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1 Introduction

The lack of discovery of any new physics signal so far has made of the Large Hadron Collider

(LHC) even more a precision machine than it ever was. Because the LHC is a hadron

collider, the largest uncertainties are related to nucleon structure, i.e. parton distributions,

and higher order QCD corrections. This has consequently led to enormous progress in the

computation of higher order corrections to QCD processes in the last several years, recently

leading to the publication of first N3LO results for a hadron collider process [1].

In ref. [2] some of us have proposed a general methodology for the determination of

approximate expressions for higher-order corrections to QCD processes. The basic idea is

that QCD corrections to many important hard processes are known to all orders in the
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strong coupling in two opposite limits: the high energy limit, in which the available center-

of-mass energy is much greater than the invariant mass of the final state, and the soft limit,

in which the invariant mass is close to threshold. By performing a Mellin transform, this

knowledge can be turned into information on the singularities of the hard (partonic) Mellin-

space cross section to any given finite order, viewed as an analytic function of the Mellin

complex variable: the soft limit determines the singularity at infinity, and the high-energy

limit determines the rightmost pole on the real axis. It is then possible to reconstruct an

approximate form of the function by exploiting this knowledge: indeed, knowledge of all

the singularities would determine the function completely.

The case of Higgs production, to which the methodology of ref. [2] was first applied [2–

4], is particularly simple in many respects: the leading-order process has fixed kinematics

(only one scalar colorless particle in the final state), and the total cross section is known [5]

to be dominated by its threshold limit. The validation of the methodology which comes

from checking that it provides a good approximation to known results in the case of Higgs

is thus not necessarily the most compelling.

In this paper we turn our attention to heavy quark production: a process which is

rather more complicated in terms of kinematics and color structure, with the goal of per-

forming a more stringent test of our methodology. Next-to-leading (NLO) QCD corrections

to this process were computed long ago [6, 7], though fully analytic expressions only be-

came available much more recently [8], and were a first necessary step towards the full

determination of the NNLO result which was very recently achieved [9–12]. These results

revealed that the physical-space partonic cross section has a particularly complex singular-

ity structure, which raises the question of how this relates to the Mellin-space singularities

which are used for the approximation of ref. [2], and also, that existing attempts at an

approximate NNLO determination [13] were rather off the mark.

Here, we will present an approximate determination of the N3LO QCD corrections

to the total cross section for heavy quark production. In section 2 we will review the

singularity structure of the heavy quark production partonic cross section both in physical

and in Mellin space. Specifically, we will discuss the relationship between the total cross

section and the invariant mass distribution, to which the methods of ref. [2] apply, and show

that the peculiar singularity structure of the physical-space cross section leads nevertheless

to the standard Mellin-space singularities. The rest of our treatment closely follows that

of Higgs production: in sections 3 and 4 respectively we present the derivation of the soft

and high-energy singularities from the respective resummations. They are combined in

section 5 where we present our final result: first, we compare the approximation obtained

through our procedure to the known exact result up to NNLO, and then we present our

final approximate N3LO both at the parton and the hadron level.

2 Analytic structure of the partonic cross section

The analytic structure of the cross section for the production of a heavy quark pair poten-

tially differs from that for Higgs production discussed in ref. [2] for two different reasons,

thereby potentially hampering, or requiring some adaptation of the methods used in that
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reference. First, the known [8] fact that the partonic cross section for heavy quark pro-

duction already at NLO has unphysical singularities in the complex plane of its kinematic

variables may suggest that the singularity structure of its Mellin transform also does not

follow the general pattern discussed in ref. [2]. Second, as we shall see in more detail below,

the analytic structure discussed in ref. [2] is generic for partonic differential cross sections,

while the case we are presently considering is that of a total cross section. We will see

that the first issue is of no concern, while the second requires a careful discussion of the

relation of the total heavy quark production cross section to the corresponding invariant

mass distribution.

We will address the two issues in turn, after a quick review of standard notation and

general results.

2.1 Notation and general results

The total cross section for the production of a heavy quark-antiquark pair can be written

in factorized form as

σ(m2, ρh) = ρh
∑
ij

∫ 1

ρh

dρ

ρ
Lij

(
ρh
ρ
, µ2

F

)
1

ρ
σ̂ij

(
m2, ρ, αs(µ

2
R),

m2

µ2
F

,
m2

µ2
R

)
(2.1)

where ρh = 4m2/s, s is the hadronic center of mass energy, Lij(ρ, µ
2
F) are parton lumi-

nosities, m is the mass of the heavy quark, µF, µR are factorization and renormalization

scales, and the scaling variable is ρ = 4m2/ŝ, with ŝ the partonic center of mass energy.

To simplify notations, in the following we will not indicate explicitly the dependence of

parton luminosities on the factorization scale µF and that of the partonic cross section on

the strong coupling and on µF, µR.

The partonic cross sections σ̂ij admit a perturbative expansion in powers of the QCD

coupling:

σ̂ij(m
2, ρ) =

α2
s

m2

[
σ̂

(0)
ij (ρ) + αsσ̂

(1)
ij (ρ) + α2

sσ̂
(2)
ij (ρ) + α3

sσ̂
(3)
ij (ρ) +O(α4

s)
]
, (2.2)

where, thanks to the m−2 prefactor, the coefficients σ̂
(k)
ij (ρ) are dimensionless. Eq. (2.1) is

in the form of a convolution product, so its Mellin transform

σ(m2, N) =

∫ 1

0
dρh ρ

N−2
h σ(m2, ρh) (2.3)

factorizes in terms of the Mellin space luminosity and partonic cross section function,

defined respectively as

L (N) =

∫ 1

0
dρ ρN−1L (ρ) (2.4)

σ̂ij(m
2, N) =

∫ 1

0
dρ ρN−2σ̂ij(m

2, ρ), (2.5)

according to

σ(m2, N) =
∑
ij

Lij(N)σ̂ij(m
2, N). (2.6)
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If the Mellin transform integral has a finite convergence abscissa, the N -space partonic

cross section is an analytic function of the complex variable N , defined by the integral rep-

resentation eq. (2.5) to the right of the convergence abscissa, and by analytic continuation

elsewhere. Therefore, it is fully determined by the knowledge of its singularities.

In this paper, we will concentrate on the gg partonic channel, which is the most relevant

(in the MS scheme) at LHC energies, while we leave the study of other parton subprocesses

for future work. For this reason in the following we will drop the parton indices ij, with

the understanding that i = j = g in all parton luminosities and partonic cross sections.

The singularity structure of a generic differential partonic cross section is relatively

simple. The singularity at infinity is determined by soft gluon radiation, which leads to a

growth of the cross section with increasingly high powers of lnN at higher perturbative

orders. For finite N , singularities away from the real axis are not allowed, as they would

have to come in pairs and would thus lead to oscillatory behaviour of the cross section at

high energy. From Regge theory one expects that the rightmost singularity on the real axis

is a multiple pole located at N = 1 [14–18], with further multiple poles along the real axis

at N = 0,−1,−2, . . . . This expectation is confirmed by explicit fixed-order calculations.

While knowledge of the residues of all poles is required in order to fully determine

the function σ̂(m2, N), its behaviour in the region 1 < Re N < ∞ is mostly controlled

by the rightmost pole at N = 1, with poles further to the left having an increasingly

small impact. Using the saddle point approximation one can show that the hadronic cross

section is mostly determined by the behaviour of the partonic cross section σ̂(m2, N) in

the vicinity of a single (saddle) value of N on the real axis, to the right of the rightmost

singularity [2, 19] (see also section 5.1). In ref. [2] it was suggested that knowledge of

the rightmost singularity on the real axis and of the singularity at infinity is sufficient to

determine the partonic cross section in the region where the saddle-point is located with

reasonable accuracy.

As mentioned in the introduction, however, in the specific case of heavy quark pro-

duction, we encounter two difficulties. The first, is related to the fact that the physical

momentum-space coefficient function has unphysical singularities. The second is due to the

fact that the partonic cross sections σ̂ij(m
2, N) eq. (2.6) vanish as N → ∞, rather than

growing logarithmically.

We will address both issues in turn. The first issue turns out to be of no concern:

the analytic structure in Mellin space is unaffected by the unphysical momentum-space

singularities. The second issue instead is due to the fact that the reason why the partonic

cross sections discussed in ref. [2] grow as N → ∞ is that they are distributions, rather

than ordinary functions: indeed, elementary properties of Laplace transforms imply that

the Mellin transform of an ordinary function, if it exists, must vanish as N →∞. Now, the

integral of a distribution is an ordinary function, so it is clear that the behaviour of ref. [2]

can only hold for partonic cross sections which are sufficiently differential. As we shall see

below, it is the invariant-mass distribution which behaves at large N in the way discussed

in ref. [2]. However, by exploiting the relation between total cross section and invariant-

mass distribution, it is possible to relate their respective large-N behaviors, and define a

coefficient function whose singularity structure follows the general pattern discussed above.
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2.2 Unphysical singularities in momentum space

The perturbative coefficients σ̂
(k)
ij (ρ) display a class of spurious singularities in the complex

ρ plane outside the physical region 0 < ρ ≤ 1. However, after Mellin transformation, even

in the presence of such spurious singularities in ρ space, the result has the expected analytic

structure, as we now show.

