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Model. These models result from compactification on toric hypersurface fibrations X with

the choice of base P3. We observe that the F-theory conditions on the G4-flux restrict

the number of families to be at least three. We comment on the phenomenology of the

models, and for Pati-Salam and Trinification models discuss the Higgsing to the Standard

Model. A central point of this work is the construction of globally consistent G4-flux. For

this purpose we compute the vertical cohomology H
(2,2)
V (X) in each case and solve the

conditions imposed by matching the M- and F-theoretical 3D Chern-Simons terms. We

explicitly check that the expressions found for the G4-flux allow for a cancellation of D3-

brane tadpoles. We also use the integrality of 3D Chern-Simons terms to ensure that our

G4-flux solutions are adequately quantized.
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1 Introduction

The construction of fully fledged particle physics models which reproduce the phenomenol-

ogy of the Standard Model, while providing generic predictions for its behavior at higher

scales remains a very active part of the research in string theory. One active front in this

direction is F-theory [1], where the geometrization of certain properties of non-perturbative

Type IIB string theory allows for a very systematic understanding and engineering of the

gauge symmetry, particle content and the interactions in a given model.

Most model building endeavors in F-theory have appealed to an underlying SU(5)

gauge group (for a non exhaustive list of works see [2–16]). This is partly due to the simple

group theoretical embedding of the standard model gauge group and its representations

into SU(5), with its well earned merit for gauge coupling unification.1 In addition this gives

1For a detailed discussion on gauge coupling unification in SU(5) GUTs see e.g. [17, 18].
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the advantage of having the full gauge symmetry concentrated on a single divisor in the

base that allows for a local treatment of certain features of the model [2–5]. Nevertheless,

the increasing understanding of many global issues has prompted interest in alternative

models which aim either at the direct construction of the bare MSSM2 [21–23], as well as

alternative grand unification schemes such as the Pati-Salam model or Trinification, among

others. These models have the advantage that they do not suffer from the pathological

group theoretical puzzles inherent to SU(5), such as the doublet triplet splitting problem.

These schemes constitute also a very promising alternative in other corners of the string

landscape such as perturbative Type IIA/B and the heterotic string (see e.g. [24–26]).

In the model building program one aims at reproducing certain features of the particle

physics models such as appropriate gauge symmetries, particle representations, the right

number of generations and, at least, the possibility to generate a hierarchy in the Yukawa

textures (for reviews on this topic in an F-theory context see e.g. [27, 28]). As for the gauge

symmetries, the appearance of non-Abelian factors has been understood since the beginning

of F-theory and can be tracked by the degeneration of the elliptic fiber over codimension

one surfaces on the base [29–31], see [32] for recent refinements. Abelian gauge symmetries

are due to the presence of sections of the elliptic fibration, in addition to the so-called

zero section of the Weierstrass model [30, 33, 34]. Being related to global objects, as

well as being essential tools for controlling the phenomenology of particle physics models,

U(1) symmetries have pushed the F-theory model building program towards a more global

picture. Similarly, the charged matter representations can be tracked by degenerations

of the elliptic curve at codimension two in the base [35], see also [36] for the discussion

of higher symmetric representation. In order to achieve a chiral spectrum, the addition

of G4-flux is necessary, see [37, 38] for first global examples. The intersection of matter

curves at codimension three leads to the geometrically allowed couplings of the model. In

F-theory the hierarchy for the Yukawas is possible since generically, the Yukawas for one

family are generated geometrically while for the other two of these couplings arise from

instanton or flux contributions that are significantly small.

The compactification spaces which are commonly used for constructing 4D N = 1

effective theories in F-theory are genus one fibered Calabi-Yau (CY) fourfolds. The global

model building process is divided into two steps, the first step being the construction of

appropriate compactification manifolds exhibiting the desired fiber degenerations which

lead to the appropriate gauge symmetry, matter and interactions. The second step is

concerned with the construction of appropriate G4-flux to account for the desired chirality

in the spectrum.

Regarding the construction of suitable CY-fourfolds, the efforts have been divided in

two fronts: the first pushes towards the classification and construction of all admissible

bases [39–41], see also [42–45] for the related study of non-compact bases. The second is

more concerned with the construction of genus-one or elliptic fibers C which naturally allow

for certain generic features of the compactification. In this direction, there have been two

2See [19, 20] for earlier attempts to get the standard model gauge group from a deformation of the SU(5)

singularity.
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major conceptual extensions: one is related to the construction of elliptic curves exhibiting

an ever growing number of rational points [13–15, 46–62]. These permit the construction

of elliptically fibered CY-manifolds with a certain number of rational sections and hence,

a non trivial Mordell-Weil (MW) group of rational sections. While the free part of the

MW-group yields the U(1)-gauge fields in F-theory [29], the torsion part is responsible

for the presence of non-simply connected gauge groups [33] and its effects are seen at

codimension two as it forbids certain representations to be part of the theory. The other

conceptual extensions has to do with fibers which entirely lack rational points. These lead

to genus-one fibrations which do not have any section [63–65]. Nevertheless, this type of

fibrations is suitable for F-theory as their associated Jacobian fibration does have a section

and describes the same physics. In the genus-one fibrations, the presence of an m-sections

has been unveiled as the geometric object responsible for the presence of discrete gauge

symmetries in their associated effective SUGRA theory [22, 66–69].

There is a natural framework which provides the simplest examples for the two kinds

of fibers described above: the 16 inequivalent 2D toric varieties [70, 71]. By describing

the genus-one fiber as an algebraic curve in any of these toric ambient spaces one ends up

with any of the possible cases of elliptic fibers with up to four independent rational points

as well as genus-one curves with two- and three-sections. In [22], a systematic analysis

of the effective six dimensional theories stemming from compactification of F-theory on

any of these 16 toric hypersurface fibrations over an arbitrary complex-two dimensional

base was done. Abandoning the paradigm of the holomorphic zero section and allowing

it to be simply rational, all resolution divisors inherited from the corresponding ambient

space descend to Cartan divisors on the corresponding CY-manifold. In this fashion, it

was possible to deduce the intrinsic gauge symmetry of each toric hypersurface fibration,

without the necessity to introduce further specializations of the geometry such as tops [72–

74], which appear in algorithmic approaches to F-theory model building [58]. Among

these intrinsic gauge symmetries, groups which are familiar for particle physicists such as

SU(3) × SU(2) × U(1), SU(4) × SU(2)2/Z2 and SU(3)3/Z3 appear naturally. Even more

interestingly, the matter representations that are possible in each of these models coincide

with those needed for the MSSM, Pati-Salam model and Trinification, respectively. While

the analysis of [22] was made in six dimensions, these findings carry over to 4D as well.

Another important feature of the six-dimensional models is the existence of a so called

“toric Higgsing” (or a chain of those) which allows for a pictorial, toric interpretation of

Higgsings from the Pati-Salam and Trinification models down to the MSSM.

In this work we study the four dimensional-version of the MSSM, the Pati-Salam

model and Trinification engineered by F-theory on toric hypersurface fibrations X. For

the first time we construct explicit, globally consistent, three-family models with the chiral

matter content of the MSSM, Pati-Salam model and Trinification. These models result

from three different toric hypersurface fibrations over a fixed base B = P3. We construct

the vertical cohomology H
(2,2)
V (X) and provide the most general expression for the G4-flux

in each case. These expressions are shown to comply with all conditions on M-theory

Chern-Simons terms imposed by duality with F-theory and allow for a D3-brane tadpole

canceling solution which involves an integral and positive number of D3-branes. Since
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the determination of an integral basis for the vertical cohomology cohomology H
(2,2)
V (X),

G4-flux quantization is checked indirectly by ensuring quantization of the induced 3D

Chern-Simons terms. Regarding the phenomenology of the considered models we have two

main drawbacks: since we have no control over the vector-like sector of the theory, it is

not guaranteed that we have the vector-like pairs needed for the breaking of electroweak

symmetry neither for the breaking of the Pati-Salam or Trinification groups down to the

Standard Model gauge group. In addition, we have only stated the trilinear couplings which

are generated geometrically and have argued that under the assumption of the presence of

a light pair of Higgses, these would allow for the generation of a hierarchy. However, the

currently applicable tools do not allow us to provide to perform a quantitative analysis.

This paper is organized as follows: in section 2 we summarize the general procedure

to construct 4D chiral models from F-theory and shortly review the tools needed for our

analysis: the general features of elliptic fibrations, G4-flux and G4-flux consistency condi-

tions in F-theory. In section 3 we discuss the elliptic fibration leading to the gauge group

and matter content of the MSSM. There, we also compute G4-flux and the resulting 4D

matter chiralities. Similar as in the standard model, we see that the exact cancelation of

anomalies (without Green Schwarz counterterms for anomalies involving U(1)Y ) enforces

a family structure. In this regime we scan over all allowed strata in the moduli space

of the CY-manifold XF11 with base P3 and compute the smallest number of families for

which the D3 brane tadpole is canceled with a positive integral number of D3-branes. We

observe that three is in fact the smallest permitted number of families in this model. The

same observation holds also for Pati-Salam and Trinification models. In addition we give

closed formulas for the Hodge structure of all fibrations for the choice of base B = P3 in

appendix A. We generically find h(2,1) = 0 which restricts cosmological applications. We

conclude this section with a brief discussion of the phenomenology of the model under

the assumption that a light pair of Higgs fields is present. In sections 4 and 5 we present

a similar discussion of the Pati-Salam and Trinification models as in section 3. In addi-

tion, we comment on the Higgsing down to the Standard Model gauge group. We indeed

find that there exist three-family models both for Pati-Salam and Trinification, that Higgs

down to three-family Standard models. Finally in section 6 we present our conclusions

and discuss future possible directions of research. Appendix A contains a brief account

on the computation of Hodge numbers of CY-fourfolds given as toric hypersurfaces and

applications to the considered cases XF11 , XF13 and XF16 with base B = P3. Appendix B

contains the explicit lattice polytopes for the five-dimensional toric ambient spaces of all

considered toric hypersurface fibrations.

2 Tools & strategies for four-dimensional model building

In this section, which serves as a preparation for the analysis in sections 3, 4 and 5, we

outline the basic techniques for building F-theoretic models of particle physics. Although

many of the presented methods are applicable to general Calabi-Yau (CY) fourfolds X,

we focus here on the case of the toric hypersurface fibrations as studied in [22]. Except

for the discussion of G4-flux quantization, this section is mainly a concise review on the
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construction of chiral 4D F-theory models, following closely [15] to which we refer for

further details. In an accompanying appendix A we discuss the computation of Hodge

numbers of CY-fourfolds X given as toric hypersurfaces. The reader interested in the

phenomenological results can safely skip this section and continue with section 3.

F-theory geometry: on the geometry side, the starting point for the construction of

an F-theory model is the choice of a three-dimensional base manifold B as well as the

genus-one or elliptic fiber of the Calabi-Yau fourfold X. As a next step all codimension

one, two and three singularities of the fibration have to be analyzed in order to determine

the gauge group G, matter content, i.e. the representations and their matter curves in X,

and the Yukawa couplings of the 4D effective theory of F-theory.

In order to being able to construct G4-flux we have to compute the cohomology ring

of X. For a CY-fourfold given as a toric hypersurface (or complete intersection) fibration,

which is the case of interest of this work, the full cohomology ring of X as a quotient

polynomial ring generated by H1,1(X) [15, 75–77]. Concretely, for a CY-fourfold X with

a given toric base B, we choose a basis DA, A = 0, . . . , h(1,1)(X)− 1, for the divisor group

H1,1(X). Then the cohomology ring of X is given by the polynomial ring in the DA divided

by the Stanley-Reisner (SR) ideal of the ambient toric variety3 of X. The reduction by the

Stanley-Reisner ideal works in our case as we have no non-toric divisors. There can be non-

toric divisors at corners of the allowed region for S7 and S9 for the base P3, cf. the discussion

in [15]. As our focus is on chirality inducing G4-flux, we are primarily interested in the

subgroup H2,2
V (X) of the fourth cohomology of X, the primary vertical cohomology [78].

It is given by the quotient ring at grade two, that is constructed by forming all possible

products DA ·DB. These are linearly dependent. Thus, we compute the rank of the inner

product matrix on these elements, which yields the dimension h
(2,2)
V (X), and choose an

appropriate basis. The topological metric on this basis is denoted by η(2).

We emphasize that the full Chern class of the CY-manifold X can be computed inde-

pendently of the base B by using the adjunction formula and the total Chern class of the

ambient space, see [15] for more details. Of particular interest for F-theory are the second

Chern class c2(X) and the Euler number χ(X) of X.

