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1 Introduction

There are two approaches to quantizing the algebra of functions on a Poisson manifold de-

pending on whether one uses cohomological deformation techniques relying on algebraically

well-defined structures [1, 2] or field theoretic methods based on path integrals for two-

dimensional sigma models [3, 4].

Following the algebraic approach, the existence of a deformation of the Poisson bracket

into a diffeomorphism invariant and associative bi-differential operator given in an ~ expan-

sion, sometimes referred to as a star product, was first established in the symplectic case

by Fedosov [1]. The existence of a unique star product on a Poisson manifold, fixed by the

conditions of general covariance and associativity, was then demonstrated by Kontsevich [2]

as part of a more general framework centered around his formality conjecture.

Inspired by string theory, Kontsevich also gave an explicit local form of the star product

in the case of a general Poisson structure on R
n. More precisely, Kontsevich’s bi-differential

operator is expanded into blocks, associated to graphs, built out of partial derivatives of the

components of the Poisson bi-vector. On the other hand, Fedosov’s star product algebra,

which was later generalized to the Poisson case in [5], is realized in a manifestly covariant

albeit less explicit fashion in terms of covariantly constant sections of an auxiliary bundle

with flat connection built from the symplectic structure.
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Following the field theory approach, Kontsevich’s local formula was derived using

AKSZ path integral methods [6] from the perturbative expansion of the correlations func-

tions of the Poisson sigma model subject to suitable boundary conditions [7] (see also [8]).

The main motivation behind this work is the fact that the Poisson algebra of functions,

or zero-forms, admits a natural extension so as to include higher form degrees, sometimes

referred to as differential Poisson algebras, which were defined and studied in the physics

literature in [9]. Later, following the algebraic approach, the corresponding star product

between forms has been studied in [10–13].1 However, the manifestly generally covariant

local formula remains to be given explicitly beyond ~
2-corrections except in the torsion free

symplectic case [12] where a direct generalization of the Moyal formula applies.

In this paper, we provide a generalization of the two-dimensional Poisson sigma model

in [3, 4] so as to include fermionic worldsheet zero-forms facilitating the mapping of tar-

get space differential forms to vertex operators of worldsheet form degree zero. Besides

incorporating forms of higher degrees, drawing on the aforementioned partial results, we

expect that the perturbative quantization of the model to be presented here will yield a

manifestly covariant star product formula.

A key feature of differential Poisson algebras is the presence of a connection one-form

Γ̃α
β that is compatible with the Poisson bi-vector Παβ . As we shall review in section 2,

the covariantized Poisson bracket between two differential forms reads

{ω, η} = Παβ∇αω ∧∇βη + (−1)|ω|Πβγ R̃α
γ iαω ∧ iβη ,

where ∇α has connection coefficients Γα
βγ = Γ̃α

γβ and R̃α
β = dΓ̃α

β + Γ̃α
γ ∧ Γ̃γ

β . Since the

connection plays a key role in covariantizing the star product in the algebraic approach, it

is natural to seek an extension of the original Poisson sigma model that couples to it as

well. Another problem that one would like to address is how to map target space p-forms

dφα1 ∧ · · · ∧ dφαpωα1...αp to vertex operators of form degree zero on the worldsheet. To

this end, one observes that by introducing fermionic worldsheet zero-forms θα, the vertex

operators can be taken to be θα1 · · · θαpωα1...αp . Thus, combining these two observations,

we are lead to adding fermionic copies (θα, χα) of the original bosonic worldsheet zero- and

one-forms (φα, ηα). The proposed action, which we shall study in more detail in section 3,

reads2

S[φ, η, θ, χ] =

∫

M2

(
ηα ∧ dφα +

1

2
Παβηα ∧ ηβ + χα ∧∇θα +

1

4
ΠβǫR̃γδ

α
ǫχα ∧ χβθ

γθδ
)

.

The role of the additional quartic fermion coupling is to ensure a rigid supersymmetry δf
that in particular acts as δf(φ

α, θα) = (θα, 0). Under additional conditions on the back-

ground, the action is also invariant under gauge transformations with one unconstrained

parameter for each one-form. We shall show that these rigid and local symmetries, respec-

tively, are equivalent to the bracket being compatible with the de Rham differential and

1In [14], the deformation quantization procedure has been set up and studied at order ~ in the case of

more general vector bundles over Poisson manifolds.
2In the Conclusions, we shall comment on the resemblance between the action presented here and that

of the topological A model.
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obeying graded Jacobi identities. Thus, assuming that exist a gauge fixed action that is

manifestly background covariant, we expect that the products of the aforementioned vertex

operators contain the covariantized Kontsevich star product for differential forms of any

degree, whose explicit construction we leave for a future work.

The plan of the paper is as follows. In section 2, we review the basic properties of

differential Poisson algebras and the conditions on the Poisson bi-vector and curvature

following from the Jacobi identities. In section 3, we present the sigma model action and

show that its symmetries are equivalent to the salient features of the differential Poisson

algebra. In section 4, we conclude and remark on the resemblance between our model and

the topological A model, and its potential importance in higher spin theory. We give our

conventions and some useful identities in appendix A.