As an example, we present the case of NLO corrections of top pair production in the gg

channel. In ref. [8], the complete analytic form of σ̂
(1)
gg (ρ) is computed, and it contains, in

addition to the usual (physical) singularities in ρ = 1 and ρ = 0, four further singularities

(branch points) located at ρ = −4, ρ = 4, ρ = −1, ρ = −1
4 (see in particular the functions

Fi(ρ), i = 1, . . . , 4 of section 4 and the discussion of section 5 of ref. [8]). For simplicity we

focus our attention only on the first spurious singularity; similar considerations hold for all

the others.

The function

F2 (ρ) =

∫ 1

x(ρ)
dz f2(z) (2.7)

f2(z) = −
(2z + 3)

(
12 ln z ln 1+z√

z
+ 3 ln2 z + 12Li2 (−z) + π2

)
4 (z2 + 3z + 1)

, (2.8)

x(ρ) =
1−
√

1− ρ
1 +
√

1− ρ
(2.9)

has a logarithmic branch cut starting at ρ = −4, because the integrand has a simple pole in

z =

√
5− 3

2
= x(−4). (2.10)

However, the Mellin transform is

F2(N) =

∫ 1

0
dρ ρN−2

∫ 1

x(ρ)
dz f2(z) =

∫ 1

0
dz f2 (z)

∫ 4z

(1+z)2

0
dρ ρN−2 : (2.11)

the ρ integral is convergent for Re N > 1, and the result

F2(N) =
4N−1

N − 1

∫ 1

0
dz zN−1(1 + z)2−2Nf2(z) (2.12)

can be analytically continued to the whole complex N plane, except the isolated points

N = 1, 0,−1,−2, . . . , where the result has simple poles. This can be seen for example by

repeatedly integrating by parts using zN−1 as a differential factor.

This is the analytic structure one expects for the Mellin transform of a physical cross

section. We conclude that the presences of unphysical singularities in the ρ space does not

affect the general structure the partonic cross section in N space. Of course, it could be

that the presence of new structures in the partonic cross section at higher perturbative

orders affects the numerical size of the residues of singularities, for the same reasons why

it makes standard scale-variation estimates of higher order terms unreliable.
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2.3 Total cross section and invariant-mass distribution

We will first show that the invariant-mass distribution for heavy-quark production has the

large N singularity structure discussed in ref. [2] and dominated by Sudakov radiation,

then we will prove that the coefficient function C(N), defined by factoring out the leading

order contribution in the total cross section:

σ̂(m2, N) = σ̂LO(m2, N)C(N), (2.13)

exhibits the same Sudakov enhancement at large N .

The invariant-mass distribution Σ(m2, ξ, z) is defined as

Σ(m2, ξ, z) = ŝ
dσ̂

dM2
(m2, ξ, z), (2.14)

which is a function of two dimensionless ratios, due to the presence of an extra energy scale

M2, the invariant mass of the quark-antiquark pair. We choose to express it as a function

of z = M2/ŝ, and of ξ = 4m2/M2 = ρ/z, and we insert the factor of ŝ in eq. (2.14) for

later convenience. The total cross section is related to the invariant-mass distribution by

σ̂(m2, ρ) =

∫ ŝ

4m2

dM2 dσ̂

dM2
=

∫ 1

ρ
dzΣ

(
m2,

ρ

z
, z
)
. (2.15)

In Mellin space, the relation between σ̂ and Σ can be obtained by computing the Mellin

transform of eq. (2.15):

σ̂(m2, N) =

∫ 1

0
dρ ρN−2

∫ 1

ρ
dzΣ

(
m2,

ρ

z
, z
)

(2.16)

=

∫ 1

0
dz

∫ z

0
dρ ρN−2Σ

(
m2,

ρ

z
, z
)
. (2.17)

Changing integration variable we obtain

σ̂(m2, N) =

∫ 1

0
dz zN−1

∫ 1

0
dξ ξN−2Σ(m2, ξ, z) = Σ(m2, N − 1, N). (2.18)

Using this last relation, we will show that C(N) implicitly defined in eq. (2.13) has

the same Sudakov singularities in the large N limit as the invariant mass distribution

Σ(m2, ξ,N) in the limit ξ → 1. This limit is called the absolute threshold limit, and it

corresponds to the double limit ξ → 1 and z → 1 of Σ
(
m2, ξ, z

)
in z space. Indeed, we see

from eq. (2.15) that, when ρ→ 1, only the region z → 1 (and hence ξ → 1) contributes to

the integral.

The behaviour of Σ(m2, ξ, z) for z close to one is governed by Sudakov resummation.

In analogy with Drell-Yan or resonant Higgs production, the O(αns ) perturbative coefficient

for Σ(m2, ξ, z) is a linear combination of the distributions

Dk(z) =

[
lnk(1− z)

1− z

]
+

, δ(1− z) (2.19)
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with 0 ≤ k ≤ 2n−1, plus contributions which are less singular in the threshold limit z → 1.

Correspondingly, the perturbative coefficients of

Σ(m2, ξ,N) =

∫ 1

0
dz zN−1Σ(m2, ξ, z) (2.20)

grow at large N as lnkN , 0 ≤ k ≤ 2n.

The resummation of these large logarithmic contributions has been performed in re-

cent years, both in momentum space with Soft Collinear Effective Theory (SCET) tech-

niques [20–22] and in Mellin space [23–25]. In the latter case one finds [24]

Σres(m2, ξ,N) = exp [G (N)] Tr

{
H(ξ, αs(M

2))

× exp

[∫ 1

0
dz

zN−1 − 1

1− z
ΓS
†(ξ, αs(M

2(1− z)2))

]
S

(
αs

(
M2

N2

))
× exp

[∫ 1

0
dz

zN−1 − 1

1− z
ΓS(ξ, αs(M

2(1− z)2))

]}
(2.21)

up to corrections which vanish in the large-N limit. Here, bold symbols are used for

matrices in color space. In the case of heavy quark pair production in gluon-gluon fusion,

these are 3 × 3 matrices because there are three independent colour configurations [25].

The function G(N) is given by

G(N) =

∫ 1

0
dz

zN−1 − 1

1− z

[
2

∫ M2(1−z)2

µ2F

dµ2

µ2
A(αs(µ

2)) +D(αs(M
2(1− z)2))

]
(2.22)

where A(αs) [26, 27] and D(αs) [28] have perturbative expansions in powers of αs, which

are known up to O
(
α3
s

)
(see for instance [29–31]). The soft anomalous dimension ΓS(ξ, αs)

and the soft (matrix) function S(αs) originate from soft emissions in the presence of a heavy

quark pair. Finally, the matrix function H(ξ, αs) represents the hard contribution to the

cross section. NNLL accuracy is achieved by expanding the cusp anomalous dimension

A up to three loops, the characteristic function D and soft anomalous dimension ΓS up

to two loops, and the soft and hard functions S,H to one loop. Moreover to predict the

term proportional to the delta function δ(1− z) at O(α2
s), we just need the sum of the two

loop contributions to the hard and soft functions, H and S, which can be determined by

matching with NNLO calculation.

However, what we are interested in is the absolute threshold limit ξ → 1 of eq. (2.21).

We now show that in this limit eq. (2.21) greatly simplifies. For ξ ∼ 1 we can replace

M2 by 4m2 in the argument of αs, the difference being suppressed by powers of 1 − ξ.
Furthermore, it was noted in ref. [32] that in this limit the matrix ΓS(ξ, αs) is diagonal in

the singlet-octet basis defined e.g. in ref. [25]. To order α2
s it takes the form [32]

ΓS(ξ, αs) = −CA

[
αs
2π

+
(αs

2π

)2
(K + ζ3 − 1)

]
Π8 ≡ ΓS(αs)Π8, (2.23)

– 7 –
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where

K =

(
67

18
− π2

6

)
CA −

10

18
nf , (2.24)

and the matrix Π8 is the projector over the octet subspace:

Π8 =

 0 0 0

0 1 0

0 0 1

 . (2.25)

We now turn to the soft matrix S(αs). By a suitable definition of H, it can be chosen to

be the unity matrix I at leading order. Its NLO expansion, sufficient to achieve NNLL

accuracy, is given by

S(αs) = 1 +
CA

π
αsΠ8 +O(α2

s). (2.26)

Thus, in the absolute threshold limit, eq. (2.21) reduces to

Σres(m2, ξ,N) = exp [G(N)] Tr

{
H(ξ, αs(m

2))

[
1 +

CA

π
αs

(
4m2

N2

)
Π8 +O(α2

s)

]

× exp

[
2Π8

∫ 1

0
dz

zN−1 − 1

1− z
ΓS(αs(4m

2(1− z)2))

]}
(2.27)

The calculation of the color trace in eq. (2.27) is greatly simplified by noting that, for any

complex number a,

eaΠ8 = eaΠ8 + Π1 (2.28)

where

Π1 + Π8 = 1; Π1
2 = Π1; Π8

2 = Π8; Π1Π8 = 0. (2.29)

As a consequence, the resummed invariant mass distribution splits into the sum of an octet

and a singlet component:

Σres(m2, ξ,N) = exp [G(N)] Tr
[
H(ξ, αs(m

2))Π8

] [
1 +

CA

π
αs

(
4m2

N2

)
+O(α2

s)