Constraints on G4-flux in F-theory: F-theory on X×S1 and M-theory on X are dual

to each other [79]. Thus, consistent G4-flux in a four-dimensional F-theory compactification

onX is understood as G4-flux in the dual M-theory compactification on the same X to three

dimensions, so that the G4-flux obeys additional consistency conditions. These consistency

conditions follow from requiring that the three-dimensional effective actions of F- and M-

theory agree, which can be used to derive the full effective action of F-theory [80].

In M-theory, G4-flux has to fulfill two basic conditions. First, it must obey the following

quantization condition [81]:

G4 +
c2(X)

2
∈ H4(X,Z) . (2.1)

3The reduction by the Stanley-Reisner ideal works in our case as we have no non-toric divisors. There

can be non-toric divisors at corners of the allowed region for S7 and S9 for the base P3, cf. the discussion

in [15].
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Second, the cancelation of M2-brane tadpoles, which lift to D3-brane tadpoles in Type IIB

strings and F-theory, requires the equality [82, 83]

χ(X)

24
= nD3 +

1

2

∫
X
G4 ∧G4 , (2.2)

where nD3 denotes the number of D3-branes. As mentioned before, we will focus here on

special G4-flux that is entirely in the subgroup H
(2,2)
V (X).4

For compatibility with the duality between M- and F-theory, we need to impose addi-

tional conditions on the G4-flux. These are most easily formulated in terms of conditions

on the Chern-Simons (CS) terms for the three-dimensional vectors on the Coulomb branch

of the effective action of the M-theory compactification on the CY-fourfold X. On the

M-theory side, these CS-terms are given by [87]

ΘM
AB =

∫
X
G4 ∧DA ∧DB , (2.3)

where here and in the following, Poincaré duality is always understood. We note that the

3D CS-terms have to obey the quantization condition ΘM
AB ∈ Z or Z/2, see e.g. [88, 89]

for recent discussions. We note that these quantization conditions are expected to be

equivalent to the G4-flux quantization conditions (2.1) [85].

In the dual F-theory side the same CS-terms, denoted now by ΘF
AB, have two contri-

butions. First, we can have classical CS-terms ΘF
cl, AB, which either descend from 4D to 3D

from gaugings of axions or which correspond to circle fluxes [90]. Second, CS-terms on the

3D Coulomb branch receive one-loop corrections from integrating out massive fermions [91–

93]. In the duality between M- and F-theory, it is crucial to include all Kaluza-Klein (KK)

states in the loop [15, 54],5 yielding the full loop corrected CS-terms expression

ΘF
AB = ΘF

cl, AB +
1

2

∑
q

n(q)qAqB sign(qAζ
A) . (2.4)

Here n(q) is the number of 3D fermions with charge vector q = (q0, qα, qi, qm). It includes

the charge q0 w.r.t. the 3D graviphoton, i.e. the KK-level of states, the charges qα, α =

1, . . . , h(1,1)(B), under 3D vectors dual to the Kähler moduli of B, the charges qi, i =

1, . . . , rk(G), and qm, m = 1, . . . , r, w.r.t. to 4D Cartan gauge fields of the non-Abelian

gauge group G of F-theory and the r U(1) gauge fields, respectively. The real parameters

ζA are the Coulomb branch parameters.

Duality requires an identification of the CS-terms on the F-theory side with those

in (2.3) on the M-theory side [14, 15, 51, 54, 94, 95],

ΘAB ≡ ΘM
AB

!
= ΘF

AB . (2.5)

This immediately leads to additional restrictions on the CS-terms in F-theory [15, 37, 51,

54], because certain CS-terms ΘF
AB in F-theory computed according to (2.4) are identically

4For recent analysis of horizontal G4-flux in F-theory, see [77, 84–86].
5See also [57] for the case of CS-terms in 5D M-/F-theory duality.
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zero. Physically, the implied constraints on the G4-flux ensure the absence of circle flux in

the circle compactification from F- to M-theory, an unbroken non-Abelian gauge group in

4D due to the absence of axion gaugings and the absence of non-geometric effects,

Θ0α = Θiα = Θαβ = 0 . (2.6)

Here we have to chose the basis DA of H(1,1)(X) so that index 0 corresponds to the zero

section ŝ0 of the fibration of X, α = 1, . . . , h(1,1,)(B), labels the vertical divisors induced

from the base B, i = 1, . . . , rk(G) labels the Cartan divisors of X, where G as before is

non-Abelian part of the F-theory gauge group, and m = 1, . . . , r labels the r U(1)-factors

corresponding to Shioda maps σ(ŝm) of the rank r Mordell-Weil (MW) group of rational

sections ŝm of X.

Chiralities in F-theory and G4-flux quantization: in order to calculate the matter

chiralities χ(R) for a given matter representation R in a four-dimensional F-theory com-

pactification, we need to integrate the G4-flux over a corresponding matter surface in X.

The relevant matter surface CwR is given as the rational surface constructed by fibering a

P1 carrying the weight w of the representation R over the corresponding matter curve in

the base B. The 4D chirality of R is computed as

χ(R) = n(R)− n(R̄) =

∫
CwR
G4 , (2.7)

where n(R) denotes the number of left-chiral Weyl fermions in the representation R.

Technically, the determination of the CwR can be involved and requires the computation

of the homology class of prime ideals describing the given matter surface. This can be

done using the resultant technique that was applied first in [15, 56] for F-theory and will

be exemplify for the three examples studied in this work. As a consistency check of our

geometric computations, following [15, 51, 54], we use the matching condition (2.5) of the

CS-terms to double-check the 4D chiralities calculated using (2.7).

Finally, let us comment on G4-flux quantization. In principal, in order to address

G4-flux quantization we have to expand G4 and c2(X) in an integral basis for H
(2,2)
V (X)

and check the condition (2.1). This integral basis can be determined employing mirror

symmetry techniques [77, 84, 86]. Since this is beyond the scope of this work, we will apply

an indirect approach to ensure integral G4-flux.

Here we exploit that G4-flux quantization (2.1), the integrality of the number nD3 of

D3-branes, that is a necessary condition for quantized G4-flux [81], the integrality of the

CS-terms (2.3) and of the chiralities (2.7) are obviously linked to each other. Thus, our

strategy will be the following. First, we compute all chiralities χ(R) using (2.7). Then, we

parametrize the coefficients in the expansion of the G4-flux w.r.t. a basis of H
(2,2)
V (X) in

terms of these integral chiralities. We then impose the necessary condition of integrality

and positivity of nD3. This will yield in turn constraints in form of lower bounds on the 4D

chiralities. Next, we impose, if possible, a family structure on our model. Finally, we check

that for this phenomenologically preferred choice of G4-flux all CS-terms are integral, which

ensures that the quantization condition (2.1) is obeyed. We remark that there might exist

– 7 –
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a finer basis non-diagonal in vertical and horizontal cohomology for which more integral

nD3 chiral family solutions exist. In contrast we only focus on the vertical part, that might

be a multiple of this minimal component, such that it is integral on its own.

Toric hypersurface fibrations for 4D chiral F-theory models: in order to introduce

some notation used throughout this work, we conclude this introductory section with a very

brief review of CY-fourfolds X constructed as toric hypersurface fibrations. A detailed

account on this subject can be found in [22].

We consider here elliptically fibered Calabi-Yau manifolds XFi whose elliptic fiber is

realized as the general CY-hypersurface in a 2D toric variety PFi associated to one of the

2D reflexive polyhedra Fi. Here we focus on the polyhedra F11, F13 and F16 in [22], that

naturally yield phenomenologically interesting models. In these cases, the corresponding

toric ambient varieties PFi of the elliptic fiber are blow-ups of P2. The elliptic curves in all

considered cases are consequently given as an appropriate specialization of the general cubic

p = s1u
3 + s2u

2v+ s3uv
2 + s4v

3 + s5u
2w+ s6uvw+ s7v

2w+ s8uw
2 + s9vw

2 + s10w
3 . (2.8)

Here the coefficients si take values in a field K and [u : v : w] are projective coordinates

on P2.

An elliptic fibration XFi with fiber given by (2.8) or specializations thereof is con-

structed by first fibering the toric ambient space PFi over a chosen base B, then impos-

ing (2.8) and finally demanding the CY-condition. In this procedure, the coordinates

[u : v : w] and the coefficients si in (2.8) are lifted to sections of appropriate line bundles

on B. The CY-condition fixes these line bundles to the following:

section Line Bundle

u O(H + S9 + [KB])

v O(H + S9 − S7)

w O(H)

section Line Bundle

s1 OB(3[K−1
B ]− S7 − S9)

s2 OB(2[K−1
B ]− S9)

s3 OB([K−1
B ] + S7 − S9)

s4 OB(2S7 − S9)

s5 OB(2[K−1
B ]− S7)

s6 K−1
B

s7 OB(S7)

s8 OB([K−1
B ] + S9 − S7)

s9 OB(S9)

s10 OB(2S9 − S7)

. (2.9)

Here, O(D) denotes the line bundle associated to a divisor D,6 H is the hyperplane on

P2, [K−1
B ] is the anti-canonical divisor of B and S7, S9 are the divisor classes of s7, s9,

respectively. We note that the table on the right hand side in (2.9) applies for all examples

studied below.

6A subscript indicates the space over which this line bundle is defined, e.g. OB(D) denotes a line bundle

over B. If a subscript is omitted, the line bundle lives on the ambient space of X.
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section Line Bundle

u O(H − E1 − E2 − E4 + S9 + [KB ])

v O(H − E2 − E3 + S9 − S7)

w O(H − E1)

e1 O(E1 − E4)

e2 O(E2 − E3)

e3 O(E3)

e4 O(E4)

Figure 1. The toric diagram of polyhedron F11 and its dual. The zero section is indicated by the

dot. In the accompanying table we indicate the divisor classes of the fiber coordinates.

3 Minimal supersymmetric standard model: GF11 = SU(3) × SU(2) ×
U(1)

In this section we discuss an F-theory compactification on the elliptically fibered CY-

manifold XF11 which yields precisely the gauge group and representation content of the

Minimal Supersymmetric Standard Model (MSSM) [22].

In section 3.1 we elaborate on the basic geometrical properties of XF11 that encode

the gauge symmetry, including the U(1) generator, as well as the matter representations.

While these observations are model independent, we further specialize to the simple base

B = P3. For this specific case we compute the vertical cohomology H
(2,2)
V (XF11) in sec-

tion 3.2. Using these results, we explicitly construct G4-flux consistent with all F-theory

consistency constraints. We compute the induced 4D chiralities of the matter represen-

tations, that we double-check employing 3D CS-terms and M-/F-theory duality. Next in

section 3.3 we discuss 4D anomaly cancelation and the properties of models which exhibit a

complete family structure, in particular the existence of three family models with positive

and integral D3-brane charge and quantized G4-flux. In section 3.4 we conclude with some

comments on the phenomenology of the three family models we found.

The elliptic fibration XF11 has been completely analyzed in [22], to which we refer for

more details on its codimension one, two and three singularities and the corresponding 6D

F-theory compactification. The relevant results are summarized in section 3.1. The reader

less interested in the technical details can directly jump to the 4D chiralities in (3.17) and

the following discussions.

3.1 The geometry of gauge symmetry and particle representations

The elliptic fiber which is used to engineer F-theory models that naturally exhibit the

gauge symmetry of the standard model is given as the CY-hypersurface

pF11 = s1e
2
1e

2
2e3e

4
4u

3 + s2e1e
2
2e

2
3e

2
4u

2v + s3e
2
2e

2
3uv

2 + s5e
2
1e2e

3
4u

2w

+ s6e1e2e3e4uvw + s9e1vw
2

(3.1)

in the toric ambient space PF11 . Its toric data is summarized in figure 1. The divisor classes

in PF11 are H, the hyperplane class of P2, as well as the four exceptional divisors E1, E2,

E3 and E4.
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Representation Locus

(3,2)1/6 V (I(1)) := {s3 = s9 = 0}

(1,2)−1/2 V (I(2)) := {s3 = s2s
2
5 + s1(s1s9 − s5s6) = 0}

(3,1)−2/3 V (I(3)) := {s5 = s9 = 0}

(3,1)1/3 V (I(4)) := {s9 = s3s
2
5 + s6(s1s6 − s2s5) = 0}

(1,1)1 V (I(5)) := {s1 = s5 = 0}

Table 1. Charged matter representations under SU(3) × SU(2) × U(1) and corresponding codi-

mension two loci in XF11
. The charge under the U(1)Y generator is indicated by a subscript.

