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1 Introduction

Recently, much attention have been paid to quantum field theories on compactified spaces

R
d × S1 with twisted boundary conditions, such as QCD with adjoint fermions on R

3 ×

S1 and nonlinear sigma models on R
1 × S1, that admit fractional instantons and bions,

i.e. multiple fractional instanton configurations with vanishing instanton charge [1]–[24].

Magnetic (charged) bions carry a magnetic charge and are conjectured to lead semiclassical

confinement in QCD on R
3 × S1 [5], while neutral bions carry no magnetic charge and are

identified as the infrared renormalons [7]–[16] (see refs. [25–27] for earlier works) playing

an essential role in self-consistent semiclassical definition of quantum field theories through

the resurgence [28].

In lower dimensions, fractional instantons were found in the CPN−1 model [29, 30]

(see also refs. [31–34] for subsequent study) and the Grassmann sigma model [35, 36] on

R
1×S1 with twisted boundary conditions. Bions and their role in the resurgence have been

extensively studied in the CPN−1 model [9–11, 18, 19, 24] and the Grassmann sigma model

[20, 21] on R
1 × S1. The former admits only neutral bions while the latter admits both

neutral and charged bions [20]. Fractional instantons and bions in the O(N) nonlinear
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sigma model on R
N−2 × S1 have been studied recently with general twisted boundary

conditions in which arbitrary number of fields changes signs [37]. The O(3) model is

equivalent to the CP 1 model studied before [9–11, 17–19]. The O(4) model is equivalent to

a principal chiral model with a group SU(2) (or a Skyrme model if four derivative term is

added [38, 39]), for which the case of the boundary condition with two fields changing their

signs is equivalent to the Z2 (center) symmetric boundary condition. In this case, fractional

instantons are vortices winding around S1 with U(1) moduli twisted half along S1.

In this paper, we study the SU(N) principal chiral model on R
2 × S1 with twisted

boundary conditions. Previously the principal chiral models were studied in two dimen-

sions [13, 16] for which instantons do not exist. We study the principal chiral model in

three dimensions, where instantons exist with the instanton number defined by the third

homotopy group π3 that is also known as baryon number in the context of the Skyrme

model [38, 39]. We show that this case allows N − 1 kinds of global vortices accompanied

by U(1) moduli, and fractional instantons are vortices wrapping around the S1 direction,

with U(1) moduli twisted along S1 by the angle 2π/N (or its complement) for the ZN

center symmetric twisted boundary condition and by generic angle for generic boundary

conditions. They carry 1/N instanton (baryon) numbers for the ZN symmetric twisted

boundary condition and irrational instanton numbers for generic boundary condition. We

classify neutral and charged bions for the SU(3) case with the Z3 symmetric twisted bound-

ary condition. We also point out that for the cases with generic boundary conditions

only the simplest neutral bions, composed of a set of a fractional instanton and fractional

anti-instanton, have zero instanton charges but instanton charges are not canceled out for

charged bions. We further discuss a correspondence between fractional instantons and

bions in the SU(N) principal chiral model and those in Yang-Mills theory; the latter be-

come the former if reside inside a non-Abelian domain wall [40–42] (non-Abelian Josephson

junction [43]) in the Higgs phase [44].

This paper is organized as follows. In section 2, we first give the SU(N) principal

chiral model. In section 3 we review fractional instantons and bions in the SU(2) principal

chiral model on R
2 × S1 with the center symmetric twisted boundary conditions. We find

charged bions that were not studied before. In section 4 we work out fractional instantons

and bions in the SU(3) principal chiral model on R
2×S1 with the center symmetric twisted

boundary conditions. In section 5, we briefly discuss the SU(N) principal chiral model. In

section 6, generic boundary conditions are discussed for SU(N). In section 7, we discuss the

relation between fractional instanton and bions in the SU(N) principal chiral model and

those in the SU(N) Yang-Mills theory. Section 8 is devoted to a summary and discussion.