]
× exp

[
2

∫ 1

0
dz

zN−1 − 1

1− z
ΓS(αs(4m

2(1− z)2))

]
+ exp [G(N)] Tr

[
H(ξ, αs(m

2))Π1

] [
1 +O(α2

s)
]
. (2.30)

The matrix H(ξ, αs) cannot be expanded in powers of ξ− 1, because it is proportional

to the phase-space factor
√

1− ξ. However, one may factorize the leading order coefficient

as in ref. [32], to obtain

H(ξ, αs) = H(0)(ξ)
[
1 + H(1)(ξ)αs + H(2)(ξ)α2

s +O(α3
s)
]
. (2.31)

The coefficients H(i)(ξ), i ≥ 1 are now analytic around ξ = 1. Thus

H(ξ, αs) = H(0)(ξ)
[
1 + h(1)αs + h(2)α2

s +O(α3
s) +O(1− ξ)

]
(2.32)
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where h(i) = H(i)(1) are constant matrices. A further simplification arises from the par-

ticular structure of the matrix H(0)(ξ, αs). Indeed, one finds

H(0)(ξ, αs) =


σ̂LO

1 (m2, ξ) σ̂LO
1 (m2, ξ) 0

3σ̂LO
1 (m2, ξ) 5

2 σ̂
LO
1 (m2, ξ) 0

0 0 σ̂LO
8 (m2, ξ)− 5

2 σ̂
LO
1 (m2, ξ)

 , (2.33)

where σ̂LO
I (m2, ξ) are the leading-order total cross sections in each color configuration.

Since

lim
ξ→1

σ̂LO
8 (m2, ξ)

σ̂LO
1 (m2, ξ)

=
5

2
; σ̂LO(m2, ξ) = σ̂LO

1 (m2, ξ) + σ̂LO
8 (m2, ξ) (2.34)

we have

H(0)(ξ, αs) = σ̂LO(m2, ξ)h(0) +O(1− ξ); h(0) =

 2
7

2
7 0

6
7

5
7 0

0 0 0

 . (2.35)

It follows that

Tr [H(ξ, αs)ΠI] = σ̂LO(m2, ξ)ḡI(αs) +O(1− ξ); I = 1,8, (2.36)

where

ḡI(αs) = Tr
[
h(0)

(
1 + αsh

(1) + α2
sh

(2) +O(α3
s)
)

ΠI

]
= ḡ

(0)
I + αsḡ

(1)
I + α2

s ḡ
(2)
I +O(α3

s) (2.37)

are independent of N .

Eq. (2.30) may be cast in a more familiar form, by reabsorbing the logarithmic terms

in the factor 1 + CAαs(4m
2/N2)/π in a redefinition of the function ΓS(αs). This also

generates N -independent terms, which can be absorbed in a redefinition of the constants

ḡ
(i)
8 [32]. Putting everything together, we obtain

Σres(m2, ξ,N) = σ̂LO(m2, ξ)
∑

I=1,8

ḡI(αs) exp [GI(N)] +O
(

1

N

)
(2.38)

with

GI(N) =

∫ 1

0
dz

zN−1 − 1

1− z

[
2

∫ 4m2(1−z)2

µ2F

dµ2

µ2
A(αs(µ

2)) +DI(αs(4m
2(1− z)2))

]
(2.39)

D1(αs) = D(αs) (2.40)

D8(αs) = D(αs) + 2ΓS(αs) + 2CAβ0

(αs
2π

)2
+O(α3

s). (2.41)

Finally, recalling the relation eq. (2.18) between total cross section and invariant-mass

distribution, we get

σ̂(m2, N) =

∫ 1

0
dξ ξN−2Σ(m2, ξ,N)

= σ̂LO(m2, N)
∑

I=1,8

ḡI(αs) exp [GI(N)] +O
(

1

N

)
(2.42)
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where

σ̂LO(m2, N) =

∫ 1

0
dξ ξN−2σ̂LO(m2, ξ), (2.43)

is the Mellin transform of the Born level total cross section. By comparing eq. (2.42) with

the definition of the coefficient function eq. (2.13), we see that

C(N) =
∑

I=1,8

ḡI(αs) exp [GI(N)] +O
(

1

N

)
(2.44)

has the same singularity structure as the Mellin-transformed invariant-mass distribution

in the N →∞ limit.

2.4 Analytic structure of the coefficient function

We now focus on the coefficient function C(N), implicitly defined in eq. (2.13). We have

shown in the previous section that in the N → ∞ limit C(N) has the same singularity

structure as the Mellin-transformed invariant mass distribution, whose behaviour in turn

is determined by soft-gluon emissions. On the other hand, we note that C (N) has the

same leading singularity in N = 1 as σ̂(m2, N), because σ̂LO(m2, N) is subleading in the

high-energy regime. Therefore, we can construct an approximation to C(N) according to

the procedure of ref. [2], as

Capprox(N) = Csoft(N) + Ch.e.(N), (2.45)

where Csoft contains the terms predicted by Sudakov (soft) resummation, and Ch.e. the

terms predicted by BFKL (high-energy) resummation. Explicit expressions for both com-

ponents are given in the following sections.

3 Large-N contributions

3.1 Threshold resummation and analyticity

In this subsection, we will extend the procedure outlined in ref. [2] for the Higgs production

cross section to the coefficient function C(N) of eq. (2.44). The cusp anomalous dimension

A(αs) has been computed up to three loops [27], and the colored characteristic anomalous

dimensions DI(αs) are known completely at two loops [33], allowing us to achieve NNLL

accuracy. Hence, we are able to determine all terms of order αns lnmN , with 2n − 3 ≤
m ≤ 2n, in the coefficients of the perturbative expansions of C(N). The inclusion of α2

s

contribution in the constant terms ḡI enables the extension of our prediction to 2n − 4 ≤
m ≤ 2n. We are thus able to predict all large-N non-vanishing contributions to C(N)

up to O
(
α2
s

)
, and all logarithmically enhanced contributions except the single log and the

constants ḡ
(3)
I at O(α3

s). The single log at O(α3
s), formally a N3LL contribution, is produced

by the third order of the colored characteristic anomalous dimensions DI. At this order

only the singlet is fully known [31], but we do not know the contributions to D
(3)
8 coming

from the N3LO soft anomalous dimension and soft function. We thus set D
(3)
8 = D

(3)
1 and

– 10 –
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ḡ
(3)
I = 0 in the following. The extra uncertainty induced by this assumption on our results

will be discussed in section 5.3 below.

As pointed out in ref. [2, 5], the quality of the soft approximation to the full cross

section significantly depends on the choice of subleading terms which are included in the

resummed result. Since the resummation procedure only fixes the coefficients of logarith-

mically divergent terms, there is a certain freedom in defining how the soft approximation

is constructed, by including contributions that are suppressed in the limit N → ∞. The

idea proposed in ref. [2, 3] is to include subleading terms that are known to be present in

the exact calculations, in order to preserve the known analytic structure at small N .

In principle, the exponent GI(N) eq. (2.39) is ill-defined, because the integration range

includes the Landau pole of the strong coupling. This problem is usually avoided by

computing the integral in the large-N limit: the resummed N -space result is then well-

defined as a function of lnN . The logarithm, however, has an unphysical cut at N = 0,

where the cross section should only have poles.

However, as pointed out in ref. [2], if we are only interested in the expansion of eq. (2.39)

in powers of αs(m
2) to finite order, the problem of the Landau pole does not arise. The

Mellin transform in eq. (2.39) may then be computed exactly, provided the integrand is

understood to be expanded in powers of αs(m
2) to some finite order. The result is a

function of N which has the correct logarithmic behaviour at N → ∞, but is free of

unphysical cuts on the real negative axis from N = 0.

An explicit calculation yields

GI(N) =

∞∑
n=1

αns

[
n∑
k=0

b
(A)
n,kDk(N) +

n−1∑
k=0

b
(D)
n,k,IDk(N)

]
, (3.1)

where Dk(N) are the Mellin transforms of the distributions

Dk(z) =

[
lnk(1− z)

1− z

]
+

, (3.2)

and the coefficients b
(A)
n,k , b

(D)
n,k,I up to order n = 3 are given in the appendix A, eqs. (A.1)

and (A.2), and depend respectively on A(αs) and DI(αs) only. Explicit forms of the

functions Dk(N) are given e.g. in ref. [2]; they are seen to only have poles on the real axis.