2 Differential Poisson algebras

In this section we recall the defining relations of Poisson differential algebras [9, 10] and the

resulting form of the Poisson bracket. The bracket consists of three compatible structures,

namely a Poisson bi-vector Παβ , a connection Γα
β and a one-form Sαβ . The one-form

contains the components of the bracket that are not contained in the pre-connection [10],

that is, the covariant derivative along the Hamiltonian vector field defined using Παβ . In

the symplectic case, one can set Sαβ = 0 by redefining Γα
β , in which case the Poisson

bracket is given by Παβ and a curvature two-form R̃α
β constructed from the torsion. In

what follows, we shall set Sαβ = 0, leaving for future work the analysis of whether there

exists non-trivial S tensors in the non-symplectic case.

2.1 Definition

A differential Poisson algebra is a differential algebra Ω endowed with a graded skew-

symmetric and degree preserving bilinear map {·, ·}, called Poisson bracket, that is com-

patible with exterior differentiation and obeys the graded Leibniz rule, that is

deg({ω1, ω2}) = deg(ω1) + deg(ω2) , (2.1)

{ω1, ω2} = (−1)deg(ω1)deg(ω2)+1{ω2, ω1} , (2.2)

{ω1, ω2 + ω3} = {ω1, ω2}+ {ω1, ω3} , (2.3)

{ω1, ω2 ∧ ω3} = {ω1, ω2} ∧ ω3 + (−1)deg(ω1)deg(ω2)ω2 ∧ {ω1, ω3} , (2.4)

d{ω1, ω2} = {dω1, ω2}+ (−1)deg(ω1){ω1, dω2} , (2.5)

and that obeys the graded Jacobi identity

{ω1, {ω2, ω3}} + (−1)deg(ω1)(deg(ω2)+deg(ω3)){ω2, {ω3, ω1}}

+ (−1)deg(ω3)(deg(ω1)+deg(ω2)){ω3, {ω1, ω2}} = 0 , (2.6)

where ωi ∈ Ω and deg(·) is the form degree. We shall furthermore assume that Ω is realized

as the algebra Ω(N) of differential forms on a manifold N . In what follows, we shall first

– 3 –
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use eqs. (2.1)–(2.5) to expand the Poisson bracket in terms of Π, S and the curvature R̃,

and then impose eq. (2.6).

2.2 Poisson bi-vector and compatible connection

Introducing local coordinates φα on N , we define

Παβ := {φα, φβ} , (2.7)

which is thus an anti-symmetric tensor. The Poisson bracket between two zero-forms f

and g can then be written as

{f, g} = Παβ∂αf ∂βg . (2.8)

Next, to expand the Poisson bracket between a zero-form and a one-form in the coordinate

basis, we define

Υαβ := {φα, dφβ} =
1

2
dΠαβ +Σαβ , (2.9)

where Σαβ is thus a symmetric one-form. From the Leibniz rule, it follows that

{dφα, dφβ} = dΣαβ . (2.10)

Under a general coordinate transformation φα = φα(φ′α′
) with Jacobian Jα

β′ = ∂φα/∂φ′β′

and inverse Jacobian J ′α′

β , one has the non-tensorial transformation property

Υαβ = Jα
α′J

β
β′Υ

′α′β′
+ Jα

α′Π′α′β′
dJβ

β′ . (2.11)

Introducing a connection one-form

Γ̃α
β = dφγΓ̃α

γβ , (2.12)

one has the transformation law

ΠαγΓ̃β
γ = Jα

α′J
β
β′Π

′α′γ′
Γ̃′β′

γ′ −ΠαγJ ′β′

γ dJβ
β′ . (2.13)

Using the tensorial transformation property of Π to rewrite (2.11) as

Υαβ = Jα
α′J

β
β′Υ

′α′β′
+ΠαγJ ′β′

γ dJβ
β′ , (2.14)

we can thus write

Υαβ = Uαβ −ΠαγΓ̃β
γ , (2.15)

where Uαβ is a tensorial one-form. It follows that

Υαβ
γ =

1

2
∂γΠ

αβ +Σαβ
γ ,

=
1

2
∇̃γΠ

αβ +Σαβ
γ −Πδ[βΓ̃

α]
γδ,

=
1

2
∇̃γΠ

αβ +Σαβ
γ −Πδ(αΓ̃

β)
γδ −ΠαδΓ̃β

γδ . (2.16)
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Thus Uαβ = 1
2∇̃Παβ + Sαβ , where

Sαβ
γ := Σαβ

γ −Πδ(αΓ̃
β)
γδ (2.17)

are the components of a tensorial one-form. In summary, we can write

{φα, dφβ} =
1

2
∇̃Παβ + Sαβ −ΠαγΓ̃β

γ , (2.18)

where the first two terms are tensorial and the last term, which is non-tensorial, is some-

times referred to as the pre-connection [10].

In the case that the Poisson manifold is regular, i.e. that the rank of its Poisson tensor

is constant, one may choose the connection to belong to the equivalence class obeying

∇̃αΠ
βγ = 0 , (2.19)

which we shall assume henceforth, while leaving the more general case for a separate study.3

It follows that

{dφα, dφβ} = −R̃αβ +ΠγδΓ̃α
γ ∧ Γ̃β

δ + dSαβ , (2.20)

where the two-form

R̃αβ := ΠβγR̃α
γ = R̃βα , (2.21)

as a consequence of (2.19).