Next, an elliptically fibered CY-fourfold XF11 with the elliptic fiber (3.1) is constructed

by promoting the coefficients si in the CY-equation to sections of the line bundles of B

given in (2.9). The elliptic fibration of XF11 is equipped with two independent rational

sections

ŝ0 = XF11 ∩ {v = 0} : [1 : 0 : s1 : 1 : 1 : −s5 : 1] ,

ŝ1 = XF11 ∩ {e4 = 0} : [s9 : 1 : 1 : −s3 : 1 : 1 : 0] ,
(3.2)

where we have chosen ŝ0 as the zero section. By computation of the discriminant of the

fibration (3.1), one can check that over the loci SSU(2) = {s3 = 0} and SSU(3) = {s9 = 0}
the fiber degenerates to I2- and I3-fibers giving rise to SU(2) and SU(3) gauge symmetries,

respectively. The Cartan divisors of these gauge groups are

D
SU(2)
1 = [e1] , D

SU(3)
1 = [e2] D

SU(3)
2 = [u] . (3.3)

Having these divisors at hand, one can show that the generator of the U(1) symmetry, that

is the Shioda map of ŝ1, is given by

σ(ŝ1) = S1 − S̃0 + [KB] +
1

2
D

SU(2)
1 +

1

3

(
D

SU(3)
1 + 2D

SU(3)
2

)
. (3.4)

Here, S1 denotes the class of ŝ1 and we used S̃0 = S0 + 1
2 [K−1

B ] [96], where S0 is the

class of ŝ0 and K−1
B denotes the anti-canonical bundle of the base B. The corresponding

Néron-Tate height pairing reads

b11 =
3

2
[K−1

B ]− 1

2
S7 −

1

6
S9 . (3.5)

Furthermore, there are codimension two singularities in the elliptic fibration XF11

which support all matter representations of the Standard Model7 as one can see in table 1.

We note that the second Chern class c2 and the Euler number of XF11 can be computed

base independently [61]. They are needed to check the G4-flux quantization condition (2.1)

7At this stage, over the different codimension two loci, matter comes in vector-like pairs. It is the G4-flux

that induces chiralities for the fields.
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Figure 2. Allowed region for (n7, n9) for the CY-fourfold XF11 with base P3. Orange dots indicate

that all SM representations are present and a G4-flux admitting b families exists.

as well as the cancelation of D3 tadpoles (2.2). We obtain

c2(XF11) = −c2
1 + c2 + c1E2 − c1E3 − 7c1E4 − 7E2

4 + 4c1H + 2c1S7 + 4E1S7

+ E2S7 + E3S7 + 6E4S7 − 4HS7 − c1S9 − 5E1S9 − 3E2S9

− E3S9 + 3HS9 − 3S7S9 + 3S2
9 , (3.6)

χ(XF11) = 3(24c3
1 + 4c1c2 − 16c2

1S7 + 8c1S2
7 − 18c2

1S9

+ 3c1S7S9 − 3S2
7S9 + 6c1S2

9 + S7S2
9 ) , (3.7)

where c1 and c2 denote the first and second Chern class of the base B, respectively. The

divisors S7 and S9 are introduced in (2.9).

For the remainder of this section, we chose the base of the fibration to be B = P3. For

this simple choice of base the only vertical divisor is the pullback of the hyperplane class

P3, which we denote by HB. In this case, we have c1 = 4[HB] and c2 = 6[H2
B] in (3.7).

In addition, we readily expand the divisors S7, S9 in (2.9) needed to specify the fibration

XF11 in terms of HB,

S7 = n7HB , S9 = n9HB , [K−1
B ] = 4HB , (3.8)

where n7 and n9 denote integers. These integers are constrained by requiring effectiveness

of all divisor classes in (2.9), that enter the CY-constraint (3.1). This determines a region

of allowed values for the pair (n7, n9), to which we refer to as the allowed region, as depicted

in figure 2.

3.2 G4-flux and matter chiralities

For the specific base B = P3, the full SR-ideal of the toric ambient space of XF11 is given by8

SRF11 = {ue1, uw, uv, ue3, e4w, e4v, e4e3, e4e2, e1v, e1e3, e1e2, we3, we2, ve2, x0x1x2x3}
(3.9)

8The SR-ideal of the fiber alone can be found in [22].
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where [u, v, w] and the ei, i = 1, . . . , 4, are the projective coordinates on the fiber and xj
(j = 0, 1, 2, 3) are the homogeneous coordinates on the P3 base. A basis for H(1,1)(XF11)

is given by

H(1,1)(XF11) = 〈HB, S̃0, D
SU(2)
1 , D

SU(3)
1 , D

SU(3)
2 , σ(ŝ1)〉 , (3.10)

where we denote, by abuse of notation, divisors and their Poincare dual (1, 1)-forms by the

same symbol.

Next we proceed with the computation of the full vertical cohomology ring of XF11

following [15]. To set up its computation as a quotient ring, we need the SR ideal (3.9),

the basis of divisors (3.8) as well as the intersection numbers,

H3
B · S2

0 = −1 , H3
B · S2

1 = −1 , (3.11)

which follow from the toric intersections in PF11 . The quartic intersections of XF11 can

be readily computed and a canonical basis for H(3,3)(XF11) is obtained by duality to

H(1,1)(XF11). We obtain generators for H
(2,2)
V (XF11) by constructing all possible prod-

ucts of two divisors in H(1,1)(XF11). We evaluate the rank of the inner product on these

generators as

dimH2,2(XF11) = 7 . (3.12)

As a basis for H
(2,2)
V (XF11) we choose the seven elements

H
(2,2)
V (XF11) = 〈(HB)2, HBS̃0, D

SU(2)
1 HB, D

SU(3)
1 HB, D

SU(3)
2 HB, HBσ(ŝ1), S̃2

0〉 .
(3.13)

We can then expand the G4-flux in terms of the this basis. Imposing the condi-

tions (2.6) required by a match of M- and F-theory CS-terms leads to five conditions on

the G4-flux, yielding the following two parameter G4-flux on XF11 :

G4 = a6HB · σ(ŝ1)− a7

[
S̃2

0 + (20n7 − n2
7 + 8n9 − n7n9 − 92)H2

B

]
. (3.14)

Here a6 and a7 are free discrete parameters entering the G4-flux. Their quantization is fixed

by theG4-flux quantization condition (2.1) using the the expression (3.7) for c2(XF11). Solv-

ing flux quantization in general requires the knowledge of the integral basis for H
(2,2)
V (XF11).

Since the determination of the general integral basis is beyond the scope of this work, we

will check G4-flux quantization in dependence on the number of chiral families indirectly

by ensuring an integral and positive number nD3 of D3-branes and quantization of the 3D

CS-terms (2.3). For the detailed discussion, we refer to section 3.3.

In order to compute the 4D matter chiralities we have to compute the homology classes

of the matter surfaces for all representations in table 1. For those codimension two matter

surfaces given as complete intersections in the toric ambient space of XF11 , the homology

classes of the corresponding matter surfaces follow directly from the second column in
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table 1 and the splitting of the fiber (3.1) at the respective locus, cf. [22]. We obtain

Cw(3,2)1/6
= S9 · ([K−1

B ] + S7 − S9) · E4 ,

Cw
(3,1)−2/3

= −S9 · (2[K−1
B ]− S7) · (2H − E2 − E3 − S7 + S9 + [K−1

B ]) ,

Cw(1,1)1
= −(2[K−1

B ]− S7) · (3[K−1
B ]− S7 − S9) · (2H − E1 − E4 + S9) ,

(3.15)

where we have used (2.9). Here, we have chosen a node in the respective fiber at codimen-

sion two that is not intersected by the zero section. The matter surfaces for the two matter

loci supporting the representations (1,2)−1/2 and (3,1)1/3 are not complete intersections.

Their associated prime ideals are computed by a primary decomposition. Their respective

homology classes are obtained by choosing a suitable complete intersection containing a

given matter surface and by subtracting all its other irreducible components with their

corresponding multiplicities as determined by the resultant. We obtain

[Cw(1,2)−1/2
] =

[
(D

SU(2)
1 +D

SU(3)
1 + 2D

SU(3)
2 + 4[K−1

B ] + 3S1 − 2S7) · (6[K−1
B ]− 2S7 − S9)

− 2(2[K−1
B ]− S7) · (3[K−1

B ]− S7 − S9)

+ 2(−2[K−1
B ] + S7) · S9

]
· (S9 − S7 − [K−1

B ]) ,

[Cw
(3,1)1/3

] =
[
2[K−1

B ] · (S7 − 2[K−1
B ]) + (D

SU(2)
1 +D

SU(3)
2 + 2[K−1

B ] + 2S1 − S7)

× (5[K−1
B ]− S7 − S9)

]
· S9 .

(3.16)

Finally, we compute the integrals (2.7) of the G4-flux in (3.14) over the various matter

surfaces in (3.15) and (3.16), yielding the following 4D matter chiralities:

χ(3,2)1/6 =
1

6
(4 + n7 − n9)n9a6 ,

χ(1,2)−1/2
=

1

2
(4 + n7 − n9)((2n7 + n9 − 24)a6 + 4(n7 − 8)(n7 + n9)a7 − 12)

χ(3,1)−2/3
=

1

3
(n7 − 8)n9(2a6 + 3(n7 + n9 − 12)a7) ,

χ(3,1)1/3
= −1

3
n9((n7 + n9 − 20)a6 + 3(n7 − 8)(n7 + n9 − 12)a7) ,

χ(1,1)1 = (n7 − 8)(n7 + n9 − 12)(a6 + (2n7 + n9 − 16)a7) .

(3.17)

As a cross-check of these geometric results, we use the duality between M- and F-theory

in three dimensions and the implied matching of 3D CS-terms [15, 51, 54] to compute the

4D chiralities. For the spectrum in table (1), we compute all nonzero CS-terms on the

F-theory side as

ΘF
m=1,n=1 =

1

2

(
1

6
χ(3,2)1/6 −

1

2
χ(1,2)−1/2

− 4

3
χ(3,1)−2/3

+
1

3
χ(3,1)1/3

+ 3χ(1,1)1

)
,(3.18)

ΘF
i=2,j=2 = 3χ(3,2)1/6 − χ(1,2)−1/2

,

ΘF
i=3,j=3 = 2χ(3,2)1/6 − χ(3,1)−2/3

+ χ(3,1)1/3
,

ΘF
i=3,j=4 = −1

2
(2χ(3,2)1/6 − χ(3,1)−2/3

+ χ(3,1)1/3
) ,

ΘF
i=4,j=4 = 2χ(3,2)1/6 − χ(3,1)−2/3

+ χ(3,1)1/3 ,
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where the label m = 1 corresponds to the divisor of the 4D U(1) gauge fields, i = 2 to the

Cartan divisor D
SU(2)
1 and i = 3, 4 to the Cartan divisors D

SU(3)
1 and D

SU(3)
2 , respectively.

We note that only the SM-singlet has a non-trivial KK-charge, cf. [22]. We readily compute

the CS-terms (2.3) on the M-theory side for the G4-flux (3.14). The matching ΘF
AB

!
= ΘM

AB

precisely reproduces the chiralities in (3.17).

3.3 4D anomaly cancelation and family structure

As an additional cross-check of our computations, we can verify that all 4D anomalies are

canceled by a generalized Green-Schwarz mechanism [97, 98].

For XF11 , we have the following conditions implied by cancelation of the purely

non-Abelian, mixed Abelian-non-Abelian, purely Abelian and mixed Abelian-gravitational

anomalies:

SU(3)3 : −2χ(3,2)1/6 + χ(3,1)−2/3
+ χ(3,1)1/3

= 0 ,

SU(2)2 −U(1) :
1

2

[
3χ(3,2)1/6

(
1

6

)
+ χ(1,2)−1/2

(
−1

2

)]
= −1

8
bαSU(2)Θα,m=1 ,

SU(3)2 −U(1) :
1

2

[
2χ(3,2)1/6

(
1

6

)
+ χ(3,1)−2/3

(
−2

3

)
+ χ(3,1)1/3

(
1

3

)]
= −1

8
bαSU(3)Θα,m=1 ,

U(1)3 :
1

6

[
6χ(3,2)1/6

(
1

6

)3

+ 2χ(1,2)−1/2

(
−1

2

)3

+ 3χ(3,1)−2/3

(
−2

3

)3

+3χ(3,1)1/3

(
1

3

)3

+ χ(1,1)1(1)3

]
= −1

8
bα11Θα,m=1 ,

Grav.2 −U(1) :
1

48

[
6χ(3,2)1/6

(
1

6

)
+ 2χ(1,2)−1/2

(
−1

2

)
+ 3χ(3,1)−2/3

(
−2

3

)
+3χ(3,1)1/3

(
1

3

)
+ χ(1,1)1(1)

]
=

1

32
aαΘα,m=1 .