Following the argument of ref. [2], we now observe that the logarithmic enhancement at

threshold arises from the integration over the transverse momentum of the emitted gluons,

which has the form

Pgg(z)

∫ M
(1−z)√

z

Λ

dkT

kT

=
Ag(z)

1− z

[
ln

1− z√
z

+ ln
M

Λ

]
(3.3)

where Pgg(z) is the gluon-gluon splitting function for z < 1 and Ag(z) = (1−z)Pgg(z), with

Ag(1) = A(1) (see eq. (A.3)). Thus, it is natural to include subleading terms in eq. (2.39)

by restoring the factor of 1/
√
z in the upper integration bound, and by replacing A(1) by

the expansion of Ag(z) about z = 1 up to some finite order (keeping the full expression

of Ag(z) is not advisable, because an unphysical singularity in z = 0 would appear; see

ref. [2]).
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We therefore replace GI(N) with

ĜI(N) =

∫ 1

0
dz

zN−1−1

1−z

{
2

∫ 4m2(1−z)2

z

µ2F

dµ2

µ2
z A(αs(µ

2))+DI

(
αs

(
4m2 (1− z)2

z

))}
+ cI,

(3.4)

which differs from GI(N) by non-logarithmically enhanced terms. The factor of z in the

first terms arises after expansion of Ag(z) in powers of 1− z to first order; indeed, it turns

out that

Ag(z) = Ag(1)− (1− z)Ag(1) +O
(
(1− z)2

)
= zAg(1) = zA(1). (3.5)

An extra power of z simply amounts to a shift of N by one unit in the Mellin-space result.

This clearly does not affect the logarithmic behaviour at N → ∞. This extra z factor

multiplies also all higher order contributions to the cusp anomalous dimension A(αs).

The constants cI have been introduced by requiring

lim
N→∞

[
ĜI(N)−GI(N)

]
= 0. (3.6)

When expanding in powers of αs as in eq. (3.1), we can effectively get rid of the constants

by simply defining distributions whose Mellin transform differ by 1/N suppressed terms at

large N , namely

D̂k (z) =

[
lnk (1− z)

1− z

]
+

+

[
lnk 1−z√

z

1− z
− lnk (1− z)

1− z

]
. (3.7)

In this way we find

ĜI(N) =

∞∑
n=1

αns

[
n∑
k=0

b
(A)
n,k D̂k(N + 1) +

n−1∑
k=0

b
(D)
n,k,ID̂k(N)

]
, (3.8)

where the coefficients b
(A)
n,k and b

(D)
n,k,I are the same as in eq. (3.1), and the argument of the

Mellin transform of the distributions associated with the cusp term are shifted by one.

Explicit expressions for the Mellin transforms D̂k(N) are given in appendix A. Note that

here, unlike in ref. [2], we do not shift the D terms; however, the difference is subleading,

and the impact is negligible.

It is important to observe that, unlike in the case of Higgs production, the inclusion

of the second term in the expansion eq. (3.5), does not lead to the full inclusion of all

subdominant contributions of the form αnsN
−1 ln2n−1N . This is because contributions of

this order to C(N) may arise both from soft emission, but also from interference of powers

suppressed terms in the leading order cross section. We will use these terms (by turning

on and off the shift in N) as a way to estimate the uncertainty in our procedure.

3.2 Coulomb singularities

In section 3.1 we have studied the large-N terms originated by soft gluon emission. In

the case of heavy quark pair production, however, there is another class of contributions
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Figure 1. The contributions to C(N) from soft gluon emission exp [GI(N,αs)] (Sudakov terms)

and Coulomb terms JI(N,αs) (Coulomb terms), at NLO (left) and NNLO (right). The combined

effect eq. (3.9) is also shown (Complete soft approximation).

which, order by order in perturbation theory, do not vanish in the large-N limit, altogether

unrelated to soft emission. It was pointed out many years ago [34] that pair interaction

dynamics and bound state effects may be relevant in the threshold regime. This multiple

exchange of “Coulomb gluons” between the two heavy quarks in the final state leads to

corrections of order (αs/β)m with β =
√

1− ρ, which are usually referred to as Coulomb

singularities. For m large enough, such contributions may compete with, and even dominate

over, Sudakov logarithms in the threshold limit. It turns out, however, that these contribu-

tions can be resummed to all orders (see for example ref. [35] and references therein), and

the result of resummation vanishes in the large-N limit. Nevertheless, these contributions

must be taken into account in the absolute threshold limit ρ→ 1.

Coulomb terms have been studied in refs. [33–38]. In particular, it was shown in

ref. [36] that Coulomb singularities and soft singularities factorize in Mellin space in the

N →∞ limit and in the singlet-octet basis:

C(N) =
∑

I=1,8

ḡI(αs)JI(N,αs) exp [GI(N)] +O
(

1

N

)
, (3.9)

where the factor

JI(N,αs) = 1 + J
(1)
I (N)αs + J

(2)
I (N)α2

s + J
(3)
I (N)α3

s +O(α4
s) (3.10)

contains Coulomb terms. The coefficients J
(1)
I (N) and J

(2)
I (N) can be obtained by match-

ing with exact fixed-order calculations [39], while J
(3)
I (N) is unknown.

It can be shown that the effect of Coulomb terms on the physical cross section is very

small. In ref. [33] the impact of the contribution J
(2)
I (N) on the hadronic cross section

was estimated to be about 0.5% of total NNLO correction, and even less at higher orders.

Similar conclusion can be drawn from inspection of figure 1, where we compare, in N space,

the coefficient function eq. (3.9) with and without the Coulomb factors JI(N,αs), both at

NLO and NNLO. The effect at N ∼ 2, which is the relevant region for Mellin inversion

(see section 5.1), is very small.

A complete resummed expression of Coulomb contributions has been obtained in the

context of potential non-relativistic QCD (pNRQCD) [40–42]. This calculation can be used
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Figure 2. Same as figure 1 but at N3LO. The two different Coulomb curves differ by the inclusion

of the pNRQCD estimate of J
(3)
I (see text).

to test whether the pattern observed at NLO and NNLO continues at higher orders. In

figure 2 we present the same comparison as in figure 1 at N3LO, with J
(3)
I (N) extracted from

pNRQCD calculations [40–42]. The effect of the inclusion of the O(α3
s) term in JI(N,αs)

as predicted by pNRQCD computations is indeed very small. We will include J
(3)
I (N) as

computed by pNRQCD methods in our results, but these observations show that our final

results are not significantly affected by it. An explicit form for all the Coulomb corrections

is given in appendix A, eq. (A.12) (see also ref. [43]).

3.3 Final prescription for the soft contribution

We conclude this section by giving our final prediction for the soft-emission contribution

to the total cross section to N3LO. We define

CA-soft0(N) =
∑

I=1,8

ḡI(αs)JI(N,αs)

× exp

{ ∞∑
n=1

αns

[
n∑
k=0

b
(A)
n,k D̂k (N) +

n−1∑
k=0

b
(D)
n,k,ID̂k(N)

]}
; (3.11)

CA-soft1(N) =
∑

I=1,8

ḡI(αs)JI(N,αs)

× exp

{ ∞∑
n=1

αns

[
n∑
k=0

b
(A)
n,k D̂k(N + 1) +

n−1∑
k=0

b
(D)
n,k,ID̂k(N)

]}
(3.12)

where we have made explicit the dependence on αs = αs(m
2) and it is understood that the

exponentials should be expanded in powers of αs up to order α3
s. We will take the average

between the two approximations,

CA-soft(N) =
1

2
[CA-soft1(N) + CA-soft0(N)] (3.13)
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as the central value of our prediction, and the difference

∆soft(N) = |CA-soft1(N)− CA-soft0(N)| (3.14)

as an estimate of the uncertainty of our procedure. Hence, our soft approximation to the

coefficient function will be finally given by

C(N) = CA-soft ±
∆soft

2
. (3.15)

We also consider the result which corresponds to the standard resummation, as given to

NLL in ref. [37], and extended to NNLL in ref. [12] (and in the associate public code top++),

which is expressed as a function of positive powers of lnN , which we will call N -soft,

following ref. [2]. This is given by

CN -soft(N) =
∑

I=1,8

gI(αs)JI(N,αs)

× exp

{ ∞∑
n=1

αns

[
n∑
k=0

b
(A)
n,kD

log
k (N) +

n−1∑
k=0

b
(D)
n,k,ID

log
k (N)

]}
, (3.16)

where the functions Dlog
k (N) are the large N limit of Dk(N) written in terms of positive

powers of lnN , excluding constants (for an explicit definition, see ref. [2]), i.e. such that

Dk(N) = Dlog
k (N) + dk +O

(
1

N

)
, (3.17)

thereby leading to

gI(αs) = ḡI(αs) exp

[
3∑

n=1

αns

(
n∑
k=0

b
(A)
n,kdk +

n−1∑
k=0

b
(D)
n,k,Idk

)]
. (3.18)

4 Small-N contributions

In order to extract the leading small-N singularity of the partonic cross section, we will use

the so-called high-energy or kT factorization technique, first described in ref. [44] for the

total cross section, and more recently extended to rapidity distributions [45]. We follow the

resummation procedure developed by Altarelli, Ball and Forte (ABF) [46]. For a detailed

derivation of resummation, which affects both coefficient functions and evolution of the

parton densities, we refer the reader to the original literature (e.g. [44, 46–48]); here we

only summarize the main results which are relevant for our discussion.

In the kT factorization formalism, small-N singularities are obtained by computing

the leading-order partonic cross section for the relevant process, with off-shell incoming

gluons. We therefore define an off-shell partonic cross section α2
s

m2 σ̂off-shell(ρ, ξ1, ξ2), which

is a function of the scaling variable of the process ρ, and of the transverse momenta of
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the two off-shell gluons: ξi = k2
Ti/m

2. Resummed results can be obtained through the

determination of the so-called impact factor

h(N,M1,M2,m
2, αs) = M1M2R(M1)R(M2)

(
m2

µ2
F

)M1+M2

×
∫ 1

0
dρ ρN−2

∫ ∞
0

dξ1 ξ
M1−1
1

∫ ∞
0

dξ1 ξ
M2−1
1

α2
s

m2
σ̂off-shell(ρ, ξ1, ξ2).