2.3 Manifestly covariant Poisson bracket

Let ω and η be differential forms of any degree. From the basic Poisson brackets (2.7), (2.18)

and (2.20) in the coordinate basis, and invoking (2.2) and (2.4), it then follows that

{ω, η} = Παβ∇αω ∧∇βη + Sαβ ∧
(
(−1)|ω|∇αω ∧ iβη − iαω ∧∇βη

)

+(−1)|ω|
(
R̃αβ − ∇̃Sαβ

)
∧ iαω ∧ iβη , (2.22)

where i denotes inner differentiation and ∇ uses the connection coefficients

Γα
βγ := Γ̃α

γβ . (2.23)

By construction, the above manifestly covariant form of the Poisson bracket obeys (2.5),

that is, it is compatible with the de Rham operator.

The equivalence class of compatible connections is generated by shifts δΓ̃α
βγ obeying

δ(∇̃αΠ
βγ) = 0 and δΠαβ = 0, that is δΓ̃

[β
αδΠ

γ]δ = 0. Under such shifts, the Poisson

bracket (2.18) is left invariant provided

δSαβ = ΠαγδΓ̃β
γ , (2.24)

which is indeed symmetric in α and β. The invariance of the full Poisson bracket (2.22) can

then be verified using δ∇αω = −δΓ̃β
αiβω and δR̃αβ = Παγ∇̃δΓ̃β

γ . In the symplectic case,

the shift symmetry (2.24) can be used to set S = 0. In what follows, we shall specialize

to the case S = 0, which has been studied in detail in [9–12], leaving the analysis of the

general case for future work.

3It is possible to relax the compatibility condition (2.19) at the expense of introducing additional terms

to the Poisson bracket and corresponding Yukawa and quartic fermion couplings to the Poisson sigma

model action.

– 5 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
5

2.4 Jacobi identities

In order to analyze the Jacobi identities (2.6) (in the case that S = 0), one can use (2.4) to

show that if they hold for functions and one-forms then they hold for forms of any degree.

In the case of three functions f1, f2, f3, one finds

0 = {f[1, {f2, f3]}} = 3∇αf[1∇βf2∇γf3]Π
αδT β

δǫΠ
ǫγ , (2.25)

from which it follows that

Jαβγ
0 := Πδ[αT β

δǫΠ
γ]ǫ = 0 . (2.26)

In view of ∇̃αΠ
γδ = 0, this condition is equivalent to that Π is a Poisson bi-vector, i.e.

Πδ[α∂δΠ
βγ] = 0 . (2.27)

In the case of two function f1, f2 and a one-form ω, the Jacobi identities read

0 = 2{f[1, {f2], ω}}+ {ω, {f1, f2}} = ∇αf[1∇βf2]ωγΠ
αδΠβǫRδǫ

γ
λdφ

λ , (2.28)

from which we obtain

Jαβ,γ
1 λ := ΠαδΠβǫRδǫ

γ
λ = 0 . (2.29)

Finally, for a single function f and two one-forms ω1, ω2, we have

0 = {f, {ω(1, ω2)}}+ 2{ω(1, {ω2), f}} = −∇αfiβω(1iγω2)Π
αδ∇δR̃

βγ , (2.30)

which implies that

Jα,βγ
2 δǫ := Παλ∇λR̃δǫ

βγ = 0 . (2.31)

Finally, for three one-forms one finds that

Jαβγ
3 ρσλ := R̃ǫ[ρ

(αβR̃σλ]
γ)ǫ = 0 . (2.32)

As observed in [10, 12], the compatibility between the Poisson bracket and the de Rham

differential implies that the independent conditions are given by the following irreducible

representations4

Jαβγ
0 = 0 , J

α(β,γ)
1 λ = 0 , J

(α,βγ)
2 δǫ = 0 . (2.33)

As for examples of non-trivial solutions, see [9, 10].

3 Poisson sigma model

In this section, we use the Poisson bi-vector and its compatible connection to construct

the couplings in a two-dimensional topological sigma model action that exhibits an extra

nilpotent rigid supersymmetry δf corresponding to the de Rham differential on N . As we

shall see, the rigid symmetry fixes the coefficient of the quartic fermion coupling while the

gauge symmetries require the background fields to obey the conditions (2.27), (2.29), (2.31)

and (2.32), which we recall are equivalent to that the underlying differential Poisson algebra

obeys the Jacobi identities.

4From (2.33) the remaining conditions follow by covariant differentiation, viz.

J
[αβ,γ]
1 λ ∼ ∇λJ

αβγ
0 , J

[α,β]γ
2 δǫ ∼ ∇[δJ

αβ,γ
1 ǫ] , J

αβγ
3 δǫλ ∼ ∇[δJ

(α,βγ)
2 ǫλ] .

– 6 –
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3.1 The action

Our action, which is formulated on a two-dimensional manifold M2, is given by

S =

∫

M2

(
ηα ∧ dφα +

1

2
Παβηα ∧ ηβ + χα ∧∇θα +

1

4
R̃γδ

αβχα ∧ χβ θ
γ θδ

)
, (3.1)

where R̃γδ
αβ = ΠβǫR̃γδ

α
ǫ are the components of the two-form (2.21) obtained from the

Poisson bi-vector and its compatible connection, and the covariant exterior derivative

∇θα := dθα + dφβΓα
βγθ

γ , (3.2)

where the connection coefficients are defined in (2.23). The fields are assigned form degrees

deg2 on M2 and an additional Grassmann parity ǫf(·) as follows:

deg2(φ
α, ηα; θ

α, χα) = (0; 1, 0, 1) , ǫf(φ
α; ηα, θ

α, χα) = (0; 0, 1, 1) . (3.3)

In what follows, we shall assume M2 to be compact and that the pull-backs of (ηα, χα) to

the boundary of M2 vanish.