2 The principal chiral model on R
2
×S

1 with twisted boundary conditions

Let U(x) be scalar fields taking a value in the group G = SU(N). Then, the Lagrangian

of the SU(N) principal chiral model is given as

L = f2
πtr (∂µU

†∂µU) (2.1)

with a decay constant fπ. The symmetry of the Lagrangian is G = SU(N)L×SU(N)R (U →

U ′ = gLUg†R), that is spontaneously broken down to H ≃ SU(N)L+R (U → U ′ = gUg†).

– 2 –
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The target space is M ≡ G/H ≃ SU(N) ∋ U(x). The instanton number B in d = 3 + 0

dimensions (or equivalently the baryon number or Skyrme charge in d = 3+1 dimensions),

taking a value in the third homotopy group B ∈ π3(M), is defined as (i = 1, 2, 3)

B = −
1

24π2

∫

d3x ǫijktr
(

U †∂iUU †∂jUU †∂kU
)

=
1

24π2

∫

d3x ǫijktr
(

U †∂iU∂jU
†∂kU

)

. (2.2)

We consider the space R
2 × S1 with non-trivially twisted boundary conditions along

S1. The ZN symmetric twisted boundary condition for the SU(N) principal chiral model

is defined by

U(x1, x2, x3 +R) = WU(x1, x2, x3)W †,

W = diag.(1, ω, ω2, · · · , ωN−1) = exp

[

2πi

N
diag.(0, 1, · · · , N − 1)

]

, ω = e
2πi

N . (2.3)

The Z2 twisted boundary condition for the SU(2) case is

U(x1, x2, x3 +R) = WU(x1, x2, x3)W †, W = σ3 = diag.(1,−1). (2.4)

The SU(2) principal chiral model is equivalent to the O(4) nonlinear sigma model. If we

define four real scalar fields nA(x) (A = 1, 2, 3, 4) from the SU(2)-valued field U(x) by

U = i
∑

a=1,2,3

naσa + n412 (2.5)

with the Pauli matrices σa and the constraint n ·n = 1 equivalent to U †U = 12, the bound-

ary condition (2.4) becomes (n1, n2, n3, n4)(x
1, x2, x3 +R) = (−n1,−n2, n3, n4)(x

1, x2, x3)

that we called (−,−,+,+) [37].

We also consider more general twisted boundary condition

U(x1, x2, x3 +R) = WU(x1, x2, x3)W †,

W = diag.(eim1 , eim2 , · · · , eimN ), m1 ≤ m2 ≤ · · · ≤ mN . (2.6)

In this paper, we first focus on the ZN symmetric twisted boundary condition in eq. (2.3),

that corresponds to ma = 2π(a − 1)/N . We also consider the generic non-degenerate

case later.

In small compactification radius limit, the Scherk-Schwarz dimensional reduction is

effectively induced, to yield a potential term (twisted mass) [43]

V = f2
πtr ([M,U ]†[M,U ]) (2.7)

with M ≡ (m1,m2, · · · ,mN ).
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(+1;+1
2) (−1;+1

2) (−1;−1
2) (+1;−1

2)

(a) (b) (c) (d)

Figure 1. Fractional instantons in the SU(2) principal chiral model (figures are taken from

ref. [37]). The first lines indicate the topological charges (homotopy groups) (π1(N );π3(M)) for the

vortices and instantons (Skyrmions). The black arrows denote the U(1) moduli of the vacua while

the red arrows denote the U(1) moduli of the vortices. Fractional (anti-)instantons can constitute

following composite structures: (a)+(b) instanton, (c)+(d) anti-instanton, (a)+(c), (b)+(d) neutral

bions, (a)+(d), (b)+(c) charged bions.

3 Fractional instantons and bions in the SU(2) principal chiral model

In this section, we consider the SU(2) principal chiral model with the Z2 symmetric bound-

ary condition. This section is mostly rewriting the results in ref. [37] in terms of the prin-

cipal chiral field U(x) because the SU(2) principal chiral model is equivalent to the O(4)

sigma model, but we will find it useful for warming up to study the SU(N) principal chiral

model. Charged bions in the third subsection is a new result that were not studied before.