(3.19)

We recall that the index α runs over base divisors. For P3 we only have α = 1 for the

single vertical divisor HB. The coefficients bα=1
11 , bα=1

SU(2) and bα=1
SU(3) can be computed as

intersections of H2
B with the Néron-Tate height pairing b11 (3.5), and the GUT divisors

SSU(2), SSU(3), respectively. They read, written in terms of the integers n7, n9 introduced

in (3.8), as

bα=1
11 = 6− 1

2
n7 −

1

6
n9 , bα=1

SU(2) = 4 + n7 − n9 , bα=1
SU(3) = n9 . (3.20)

The coefficient aα in (3.19) appearing in the mixed Abelian-gravitational anomaly stems

from expanding KB in terms of the vertical divisors. For this particular case we have

aα=1 = −4, according to (3.8). Finally, the CS-term Θα=1,m=1 for the axion gauging is

given by

Θα=1,m=1 =
1

6
[(−36 + 3n7 + n9)a6 + 6(−8 + n7)(−12 + n7 + n9)a7] , (3.21)
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as we compute using the G4-flux in (3.14) and the general formula (2.3). Using these results

and the chiralities (3.17), we find that all anomalies in relations (3.19) are indeed satisfied.

Regarding the anomalies there are two remarks in order. First, we recall that even

though the pure SU(2) anomaly is trivial, one has to guarantee that the model does not

have a Witten anomaly, i.e. the spectrum of the theory must always exhibit an even number

of doublets [99]. In our case, the Witten anomaly takes the form

3χ(3,2)1/6 + χ(1,2)−1/2
∈ 2Z . (3.22)

Using again the expressions given in (3.17), we see that the Witten anomaly is canceled

only if a6(n7 +n9) is an even number. This is in contrast to the anomalies (3.19), which are

canceled independently of the specific values for n7, n9, a6 and a7. We expect that (3.22) is

automatically obeyed for appropriately quantized G4-flux. For a model exhibiting a family

structure, which is the case of interest in the following, we have χ(3,2)1/6 = χ(1,2)−1/2
for

which (3.22) is trivially satisfied.

Second, for general G4-flux, the axion gauging (3.21) is non-zero, as required by anoma-

lies. This induces a mass-term for the U(1) gauge field of XF11 . As the U(1) in this model

corresponds to the hypercharge U(1)Y, we have to impose that it is massless for the sake

of the phenomenology of our model. For this reason we have to require Θα=1,m=1 = 0,

which reduces (3.14) to a one-parameter G4-flux. In the absence of the axion gauging

all anomalies in (3.19) must vanish identically. Precisely as in the Standard Model, the

cancelation of all anomalies can only be achieved if the chiralities for all fields coincide, i.e.

if the matter fields come in a certain number b of complete families. Written in terms of

this parameter b ≡ χ(3,2)1/6 , the coefficients a6 and a7 take the following form:

a6 =
6b

(4 + n7 − n9)n9
, a7 = − b (3n7 + n9 − 36)

n9 (n7 − 8) (4 + n7 − n9) (n7 + n9 − 12)
. (3.23)

We note that the vanishing of the factors appearing in the denominator of the above

equations define the boundaries of the allowed region for (n7, n9), see figure 2. Recall also

that at some of the boundaries of the allowed region, one of the base divisors supporting

a non-Abelian gauge group disappears. For this reasons, the boundary region has to be

excluded to begin with since there one or more matter curves disappear, leading to a model

unsuited for phenomenological applications.

Using (3.23), we can write the G4-flux (3.14) as a function of b, n7 and n9. In this

parametrization, we check, for every allowed value for (n7, n9), whether there are integral

values of b for which the number nD3 of D3-branes needed to cancel the tadpole (2.2) is a

positive integer, as expected for a smooth CY-fourfold XF11 and appropriately quantized

G4-flux [81]. Additionally, we impose that all CS-terms (2.3) are integral, which is equiva-

lent to G4-flux quantization as discussed in section 2. Without adding additional horizontal

G4-flux, these two conditions impose the lower bounds on the number b of families shown

in table 2 for all values of (n7, n9) in the allowed region and together with the correspond-

ing numbers nD3 of D3-branes. Remarkably, this simple analysis shows that the minimal

value of generations b obeying these constraints is three. We find b = 3 generations with
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n7\n9 1 2 3 4 5 6 7

7 - (27; 16) - -
6 - (12; 81) (21; 42) - -
5 - - (12; 57) (30; 8) - (3; 46)

4 (42; 4) - (30; 32) - - - -
3 - (21; 72) - - - (15; 30)

2 (45; 16) (24; 79) (21; 66) (24; 44) (3; 64)

1 - - - -
0 - - (12; 112)

-1 (36; 91) (33; 74)

-2 -
Table 2. The entries (b, nD3) show the minimal number of families b for which the number nD3

of D3-branes is integral and positive for integral 3D CS-terms. At the allowed points for (n7, n9)

marked as “-” the number of D3-branes is negative for all positive integral values of b.

nD3 = 64 and nD3 = 46 for the two strata with (n7, n9) = (2, 5) and (n7, n9) = (5, 6),

respectively.9

3.4 Phenomenological discussion

The discussion in the previous section shows that only the two models with (n7, n9) =

(2, 5), (5, 6) admit three chiral families, cf. table 2. Note also that b = 3 is the smallest

permitted number of generations. Having found these three family solutions, we proceed

in this section with the discussion of the phenomenology of the model.

We begin by identifying the representations from table 1 with the Standard Model

particles they correspond to:

Qi ūi d̄i Li ēi Hu, Hd

(3,2)1/6 (3,1)−2/3 (3,1)1/3 (1,2)−1/2 (1,1)1 (1,2)±1/2

. (3.24)

Here the index i = 1, 2, 3 labels the families and we use the common notation to de-

note quarks by Qi, ūi and d̄i, leptons by Li and ēi and the two Higgses by Hu and Hd,

respectively.

In XF11 the Higgs fields emerge as a vector-like pair from the same matter curve as the

leptons Li. In order to check geometrically that there is indeed a massless vector-like pair

supported on the corresponding matter curve we need to be able to go beyond the chiral

index and compute the individual numbers of left- and right-chiral fermions for the G4-

flux (3.14). Unfortunately, these techniques are not available as of now, see however [100]

for promising recent advancements in this direction. Thus, we work in the following under

the assumption that the desired vector-like pair is indeed part of the massless spectrum.

9Adding horizontal G4-flux can lower the number of D3-branes further.
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Yukawa Locus

(3,2)1/6 · (3,1)−2/3 · (1,2)−1/2 s3 = s5 = s9 = 0

(3,2)1/6 · (3,1)1/3 · (1,2)−1/2 s3 = s9 = 0 = s1s6 − s2s5

(3,1)−2/3·(3,1)1/3 · (1,1)1 s1 = s5 = s9 = 0

(3,2)1/6 · (3,2)1/6 · (3,1)1/3 s3 = s9 = s6 = 0

(1,2)−1/2 · (1,2)−1/2 · (1,1)1 s1 = s5 = s3 = 0

(3,1)1/3 · (3,1)1/3 · (3,1)−2/3 s5 = s6 = s9

Table 3. Codimension three loci and corresponding Yukawa couplings for XF11
.

Then it would be possible to induce the following bilinear coupling

W ⊂ µHuHd + βiHuLi . (3.25)

These two terms could be generated by tuning the complex structure of our model to

a model with enhanced (non-Abelian or Abelian) gauge symmetry and a SM-singlet 1,

that admits Yukawa couplings with Hu, Hd and Li, respectively. Then if 1 acquires a

VEV, which breaks the enhanced gauge symmetry, the superpotential (3.25) could be

generated. While the µ-term has to be very small in order to be consistent with electroweak

symmetry breaking, the βi terms are lepton violating and hence they must be adequately

suppressed. We note that both these coefficients are moduli dependent functions, that

cannot be computed by known techniques. However, we expect that in a sufficiently generic

geometry the moduli of XF11 allow for appropriate tunings providing a phenomenologically

viable scenario. At this point, we must remark that the geometry of XF11 offers no obvious

way by which we could assign a quantum number to forbid the µ-term or the βi terms.

Regarding the trilinear couplings we note that it was shown in [22] that all gauge in-

variant trilinear couplings are realized geometrically, see table 3. Thus, all MSSM Yukawas

are geometrically allowed, giving rise to the superpotential terms

W ⊂ Y u
i,jQiujHu + Y d

i,jQidjHd + Y L
i,jeiLjHd . (3.26)

Since all three copies of each SM field live on the same matter curve, it is expected that the

hierarchies in the Yukawas are generated in a similar fashion as in most SU(5) F-theory

GUTs, where the Yukawa matrix has rank one, so that the geometrical coupling gives

the mass for the heavy generation while the lighter ones pick their masses from instanton

contributions [101–103]

Note also that since we cannot distinguish between Hd and Li, the following dimension

four proton decay operators are also geometrically allowed

W ⊂λ(0)
i,j,kQidjLk + λ

(1)
i,j,keiLjLk + λ

(2)
i,j,kuidjdk . (3.27)

Here the coupling λ(2) can only be suppressed by appropriate tunings of moduli. How-

ever, this is not possible for λ(0), λ(1) as their geometric origin is the same as that of the
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section Line Bundle

u O(H − E1 − E2 − E5 + S9 + [KB ])

v O(H − E2 − E3 − E4 + S9 − S7)

w O(H − E1)

e1 O(E1 − E5)

e2 O(E2 − E3)

e3 O(E3 − E4)

e4 O(E4)

e5 O(E5)

Figure 3. The toric diagram of polyhedron F13 and its dual. The zero section is indicated by the

dot. In the accompanying table we indicate the divisor classes of the fiber coordinates.

Yukawa couplings (3.26). It then seems very challenging to suppress them to orders of

λ ≤ 10−10 [104], while keeping the Yukawa couplings at values of about 0.1.

4 Pati-Salam model: GF13 = (SU(4) × SU(2)2)/Z2

The fibration XF13 has been shown to exhibit the gauge symmetry and matter representa-

tion of the Pati-Salam (PS) model [22]. In section 4.1 we review the geometrical properties

of XF13 . In section 4.2 we explicitly construct G4-flux for the base B = P3. There we

also compute the homology class of all matter surfaces and the 4D chiralities for all matter

representations. We also determine the minimal number of generations which allow for D3-

brane tadpole cancelation and integral G4-flux. Finally, the phenomenology of F-theoretic

PS-models with three generations and their Higgsing down to the MSSM are described in

section 4.3.

Readers directly interested in the 4D chiralities and phenomenological aspects of the

models can directly jump to (4.14) and the following discussions.

4.1 The geometry of gauge group and matter representations

The elliptic fiber which is yields F-theory models that naturally give rise to the gauge

group and charge pattern needed for models of Pati-Salam (PS) unification is given by the

following CY-hypersurface

pF13 = s1e
2
1e

2
2e3e

4
5u

3 + s2e1e
2
2e

2
3e

2
4e

2
5u

2v + s3e
2
2e

3
3e

4
4uv

2 + s6e1e2e3e4e5uvw + s9e1vw
2 ,

(4.1)

defined in the toric ambient space PF13 . The toric diagram of the ambient space as well as

the divisor classes of the fiber coordinates are summarized in figure 3, where as before H

is the hyperplane on P2 and Ei, i = 1, . . . , 5, denote the exceptional divisors.

The elliptically fibered Calabi-Yau fourfold XF13 is constructed by promoting the co-

efficients si to sections of the line bundles over the base B given in (2.9). The elliptic

fibration of XF11 is equipped with a zero section given by

ŝ0 = XF13 ∩ {e4 = 0} : [1 : s1 : 1 : 1 : 1 : −s9 : 0 : 1] . (4.2)
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Representation Locus

(1,2,2) V (I(1)) := {s1 = s3 = 0}
(4,2,1) V (I(2)) := {s1 = s9 = 0}
(4,1,2) V (I(3)) := {s3 = s9 = 0}
(6,1,1) V (I(4)) := {s6 = s9 = 0}

Table 4. Charged matter representations under (SU(4) × SU(2)
2
)/Z2 and their associated codi-

mension two loci on XF13
.