Geometrically, the action describes a sigma model with source M2 and target space

given by the N-graded bundle

N̂ = T ∗[1, 0]N ⊕ T [0, 1]N ⊕ T ∗[1, 1]N , (3.4)

coordinatized by (φα; ηα, θ
α, χα), where T [p, ǫ]N is the degree shift of the tangent bundle

T [0, ǫ]N overN by p units idem T ∗[p, ǫ]. The Grassmann parity of T [p, ǫ]N is ǫf(T [p, ǫ]N) =

ǫ. The sigma model map ϕ : M2 → N̂ has vanishing intrinsic degree and Grassmann parity,

and the degree on M2 is the form degree on M2. Thus, if ωn,p,ǫ denotes an n-form on N̂ of

degree p and Grassmann parity ǫ, then its pull-back ω(n+p),ǫ := ϕ∗ωn,p,ǫ is a (n+p)-form on

M2 of Grassmann parity ǫ. The de Rham differential on N̂ has form degree one and degree

one. We use the following Koszul sign convention, which is consistent with Leibniz’ rule:

ωn1,p1,ǫ1 ∧ ωn2,p2,ǫ2 = (−1)(n1+p1)(n2+p2)+ǫ1ǫ2ωn2,p2,ǫ2 ∧ ωn1,p1,ǫ1 . (3.5)

The resulting sign convention for wedge products on M2 reads

ωp1,ǫ1 ∧ ωp2,ǫ2 = (−1)p1p2+ǫ1ǫ2ωp2,ǫ2 ∧ ωp1,ǫ1 . (3.6)

The manifest target space covariance of the action amounts to the fact that target space

diffeomorphisms

δξφ
α = ξα , δξηα = −∂αξ

βηβ , δξθ
α = ∂βξ

αθβ , δξχα = −∂αξ
βχβ , (3.7)

which act on the worldsheet fields, induce Lie derivatives acting on the background

fields, i.e.

δξS[φ, η, θ, χ; Π,Γ] = LξS[φ, η, θ, χ; Π,Γ] , (3.8)

where

LξΠ
αβ = ξγ∂γΠ

αβ + 2∂γξ
[αΠβ]γ , (3.9)

LξΓ
α
βγ = ∂β∂γξ

α + ξδ∂δΓ
α
βγ − ∂δξ

αΓδ
βγ + ∂βξ

δΓα
δγ + ∂γξ

δΓα
βδ . (3.10)

– 7 –
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3.2 Nilpotent rigid fermionic symmetry

The de Rham differential d = dφα∂α on N lifts to a holonomic vector field θα∂α on T [0, 1]N ,

which in its turn can be extended to a nilpotent rigid supersymmetry δf of the action

as follows:

δfφ
α = θα ,

δfθ
α = 0 ,

δfηα = Γβ
αγηβθ

γ +
1

2
R̃βγ

δ
α χδ θ

βθγ ,

δfχα = −ηα − Γβ
αγχβθ

γ , (3.11)

as can be seen using ∇̃αΠ
βγ = 0 and the Bianchi identity ∇̃[αR̃βγ]

δ
ǫ − T̃ λ

[αβR̃γ]λ
δ
ǫ = 0. We

note that deg2(δf) = 0, ǫf(δf) = 1 and that δ2f ηα = 0 requires the aforementioned Bianchi

identity. Moreover, just as the relative coefficient between the two terms in the Poisson

bracket (2.22) is fixed by compatibility with the d operator, the rigid supersymmetry

requirement fixes the relative strength between the kinetic terms and the quartic fermion

term in the action (3.1). In fact, the δf-invariance of the action can be made manifest by

observing that the Lagrangian is δf-exact, viz.

S ≡

∫

M2

L , L = δfV , (3.12)

where

V = −χα ∧

(
dφα +

1

2
Παβηβ

)
, (3.13)

as can easily be seen using ∇̃αΠ
βγ = 0 and we note that there is no need to discard

any total derivative in (3.12). The commutator between the rigid supersymmetry and the

target space diffeomorphisms takes the form

[δξ, δf]φ
α = 0 , [δξ, δf]ηα = LξΓ

γ
αβ ηγθ

β + LξR̃βγ
δ
αχδ θ

βθγ , (3.14)

[δξ, δf]θ
α = 0 , [δξ, δf]χα = −LξΓ

γ
αβχγθ

β . (3.15)

Thus the rigid supersymmetry commutes with background symmetries whose Lie deriva-

tives annihilate Παβ and Γα
βγ and hence the action as can be seen from (3.8).