3.1 Fractional instantons

Fractional instantons in the principal chiral model were classified into four kinds, as illus-

trated in figure 1. These can be obtained as follows. The fixed manifold N under the

action that acts on the boundary condition is

N ≃ U(1) ≃ S1 (3.1)

that is generated by σ3. Therefore, it has a nontrivial first homotopy group

π1(S
1) ≃ Z. (3.2)

Let us place a vortex along the z = x3 direction. The ansatz for a vortex configuration can

be given as

U(r, θ, z) =

(

cos f(r)e+iθ − sin f(r)e+iα(z)

sin f(r)e−iα(z) cos f(r)e−iθ

)

, (3.3)

where (r, θ, z) are cylindrical coordinates f is a profile function satisfying the boundary

conditions

f → 0 for r → ∞, f = π/2 for r = 0. (3.4)

– 4 –
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Figure 2. Decay of a twisted closed vortex string of the size of the compact direction into two

fractional instantons in the SU(2) principal chiral model (figures are taken from ref. [37]). The

notations are the same with figure 1. The dotted planes denote the boundary at z = 0 and z = R

where the fields are twisted. When a closed vortex touches to itself through the compact direction z,

a reconnection of the two parts of the string occurs to be split into two fractional (anti-)instantons,

that is, vortices winding around S1 with the half twisted U(1) moduli.

An anti-vortex can be obtained as U(r,−θ, z). In eq. (3.3), α is a U(1) modulus of the

vortex, that is constant if the vortex does not wind around S1. When the vortex winds

around S1 with the twisted boundary condition in eq. (2.4), the modulus α has to satisfy

the boundary condition

α(z +R) = α(z)± π. (3.5)

The following z-dependence of α satisfy the boundary condition;

α(z) = α0 ±
π

R
z (3.6)

that we denote α+ and α−, respectively.

The topological instanton charge (baryon number) can be calculated as

B =
1

16π2

∫

d3x
1

r
sin(f)frαz = ±

1

2π

∫ R

0
dz∂zα = ±

1

2π
[α]z=R

z=0 =















±
1

2
for α = α+

∓
1

2
for α = α−

,

(3.7)

where the upper and lower signs correspond to a vortex and anti-vortex, respectively. More

generally, a vortex string with the winding number Q, along which the U(1) modulus is

twisted P times, has the instanton number B = PQ [45] (which was obtained in ref. [46]

to calculate the Hopf number for Hopfions by lifting up π3(S
2) to π3(S

3)). The topological

charges of fractional (anti-)instantons with the Z2 symmetric twisted boundary condition

are summarized in table 1.

It is known that a single instanton (Skyrmion) can be represented by (a global analog

of) a vorton [47–51], i.e., a closed vortex string along which a U(1) modulus is twisted [52–

58], which was first found in the context of Bose-Einstein condensates (see also [59]), and
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(v;B) π1(N ) π1 (M) B ∈ π3(M) Figure

(+1;+1/2) +1 +1/2 +1/2 Figure 1 (a)

(−1;+1/2) −1 −1/2 +1/2 Figure 1 (b)

(−1;−1/2) −1 +1/2 −1/2 Figure 1 (c)

(+1;−1/2) +1 −1/2 −1/2 Figure 1 (d)

Table 1. Homotopy groups of fractional (anti-)instantons in the SU(2) principal chiral model with

the Z2 symmetric twisted boundary condition. The columns represent the homotopy groups of a

vortex π1, a U(1) modulus π1, and the instanton π3 from left to right.

stable solutions in a Skyrme model were also constructed in refs. [45, 60, 61]. A single

instanton as a vorton is shown in the left panel in figure 2. When the size of the closed

vortex string is of the same with that of the compactification scale R, the closed vortex

string touches itself through the compact x3 direction with the twisted boundary condition.

Subsequently a reconnection of two fractions of the closed string occurs (see ref. [62] for a

reconnection of strings with moduli). Then, the closed string is split into two vortex strings

winding around the compact direction, and subsequently they are separated into the x-y

plane, as illustrated in the right panel of figure 2. The U(1) modulus is twisted half along

each string, resulting in a fractional (anti-)instanton. We thus find four kinds of fractional

(anti-)instantons, as summarized in figure 1(a)–(d).