Furthermore, the elliptic fibration admits a section of order two, giving rise to Z2 Mordell-

Weil group [22, 62]. In addition, one can see by computing the discriminant that over the

locus SSU(4) = {s9 = 0} the fiber degenerates to an I4-fiber. The corresponding Cartan

divisors of the resulting SU(4) gauge symmetry are given by

D
SU(4)
1 = [s9]− [u]− [e2]− [e3] , D

SU(4)
2 = [u] , D

SU(4)
3 = [e2] . (4.3)

Similarly, at the loci SSU(2)1
= {s1 = 0} and SSU(2)2

= {s3 = 0} we obtain I2-fibers. The

resulting two SU(2) factors have the following associated Cartan divisors:

D
SU(2)1
1 = [s1]− [v] , D

SU(2)2
1 = [e1] . (4.4)

The codimension two loci where the singularities of the fibration enhance, correspond-

ing to the presence of matter fields, are given in table 4. We readily observe that the

codimension two loci of XF13 support the matter representations characteristic for the

Pati-Salam model. Similar as in section 3.1 we provide base independent expressions for

the second Chern class as well as the Euler number of XF13 , which are needed for G4-flux

quantization and D3-brane tadpoles. We obtain

c2(XF13) = −c2
1 + c2 − 6c1E1 − 6E2

1 − 2c1E3 − 2E2
4 + 4c1H + c1S7 + 9E1S7 + E2S7

+ E3S7 − E4S7 − E5S7 − 3HS7 − 4E1S9 − 2E2S9 + 2HS9

− 2S7S9 + 2S2
9 ,

(4.5)

χ(XF13) = 12(6c3
1 + c1c2 − 4c2

1S7 + 2c1S2
7 − 6c2

1S9 + 2c1S7S9 − S2
7S9 + 2c1S2

9 ) , (4.6)

where, as before, c1 and c2 denote the first and second Chern class of the base B, respec-

tively, and the divisors S7 and S9 are introduced in (2.9).

Again, we fix the base of the fibration to be B = P3 for the remainder of this section.

We expand the divisor S7, S9 and the anti-canonical class [K−1
B ] w.r.t. HB as in 3.8.

Demanding effectiveness of all sections in (2.9) entering the CY-constraint (4.1), we find

the allowed values for the pair (n7, n9) depicted in figure 4.

4.2 G4-flux and chiral generations

For the base B = P3, the SR-ideal of the toric ambient space of the fourfold XF13 is given by

SRF13 = {ue1, uw, uv, ue4, ue3, e5w, e5v, e5e4, e5e3, e5e2, e1v, e1e4, e1e3, e1e2,

we4, we3, we2, ve3, ve2, e4e2, x0x1x2x3} ,
(4.7)
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2 4 6 8
n9

5

10

n7

Figure 4. Allowed region of (n7, n9) for the CY-fourfold XF13 with B = P3. For points in orange,

all representations of the PS-model are present and a G4-flux admitting b families exists.

where, again, [u, v, w] and the ei, i = 1, . . . , 5, are the projective coordinates on the fiber

and xj (j = 0, 1, 2, 3) are the homogeneous coordinates on the P3 base. As a basis of

H1,1(XF13) we choose the hyperplane HB, the zero section and the five Cartan divisors,

H(1,1)(XF13) = 〈HB, S0, D
SU(2)1
1 , D

SU(2)2
1 , D

SU(4)
1 , D

SU(4)
2 , D

SU(4)
3 〉 , (4.8)

where, as before, the divisors and their dual (1, 1)-forms are denoted by the same symbol.

Here, S0 is the class of ŝ0.

For the computation of the vertical cohomology ring of XF13 we use the SR-ideal (4.7),

the basis (4.8) as well as the following intersections,

H3
B · S2

0 = −1 , H3
B ·
(
D

SU(2)2
1

)2
= −2 , H3

B ·
(
D

SU(4)
3

)2
= −2 , (4.9)

which follow from intersections in PF13 . We readily obtain the quartic intersections of XF13

and the basis of H(3,3)(XF13) is canonically determined by (4.8). Considering all products

of two divisors in H(1,1)(XF13), we obtain generators for H
(2,2)
V (XF13). The rank of their

inner product matrix reveals that

dimH
(2,2)
V (XF13) = 8 . (4.10)

We choose the following eight-dimensional basis for H
(2,2)
V (XF13):

H
(2,2)
V (XF13) = 〈H2

B, HBS0, HBD
SU(2)1
1 , HBD

SU(2)2
1 , HBD

SU(4)
1 , HBD

SU(4)
2 , HBD

SU(4)
3 , S2

0〉 .
(4.11)

Next, we make an ansatz for the G4-flux in terms of this basis. Following the description

in section 2 we impose the condition (2.6). We find seven conditions on the G4-flux which

leaves us with the following one parameter flux:

G4 = −a8

[
S2

0 +HB ·
(

4S0 + (12n9 − n7n9 − n2
9)HB −

1

2
n9D

SU(2)1
1

+
1

4
(n7 + n9 − 12)(3D

SU(4)
1 + 2D

SU(4)
2 +D

SU(4)
3 )

)]
.

(4.12)
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Here a8 is a free discrete parameter, whose quantization is determined by G4-flux quanti-

zation. As in section 3 we will address G4-flux quantization indirectly in dependence on

the number of chiral families by ensuring an integral and positive number nD3 of D3-branes

and quantization of 3D CS-terms (2.3). We present the findings of this analysis below.

As a next step, we need the homology classes of all matter surfaces for the represen-

tations in table 4. Two of the matter surfaces are given as complete intersections in the

toric ambient space XF13 . Their homology classes are given by

Cw(4,2,1) = S9 · (3[K−1
B ]− S7 − S9) · (H + [K−1

B ]) , Cw(4,1,2) = S9([K−1
B ] + S7 − S9)E5 ,

(4.13)

where we chose those nodes which are not intersected by the zero section. These matter

surfaces lead to the following chiralities

χ(4,2,1) = −χ(4,1,2) =
1

4
n9 (4 + n7 − n9) (n7 + n9 − 12) a8 . (4.14)

We note that the representations (1,2,2) and (6,1,1) (see table 4) are real represen-

tations. Therefore, their chiralities (2.7) are zero by definition. This is manifested in the

geometry of XF13 by the fact that the fiber at the corresponding codimension two loci is

non-split [22], so that precisely the nodes carrying the weights of the respective representa-

tion are interchanged by codimension three monodromies. This implies that the integral of

the G4-flux over the matter surfaces associated to one note is equal to the integral over the

matter surface associated to the other node. However, as the sum of the weights of the two

nodes has to equal a root of the gauge group, the two integrals add up to zero, see (2.6),

and we get zero chirality. It is important to stress that this does not necessarily mean that

there are no massless fields transforming under real representations, in F-theory. Indeed,

there can be vector-like fields in the theory, which are counted by the number n(R) of

individual Weyl fermions. For the above reasons, however, the multiplicity of fermions in

real representations is not accessible by the methods described in this work. It would be

interesting to develop methods based on those introduced in [100] to compute the number

n(R) for real representations explicitly.

We note that according to (4.14), the chiralities of the two complex representations

(4,2,1) and (4,1,2) are equal up to a sign, which guarantees the cancelation of the cubic

SU(4) anomaly.10 Thus, the number b of chiral generations coincides with the chirality

of one of these two representations, i.e. we set b = χ(4,2,1). This allows us to express the

parameter a8 in the G4-flux in (4.12) as

a8 =
4b

n9 (n9 − n7 − 4) (12− n7 − n9)
. (4.15)

We note again that those values for (n7, n9), for which the denominator vanishes, are ex-

cluded by the requirement to keep all non-Abelian gauge factors and to have non-vanishing

10Note that the cubic SU(4) anomaly, together with the Witten anomaly of the SU(2) factors are the only

anomalies to check in this model. One can also see that the cancelation of the SU(4) anomaly guarantees

that the Witten anomaly cancels as well.
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n7\n9 1 2 3 4 5 6 7

10 (13; 204)

9 - (11; 140)

8 (33; 94) (10; 119) (9; 90)

7 - (9; 100) (6; 77) (14; 48)

6 (15; 108) (8; 86) (21; 52) (12; 46) (5; 44)

5 (6; 106) (35; 44) - (30; 16) - (3; 44)

4 (7; 102) (6; 75) (15; 50) (8; 42) (15; 30) (6; 41) (7; 42)

3 (6; 106) (35; 44) - (30; 16) - (3; 44)

2 (15; 108) (8; 86) (21; 52) (12; 46) (5; 44)

1 - (9; 100) (6; 77) (14; 48)

0 (33; 94) (10; 119) (9; 90)

-1 - (11; 140)

-2 (13; 204)

Table 5. The entries (b;nD3) show the minimal number of families b for which the number of D3

branes nD3 is integral and positive for integral 3D CS terms. At the points marked with “-” the

number of D3 branes is negative for all positive integral values of b.

chiralities (4.14). Thus, we are restricted to the interior (orange dots) of the allowed region

for the fibration over P3 in figure 4.

As in section 3.3, we parametrize the G4-flux in terms of the integral number b in (4.15)

of families. In this parametrization we evaluate the D3-brane tadpole (2.2) and require

integral, positive nD3 and integral CS-terms (2.3). Without further horizontal G4-flux,

this yields the lower bounds on the number b in dependence of (n7, n9) shown in table 5,

where also the corresponding numbers nD3 of D3-branes are displayed. We find that three

families are possible at two values for n7 and n9. Again, we find that in the context of this

simple analysis three is the minimal number b of families compatible with the D3-brane

tadpole (2.2). We also note that table 5 has inherited the symmetries of the polyhedron F14.

We conclude by noting that we double-check the chiralities in (4.14) using the match-

ing (2.5) of CS-terms. The real representations in table 4 do not contribute to the loop-

corrections in (2.4). We obtain the non-vanishing CS-terms

ΘF
i,i = −2χ4,1,2 (i = 1, . . . , 5) , ΘF

i=3,j=4 = ΘF
i=4,j=5 = −χ4,1,2 , (4.16)

where the indices label the five Cartan divisor {DSU(2)1
1 , D

SU(2)2
1 , D

SU(4)
1 , D

SU(4)
2 , D

SU(4)
3 }i.

Equating this with the CS-terms (2.3) on the M-theory side we readily reproduces (4.14).

4.3 Phenomenological discussion

In table 5 we find only two models with (n7, n9) = (5, 6), (3, 6) that allow for three chiral

Pati-Salam families. As in the standard model we see that three is the minimum allowed

number of generations. These two models are equivalent under the reflection along the

– 22 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
7

(4, n9) line, which reflects the invariance of the theory under exchange of the two SU(2)

gauge groups.

The Higgs transition from XF13 to XF11 has been considered for the six dimensional

case [22]. However, some of the observations made there immediately carry over to four

dimensions. Similar to the 6D case, the transition happens due to a toric blow-down in the

ambient space of the elliptic fiber of XF13 . In this case we see that blowing down either e4

or e5 in figure 3 leads to the toric diagram of F11 in figure 1. These two transitions are

equivalent up to redefinitions of the coordinates on the fiber, and for this reason we focus

only on the blow down of e4 which leads to F11 in its canonical form.

There are some subtleties that have to be discussed before proceeding with the detailed

discussion of the Higgsings. First, we note that the blow-down process requires a restriction

of the allowed region in figure 4 for XF13 because the section s5 has to be effective, which is

present in the CY-equation (3.1) for XF11 , but not in the one (4.1) for XF13 . This reduction

amounts to excluding only two models below the (8, n9) line in table 9. To understand

from an effective field theory point view, why the Higgsing is not possible for these two

models is elusive. We recall that in the six dimensional case, the exclusion of certain points

in the allowed region for (n7, n9) is explained from the field theory point of view by the fact

that these models lack a sufficient number of Higgses for carrying out a D-flat Higgsing.

In four dimensions one expects the same to occur. However, here the Higgses are pairs of

vector-like fields and due to our lack of control over this sector of the theory, we can not

verify this statement at this point.

Second, we also note that while in XF11 certain points in table 2 do not permit a family

structure, in XF13 some of these points do allow for a certain number of families. Since the

net chirality is preserved by Higgsings, it remains the question of why it is not possible to

have the Higgsed models from XF13 as consistent tadpole canceling solutions11 in XF11 . It

is expected that this seeming contradiction can be resolved by the inclusion of horizontal

G4-flux. For example, it has been argued in [62, 85], at least in simple situations, that

horizontal G4-flux exists that compensates for the change of the Euler number of a CY-

fourfold in an extremal transition. Adding this G4-flux to F-theory on XF11 , its D3-brane

tadpole (2.2) becomes effectively identical to that on XF13 and we expect that our search

strategy for three family models on both XF11 and XF13 will be consistent with the Higgs

effect relating their effective actions.

In the following, we consider the special point (n7, n9) = (5, 6) which has three as

the smallest number of families both in XF11 and XF13 . Therefore, the toric Higgsing is

possible without the necessity of adding further G4-flux.12 We discuss the field theoretical

Higgsing in more detail and make some remarks about the phenomenology of this three-

family model.