3.3 Equations of motion

Applying the variational principle to the action (3.1) yields the following equations of

motion:

Rφα

:= dφα +Παβηβ = 0 , (3.16)

Rθα := ∇θα +
1

2
R̃γδ

αβχβθ
γθδ = 0 , (3.17)

Rχα := ∇χα −
1

2
R̃αδ

βγχβ ∧ χγθ
δ = 0 , (3.18)

Rηα := ∇ηα +Rαγ
β
δχβ ∧ dφγθδ +

1

4
∇αR̃δǫ

βγχβ ∧ χγθ
δθǫ = 0 , (3.19)

– 8 –
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where

∇χα := dχα − dφβΓγ
βα ∧ χγ , (3.20)

idem ∇ηα. We note that eqs. (3.16)–(3.18) are given by the functional derivatives of S

with respect to (ηα, χα, θ
α), respectively, while eq. (3.19) has been obtained from

δS

δφα
= dηα +

1

2
∂αΠ

βγηβ ∧ ηγ + (Γγ
αβdχγ − χγ ∧ dΓγ

αβ + ∂αΓ
γ
δβχγ ∧ dφδ)θβ

−Γγ
αβχγ ∧ dθβ +

1

4
∂αR̃βγ

δǫχδ ∧ χǫθ
βθγ , (3.21)

by rewriting ∂αΠ
βγηβηγ using Rφα

= 0 and ∇̃αΠ
βγ = 0, and the quantities dχγΓ

γ
αβθ

β and

χγΓ
γ
αβdθ

β using Rχα = 0 and Rθα = 0, respectively.

3.4 Universal Cartan integrability

Let us demonstrate that the universal Cartan integrability of the equations of motion,

which is required for the validity of Cartan gauge symmetries and on-shell integration, is

equivalent to that the target space background obeys the conditions (2.27), (2.29), (2.31)

and (2.32), i.e. that they can be used to define a differential Poisson algebra obeying the

Jacobi identity (2.6). To this end, we derive the generalized Bianchi identities

∇Ri +M i
j ∧Rj +Ai = 0 , (3.22)

where Ri := (Rφα
,Rθα ,Rχα ,Rηα) and M i

j is a field dependent matrix, after which we

require compatibility in the universal sense, that is, that the classical anomalies Ai vanishes

on base manifolds of arbitrary dimensions.

As for ∇Rφα
, and using ∇dφα = Tα, the resulting compatibility condition reads

Aφα

= −

(
1

2
ΠρδTα

ρǫΠ
σǫ +∇ρΠ

ασΠρδ

)
ηδ ∧ ησ +ΠαρΠγσRργ

β
δ χβ ∧ ησθ

δ

−
1

4
Παρ∇ρR̃δǫ

βγ χβ ∧ χγθ
δθǫ , (3.23)

that must thus hold without imposing any algebraic constraint on (φα, ηα; θ
α, χα). Thus,

using also the identity ∇ρΠ
ασ = −2T

[α
ρǫΠσ]ǫ, which allows us to rewrite the first term as

3
2 Π

ρ[δTα
ρǫΠ

σ]ǫηδ ∧ ησ, the vanishing of Aφα
requires

Πδ[αT β
δǫΠ

γ]ǫ = 0 , ΠαρΠσβRρσ
γ
δ = 0 , Παλ∇λR̃βγ

ρσ = 0 , (3.24)

which we identify as the complete set of conditions required for the Jacobi identity (2.6).

In particular, the second condition in (3.24) is equivalent to that

∇2 = 0 on-shell . (3.25)

Next, taking into account (3.24), the vanishing of Aθα = 0 requires the additional condition

R̃ǫρ
(αβR̃σλ

γ)ǫ χβ ∧ χγθ
ρθσθλ = 0 , (3.26)
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or, equivalently,

R̃ǫ[ρ
(αβR̃σλ]

γ)ǫ = 0 . (3.27)

which is a consequence of the previous conditions, as discussed below eq. (2.31). Turning to

the integrability of Rχα = 0, it follows from (3.24) and (3.27) that Aχα vanishes universally,

noting that the χ∧3θ2-terms in ∇Rχα are proportional to R̃ǫ[α
(ρσR̃βγ]

λ)ǫ χρ ∧χσ ∧χλθ
αθγ .

Finally, using (3.25) one has

Aηα = −
1

4
Πλβ(∇β∇αR̃γδ

ρσ + 2Rαβ
ρ
ǫR̃γδ

σǫ + 2Rαβ
ǫ
γR̃δǫ

ρσ)χρ ∧ χσ ∧ ηλθ
γθδ

+
1

4
∇α(R̃βδ

ρσR̃ǫγ
λβ)χρ ∧ χσ ∧ χλθ

δθǫθγ

+ΠσβΠδλ

(
∇βRδα

ρ
γ −

1

2
T ǫ
βδRαǫ

ρ
γ

)
χρ ∧ ησ ∧ ηλθ

γ , (3.28)

moduloRχα , Rφα
and Rθα . The second term is easily seen to be zero from condition (3.27).