(4.1)

The prefactor R(M1)R(M2) accounts for factorization scheme dependence [47]; in the MS

scheme

R(M) = 1 +
8

3
ζ3M

3 +O(M4). (4.2)

The impact factor eq. (4.1) for the production of a heavy quark pair was computed in

ref. [49]. Here, we are interested in its expansions in powers of M1,M2, in the vicinity

of N = 1:

h(N,M1,M2,m
2, αs) =

α2
s

m2

∞∑
i1,i2

hi1,i2(µ2
F)M i1

1 M
i2
2 +O(N − 1). (4.3)

The coefficients hi1,i2 relevant at N3LO can be easily obtained by performing the expansions

of the previous formula and they are given in the appendix B, eq. (B.1). Following refs. [46,

50], the resummation is performed by identifying the Mellin variable Mi with the resummed

DGLAP anomalous dimension (together with sub-leading running-coupling effects):

Mk
i =

[
γ+

res
k
]
, (4.4)

where the right hand side is recursively defined by

[
γ+

res
k+1
]

= γ+
res

(
1 + k

γ̇+
res

γ+
res

2

)[
γ+

res
k
]
,
[
γ+

res

]
= γ+

res (4.5)

with

γ̇+
res = −β0α

2
s

∂

∂αs
γ+

res. (4.6)

By expanding the anomalous dimension to fixed perturbative order

γ+ = αsγ
(0) + α2

sγ
(1) + α3

sγ
(2) +O(α4

s), (4.7)

we have all the ingredients to construct our N → 1 approximation, which is simply found

by substituting the expansion (4.7) in eq. (4.5), and then in eq. (4.3). The explicit form

of the anomalous dimensions in the small-N limit to the order relevant in our discussion

is given in appendix B, eq. (B.2), (B.3) and (B.4). Now we define a resummed coefficient

function by factoring out the leading order contribution, evaluated in the high-energy limit,
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i.e. N = 1

CABF(N) =
α2
s

m2

1

σ̂LO(m2, 1)

 ∞∑
i1,i2=0

hi1,i2

[
γ+

res

i1
] [
γ+

res

i2
]− 1

= 2h̄1,0γ
(0) + α2

s

[(
2h̄2,0 + h̄1,1

)
γ(0)2

− 2h̄2,0β0γ
(0) + 2h̄1,0γ

(1)
]

+ α3
s

[ (
h̄3,0 + h̄2,1

)
2γ(0)3

− (3h̄3,0 + h̄2,1)2β0γ
(0)2

+ 4h̄3,0β
2
0γ

(0)

+ (2h̄2,0 + h̄1,1)2γ(0)γ(1) − 4h̄2,0β0γ
(1) + 2h̄1,0γ

(2)
]

+O(α4
s), (4.8)

where, in the second equality, we use the fact that

σ̂LO(m2, 1) =
α2
s

m2
h0,0, (4.9)

and we define

h̄i1,i2 =
hi1,i2
h0,0

. (4.10)

We have omitted the dependence of the coefficients on µ2
F for simplicity.

Since we are going to combine the small-N approximation with the large-N approxima-

tion to obtain an estimate of the full coefficient function, we require that the two limiting

behaviors do not interfere with each other. In particular, we require that the high-energy

contribution vanishes when N →∞. Manifestly, eq. (4.8) does not fulfil this requirement,

because of the presence of a constant contribution in γ(0) (see eq. (B.2) in appendix B),

which propagates in CABF(N) to all orders in αs. Therefore, following ref. [2], we replace

eq. (4.8) with a modified version of the small-N approximation to the partonic cross sec-

tion, which has the same leading singularity in N = 1 but vanishes as N → ∞. The

modified version is given by

CABF-sub(N) = CABF(N)− 2CABF(N + 1) + CABF(N + 2). (4.11)

The subtraction simply introduces subleading singularities in N = 0 and N = −1, but now

lim
N→∞

CABF-sub(N) = 0 (4.12)

to all orders in αs. As pointed in ref. [2], this choice for the subtraction is a compromise

between the contrasting goals of not changing the small-N singularities structure and of

damping strongly enough as N increases. In momentum space the subtraction of eq. (4.11)

corresponds to damping the ρ → 1 behaviour of the partonic cross section through a

multiplicative factor (1 − ρ)2.

One additional modification is needed to define our prediction for the cross section in

the high-energy regime. We note that the anomalous dimensions vanishes at N = 2 due to

momentum conservation. This implies that the small-N approximation eq. (4.8) vanishes

in N = 2. This value of N marks the transition between the small-N approximation (not

accurate if N & 2) and the large-N approximation (not accurate when N . 2).
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However, eq. (4.8), differs from 0 in N = 2 because the small-N limit of the anomalous

dimension γ+, eq. (4.7), contains only the leading and the next-to-leading singularities in

N = 1, and not a full fixed order expression. Momentum conservation can be enforced [46]

directly in eq. (4.8), by adding to CABF(N) a function fmom ∝ 1/N . Following ref. [2], we

construct our small-N momentum-conserving approximation as

Ch.e(N) = CABF-sub(N)− 4!kmom(αs)

N(N + 1)(N + 2)
, (4.13)

where the constant kmom(αs) is fixed by requiring that Ch.e(2) = 0 to all orders in the per-

turbative expansion. The enforcement of momentum conservation in our small-N approx-

imation allows us to estimate the contribution of subleading poles in N = 0,−1,−2, . . . ,

which are not controlled by the high-energy approximation. Indeed, the full partonic cross

section does not vanish at N = 2: only the contribution to it driven by hard radiation

from external legs does. Hence we can estimate subleading small-N effects by allowing the

partonic cross section to deviate slightly from zero at N = 2 due to contributions from

subleading poles. We thus fix kmom to be

kmom(αs) = CABF-sub(2)±∆kmom(αs), (4.14)

and we take the variation ∆kmom(αs) to reach as its maximum value 15% of the size of

soft contribution CA-soft(N), eq. (3.13) at N = 2. This is a somewhat more conservative

estimate of the uncertainty in comparison to the corresponding one adopted in ref. [2],

due to the fact that we expect the contribution from subleading poles to be potentially

somewhat larger in this case, based on the behaviour of known orders, and possibly also

due to the issues discussed in section 2.2. Namely, we choose in eq. (4.14),

∆kmom(αs) = 0.15× CA-soft(2). (4.15)

In conclusion, this means that the small N contribution, rather than being completely

switched off at N = 2, is small at this point, and gets switched off somewhere in its vicinity.

5 Approximate cross section up to N3LO

We are now ready to present our results for top pair production cross section at N3LO, by

using eq. (2.45) to combine the large-N terms eq. (3.15) and the small-N terms eq. (4.13).

We first recall how N -space parton-level results can be related to physical hadron-level

results using the saddle point methods, and then we present the parton and hadron level

results in turn.

5.1 Saddle point approximation of Mellin inversion integrals

The physical hadronic cross section can be related to the underlying partonic cross section

by viewing the former as the inverse Mellin transform of its factorized expression eq. (2.6)

σ(m2, ρh) =
1

2πi

∫ c+i∞

c−i∞
dN ρ−N+1

h L (N)σ̂(m2, N) =
1

2πi

∫ c+i∞

c−i∞
dN exp[f(N)], (5.1)
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Figure 3. Position of the saddle point as a function of
√
s for fixed top quark mass.

where c is to the right of all singularities of the integrand. It can be shown on general

grounds that f(N) has a unique minimum at N = N0 on the real N axis, which allows us

to estimate the integral by the saddle-point technique.

The position N0 of the saddle typically depends very weakly on the partonic cross sec-

tion, and is mainly determined by the parton luminosity; the saddle-point approximation,

with the inclusion of quadratic fluctuations around the saddle, turns out to be generally

quite accurate [51]. It is then possible to infer properties of the hadronic cross section from

the behaviour of the partonic cross section at the value of N which corresponds to the

saddle point for given hadronic kinematics.

The position of the saddle point N0 as a function of the collider energy
√
s, for

m = mt = 173.37 GeV, computed using NNPDF 3.0 [52] parton distributions, is shown in

figure 3. The value of the saddle turns out to be around N = 2.5 at LHC energies. The

value of N0 is a very slowly decreasing function of the total energy.

5.2 Parton-level results

We can now combine the results of sections 3 and 4 to obtain an estimate of the coefficients

of the perturbative expansion for the total production cross section of heavy quark pairs.