11A logically possible explanation is again the absence of enough Higgs fields for performing the transition

to begin with, which can not be tested with the tools at hand. The analysis of the vector-like spectrum

using e.g. techniques available at weak coupling is beyond the scope of this work.
12Note that the point (n7, n9) = (2, 5) allows for three families in XF11 , while in XF13 the smallest number

is five. Hence, based on these simple arguments the Higgsing is not possible without discussing horizontal

G4-flux.
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Name Representation SM decomposition

PS Higgs 1× (4,1,2)H1 → d̄H : (3,1) 1
3
, ūH : (3,1)− 2

3
, ēH : (1,1)1, ν̄H : (1,1)0

PS Higgs 1× (4,1,2)H2 → dH : (3,1)− 1
3
, uH : (3,1) 2

3
, eH : (1,1)−1, νH : (1,1)0

Exotic 1× (6,1,1) → D̄ : (3,1) 1
3
, D : (3,1)− 1

3

SM Higgs 1× (1,2,2)H → Hu : (1,2)1/2, Hd : (1,2)− 1
2

SM Matter 3× (4,2,1)M → Qi : (3,2) 1
6
, Li : (1,2)− 1

2

SM Matter 3× (4,1,2)M → d : (3,1) 1
3
, u : (3,1)− 2

3
, e : (1,1)1, ν̄ : (1,1)0

Table 6. The Pati-Salam matter content and its decomposition into standard model fields. The

MSSM spectrum originates purely from the PS representations of the last three rows, which also

provide candidates for right handed neutrinos ν. The representation in the first three rows are the

Pati-Salam Higgses and the sextet needed to decouple exotic triplets.

On the field theory side the Higgsing is triggered by a VEV in the (4,1,2) representa-

tion at the locus s3 = s9 = 0. A supersymmetric Higgsing requires at least one vector-like

pair of fields in the representation (4,1,2) in addition to the three chiral families. How-

ever, as mentioned already, we can not determine the massless vector-like spectrum with

the techniques presented in section 2. Therefore, we work under the assumption that this

vector-like pair of Higgs fields is indeed part of the spectrum. In table 6 we summarize

the desired spectrum of the PS-model and its decomposition in terms of representations

under the SM gauge group. In addition to the three chiral pairs (4,1,2)M , (4,2,1)M ,

we require the presence of a light vector-like pair (4,1,2)H1 and (4,1,2)H2 to serve as

the PS-Higgses, whose neutral components develop VEVs 〈H1〉 = 〈H2〉. In this type of

breaking the hypercharge generator of the SM corresponds to the combination

QY =
2√
6
T 15

4 − T 3
2 (4.17)

of the broken Cartans T 15
4 = 1

2
√

6
diag(1, 1, 1,−3) in SU(4) and T 3

2 = σ3

2 in SU(2). Note

also that in addition to these fields, we also expect a sextet and a bidoublet to be part of

the massless spectrum.13 From the bidoublet (1,2,2)H we get the SM-Higgses and from

the (6,1,1) we get a pair of color triplets which serve to decouple some otherwise massless

fields arising from the PS-Higgs multiplet [105].

Regarding the decomposition of the Higgs fields H1 and H2 in table 6, we note that

the fields ūH , uH , ēH , eH are removed from the massless spectrum as half of them become

the longitudinal modes of the massive bosons of the broken SU(4) × SU(2) and the other

half become massive Higgs bosons [106]. Therefore one only has to care about the lifting

of the states d̄H and dH . For that purpose we use the exotic (6,1,1). In table 7 we present

the geometrically allowed Yukawa couplings in XF13 . Writing the couplings involving the

13We recall again that the presence of real representations and of a single vector-like pair of PS-Higgses

is just introduced as an optimistic possibility in our discussion. It is to be seen if the hypersurface fibration

over P3 actually allows for these desired fields.
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Yukawa Locus

(1,2,2) · (4,2,1) · (4,1,2) s1 = s3 = s9 = 0

(6,1,1) · (4,2,1) · (4,2,1) s1 = s6 = s9 = 0

(6,1,1) · (4,1,2) · (4,1,2) s3 = s6 = s9 = 0

Table 7. Codimension three loci and corresponding Yukawa couplings for XF13
.

sextet and the Higgses and decomposing them into SM representations we find

〈H1〉d̄HD + 〈H2〉D̄dH ⊂ (6,1,1) · (4,1,2)2
H1 + (6,1,1) · (4,1,2)2

H2 . (4.18)

With these couplings, the masses of all exotics can be pushed towards the grand unification

scale ΛPS.

For the real representations we generically expect the following field theoretical bilin-

ears in the superpotential

W ⊃M2(1,2,2)H · (1,2,2)H +M6(6,1,1) · (6,1,1) . (4.19)

Similar to the bilinear couplings (3.25) in the SM, these terms are expected to be generated

by a VEV of a PS-singlet, that can be made visible by tuning the complex structure

of XF13 .14 Thus, the masses M2 and M6 are expected to be generically above the PS

unification scale. However, after decomposing the bidoublets in terms of the SM gauge

group, we see that the mass M2 is related to the mass coefficient in front of the bilinear

HuHd in (3.25). Therefore, some fine tuning is needed in order to guarantee that the µ

term is small enough. Similarly, the coupling M6 enforces a kind of see-saw mechanism for

the triplets dH and D. The lowest mass eigenstate would have a mass of the order Λ2
PS/M6.

Hence, we have to guarantee that M6 is not too far beyond the PS scale as otherwise the

exotic masses will be pushed towards observable mass scales. Therefore, we have to rely

on the possibility that certain points in the complex structure moduli space of XF13 allow

for a configuration in which both M2 and M6 are sufficiently small.

The Yukawa couplings for the SM fields are also generated geometrically as one can

see from table 7. Indeed, we have the couplings

W ⊃ (1,2,2)H · (4,2,1)M,i · (4,1,2)M,j . (4.20)

Since both up-and down-type Yukawas arise from the same Yukawa point, the masses for

up and down type quarks coincide at the PS-scale. The observed mass splitting is then

due to the RG-running of the masses to the infrared. Again, since all matter fields of the

same type arise from the same matter curve, the rank of the Yukawa matrix is expected

to be one, with the lighter families picking their masses from instanton effects.

We conclude with a final important remark about the Pati-Salam model. We note

that Higgses and leptons arise from different representations of the PS-group, which is

14In fact, we can confirm, that there are codimension three components in the matter curves of the real

representations of the PS-model, that could geometrically support the couplings (4.19).
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section Divisor class

u O(H − E1 − E2 + S9 + [KB ])

v O(H − E2 − E3 − E6 + S9 − S7)

w O(H − E1 − E4 − E5)

e1 O(E1 − E4)

e2 O(E2 − E3)

e3 O(E3 − E6)

e4 O(E4 − E5)

e5 O(E5)

e6 O(E6)

Figure 5. The toric diagram of polyhedron F16 and its dual. The zero section is indicated by the

dot. In the accompanying table we indicate the divisor classes of the fiber coordinates.

in contrast to GUT schemes such based on SO(10) or SU(5). This has the advantage

that in PS-models, there is no Yukawa coupling which induces the dimension four proton

decay operators (3.27), which are only generated below ΛPS after integrating out the heavy

triplets. Therefore, these couplings are suppressed by a factor ΛPS/M6. The dimension

five proton decay operators are generated in a similar fashion. To see this in more detail

let us consider the couplings of the SM fields to the exotic sextet

(6,1,1)(4,1,2)M,i(4,1,2)M,j ⊃ D̄d̄iūj +Dd̄iνj +Dūiēj ,

(6,1,1)(4,2,1)M,i(4,2,1)M,j ⊃ D̄QiLj +DQiQj .
(4.21)

Upon integration of the exotic states D, D̄ we obtain the effective five operators,

QiQjQkLm +QiLj ūkēi + d̄iūj ūkēm (4.22)

all of which are suppressed by a factor (1/M2
6 ).

5 Trinification model: GF16 = (SU(3)3)/Z3

The last type of models we consider are F-theory compactifications on XF16 , which exhibit

the gauge group of Trinification as well as its characteristic bitriplet spectrum. The ge-

ometrical information relevant for the discussion of the matter and gauge content of the

theory is provided in section 5.1. The construction of the G4-flux for this models and

the induced 4D matter chiralities is discussed in section 5.2. There we also determine the

smallest allowed numbers of families for all of the allowed strata in moduli space. Finally,

in section 5.3 we focus on a particular model which allows for three generations. We de-

scribe the Higgsings to the F-theoretic SM obtained from XF11 , both on the geometry and

field theory sides, and comment on the phenomenology of the model.

Readers directly interested in the 4D matter chiralities and the subsequent phenomeno-

logical discussion can start reading at (5.13).

5.1 The geometry of gauge group and matter representations

The elliptic fiber used for an F-theoretic realization of the Trinification model is a toric

CY-hypersurface in the toric ambient space PF16 given by

pF16 = s1e
2
1e

2
2e3e4u

3 + s6e1e2e3e4e5e6uvw + s7e2e
2
3e

3
6v

2w + s9e1e
2
4e

3
5vw

2 . (5.1)
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Representation Locus

(3,3,1) V (I(1)) := {s1 = s7 = 0}
(3,1,3) V (I(2)) := {s1 = s9 = 0}
(1,3,3) V (I(3)) := {s7 = s9 = 0}

Table 8. Charged matter representations under SU(3)
3
/Z3 and corresponding codimension two

loci in XF16 .

The relevant toric data is provided in figure 5. The divisor classes on the fiber are the

hyperplane H and the exceptional divisors E1 to E5.

In constructing elliptic fibrations XF16 with the curve (5.1) we promote the coefficients

si to sections of the line bundles over the base B given in (2.9). The elliptic fibration of

XF16 exhibits three toric sections with two torsional relations among them, so that the

Mordell-Weil group of the fibration is Z3 [22, 62]. The fibration admits a zero section that

we choose as

ŝ0 = XF16 ∩ {u = 0} : [0 : 1 : 1 : s7 : −s9 : 1 : 1 : 1 : 1] . (5.2)

As can be seen by inspecting the Weierstrass model of XF16 , there are three codimension one

loci over which the fiber becomes singular, namely SSU(3)1 = {s1 = 0}, SSU(3)2 = {s7 = 0}
and SSU(3)3 = {s9 = 0}. The fiber degenerates to I3 over these three divisors, giving rise to

gauge group SU(3)3/Z3 which is characteristic of the Trinification model. The MW-torsion

Z3 acts simultaneous on the centers of the SU(3) factors. The Cartan divisors for the three

SU(3) factors read

D
SU(3)1
1 = [v] , D

SU(3)1
2 = [w] ,

D
SU(3)2
1 = [e4] , D

SU(3)2
2 = [s7]− [e1]− [e4] , (5.3)

D
SU(3)3
1 = [e3] , D

SU(3)3
2 = [s9]− [e2]− [e3] .

At codimension two we find three loci in B, over which the singularity type of the

elliptic fibration enhances and bifundamental matter is supported,15 see table 8.

We complete the base independent analysis of XF16 with the computation of its second

Chern Class as well as its Euler number. Using the methods of [61], we obtain

c2(XF16) = −c2
1 + c2 − 7c1E1 + 2c1E2 − 9E2

4 − 2c1E5 − 2c1E6 + 4c1H + 3c1S7

+ 5E1S7 + E2S7 + E3S7 + 7E4S7 + E6S7 − 5HS7 − 2c1S9 + E1S9

− 4E2S9 − 2E3S9 − 8E4S9 + E5S9 + 4HS9 − 4S7S9 + 4S2
9 ,

(5.4)

χ(XF16) = 3(24c3
1 + 4c1c2 − 24c2

1S7 + 8c1S2
7 − 24c2

1S9 + 17c1S7S9

− 3S2
7S9 + 8c1S2

9 − 3S7S2
9 ) ,

(5.5)

15The effect of the Z3 torsion is manifest at codimension two as the only representations which are

manifest are singlets under torsion.
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Figure 6. The allowed region (n7, n9) for the CY-fourfold XF16 for all points that are not on the

boundary (orange) allow for b families in the Trinification model.

where, as before, c1 and c2 denoted the first and second Chern class of B, respectively.

Next we choose the base B = P3 and expand the divisors S7 and S9 in terms of

the pullback of the hyperplane class HB, cf. (3.8). Then we use conditions implied by

effectiveness of the section si in (2.9), that enter the CY-equation (5.1), to obtain the

allowed region for the pair (n7, n9). It is depicted in figure 6.

5.2 G4-flux and chiralities

For the specific base P3, the full SR-ideal of the ambient space of the CY-fourfold XF16 reads

SR = {ue4, ue5, uw, uv, ue6, ue3, e1e5, e1w, e1v, e1e6, e1e3, e1e2, e4w, e4v, e4e6,

e4e3, e4e2, e5v, e5e6, e5e3, e5e2, we6, we3, we2, ve3, ve2, e6e2, x0x1x2x3} .
(5.6)

Here [u : v : w] and the ei, i = 1 . . . , 5 are the homogeneous coordinates on PF16 and xj ,

j = 0, . . . , 3, denote homogeneous coordinates on P3. As a basis for H(1,1)(XF16) we choose

H(1,1)(XF16) = 〈HB, S0, D
SU(3)1
1 , D

SU(3)1
2 , D

SU(3)2
1 , D

SU(3)2
2 , D

SU(3)3
1 , D

SU(3)3
2 〉 . (5.7)

Next, we compute the vertical cohomology ring of XF16 as described in section 2 as

a quotient ring using the SR-ideal (5.6) together with the following intersection numbers,

that descend from the toric intersections in PF16 :

H3
B · S2

0 = −1, H3
B · (D

SU(3)1
2 )2 = −2 ,

H3
B · (D

SU(3)2
2 )2 = −2, H3

B · (D
SU(3)3
2 )2 = −2 .