To show the vanishing of the first set of terms, we use the third condition in (3.24) and

∇αΠ
λβ = −2T

[λ
αǫΠβ]ǫ to compute

0 = ∇α(Π
λβ∇βR̃γδ

ρσ) = Πλβ(∇α∇βR̃γδ
ρσ + T ǫ

αβ∇ǫR̃γδ
ρσ) . (3.29)

Employing the Ricci identity

[∇α,∇β ]R̃γδ
ρσ = −T ǫ

αβ∇ǫR̃γδ
ρσ + 2Rαβ

(ρ
ǫR̃γδ

σ)ǫ + 2Rαβ
ǫ
[γR̃δ]ǫ

ρσ ,

one has

Πλβ(∇β∇αR̃γδ
ρσ + 2Rαβ

(ρ
ǫR̃γδ

σ)ǫ + 2Rαβ
ǫ
[γR̃δ]ǫ

ρσ)

= Πλβ(∇α∇βR̃γδ
ρσ + T ǫ

αβ∇ǫR̃γδ
ρσ) = 0 . (3.30)

To show the vanishing of the third set of terms in (3.28), we rewrite the Bianchi identity

∇[βRδα]
ρ
σ − T ǫ

[βδRα]ǫ
ρ
γ = 0 as

2

(
∇[βRδ]α

ρ
γ −

1

2
T ǫ
βδRαǫ

ρ
γ

)
+∇αRβδ

ρ
γ − 2T ǫ

α[βRδ]ǫ
ρ
γ = 0 . (3.31)

On the other hand, the second condition in (3.24) together with ∇αΠ
σβ = −2T

[σ
αǫΠβ]ǫ

implies

0 = ∇α(Π
σβΠδλRβδ

ρ
γ) = ΠσβΠδλ(∇αRβδ

ρ
γ − 2T ǫ

α[βRδ]ǫ
ρ
γ) . (3.32)

Thus, contracting the above form of the Bianchi identity by ΠσβΠδλ and using (3.32) it

follows that the third term in Aηα vanishes as well.

In summary, we have showed that the universal Cartan integrability of the equations

of motion eqs. (3.16)–(3.19) is equivalent to that the background fields Π and Γ can be

used to define a differential Poisson algebra.
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3.5 Gauge transformations

Relying upon the general framework for Poisson sigma models [15–19], the universal Cartan

integrability of the equations of motion implies that these as well as the action are invariant

under suitably defined gauge transformations; for details, see section 2.2 of [18].

On-shell, the gauge transformations can be obtained by first rewriting the equations

of motion eqs. (3.16)–(3.19) on the canonical form

R̂i := dZi + Q̂i(Zj) = 0 , Zi := (φα, ηα; θ
α, χα) . (3.33)

Eliminating dφα in ∇ using Rφα
= 0, we thus have

R̂φα

= dφα +Παβηβ , (3.34)

R̂ηα = dηα +ΠβγΓδ
βα ηγ ∧ ηδ +ΠγλRαγ

β
δ ηλ ∧ χβθ

δ +
1

4
∇αR̃δǫ

βγχβ ∧ χγθ
δθǫ , (3.35)

R̂θα = dθα −ΠβγΓα
βδηγθ

δ +
1

2
R̃γδ

αβχβθ
γθδ , (3.36)

R̂χα = dχα +ΠβγΓδ
βαηγ ∧ χδ −

1

2
R̃αδ

βγχβ ∧ χγθ
δ . (3.37)

The on-shell gauge transformations are then given by

δZi = dǫi − ǫj
∂

∂Zj
Q̂i , modulo R̂i , (3.38)

where ǫi denote the gauge parameters, of which there is one for each fields with strictly

positive form degree, that is,

ǫi = (0, ǫ(η)α ; 0, ǫ(χ)α ) , deg2(ǫ
i) = (−, 0;−, 0) , ǫf(ǫ

i) = (−, 0;−, 1) . (3.39)

Thus, the infinitesimal gauge transformations are given by

δφα = −Παβǫ
(η)
β , (3.40)

δηα = ∇ǫ(η)α −ΠβγΓδ
βαǫ

(η)
γ ηδ −ΠγλRαγ

β
δ ǫ

(η)
λ χβθ

δ +ΠγλRαγ
β
δ ηλǫ

(χ)
β θδ

−
1

2
∇αR̃δǫ

βγǫ
(χ)
β χγθ

δθǫ , (3.41)

δθα = ΠβγΓα
βδǫ

(η)
γ θδ −

1

2
R̃γδ

αβǫ
(χ)
β θγθδ , (3.42)

δχα = ∇ǫ(χ)α −ΠβγΓδ
βαǫ

(η)
γ χδ + R̃αδ

βγǫ
(χ)
β χγθ

δ , (3.43)

modulo Ri.

Off-shell, the Lagrangian transforms under the on-shell gauge transformations (3.38)

into a total derivative modulo a set of terms proportional to derivatives of the symplectic

structure. The latter can be cancelled by using modified off-shell gauge transformations

given by (see eqs. (33) and (34) of [18])

δZi = dǫi − ǫj
∂

∂Zj
Q̂i +

1

2
ǫk R̂l ∂l Ω̂kj P̂

ji , (3.44)
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where we have introduced the symplectic two-form

Ω̂ = dΘ̂ =
1

2
dZiÔijdZ

j =
1

2
dZidZjΩ̂ij , P̂ ikÔkj = −δij , (3.45)

of degree three on the target space N̂ given in (3.4), and the symplectic potential

Θ̂ = ηα ∧ dφα + χα ∧∇θα , (3.46)

also known as the tautological one-form, here treated as a one-form of N-degree two on N̂ .