We first test our procedure against exact fixed-order calculations, which are available at

NLO [6, 8] and NNLO [12]. At NLO we specifically compare to the fit to the analytic result

of ref. [8] presented in ref. [53] . In figure 4 we show our approximation to the NLO and

NNLO in Mellin space (labeled approx), compared to the exact results of ref. [12, 53]. The

large-N contribution, CA-soft(N) eq. (3.13) (labeled as soft), and the small-N contribution,

Ch.e(N) eq. (4.13) (labeled as high-energy), are also shown. The renormalization and

factorization scales are taken to be equal to the heavy quark mass m. The uncertainty on

our prediction (red band) is obtained as the envelope of the uncertainty eq. (3.15) on the

soft terms (green band), and the uncertainty eqs. (4.14), (4.15) on the high-energy terms

(blue band).
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Figure 4. Comparison between exact results and our approximation at NLO (left) and NNLO

(right) for the Mellin-space coefficient function C(N); the large-N contribution (A-soft) eq. (3.15),

the small-N contribution (high-energy) eq. (4.13), and the combined approximation of eq. (2.45)

(approx) are shown. The bottom plots show the ratio of the approximate to the exact result.

Figure 5. Same as figure 4, but at N3LO.

The agreement is excellent at NLO in the whole range displayed in figure 4. At NNLO

there is a slight discrepancy in the region between 1 < N < 1.6. This is due to the fact

we are only including the LL contribution in this region, while it was noted in ref. [8, 12]

that NLL contributions close to N = 1 for top pair production are sizable. This region of

N , however, would only be relevant for very high energy colliders (
√
s & 100 TeV).

At the N values which are relevant for LHC energies, the agreement between the

approximate and exact results is excellent; for lower collider energy, as the saddle point

moves towards larger values, the uncertainty on the approximate prediction is smaller.

We now turn to the N3LO contribution. We recall that the constants ḡ
(3)
I , together

with the difference between coefficients D
(3)
8 and D

(3)
1 , are not known. They will be set to

zero for the time being; the impact of this missing information on our prediction for the

physical cross section will be discussed in section. 5.4 below. The function C
(3)
approx(N) is

plotted in figure 5, together with the soft and the high-energy contributions that go into

it according to eq. (2.45).
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Figure 6. Comparison between the exact result and our approximation for the NLO contribution

to the K-factor eq. (5.2) from the gluon channel, plotted as a function of the collider energy
√
s.

The result obtained expanding the standard NNLL resummation (N -soft) is also shown.

5.3 Hadron-level results

We come now to the hadronic cross sections. It is convenient to define the gluon-channel

K-factors

Kgg(m
2, ρh) =

σgg(m
2, ρh)

σLO
gg (m2, ρh)

= 1 + αsK
(1)
gg + α2

sK
(2)
gg + α3

sK
(3)
gg +O(α4

s), (5.2)

where αs = αs(m
2), σgg(m

2, ρh) is the contribution to the hadron-level cross section

eq. (2.1) from the gluon-gluon subprocess, and σLO
gg (m2, ρh) the corresponding leading-order

approximation. All results will be obtained using the partonic cross sections of section 5.2,

with factorization and renormalization scale µR = µF = m, and NNPDF 3.0 NNLO parton

distribution functions [52], with αs(M
2
Z) = 0.118 and nf = 5. Scale uncertainties on our

final results will be discussed in section 5.4 below.

The NLO and NNLO K-factors at a pp collider are shown in figures 6 and 7, respec-

tively, as functions of the center-of-mass energy
√
s, and compared to the exact results of

ref. [12, 53]. We also show the values obtained by expanding out to the given order the

standard resummed result of refs. [12, 37], i.e. using the N -soft approximation eq. (3.16).

The main result of this work, namely the N3LO contribution to the K-factor in the gluon-

gluon channel as a function of the collider energy is shown in figure 8. Numerical results

for the K-factors at LHC energies are collected in table 1.

We note that our approximation reproduces the exact result within the estimated un-

certainty both at NLO and at NNLO, in the whole energy range displayed in the plots. In

comparison to the case of Higgs production, the uncertainty is larger, both because thresh-

old resummation is known to a lower accuracy, and also because, as already mentioned,

we have less control over lnk N
N terms. Our result is seen to differ by varying amounts at

each order from the N -soft one, simply obtained by expanding out the resummed result.
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Figure 7. Same as figure 6 at NNLO.

Figure 8. Same as figure 6 at N3LO, where the exact result is not known.

At NLO and NNLO the origin of this difference is twofold: first, our approximation also

includes the high-energy contribution and second, the functional form of the contribution

obtained by expanding out the N -soft result differs from that adopted in our approxima-

tion, as explained in section 3.3. At N3LO two further differences are, first, that our result

includes the single logarithmic term, even if its coefficient is only partially known, which

is absent in a NNLL resummation. However, the numerical impact of this contribution is

small. Second, that the function of αs which multiplies the resummed exponent is given

by gI(αs) in the N -soft resummed result, and by ḡI(αs) when constructing our approxima-

tion, the relation between the two being given by eq. (3.18). We will specifically discuss

the impact of this choice in the next section (see in particular table 2).
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αs(m
2)K

(1)
gg α2

s(m
2)K

(2)
gg α3

s(m
2)K

(3)
gg

7
T

eV

exact 0.599 0.237

approx 0.623± 0.112 0.250± 0.076 0.098± 0.038

N -soft 0.672 0.260 0.056
8

T
eV

exact 0.587 0.227

approx 0.609± 0.115 0.239± 0.076 0.094± 0.037

N -soft 0.658 0.250 0.052

13
T

eV

exact 0.555 0.199

approx 0.569± 0.125 0.209± 0.077 0.083± 0.036

N -soft 0.619 0.221 0.040

14
T

eV

exact 0.552 0.196

approx 0.565± 0.126 0.205± 0.077 0.082± 0.036

N -soft 0.614 0.217 0.038

Table 1. The NLO, NNLO, N3LO contributions the gluon channel K-factor at the LHC (7 TeV,

8 TeV, 13 TeV, 14 TeV).

5.4 N3LO top pair production cross section at LHC

We collect now final results for top pair production at the LHC energies and its uncertainty.

Our prediction for the total cross section with µF = µR = m is

LHC7: σN3LO
approx

(
ρh,m

2
)

=
(

177.43± 2.99 + 0.10 ḡ(3) − 0.10
(
D

(3)
8 −D

(3)
1

))
pb, (5.3a)

LHC8: σN3LO
approx

(
ρh,m

2
)

=
(

253.98± 4.35 + 0.14 ḡ(3) − 0.14
(
D

(3)
8 −D

(3)
1

))
pb, (5.3b)

LHC13: σN3LO
approx

(
ρh,m

2
)

=
(

835.61± 14.78 + 0.51 ḡ(3) − 0.46
(
D

(3)
8 −D

(3)
1

))
pb, (5.3c)

LHC14: σN3LO
approx

(
ρh,m

2
)

=
(

988.57± 17.55 + 0.61 ḡ(3) − 0.54
(
D

(3)
8 −D

(3)
1

))
pb, (5.3d)

where

ḡ(i) = ḡ
(i)
1 + ḡ

(i)
8 . (5.4)

The constant ḡ(3) is not known. The difference between the coefficients D
(3)
8 and D

(3)
1

parametrizes the missing information about the single log at N3LO, as discussed in sec-

tion 3.1. Eq. (5.3) is obtained using exact expressions for the NLO [8] and NNLO [9–12],

combined with our approximation for the N3LO in the gluon channel.

We now consider various sources of uncertainty. First, we consider the uncertainty

related to missing coefficients. In table 2, we list the values of the coefficients ḡ(i), and

of D
(i)
8 − D

(i)
1 for the two known orders, as well as the coefficients g(i) defined using the

analogue of eq. (5.4) but for the expansion coefficients of gI(αs) eq. (3.18) which is used
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D
(i)
8 −D

(i)
1 ḡ(i) g(i) g(i) − ḡ(i)

αs −0.955 1.188 3.832 2.644

α2
s −1.782 0.535 8.512 7.977

α3
s ? ? ? 12.348

Table 2. The coefficients D
(i)
8 −D

(i)
1 , ḡ(i), g(i) and the difference between the latter two at NLO

and NNLO.

LHC8 σqq̄(pb) σqg(pb) σgg(pb)

LO 29.94 0 116.33

NLO 4.17 −0.45 66.66

NNLO 2.17 −2.30 26.36

Table 3. Comparison of contributions to top pair production cross section from different channel

at LHC 8 TeV at LO, NLO, NNLO.

in the standard resummed results of refs. [12, 37], and the difference between the two,

which is known to a higher perturbative order. Based on these values, we note that the

perturbative behaviour of the coefficients ḡ(i) appears to be rather more stable than that of

the coefficients g(i), and we reasonably expect the unknown coefficients, ḡ(3) and D
(3)
8 −D

(3)
1 ,

to be both of O(1). We conservatively estimate the uncertainty related to these unknown

coefficients as

ḡ(3) = 0± 5, D
(3)
8 −D

(3)
1 = 0± 10, (5.5)

which we add in quadrature to the approximation uncertainty of eq. (5.3). We also note

in passing that the N -soft approximation assumes g(3) = 0, while our estimate corre-

sponds to a value of order ten for this constant, thereby partly explaining the difference

observed in figure 8 between our result and the N -soft approximation, as discussed in the

previous section.