The Skyrme term is not needed for the stability even though fractional instantons

are Skyrmions as was demonstrated in ref. [45], in which stable configurations of (half)

Skyrmions inside a vortex string were constructed without the Skyrme term (on R
3 without

twisted boundary condition).

All vortices are global vortices having the divergent energy

E ∼ log Λ/ξ (3.8)

at large distance, apart from finite contribution from the core. Here, Λ is the system size

in the x-y plane, and ξ ∼ m−1 is the size of the vortex core.

Fractional instantons are global vortices in the x-y plane so that the interaction between

them is

Eint ∼ ∓ log ρ/ξ, Fint = −
∂Eint

∂ρ
∼ ±1/ρ (3.9)

with distance ρ for large separation ρ ≫ ξ, where the upper signs are for a pair of (anti-

)vortices (repulsion) and the lower signs are for a pair of a vortex and anti-vortex (attrac-

tion). The interaction between two vortices at short distance ρ ∼ ξ depends on the moduli

α in the cores, but we do not discuss it in this paper.
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3.2 Neutral bions

Neutral bions in the SU(2) principal chiral model were discussed before in ref. [37]. Neutral

bions are configurations with zero instanton charges and zero vortex charges:

∑

i

(vi;Bi) = (0; 0). (3.10)

Neutral bions composed of two fractional (anti-)instantons can be constructed from frac-

tional instantons with the opposite vortex charges with the same winding of the U(1)

modulus along z, that is, a configuration composed of (a) and (c) or (b) and (d) in figure 1.

The interaction between fractional instantons constituting a neutral bion is attractive,

because they are a pair of a global vortex and global anti-vortex:

Eint ∼ + log ρ/ξ, Fint ∼ −1/ρ (3.11)

with distance ρ for large separation.

3.3 Charged bions

Charged bions were not discussed before in the SU(2) principal chiral model. Charged

bions are configurations with zero instanton charges and non-zero vortex charges:

∑

i

(vi;Bi) = (v; 0), v 6= 0. (3.12)

For charged bions composed of two fractional (anti-)instantons, one prepares fractional

instantons with the same vortex charges with the opposite winding of the U(1) modulus

along z, that is, the configurations (v;B) = (2; 0) for (a) and (d) in figure 1, (v;B) = (−2; 0)

for (b) and (c) in figure 1.

The interaction between fractional instantons constituting a charged bion is repulsive

because they are a pair of global vortices:

Eint ∼ − log ρ/ξ, Fint ∼ +1/ρ (3.13)

with distance ρ for large separation.

4 Fractional instantons and bions in the SU(3) principal chiral model

4.1 Fractional instantons

We consider the Z3 symmetric twisted boundary condition:

W = diag.(1, ω, ω2) = exp

[

2πi

3
diag.(0, 1, 2)

]

, ω = e
2πi

3 . (4.1)

The fixed manifold N is

U = diag.(eiα, eiβ , e−iα−iβ), N ≃ U(1)2. (4.2)

– 7 –
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The non-trivial first homotopy group

π1(N ) ≃ Z⊕ Z (4.3)

admits homotopically distinct two kinds of vortices. The fundamental, i.e., minimum

winding vortices in the SU(3) principal chiral model can be obtained by embedding the

one in eq. (3.3) of the SU(2) principal chiral model to the SU(3) matrix:

U1(r, θ, z) =







cos f(r)e+iθ − sin f(r)e+iα(z) 0

sin f(r)e−iα(z) cos f(r)e−iθ 0

0 0 1






,

U2(r, θ, z) =







1 0 0

0 cos f(r)e+iθ − sin f(r)e+iα(z)

0 sin f(r)e−iα(z) cos f(r)e−iθ






,

U3(r, θ, z) =







cos f(r)e−iθ 0 + sin f(r)e−iα(z)

0 1 0

− sin f(r)e+iα(z) 0 cos f(r)e+iθ






. (4.4)

Anti-vortices can be obtained as Ua(r,−θ, z) with a = 1, 2, 3. These three are not ho-

motopically independent of each other. We take the first and second as the independent

basis of the first homotopy group in eq. (4.2), in which the topological vortex charges in

eq. (4.4) are

u1 = (1, 0), u2 = (0, 1), u3 = (−1,−1) ∈ Z⊕ Z ≃ π1(N ), (4.5)

respectively. The third one is not independent of the rests as can be seen from the fact

that the vortex charges are canceled out when all three are present together:

∑

a=1,2,3

ua = (0, 0). (4.6)

In eq. (4.4), α is a U(1) modulus of a vortex that is constant if the vortex does not wrap

the S1 direction.