Thus, the matrix Ôij can be read off from

Ω̂ =
1

2

(
dφρ dηρ dθρ dχρ

)



2∂[ρΓ
α
γ]βχαθ

β δρ
γ −Γα

ργχα −Γγ
ραθα

δργ 0 0 0

−Γα
γρχα 0 0 −δρ

γ

Γρ
γαθα 0 δργ 0







dφγ

dηγ
dθγ

dχγ


 . (3.47)

Moreover, the components P̂ji of the Poisson structure on N̂ is given by

P̂ ik =




0 −δσρ 0 0

−δσ
ρ Rσρ

α
βχαθ

β Γρ
σαθα −Γα

σρχα

0 Γσ
ραθ

α 0 −δσρ
0 Γα

ρσχα δσ
ρ 0


 . (3.48)

Using the above four by four matrices is simple to show that P̂ ikÔkj = −δij . If the

connection vanishes identically, then the off-shell modification of the gauge transforma-

tion (3.44) vanishes.

4 Conclusion and remarks

We have given an action of the covariant Hamiltonian form that describes a two-dimensional

topological sigma model in a target space carrying the structure of a differential Poisson

algebra. The kinetic term is given by the pull-back of a symplectic potential that is non-

canonical and hence the off-shell gauge transformations contain an additional set of terms

proportional to the Cartan curvatures. Besides the gauge symmetries, whose existence

requires the background to obey conditions that are equivalent to those required by the

Jacobi identities of the differential Poisson algebra, our action also exhibits a rigid super-

symmetry corresponding to the de Rham differential on the Poisson manifold. Indeed, the

latter symmetries fix the coefficients of the curvature terms in the action and the Poisson

bracket, respectively.

We expect that the AKSZ quantization [7, 8] of the original Poisson sigma model

can be generalized to the present model in a background diffeomorphism covariant fash-

ion, i.e. such that there exists a generalization of (3.8) to the gauge fixed action (modulo

BRST exact terms). Assuming furthermore that Kontsevich’s formality theorem general-

izes to the deformation of the graded Poisson bracket, the similarity between the Poisson

– 12 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
5

bracket (2.22) and the quadratic part of the action (3.1) expanded around a constant back-

ground suggests that two-point correlation functions of suitable boundary vertex operators

yield the extension of Kontsevich’s star product formula to higher forms on a manifestly

covariant as well as explicit form, at least in the case of Rn target space topology. Moreover,

assuming the supercurrent to be anomaly free we expect its charge to be a deformation of

the de Rham differential into a nilpotent operator that is compatible with the star product.

Clearly, the first steps in this direction are to reproduce the higher-form generalized

Poisson bracket (2.22) at order ~ and then verify the bi-differential operator found in [11, 12]

at order ~2, which we leave for separate considerations.5 More precisely, we propose that

the BRST cohomology of the model contains a ring generated by the constant modes of

(φα, θα) that realizes the star product deformation of the space Ω(N) of differential forms

on N . As already mentioned in the Introduction and using the notation of section 3.1, one

can map the elements dφα1 ∧ · · · ∧ dφαpωα1...αp in Ω(N) to elements θα1 · · · θαpωα1...αp in

the subspace Ω[0](T [0, 1]N) of zero-forms in the space Ω(T [0, 1]N) of differential forms on

T [0, 1]N . Likewise, in the gauged-fixed theory,6 the ghosts (cα, γα) for (ηα, χα) have form

degree zero, ghost number one and additional Grassmann parities ǫf(cα, γα) = (0, 1). Their

zero-modes yield realizations of star product deformations of the spaces Poly(±)(N) of sym-

metric (+) and anti-symmetric (−) polyvector fields onN by mapping anti-symmetric poly-

vectors Πα1...αn(φ)∂α1 ∧ · · · ∧ ∂αn to Πα1...αn(φ)cα1 · · · cαn in Ω[0](T
∗[1, 0]N) and symmetric

polyvectors Gα1...αn(φ)∂α1 ⊙ · · · ⊙ ∂αn to Gα1...αn(φ)γα1 · · · γαn in Ω[0](T
∗[1, 1]N). It would

be interesting to examine the resulting target space quantum geometries in more detail.

The action (3.1), which describes a classically topological theory that remains to be

gauge fixed, bears a close resemblance to the complete action of the first order formu-

lation [20–22] of the topological A model [23]. The latter is obtained by a topological

twist of the N = (2, 2) supersymmetric sigma model, and requires the target space to be

Kähler, and hence symplectic, unlike our model, whose target space is only required to

be a Poisson manifold. Moreover, the type A model refers to a worldsheet metric, which

enters via additional couplings to the hermitian metric and its compatible curvature of the

form gαβηα ∧ ∗ηβ and gαǫRγδ
β
ǫ(g)χα ∧ ∗χβθ

γθδ. Thus the type A model action is non-

singular in the sense that it does not admit any local symmetries. Instead, the couplings

are tuned such that the complete action is exact under a rigid nilpotent supersymmetry,7

whose factorization yields a topological model. Our model, on the other hand, is classically

topological without requiring the classical observables to be δf -closed. Thus, in the termi-

nology of topological field theories, our model is of the Schwarz type, while the A model is

of the Witten, or cohomological, type.

5Starting from a path integral weighted by exp( i
~
S), the perturbative expansion is obtained by rescal-

ing (ηα, χα, θ
α) → (~ηα,

√
~χα,

√
~θα) and expand the background fields covariantly around the two-

dimensional vacuum in which 〈φα〉 and 〈θα〉 are constant and 〈ηα〉 and 〈χα〉 vanish.
6In the gauge fixed theory all quantities are assigned form degrees, ghost numbers and additional Grass-

mann parities, and we choose the Koszul sign convention to be given by AB = (−1)|A||B|+ǫf (A)ǫf (B)BA

where the total degree |A| = deg2(A) + gh(A).
7The rigid supersymmetry generator of the A model is sometimes referred to as a BRST operator, even

though the twisting is not a gauge fixing procedure. Attempts to identify the type A model as a gauge

fixed version of a classically topological theory have been made in [24].
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It would be interesting to examine whether there are more robust relations between

the type A and B models and also the interpolating A-I-B model [21], including their

infinite (and possibly zero) volume limits, and our model and various deformations of it.