A second source of uncertainty is due to the fact that we only predict the contribution

of the gluon channel. In table 3, we show the contributions to the top-pair production

cross section coming from different partonic channels at LO, NLO, NNLO, for the specific

case of LHC at 8 TeV. We note that gluon fusion contribution is always dominant, and

largely dominant at high perturbative orders. This remains true for other LHC energies

(while at the Tevatron the qq̄ component becomes dominant). Therefore, we expect that

our estimate for the N3LO contribution based on the gg channel only is only mildly affected

by the lack of knowledge of the other channels. However, in order to take into account the

uncertainty due to the missing partonic channels, we consider the dependence of our result

on the factorization scale. Indeed, all the scale dependent terms at N3LO are available (for

all channels), but the inclusion of all of them would consistently make the residual scale

dependence of relative order α4
s. On the other hand, if we include µF dependent terms
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Figure 9. Factorization (left) and renormalization (right) scale dependence of the top production

cross section at various perturbative orders. At N3LO the factorization scale dependence is shown

both including the contribution from all channels (NNNLO) and from the gluon channel only

(NNNLOgg).

only in the gg channel, the residual scale dependence is of order α3
s, since it misses the

compensation between channels. The difference between these two ways of varying the

scale can be thus taken as an estimate of the size of the contribution from the missing

quark channels.

Finally, uncertainties related to missing higher-order terms can be estimated by varying

the renormalization and factorization scales in the usual way. The dependence of the cross

section at LO, NLO, NNLO and approximate N3LO on the factorization and renormaliza-

tion scales, is shown in a wide range in figure 9; the NNLO+NNLL result of refs. [12, 37]

is also shown. The factorization scale variation at N3LO with µF is shown both retaining

contributions from all channels, and from the gg channel only. The factorization scale

dependence is rather mild already at NNLO, and even milder at approximate N3LO when

all channels are included. When only the gg channel is included, a stronger scale depen-

dence is observed, particularly at the extremes of the range, where sizable contributions

from the missing channels are generated. The renormalization scale dependence is some-

what stronger than the factorization scale dependence, but at N3LO it has flattened out

almost completely, thereby indicating a good perturbative convergence. It is interesting

to observe that the NNLO+NNLL result has a milder scale dependence than the NNLO,

but still a stronger scale dependence than the approximate N3LO. This is what one may

expect based on the observation that effectively, because the process is far from threshold,

the resummation is providing some approximation mostly to N3LO, which is however less

complete than the approximation which is constructed here.
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Our final results, with full uncertainty, are thus

LHC7: σN3LO
approx = 177.43 pb± 1.79%(approx)± 0.97%(channels)+3.02%

−2.87%(scales) (5.6a)

LHC8: σN3LO
approx = 253.98 pb± 1.82%(approx)± 0.96%(channels)+2.98%

−2.83%(scales) (5.6b)

LHC13: σN3LO
approx = 835.61 pb± 1.88%(approx)± 0.96%(channels)+2.73%

−2.65%(scales) (5.6c)

LHC14: σN3LO
approx = 988.57 pb± 1.88%(approx)± 0.97%(channels)+2.68%

−2.62%(scales) (5.6d)

where the “channels” uncertainty has been computed as (± half) the difference between the

µF scale variation evaluated with only the gg channel or with all the channels (NNNLOgg

and NNNLO curves in figure 9), in the range m/2 ≤ µF ≤ 2m with µR = m. The

“scales” uncertainty is instead obtained through a canonical seven-point variation, namely

m/2 ≤ µR, µF ≤ 2m with 1/2 ≤ µR/µF ≤ 2, computed with all channels. We observe

that the approximation uncertainties, though conservatively estimated, are rather smaller

than the scale uncertainty, and in fact adding in quadrature scale and approximation

uncertainties we end up with an overall theoretical uncertainty on our N3LO result of 3.5%,

not much larger than the scale uncertainty itself. This uncertainties can be compared to

the PDF uncertainty, which at the LHC
√
s = 13 TeV (with NNPDF 3.0 PDFs) is of order

2%. Additional uncertainties come from the values of αs and mt: see ref. [54] for a more

detailed discussion.

We observe that the uncertainty due to scale variations at NNLO is about 5% at

the collider energies we are considering, which is larger than the overall uncertainty on

our N3LO estimate even accounting for approximation uncertainties. The inclusion of

our approximate N3LO contribution appears thus to be advantageous, and it leads to a

decrease in theoretical uncertainty which is of the size one would expect when going ftom

NNLO to N3LO.

We may compare our approximate N3LO result to that which would be obtained

using the N -soft result shown in figure 8. The latter leads to a N3LO contribution which

corresponds to an increase of 3%, 2.8%, 2.3%, 2.4% in comparison to the NNLO at LHC√
s = 7, 8, 13, 14 TeV, respectively. This is rather lower than our approximate result, which

corresponds to an increase of 4.3%, 4.5%, 4.2%, 4.3% respectively. The reasons for this

have been discussed in the previous section. As discussed above, and as it is apparent from

figure 9, the scale uncertainty on this result is somewhat smaller than that on the NNLO

result, but larger than that on our result.

Finally, we note that an approximate N3LO result is also presentes in ref. [55]. This

result is obtained by considering logarithmic terms enhanced at partonic threshold in the

differential cross section, inclusive in one of the two heavy quarks produced. The result is

then integrated to obtain the inclusive cross section. The enhancements over the NNLO

results were found to be 4%, 3.6%, 2.7%, 2.6% at
√
s = 7, 8, 13, 14 TeV respectively. We

leave a more detailed comparison to the results of ref. [55], as well as to the resummed

result obtained in SCET (e.g. refs. [36, 39] and refs. [20–22]), for future work.
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6 Conclusions

We have constructed an approximate expression for the N3LO contribution to the produc-

tion cross section of a heavy-quark pair at hadron-hadron colliders. We have focused on

the gluon-gluon initiated subprocess, which gives the largest contribution at the LHC.

We have obtained our result by extending the method developed by some of us for

the case of Higgs production in gluon-gluon fusion [2], and based on reconstructing the

Mellin-space partonic cross section from its known singularities. Heavy-quark production

is a process with a rather more complicated kinematic and color structure compared to

inclusive Higgs production. Furthermore, fixed-order coefficient function for this process

are known to have a rather non-trivial singularity structure in physical space, at first sight

unrelated to the threshold or high-energy limits. Therefore, application to this case of the

the technique suggested in ref. [2] and applied there to Higgs production in gluon fusion

provides a rather stringent test of this methodology. In this study we have shown that the

method of ref. [2] provides excellent approximations to known results up to NNLO, thereby

validating he methodology.

Having established the reliability of the methodology even in this more subtle case,

we have used it to produce a N3LO approximate partonic cross section for heavy quark

production. We have then focused on the tt̄ cross section, which is of great interest at

the LHC. We have found that the approximate N3LO correction amounts to an increase

in comparison to the NNLO prediction of 4.3%, 4.5%, 4.2%, 4.3%, for pp collisions at
√
s =

7, 8, 13, 14 TeV, respectively. Inclusion of this correction reduces the scale uncertainty to

3%, with a combined uncertainty on the approximation itself of comparable size or smaller.

Our final overall conservatively estimated uncertainty is thus somewhat smaller than the

uncertainty on the exactly known NNLO result, and inclusion of our approximate result

appears to be advantageous.
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A Coefficients in the large-N contribution

The coefficients b
(A)
n,k (µ2

F) and b
(D)
n,k,I(µ

2
F) defined in eq. (3.1) for n ≤ 3 are given by

b
(A)
1,0 = 4A(1) ln 2 + 2A(1) ln

m2

µ2
F

(A.1a)

b
(A)
1,1 = 4A(1) (A.1b)
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b
(A)
2,0 = 4A(2) ln 2− 4A(1)β0 ln2 2 + 2A(2) ln

m2

µ2
F

+A(1)β0 ln2 m
2

µ2
F

(A.1c)

b
(A)
2,1 = 4A(2) − 8A(1)β0 ln 2 (A.1d)

b
(A)
2,2 = −4A(1)β0 (A.1e)

b
(A)
3,0 = 4A(3) ln 2− 8A(2)β0 ln2 2− 4A(1)β1 ln2 2 +

16

3
A(1)β2

0 ln3 2

+ 2A(3) ln
m2

µ2
F

+
(

2A(2)β0 +A(1)β1

)
ln2 m

2

µ2
F

+
2

3
A(1)β2

0 ln3 m
2

µ2
F

(A.1f)

b
(A)
3,1 = 4A(3) − 16A(2)β0 ln 2− 8A(1)β1 ln 2 + 16A(1)β2

0 ln2 2 (A.1g)

b
(A)
3,2 = −8A(2)β0 − 4A(1)β1 + 16A(1)β2

0 ln 2 (A.1h)

b
(A)
3,3 =

16

3
A(1)β2

0 (A.1i)

and

b
(D)
1,0,I = D

(1)
I (A.2a)

b
(D)
2,0,I = D

(2)
I − 2β0D

(1)
I ln 2 (A.2b)

b
(D)
2,1,I = −2β0D

(1)
I (A.2c)

b
(D)
3,0,I = D

(3)
I − 2β1D

(1)
I ln 2− 4β0D

(2)
I ln 2 + 4β2

0D
(1)
I ln2 2 (A.2d)

b
(D)
3,1,I = −2β1D

(1)
I − 4β0D

(2)
I + 8β2

0D
(1)
I ln 2 (A.2e)

b
(D)
3,2,I = 4β2

0D
(1)
I (A.2f)

where

A (αs) = A(1)αs +A(2)α2
s +A(3)α3

s +O
(
α4
s

)
; (A.3a)