When a vortex wraps the S1 direction, α must change along the vortex world-line due

to the twisted boundary condition in eq. (2.3):

exp iα(z +R) = exp

[

iα(z) +
2πi

3

]

, (4.7)

where z is the coordinate along S1 with the period R. This boundary condition can be

satisfied by the two different minimum paths with the following z-dependence of α:

α(z) =















α+(z) = α0 +
2π

3

z

R

α−(z) = α0 −
4π

3

z

R

, (4.8)
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(v1, v2;B) π1(N ) U π1(M) α B ∈ π3(M)

(+1, 0;+1/3) (+1, 0) U1(θ) +1/3 α+ +1/3

(0,+1;+1/3) (0,+1) U2(θ) +1/3 α+ +1/3

(−1,−1;+1/3) (−1,−1) U3(θ) +1/3 α+ +1/3

(−1, 0;+2/3) (−1, 0) U1(−θ) −2/3 α− +2/3

(0,−1;+2/3) (0,−1) U2(−θ) −2/3 α− +2/3

(+1,+1;+2/3) (+1,+1) U3(−θ) −2/3 α− +2/3

(−1, 0;−1/3) (−1, 0) U1(−θ) +1/3 α+ −1/3

(0,−1;−1/3) (0,−1) U2(−θ) +1/3 α+ −1/3

(+1,+1;−1/3) (+1,+1) U3(−θ) +1/3 α+ −1/3

(+1, 0;−2/3) (+1, 0) U1(θ) −2/3 α− −2/3

(0,+1;−2/3) (0,+1) U2(θ) −2/3 α− −2/3

(−1,−1;−2/3) (−1,−1) U3(θ) −2/3 α− −2/3

Table 2. We label configurations by (v1, v2;B) ∈ (π1(N );π3(M)).

with a constant α0. Correspondingly, each of them carries fractional instanton (baryon)

number:

B = ±
1

2π
[α]z=R

z=0 =











±
1

3
for α = α+

∓
2

3
for α = α−

, (4.9)

where the upper and lower signs correspond to a vortex and anti-vortex, respectively. We

thus have found six (four independent) types of elementary fractional instantons as well

as six (four independent) types of elementary fractional anti-instantons, as summarized in

table 2. We label all configurations by the first homotopy group of the fixed point manifold

N and the instanton (baryon) number B:

(v1, v2;B) ∈ (π1(N );π3(M)). (4.10)

The first homotopy group π1(M) of the moduli space does not give independent informa-

tion, so we omit it from the label. The number of elementary vortices in the SU(3) case is

twice of that of the SU(2) case, just because of the two independent vortices in eq. (4.4)

compared with one for the SU(2) case.

As the case of SU(2), all vortices are global vortices having the divergent energy

E ∼ log Λ/ξ (4.11)

at large distance, apart from finite contribution from the core. In the SU(3) case, the size

ξ of the vortex core is ξ ∼ m−1
1 ,m−1

2 ,m−1
3 depending on species.

– 9 –
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The interaction between vortices at large distance ρ ≫ ξ depends only on their winding

numbers:

Eint = ∓2 log ρ/ξ, Fint = ±
2

ρ
(4.12)

for vortices of the same kind Ua(θ) and Ua(θ) (the upper sign; repulsion), and for a vortex

Ua(θ) and an anti-vortex Ua(−θ) (the lower sign; attraction) of the same kind. It is,

however, opposite for different kinds of vortices:

Eint = ± log ρ/ξ, Fint = ∓
1

ρ
, (4.13)

for a vortex Ua(θ) and a vortex Ub(θ) (a 6= b) (the upper sign; attraction) and a vortex

Ua(θ) and an anti-vortex Ub(θ) (a 6= b) (the lower sign; repulsion). The interaction between

two vortices at short distance ρ ∼ ξ depends on the moduli α± in the cores, but we do not

discuss it.

