jbtz =

R+R−
l2

, Sbtz =
2π

l
R+. (5.4)

Let us expand R± as R+ = r+ + a1ε
2 + a2ε

4 + · · · and R− = r− + r1−ε
2 + r2−ε

4 + · · · so

that the entropy of the BTZ is equal to the one of the hairy BH, Sbtz = Shair. Equating

E
(2)
btz = E

(2)
hair, and J

(4)
btz = J

(4)
hair, r1− and r2− are expressed by a1, a2, E

(2)
hair, and J

(4)
hair, and

we obtain

E
(4)
btz=

l3(E
(2)
hair)

2

2r2−
−
ε2a1(r

2
++r2−)

r+r2−
E

(2)
hair+

r−J
(4)
hair

lr+
+
ε4a21
2l3

(
3+

r2+
r2−

)
+
ε4a2(r

2
+−r2−)

r+l3
. (5.5)

Note that ∆(4)E := E
(4)
hair−E

(4)
btz is independent of the second order deviation parameter a2

in (3.2). The numerical calculation shows that ∆(4)E ' −5.8 × 102 · ε4 < 0. This implies

that, if we increase E
(4)
hair so that it becomes equal to E

(4)
btz, then we have the relationship

S
(4)
hair > S

(4)
btz, due to the thermodynamic laws.

6 Summary and discussions

In this paper, aiming at constructing a rotating black hole whose metric admits only a

single Killing vector field, we have investigated three-dimensional AdS black holes with

a real scalar field. First we showed that under our more general boundary condition, the

scalar field perturbation shows instabilities. Then we have constructed rotating hairy black

holes perturbatively with respect to the scalar perturbation amplitude, ε, from the onset

of the instability, up to O(ε4). We showed that the entropy of our hairy black hole is

larger than the one of BTZ, with the same energy and the angular momentum. Judging

merely from this entropically favored nature, one might expect our hairy black hole to be

a possible final fate of superradiant instability in AdS3. However, since our solution is

constructed perturbatively, there is a possibility that once non-linear effects are fully taken

into account, some new unstable modes might show up. Also we should mention that under

our general boundary condition, the background AdS3 itself turns out to be unstable: one

can check that our boundary condition κ = −0.414 violates the linear stability criterion

established in [24] (see eq. (169) in that reference), which in the present case (m2l2 = −8/9,

k = 0) reads off

κ ≥ −|Γ(−1/3)|Γ(2/3)2

Γ(1/3)3
= −0.387 . (6.1)

In particular, the k = 0 mode appears to be a dominant unstable mode over other non-

axisymmetric k 6= 0 unstable modes.4 As can be seen in eq. (4.1), the equations of motion

for higher order perturbations include a source term that consists only of higher (odd-

number k 6= 0) modes. This implies that if there is no zero mode in the initial data for our

4The authors thank Oscar Dias, Jorge Santos, and Benson Way for pointing out this instability [23].
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perturbations, the zero mode would not be excited by higher order effects. Having such

an unstable property, our hairy black hole may have some interesting applications in the

context of holographic superconductor [25], in which the most dangerous k = 0 mode of

our AdS background would be irrelevant (or stabilized) due to, e.g., lattice structure. It

would be interesting to pursue this possibility.

The most striking feature of our solution is that lumpy geometry oscillates periodically

and co-rotate with the black hole accompanied by the non-linear scalar perturbations.

Although it is not strictly thermodynamically equilibrium, the system never dissipates [26],

i.e., the entropy is always constant. This is in contrast to the solutions of refs. [27, 28],

which actually show dissipation. In this sense, our solution may be viewed as an extension

of the time-periodic solutions of [29] to the case with a black hole added. It would also be

interesting to generalize the present analysis to higher dimensions.
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A Solutions for P , R, and φ23

Here we give the expressions of P and R in terms of T , T ′, Π1, and Π′1, and the solution

φ23 of eq. (4.1).

P =
r+(r2+ − r2−)(r2+ + 3r2− + 4k2l2)z

r−l(r2+ + r2− + 2k2l2)
T ′ −

r+r−(r2+ − r2−){(5r2− + 4k2l2)z − r2+(2− z)}
l(r2+ + r2− + 2k2l2)(r2+ − r2−z)

T

−
(r2+ − r2−)2(r2+m

2 − k2(1− z))

2(r2+ + r2− + 2k2l2)(1− z)(r2+ − r2−z)
Π2

1 −
2(r2+ − r2−)2(r2− + 2k2l2)z

l2(r2+ + r2− + 2k2l2)(r2+ − r2−z)
Π1Π

′
1

+
2r2+(r2+ − r2−)2(1− z)z

l2(r2+ + r2− + 2k2l2)(r2+ − r2−z)
Π′21 , (A.1)

R = −
l(r2+ − r2−z)z{(r4+ + r4−)z − 2r2+(r2−(2− z) + 2k2l2(1− z))}

2r−r+(r2+ − r2−)(r2+ + r2− + 2k2l2)
T ′

+
r−l{4r4+ − 8r2+r

2
−z + ((r2+ + r2−)2 + 4(r2+ − r2−)k2l2)z2}

2r+(r2+ − r2−)(r2+ + r2− + 2k2l2)
T

+
l2(r2+m

2 − k2(1− z))(r2−z − r2+(2− z))

4r2+(r2+ + r2− + 2k2l2)(1− z)
Π2

1 +
(r2+ − r2− − 2k2l2(1− z))z

r2+ + r2− + 2k2l2
Π1Π

′
1

+
(1− z)z(r2+(2− z)− r2−z)

r2+ + r2− + 2k2l2
Π′21 , (A.2)

φ23 =
1

σ(β̂3 − κα̂3)
×
(∫ z

0
Sφ3(z′)λ2(z′)dz′λ1(z) +

∫ 1

z
Sφ3(z′)λ1(z′)dz′λ2(z)

)
,

– 9 –
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α̂3 =
Γ(σ)

Γ
(
1+σ
2 + 3il

2r+

)
Γ
(
1+σ
2 −

3il
2r+

) ,
β̂3 =

Γ(−σ)

Γ
(
1−σ
2 −

3il
2r+

)
Γ
(
1−σ
2 + 3il

2r+

) , (A.3)

where λ1(z) and λ2(z) are homogeneous solutions of L3kλi = 0, i = 1, 2;

λ1=(1−z)
1−σ
2 F (α3, β3, α3+β3; 1−z)+κ(1−z)

1+σ
2 F (1−α3, 1−β3, 2−α3−β3; 1−z),

λ2=(1−z)
1−σ
2 F (α3, β3, 2; z),

α3 :=
3ikl(lΩ+−1)

2(r+−r−)
+

1−σ
2

, β3 :=
3ikl(lΩ+−1)

2(r+−r−)
− 1−σ

2
. (A.4)

Here, λ1 is the solution satisfying our more general boundary condition (2.5), while λ2 is

a regular solution at the horizon z = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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