(5.8)

With this information at hand we can obtain all quartic intersections in XF16 . The dimen-

sion of H
(2,2)
V (XF16) is found after taking all possible products of two elements in H(1,1)

and evaluating the rank of their inner product matrix, yielding

dim(H
(2,2)
V (XF16)) = 9 . (5.9)
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As a basis for H
(2,2)
V (XF16) we choose

H
(2,2)
V (XF16) = 〈H2

B, HBS0, D
SU(3)1
1 HB, D

SU(3)1
2 HB, D

SU(3)2
1 HB, D

SU(3)2
2 HB,

D
SU(3)3
1 HB, D

SU(3)3
2 HB, S

2
0〉 ,

(5.10)

which we use to make an ansatz for the most general G4-flux. Since the G4-flux must be

consistent with the matching of M- and F-theoretical CS terms, we have to impose the

constraints (2.6), which amount to eight independent constrains. We are left with the

following one parameter G4-flux:

G4 = a9

[
− 1

3
HB · (n7D

SU(3)3
1 + 2n7D

SU(3)3
2 + n9D

SU(3)2
1 + 2n9D

SU(3)2
2 )

+ n7n9H
2
B + 4HB · S0 + S2

0

]
.

(5.11)

The parameter a9 must be consistently quantized so that the G4-flux quantization condi-

tion (2.1) with c2(XF16) as given in (5.4) is obeyed. Again, we ensure the quantization

indirectly by choosing a9 so that the number nD3 is a positive integer and that all 3D

CS-terms (2.3) are integral. This issue is discussed below.

As a first step towards the computation of the 4D matter chiralities we provide the

homology classes for the matter surfaces. Using the results from table 8, they read

Cw
(3,3,1)

= S7(3[K−1
B ]− S7 − S9)(H − E1 + S9) ,

Cw
(3,1,3)

= S9(3[K−1
B ]− S7 − S9)(H − E2 + S9) ,

Cw
(1,3,3)

= S7S9(2H − E1 − E2 − E3 − E4 +K−1
B ]− S7 + S9) ,

(5.12)

where for each matter surface we have chosen a node in the fiber at codimension two

with weight w of the respective representation which is not intersected by the zero sec-

tion. Integrating the G4-flux over the surfaces (5.12) leads according to (2.7) the following

chiral indices:

χ(3,3,1) = χ(3,1,3) = χ(1,3,3) =
1

3
n7n9(−12 + n7 + n9)a9 . (5.13)

Note that all chiralities are equal, as expected in order for the cubic SU(3) anomalies to

cancel. We also emphasize that at the boundary of the allowed region (see figure 6) we can

not have a chiral theory, as all chiralities (5.13) vanish there.

As before, we express the parameter a9 in terms of the number of families b ≡ χ(3,3,1) as

a9 =
3b

n7n9 (−12 + n7 + n9)
. (5.14)

For all allowed values of (n7, n9), we explore which positive integral values for b lead to a

canceled D3-brane tadpole with a positive integral number nD3 of D3-branes without adding

horizontal G4-flux. As shown in table 6, we find that for three families (b = 3), which is also

the minimal value of families, the D3-brane tadpole is canceled at nine different values for
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n7\n9 1 2 3 4 5 6 7 8 9 10

10 (5; 120)

9 (3; 94) (3; 94)

8 (4; 72) (8; 69) (4; 72)

7 (14; 48) (7; 54) (7; 54) (14; 48)

6 (5; 50) (8; 44) (3; 44) (8; 44) (5; 50)

5 (5; 50) (5; 42) (10; 36) (10; 36) (5; 42) (5; 50)

4 (14; 48) (8; 44) (10; 36) (16; 30) (10; 36) (8; 44) (14; 48)

3 (4; 72) (7; 54) (3; 44) (10; 36) (10; 36) (3; 44) (7; 54) (4; 72)

2 (3; 94) (8; 69) (7; 54) (8; 44) (5; 42) (8; 44) (7; 54) (8; 69) (3; 94)

1 (5; 120) (3; 94) (4; 72) (14; 48) (5; 50) (5; 50) (14; 48) (4; 72) (3; 94) (5; 120)

Table 9. The entries (b;nD3) show the minimal number of families b for which the number of D3

branes nD3 is integral and the 3D CS-terms are quantized.

(n7, n9). We have also checked for the three-family models, that all 3D CS-terms (2.3) are

integral. We observe that table 6 is symmetric as expected by the symmetries of polyhedron

F16 and that there is a family structure for every allowed value of (n7, n9).

As a cross-check of our results (5.13) we verify the matching (2.5) of CS-terms in F-

and M-theory. The non-vanishing CS-terms on the F-theory side computed using (2.4)

read

ΘF
11 = −(χ(3,3,1) + χ(3,1,3)) , ΘF

12 =
1

2
(χ(3,3,1) + χ(3,1,3)) ,

ΘF
22 = −(χ(3,3,1) + χ(3,1,3)) ,

ΘF
33 = −2χ(1,3,3) , ΘF

34 =
1

2
(3χ(3,3,1) − χ(1,3,3)) ,

ΘF
44 = −(3χ(3,3,1) − χ(1,3,3)) ,

ΘF
55 = −(3χ(3,3,1) − χ(1,3,3)) , ΘF

56 =
1

2
(3χ(3,3,1) − χ(1,3,3)) ,

ΘF
66 = −2χ(1,3,3) .

(5.15)

We readily compute the CS-terms (2.3) in M-theory, which allows us to reproduce precisely

the chiralities in (5.13).

5.3 Phenomenological discussion

The breaking from the Trinification model to the SM proceeds via two successive Higgsings.

Geometrically, the Higgsings correspond to blow-downs in XF16 induced by toric blow-

downs in the ambient space PF16 of the elliptic fiber. Thus, we can geometrically visualize

the Higgsing directly in the toric diagram of F16, see [22] for details.

More concretely, in order to obtain the CY-hypersurface XF11 starting from XF16 ,

we have to perform two blow-downs in the fiber of XF16 that are identified by requiring

that the fiber polyhedron F16 is mapped to F11. There are three possible ways to achieve

this. However all of these are equivalent due to the symmetries of the polyhedron. For

concreteness we choose here the transition XF16 → XF11 induced by blowing down the
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divisor e5 = 0 and subsequently the divisor e4 = 0 in the toric diagram of F16, see figure 5.

Note that after the blow downs we indeed get the toric diagram of F11 in figure 1 reflected

along the horizontal axis passing through the origin.

The blow-down process restricts the allowed region in figure 6 of XF16 due to the

requirement that the divisors associated to the sections s3 and s5, which are part of (3.1) but

not of (5.1), are effective. This removes all models which lie above the line 4 + n7−n9 = 0

in figure 6. Once we exclude these un-Higgsable models, we can compare the number of

generations in XF16 and XF11 in figures 2 and 9. In order to perform such a comparison we

have to bear in mind that the polyhedron obtained by Higgsing XF16 and the polyhedron

specifying XF11 are related by a reflection, as mentioned above. Thus, one has to perform

a redefinition of the integers (n7, n9) before and after Higgsing which amounts to the shift

(n7, n9) → (8 − n7, n9). Under this map we see that the point (n7, n9) = (3, 6) in XF16

maps to (5, 6) in XF11 , both of supporting models with b = 3. This suggests that there is

a toric Higgsing of a Trinification model to a SM with three families. We take this as the

example for the following phenomenological discussion.

On the field theory side the described transition XF16 → XF11 proceeds by a VEV of

the field in the representation (3,3,1) at the matter curve s1 = s7 = 0, cf. table 8. For

reasons that will become clear in the following, the Higgsing down to the MSSM is only

possible if in addition to the three chiral families one also has two vector-like pairs (3,3,1),

(3,3,1) [107]. While one pair, which we denote as H1, H̄1 is needed for the intermediate

breaking SU(3)3/Z3 → SU(3)× SU(2)2 ×U(1), the second pair H2, H̄2 is needed because

the representation, which breaks the SU(2) × U(1) down to the hypercharge generator, is

contained in the (3,3,1) representation, too. Therefore, in addition to the three generations

of chiral fields (λi,Qi, Q̄i), we assume that our model allows for two massless vector-like

pairs of Higgs fields H1, H̄1 and H2, H̄2.

In the first Higgsing inducing the symmetry breaking SU(3)3/Z3 → SU(3)× SU(2)2 ×
U(1) we arrive at the following decomposition of fields composing the chiral families of

our model:

λi = (3,3,1)→ (2,2,1)0 + (1,2,1)−3 + (2,1,1)3 + (1,1,1)0 ,

Qi = (3,1,3)→ (2,1,3)−1 + (1,1,3)+2 ,

Q̄i = (1,3,3)→ (1,2,3)1 + (1,1,3)−2 .

(5.16)

Similarly the Higgses of the Trinification model decompose as

H1, H2 = (3,3,1)→ (2,2,1)0 + (1,2,1)−3 + (2,1,1)+3 + (1,1,1)0 ,

H̄1, H̄2 = (3,3,1)→ (2,2,1)0 + (1,2,1)+3 + (2,1,1)−3 + (1,1,1)0 .
(5.17)

Here, the generator of the unbroken U(1) is given by

Q = T 8
1 + T 8

2 , with T 8
1,2 = diag(1, 1,−2) , (5.18)

where the subscripts 1, 2 label the corresponding SU(3) factors.

Next we need to break one of the SU(2) factors together with the U(1)-factor to the

hypercharge U(1)Y . To this end, one of the fields in either the representation (1,2,1)−3
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Tri-Rep SM decomposition

λi → Hd,i : (1,2)−1/2 , Hu,i : (1,2)1/2 , ei : (1,1)1 ,

Li : (1,2)−1/2, ν̄1
i : (1,1)0 , ν̄2

i : (1,1)0

Qi → Qi: (3,2) 1
6

, Di : (3,1)− 1
3

Q̄i → u : (3,1)− 2
3

, di : (3,1) 1
3

, Di : (3,1) 1
3

H1, H̄1 → H1
d , H̄1

u : (1,2)−1/2 , H1
u, H̄1

d : (1,2)1/2

H2, H̄2 → H2
d , H̄2

u, H2′
d : (1,2)−1/2 , H1

u, H̄1
d , H2′

d : (1,2)1/2

Table 10. The Trinification representations decomposed in terms of their MSSM constituents. We

have also included the charged fields inside of the fields H1, H2 which do not participate in the

Higgs process.

Yukawa Locus

(3,3,1) · (3,1,3) · (1,3,3) s1 = s7 = s9 = 0

(3,3,1) · (3,3,1) · (3,3,1) s1 = s6 = s7 = 0

(3,1,3) · (3,1,3) · (3,1,3) s1 = s6 = s8 = 0

(1,3,3) · (1,3,3) · (1,3,3) s6 = s7 = s9 = 0

Table 11. Codimension three loci and corresponding Yukawa points for XF16
.

or (2,1,1)+3 in the decomposition of the representation (3,3,1) has to pick a VEV. Note

also that for the pair H1, H̄1, both of these fields (and their complex conjugates) will

be absorbed as the longitudinal modes of the massive vector fields. Hence, we have to

pick the fields for the second Higgsing as irreducible representations stemming from the

decomposition of H2 and H̄2 in (5.17). For concreteness we take the states (1,2,1)−3 ⊂ H2,

(1,2,1)+3 ⊂ H̄2 to be responsible for the second breaking. In that case the hypercharge

generator written in terms of the U(1) generator Q and the Cartan generator T 3 of the

first SU(2) reads

QY = −(T 3 +Q/6) . (5.19)

The decomposition of the chiral matter representations in terms of the SM gauge group

is given in table 10. Here we immediately see that each family at the Trinification level

provides an entire SM family, extended by two right handed neutrinos ν̄1,i, ν̄2,i, a vector-

like pair of color triplets Di, D̄i and a pair of SM-like Higgs fields Hu,i, Hd,j . For the

decoupling of the exotics and the discussion of the couplings of the fields, we have to refer

to the geometrically allowed Yukawa couplings in XF16 which are given in table 11 [22].