A(1) =
CA

π
(A.3b)

A(2) =
CA

2π2

((
67

18
− ζ2

)
CA −

5

9
nf

)
(A.3c)

A(3) =
CA

4π3

(
C2

A

(
245

24
− 67

9
ζ2 +

11

6
ζ3 +

11

5
ζ2

2

)
+ CFnf

(
−55

24
+ 2ζ3

)
+ CAnf

(
−209

108
+

10

9
ζ2 −

7

3
ζ3

)
−
n2
f

27

)
(A.3d)

and

DI (αs) = D
(1)
I αs +D

(2)
I α2

s +D
(3)
I α3

s +O
(
α4
s

)
; (A.4a)

D
(1)
1 = 0 (A.4b)
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D
(2)
1 =

CA

π2

((
−101

27
+

11

18
π2 +

7

2
ζ3

)
CA +

(
14

27
− π2

9

)
nf

)
(A.4c)

D
(3)
1 =

1

(4π)3

(
C3

A

(
−594058

729
+

98224

81
ζ2 +

40144

27
ζ3 −

2992

15
ζ2

2 −
352

3
ζ2ζ3 − 384ζ5

)
+ C2

Anf

(
125252

729
− 29392

81
ζ2 −

2480

9
ζ3 +

736

15
ζ2

2

)
+ CACFnf

(
3422

27
− 32ζ2 −

608

9
ζ3 −

64

5
ζ2

2

)
+ CAn

2
f

(
−3712

729
+

640

27
ζ2 +

320

27
ζ3

))
(A.4d)

D
(1)
8 = D

(1)
1 −

CA

π
(A.4e)

D
(2)
8 = D

(2)
1 +

CA

36π2

(
CA

(
−115 + 3π2 − 18ζ3

)
+ 22nf

)
, (A.4f)

while D
(3)
8 is unknown.

To complete our resummed formula for the soft emission, we need explicit expressions

for the functions D̂k(N), Mellin transforms of the distributions

D̂k (z) =

[
lnk (1− z)

1− z

]
+

+

[
lnk 1−z√

z

1− z
− lnk (1− z)

1− z

]
, (A.5)

where the plus distribution is defined by∫ 1

0
dz [f (z)]+ g (z) =

∫ 1

0
dz g (z) [f (z)− f (1)] . (A.6)

The full calculation is presented for example in ref. [2, 56]. Here we give the final result:

D̂k (N) =
1

k + 1

k∑
j=0

(
k + 1

j

)
Γ(j) (1)

[
Υ(k+1−j) (N, 0)−∆(k+1−j) (1)

]
, (A.7)

where we have defined

∆ (ξ) =
1

Γ (ξ)
(A.8)

Υ (N, ξ) = Γ

(
N − ξ

2

)
∆

(
N +

ξ

2

)
, (A.9)

Γ(N) is the usual Euler function, and the superscript in round brackets in Υ (N, ξ) denotes

differentiation with respect to ξ. For the first three values of k, relevant for our N3LO

approximation, we find

D̂0 (N) = −L, (A.10a)

D̂1 (N) = +
1

2

[
L2 + ζ2

]
, (A.10b)
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D̂2 (N) = −1

3

[
L3 + 3ζ2L+ 2ζ3 +

1

4
ψ2(N)

]
, (A.10c)

D̂3 (N) = +
1

4

[
L4 + 6ζ2L

2 + 8ζ3L+
27

5
ζ2

2 + ψ2(N)L

]
, (A.10d)

with

L = ψ0(N) + γE, (A.11)

where ψk(N) = ψ
(k)
0 (N), ψ0(N) = Γ′(N)/Γ(N) are the usual polygamma functions and

γE = −ψ0(1) is the Euler-Mascheroni constant.

The Coulomb functions JI(N,αs) are computed by taking a Mellin transform of the

resummed momentum-space results obtained in the context of pNRQCD [36, 38]. For

more details about the procedure of this Mellin transformation, see ref. [43]. The explicit

expression for the Coulomb functions, up to N3LO, is the following:

JI(N,αs) = 1 + J
(1)
I (N)αs + J

(2)
I (N)α2

s + J
(3)
I (N)α3

s +O(α4
s) (A.12a)

J
(1)
1 (N) =

πCF21−2N

B (N,N)
(A.12b)

J
(2)
1 (N) =

C2
Fπ

2

6

(
N − 1

2

)
− CF

(
CF +

CA

2

)
(−γE + 2− 2 (ψ0 (2N)− ψ0 (N)))

+

((
−11

24
CFCA +

CFnf
12

)(
ln 2 +

1

2
(−γE − ψ0(N))

)
+

(
31

72
CFCA −

5

36
CFnf

))
22−2N

B (N,N)
(A.12c)

J
(3)
1 (N) =

C2
Fπ

108

(
N − 1

2

)
×
(

93− 10nf − 432
β0ζ3

π
+ 36πβ0 (γE − 2 ln 2 + 2 (ψ0 (2N)− ψ0 (N)))

)
− C2

Fπ

108
+ C2

F (CA + 2CF)
π

22NB (N,N)
(γE + ψ0(N)) (A.12d)

J
(1)
8 (N) =

π
(
CF − CA

2

)
21−2N

B (N,N)
(A.12e)

J
(2)
8 (N) =

(
CF − CA

2

)2
π2

6

(
N − 1

2

)
− CF

(
CF −

CA

2

)
(−γE + 2− 2 (ψ0 (2N)− ψ0 (N)))

+

((
−11

24
CA +

nf
12

)(
CF −

CA

2

)(
ln 2 +

1

2
(−γE − ψ0(N))

)
+

(
31

72
CA −

5

36
nf

)(
CF −

CA

2

))
22−2N

B (N,N)
(A.12f)
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J
(3)
8 (N) =

(
CF − CA

2

)2
π

108

(
N − 1

2

)
×
(

93− 10nf − 432
β0ζ3

π
+ 36πβ0 (γE − 2 ln 2 + 2 (ψ0 (2N)− ψ0 (N)))

)
−
(
CF − CA

2

)2
π

108
+

(2CF − CA)2CFπ

22N−1B (N,N)
(γE + ψ0(N)) . (A.12g)

with B (a, b) = Γ(a)Γ(b)
Γ(a+b) the Beta function.

We now turn to the functions ḡI(αs). They must be computed by matching with exact

results, which are available up to NNLO. Moreover, as pointed out in ref. [12], at NNLO

we can only infer from the exact result the sum ḡ(2) = ḡ
(2)
1 + ḡ

(2)
8 , but not the individual

contributions ḡ
(2)
I . The latter have been estimated by the same procedure adopted in

ref. [12], giving

ḡI(αs) = 1 + ḡ
(1)
I αs + ḡ

(2)
I α2

s +O
(
α3
s

)
(A.13a)

ḡ
(1)
1 =

2

7π

[
CF

(
−5 +

π2

4

)
+ CA

(
1 +

π2

12

)]
(A.13b)

ḡ
(2)
1 = 0.216 (A.13c)

ḡ
(1)
8 =

5

7π

[
CF

(
−5 +

π2

4

)
+ CA

(
3− π2

24

)]
(A.13d)

ḡ
(2)
8 = 0.319. (A.13e)

It can be checked that the uncertainty due to this additional guess is completely negligible

in comparison to our error bands. For simplicity we do not give the explicit factorization

scale dependence of ḡ(αs).

B Coefficients in the small-N contribution

The only ingredients which are needed for the high-energy contribution are the coefficients

hi1,i2 of the expansion of the impact factor, up to N3LO:

h0,0 =
181π

2160
(B.1a)

h1,0 = h0,1 =
7291π

32400
(B.1b)

h1,1 =
502417π

486000
− 251π3

12960
(B.1c)

h2,0 = h0,2 =
58849π

121500
(B.1d)

h2,1 = h1,2 =
π
(
47041256− 700575π2 + 7526250ζ3

)
14580000

(B.1e)

h3,0 = h0,3 =
π (3608438 + 203625ζ3)

3645000
. (B.1f)
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The coefficients h̄i1,i2 are simply obtained dividing each hi1,i2 by h0,0. The factorization

scale dependence can be easily restored following the procedure explained for example

in ref. [2].

The leading and next-to-leading singular contributions to the anomalous dimension

γ+ are

γ(0) =
e0,−1

N − 1
+ e0,0 +O(N − 1) (B.2)

γ(1) =
e1,−2

(N − 1)2
+

e1,−1

N − 1
+O(1) (B.3)

γ(2) =
32,−3

(N − 1)3
+

e2,−2

(N − 1)2
+O

(
(N − 1)−1

)
, (B.4)

with e0,−1 = CA
π , e1,−2 = e2,−3 = 0 and

e0,0 =
−11C2

A + 2nf (2CF − CA)

12πCA

(B.5)

e1,−1 =

(
13CF

18π2
− 23CA

36π2

)
nf (B.6)

e2,−2 =
C3

Aζ3

2π3
+

11C3
Aζ2

12π3
− 395C3

A

108π3
+

(
C2

Aζ2

6π3
− 71C2

A

108π3
− CFCAζ2

3π3
+

71CFCA

54π3

)
nf . (B.7)
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