As for the latter, one may consider adding Yukawa couplings formed out of the S-tensor

defined in (2.17) and additional metric couplings Gαβχα∧χβ (which add terms of intrinsic

degree minus two to the bracket). One may also seek ways to couple of our model to

two-dimensional gravity, which may be of importance for the formulation of the theory

on worldsheets of higher genus, and possibly new topological open strings. To this end,

besides exploring the relations to the type A and B models, it may also be fruitful to explore

another route, based on the observation that prior to adding the worldsheet fermions, the

Poisson sigma model exhibits vacuum bubble cancelations in simple worldsheet topologies.

Adding the fermions lead to that these cancellations generalize to arbitrary topologies [25]

(including boundaries). Thus, including bubbles with external matter legs, one may expect

anomaly-induced topological matter-gravity couplings. We plan to address these issues in

a future work.

One motivation behind the present work is Vasiliev’s higher spin gravity, whose field

theoretic formulation is in terms of differential star product algebras [26]. The explicit mod-

els that have been constructed so far are formulated on products of commuting manifolds,

containing spacetimes, and symplectic manifolds of simple topology, quantized using the

Moyal star product. The covariantized Kontsevich formalism provides a tool facilitating

the formulation of higher spin gravities on manifolds of more general topology, possibly as

Frobenius-Chern-Simons theories (or BF analogs thereof) following [27]. Its extension to

topological open strings, with non-trivial topological expansions, may lead to complemen-

tary first-quantized descriptions of higher spin gravity. The latter perspective is supported

by the recent progress in computing higher spin tree amplitudes starting from traces over

oscillator algebras [28–31], in its turn motivated by the proposal made in [32] for how

Vasiliev’s theory arise in tensionless limits of closed strings in anti-de Sitter spacetime.

Finally, a natural part of the application to higher spin gravity as well as discretized

strings, and also more general constrained systems, is the gauging of Killing symmetries

of our Poisson sigma model. In principle, this procedure ought to be straightforward and

leads to a natural generalization of the original gauged Poisson sigma model, which we

expect to report on in a forthcoming publication.
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A Conventions and notation

The covariant exterior derivatives of the components of a vector field V = V α∂α and a

one-form ω = ωαdφ
α are given by

∇V α = dV α + Γα
βV

β , ∇ωα = dωα − Γβ
α ∧ ωβ , (A.1)

where Γα
β = dφγΓα

γβ is the connection one-form. In terms of components, we have ∇V α =

dφβ∇βV
α and ∇ωα = dφβ∇βωα where

∇αV
β = ∂αV

β + Γβ
αγV

γ , ∇αωβ = ∂αωβ − Γγ
αβωγ . (A.2)

The basic Ricci identities read

[∇α,∇β ]V
γ = −T δ

αβ∇δV
γ +Rαβ

γ
δV

δ , [∇α,∇β ]ωγ = −T δ
αβ∇δωγ −Rαβ

δ
γωδ , (A.3)

where the curvature and torsion tensors are

Rαβ
γ
δ = 2 ∂[αΓ

γ

β]δ + 2Γγ

[α|ǫΓ
ǫ
|β]δ , T γ

αβ = 2Γγ

[αβ] . (A.4)

The corresponding curvature and torsion two-forms are

Rα
β =

1

2
dφγ ∧ dφδRγδ

α
β , Tα =

1

2
dφγ ∧ dφδTα

γδ , (A.5)

which can also be written as

Rα
β = dΓα

β + Γα
γ ∧ Γγ

β , Tα = Γα
β ∧ dφβ . (A.6)

The covariant exterior derivative of the one-form itself is given by

dω = ∇ω = (∇dφα)ωα + (∇ωα)dφ
α = dφαdφβ

(
∇αωβ +

1

2
T γ
αβωγ

)
. (A.7)

The Bianchi identities read

Tα = ∇dφα , ∇Tα = Rα
β ∧ dφβ , ∇Rα

β = 0 , (A.8)

or in components

R[αβ
γ
δ] = ∇[αT

γ

βδ] − T ǫ
[αβT

γ

δ]ǫ , ∇[αRβγ]
δ
ǫ − T λ

[αβRγ]λ
δ
ǫ = 0 . (A.9)

The square of the exterior covariant derivative acting on the components of a vector field

and a one-form are given by

∇2V α = Rα
βV

β , ∇2ωα = −Rβ
α ∧ ωβ . (A.10)

In analyzing the differential Poisson algebra, it is convenient to define a new connection ∇̃

with connection coefficients Γ̃α
γβ := Γα

βγ . We make repeated use of the identity

∇αΠ
βγ = ∇̃αΠ

βγ − 2T
[β
αδΠ

γ]δ . (A.11)

We denote the components of the curvature of ∇̃ by R̃αβ
γ
δ and define

R̃αβ := ΠβγR̃α
γ . (A.12)
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