First notice that in general one has two scales Λ1 and Λ2 associated to each of the two

symmetry breakings from Trinification to SM. However, radiative corrections will push

these scales towards each other, and due to that we can simply assume that both Higgsings

occur simultaneously at some scale Λ. Given the allowed couplings H1QiQ̄i and H2QiQ̄j
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we see that the exotic triplets Di, D̄i pick up a mass of order Λ. We also note from table 10

that we get eight pairs of SM-like Higgses. Nevertheless, working out all bilinears among

them, which result from the three point couplings of the Trinification model with VEV

insertions, one sees that essentially all of the Higgses get lifted at the Trinification scale Λ.

One might hope that this can be fixed by tuning the complex structure of XF16 to suppress

the corresponding Yukawa couplings, however, we have to recall that there are only two

structurally different types of Yukawa couplings. Indeed, on the one hand we have a three

point coupling involving a single matter curve. On the other hand we have a coupling

involving the three different matter curves, which if suppressed, will imply that Yukawa

couplings for quarks and leptons are suppressed.

We conclude with another remark regarding the presence of vector-like pairs in the

model. As we discussed above, we need vector-like matter H1, H̄1, H2 and H̄2 in the

representations (3,3,1) and (3,3,1), respectively, for the Higgsing down to the MSSM. It

is then natural to expect also additional vector-like matter in the representations (3,1,3)

and (1,3,3), which would give rise to exotics beyond those presented in table 10.16 Indeed,

this can be motivated geometrically by the Z3-symmetry of the polyhedron F16. We have

seen that this symmetry is realized on the chiral spectrum in table 9, relating different

theories that only differ by a permutation of their SU(3) factors. We expect this to hold

more generally for the vector-like sectors of different theories related by the Z3 symmetry.

In particular for the stratum n7 = n9 = 4, which is a fixed point of that a symmetry,

one expects the same number of vector-like pairs for all representations. For these type

of models one expects unification of the SU(3) gauge couplings above the Trinification

scale [108]. Furthermore, in [107, 109] the possibility of having a light SM Higgs pair has

been related to the presence of additional discrete R and non-R symmetries in Trinification

models with vector-like pairs. These symmetries could reduce to the standard matter parity

after the Trinification group is broken down to the SM gauge group, and hence they could

prevent the model from an exceedingly fast proton decay. It would be interesting to find

ways to realize these additional symmetries in F-theory.

6 Conclusions

In this work we have presented explicit, globally consistent four-dimensional F-theory com-

pactifications that have the standard model gauge group and three chiral families. More-

over we considered embeddings of the standard model into the Pati-Salam or trinification

models using a toric realization of the relevant Higgs effects.

The models considered in this work result from F-theory compactifications on Calabi-

Yau fourfolds, with their elliptic fibers defined as toric hypersurfaces in the three 2D toric

ambient spaces PF11 , PF13 and PF16 , see e.g. [22]. While the gauge symmetry, the type

of matter representations and the possible Yukawa couplings are properties independent

of the choice for the base manifold, we fix the base manifold to be B = P3 in order to

construct the vertical cohomology in each case. This allows us to find explicit solutions for

the chirality-inducing G4-flux and ultimately, to determine the possible 4D chiralities of

16Again, it is expected that these exotics acquire masses of order Λ, too.
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matter fields. The expressions for the G4-flux in each type of compactification are shown

to satisfy the consistency conditions imposed by the matching of F- and M-theoretical

Chern-Simons terms, as well a the D3-brane tadpole cancelation condition with a positive,

integral number of D3-branes. The G4-flux quantization condition is ensured indirectly by

the analogous quantization condition of the 3D CS-terms. We also show that the obtained

chiralities are consistent with field theoretic calculations of CS-terms and anomalies.

In this work we have only considered the vertical part of the middle cohomology,

which is responsible for the generation of chirality. With no G4-flux along the horizontal

components we observe that the D3-brane tadpole cancellation imposes very stringent

constraints on the minimal number of generations permitted in each of the models, which

happens to be precisely three. We explicitly identify the consistent three-family models in

our list of concrete models. Although addition of horizontal G4-flux GH4 does not directly

change the chiralities, the divisibility properties of χ(X4)/24−1/2(GH4 )2 might be improved

compared to that of χ(X4)/24 alone, yielding weaker constraints on the number of families

imposed by the integrality of nD3 .17 Thus, we expect a greater number of consistent

three-family models.

For the Pati-Salam and Trinification models we also described the Higgs transition to

the Standard Model. On the geometric side, effectiveness conditions of the divisor classes

needed to specify the models after the transition determine points in the allowed region for

(n7, n9) of XF13 and XF16 , for which the Higgsing is possible. While in the six-dimensional

case, these conditions are known to ensure a D-flat Higgsing, in four dimensions, a simi-

lar field theoretical understanding remains elusive and requires a better understanding of

vector-like matter in F-theory, beyond chiral indices. Indeed, we presume that for values of

(n7, n9), where some divisors fail to be effective, one does not have a light pair of vector-like

fields to carry out the Higgsing. Due to the current lack of control of the vector-like sector

of F-theory, we simply assume that over the points where all divisors defining the model

remain effective after the transition, one has the necessary vector-like pairs of Higgses and

that the transition is indeed possible. The verification of this assumption is left for future

works. Since the supersymmetric Higgs mechanism does not change the net chiralities, we

expect that a model based on XF13 or XF16 with three families at a given point (n7, n9)

maps to a model with three families in XF11 , at the same point (n7, n9). Remarkably for

both XF13 and XF16 we find a point with three families before and after Higgsing. If we

in addition require that the number of D3-branes remains constant in the transition, we

must add horizontal G4-flux after the Higgsing in order to compensate for the change in

the Euler number of the CY-fourfold. The systematic inclusion of horizontal G4-flux and

their effect on the Higgsing, as well as the connection to G4-flux quantization, would be

interesting to study in future works.

In this work we have also made some remarks on the phenomenology of the studied

models. A rough look at the superpotential at quadratic and cubic order of the resulting

effective field theories lead to the well known observation that the bare models have some

17There might be a finer integral basis of H4(X4) that is off-diagonal in the splitting into horizontal and

vertical cohomology.
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phenomenologically unappealing features, such as the prediction of a fast proton decay or

the difficulty to retain a light pair of electroweak Higgs fields in the spectrum. However, it

is likely that the proton decay operators can be kept under control if one goes to special

points in complex structure moduli space of the CY-fourfolds. On the field theory side this

usually corresponds to the existence of an accidental discrete symmetry. It would be very

interesting whether there exists horizontal G4-flux that stabilizes the complex structure

of the CY-fourfold at these points in moduli, following the general arguments discussed

in [86].

Finally, we have also computed the Hodge numbers of the considered CY-fourfolds

with three-families. For our simple choice of base P3 we always have h(2,1) = 0 which

constraints cosmological F-theory applications of our models. Clearly, it is an interesting

future direction to extend the phenomenological analysis carried out in this work to other

bases B allowing for richer possible applications to cosmology.
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A Hodge numbers of CY-fourfolds

In this appendix we discuss the computation of the Hodge numbers of CY-fourfolds given

as toric hypersurfaces. We readily use these methods for the calculation of the Hodge

numbers of the three families of CY-fourfolds XF11 , XF13 and XF16 .

A CY-fourfold has the independent Hodge numbers h(1,1), h(2,1) and h(3,1). They are

related to the Euler number as

χ(X) = 6
(

8 + h(1,1) + h(3,1) − h(2,1)
)
. (A.1)

Since one can compute χ(X) independently by integrating the top Chern class c4(X) over

X, it is sufficient to calculate h(2,1) and h(3,1) to obtain all independent Hodge numbers.

For a CY-fourfold given as a toric hypersurface specified by a pair of dual five dimen-

sional reflexive lattice polyhedra (∆,∆∗), one can use the combinatorial Batyrev formulas
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(see [76] and references therein) to calculate the Hodge numbers as

h(1,1) = l(∆)− (4 + 2)−
∑

dimΘ=4

l′(Θ) +
∑

codimΘi=2

l′(Θi)l
′(Θ∗i ) ,

h(3,1) = l(∆∗)− (4 + 2)−
∑

dim Θ∗=4

l′(Θ∗) +
∑

codimΘi=2

l′(Θi)l
′(Θ∗i ) ,

h(2,1) =
∑

codimΘi=3

l′(Θi)l
′(Θ∗i ) .

(A.2)

Here, Θ (Θ∗) denote faces of ∆ (∆∗), while the sum is over pairs (Θi,Θ
∗
i ) of dual faces.

The l(Θ) and l′(Θ) count the total number of integral points of a face Θ and the number

inside the face Θ, respectively. Finally, l(∆) is the total number of integral points of the

polyhedron ∆.

In the following we are considering fourfolds that have the elliptic curves in PF11 ,PF13

and PF16 as a fiber over a P3 base space. An explicit expression for the total polyhedra of

the 5D toric ambient space of these fibrations can be found in appendix B. We only need

some general observations about these polyhedra here. The polytope of the P3 base always

contributes four points. Hence we can write

l(∆) = 4 + #Points(Fi) . (A.3)

For all fibrations of this type we find that there are never points within codimension two

and three facets of the polyhedra i.e.

l′(Θcodim=2,i) = 0 (∀ i) , l′(Θcodim=3,i) = 0 (∀ i) . (A.4)

Furthermore we use the following observation that we made in [22], namely

#Points(Fi)− 4 = Rank(GFi) , (A.5)

at a generic stratum of the fibration, i.e. on a bulk stratum of the allowed region. Hence

the above formula (A.2) for the Hodge number h(1,1) simplifies to

h(1,1) = #Points(Fi)− 2−
∑

dimΘ=4

l′(Θ) = Rank(GFi) + 2 . (A.6)

Note that, in contrast to this formula, the formula (A.2) is valid for all strata of the fibration

even at the boundary of the allowed regions were divisors are switched off and the rank of

the gauge group is reduced. This rank reduction is precisely taken care of by vertices that

move into the interior of dimension four facets and therefore correct the above formula for

the h(1,1) numbers.

Similarly we find, that for all of our models

h(2,1) = 0 . (A.7)

Using (A.1) we can thus give a closed formula for all h(3,1)

h(3,1) =
χ

6
− 10− Rank(GFi) . (A.8)
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variable Base Vertex Fiber Vertex

z1 1 1 1 n9 − 4 4− n7

z2 -1 0 0 0 0

z4 0 -1 0 0 0

z3 0 0 -1 0 0

v̂0 0 0 0 0 0

v̂i 0 0 0 vi

Table 12. The five dimensional polyhedron describing a P3 fibered fourfold with the two dimen-

sional fiber coordinates vi. The first four coordinates describe the P3 and the choice of n7 and n9
fix the fibration.

Furthermore, by having fixed the above Hodge numbers we can obtain the Hodge number

h(2,2) as well using

h(2,2) = 2
(

22 + 2h(1,1) + 2h(3,1) − h(2,1)
)

= 2
(

6 +
χ

3

)
. (A.9)

By using the explicit presentation of the vertical cohomology ring H
(2,2)
V (XFi) as a quotient

ring, we can compute h
(2,2)
V . With the knowledge of the full h(2,2) we can compute the

dimension of the horizontal cohomology.

We note that the absence of any (2, 1)-forms is of particular interest for cosmological

applications as the resulting three-forms could be used to obtain axions to drive inflation

as discussed in an F-theory context in [110, 111]. However these specific type of axions

are absent in all of our models. We conclude that the P3 base is too simple to allow for

these features.18

B Concrete toric lattice polyhedra of 4D chiral models

Using the algorithm of [58] we can construct the CY-manifolds XFi as concrete toric hyper-

surfaces associated to a five dimensional lattice polyhedron that specifies the underlying

5D ambient space. In our case the ambient space is a PFi-fibration with a P3 base specified

by two numbers n7 and n9. The polyhedron is given in table 12. From the above polyhe-

dron one can deduce dimension one, two, three and four facets and the points within them.

From that information we can calculate the amount of Hodge numbers and in particular

we find the vanishing of h(2,1) numbers for all n7 and n9. In the table 13 we specify the

Euler and Hodge numbers for the specific fibrations that allow for three-family G4-flux. We

see that only a transition between loci is possible when it is possible for the Euler number

to increase.

18We still find generically a lot of complex structure moduli h(3,1) that can be used as well. However the

specific scenario in [110] is excluded.
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Fiber Fi Stratum (n7, n9) χ h(3,1) h(1,1) h(2,1) h
(2,2)
v h2,2

F11 (5, 6) 1134 175 6 0 7 768

F11 (2, 5) 1554 245 6 0 7 1048

F13 (5, 6) 1080 165 7 0 8 732

F16 (3, 6) 1062 161 8 0 9 720

F16 (2, 9) 2274 363 8 0 9 820

Table 13. The Euler number and Hodge numbers for all inequivalent strata that support three

family fluxes.
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