A unit (anti-)instanton (0, 0;±1) can be Z3 symmetrically decomposed into three ±1/3

instantons in eq. (4.4) with α = α+ in eq. (4.8):

(0, 0;+1) = (+1, 0;+1/3) + (0,+1;+1/3) + (−1,−1;+1/3),

(0, 0;−1) = (−1, 0;−1/3) + (0,+1;−2/3) + (+1,+1;−1/3). (4.14)

However, the decompositions from left to right are energetically unfavorable at least for

large radius R, because of the absence of vortices in the left and the presence of three

vortices in the right. This can be also verified from the interactions in eq. (4.13) between

two among them are attractive at large separations.

A unit (anti-)instanton (0, 0;±1) also can be decomposed asymmetrically into two

fractions as

(0, 0;+1) = (+1, 0;+1/3) + (−1, 0;+2/3),

(0, 0;+1) = (0,+1;+1/3) + (0,−1;+2/3),

(0, 0;+1) = (−1,−1;+1/3) + (+1,+1;+2/3),

(0, 0;−1) = (−1, 0;−1/3) + (+1, 0;−2/3),

(0, 0;−1) = (0,−1;−1/3) + (0,+1;−2/3),

(0, 0;−1) = (+1,+1;−1/3) + (−1,−1;−2/3). (4.15)

These decompositions are also energetically unfavorable at least for large radius R of S1.

The charge two (anti-)instanton (0, 0;±2) also can decay in several ways such as

(0, 0;+2) = (−1, 0;+2/3) + (0,−1;+2/3) + (+1,+1;+2/3),

(0, 0;−2) = (+1, 0;−2/3) + (0,+1;−2/3) + (−1,−1;−2/3). (4.16)

or

(0, 0;+2) = 2(+1, 0;+1/3) + 2(0,+1;+1/3) + 2(−1,−1;+1/3),

(0, 0;−2) = 2(−1, 0;−1/3) + 2(0,+1;−2/3) + 2(+1,+1;−1/3). (4.17)
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As one can expect, the fundamental fractional instantons with the instanton charge

±2/3 can be decomposed, at least homotopically, into two fractional instantons with the

instanton charge ±1/3 as:

(−1, 0;+2/3) = (0,+1;+1/3) + (−1,−1;+1/3),

(0,−1;+2/3) = (−1,−1;+1/3) + (+1, 0;+1/3),

(+1,+1;+2/3) = (+1, 0;+1/3) + (0,+1;+1/3),

(+1, 0;−2/3) = (0,−1;−1/3) + (+1,+1;−1/3),

(0,+1;−2/3) = (+1,+1;−1/3) + (−1, 0;−1/3),

(−1,−1;−2/3) = (−1, 0;−1/3) + (0,−1;−1/3). (4.18)

These decompositions are energetically unfavorable because the numbers of vortices are

one in the left and two in the right. Unlike the case of decomposition of unit instantons,

we regard configurations with B = 2/3 are elementary for the moment, because the vortex

winding numbers are the minimum.

In order to satisfy the twisted boundary condition in eq. (4.7), one may consider a

configuration with a more rapid z-dependence modulo 2π instead of eq. (4.8), such as

8π/3 = 2π + 2π/3. However, it can be decomposed through a self-reconnection into a

closed-line configuration with an integer B that does not reach the boundary and a fraction

given above. In this sense, such configurations are not elementary.

A comment is in order here. The decompositions of the unit instanton and B = 2/3

instantons are very similar to those of vortices (color flux tubes) in dense QCD [63–68].

The unit instanton corresponds to a U(1) superfluid vortex without color flux and B = 1/3

and 2/3 fractional instantons correspond to M1 and M2 non-Abelian vortices having color

fluxes, respectively.

4.2 Neutral bions

As the SU(2) case, neutral bions are configurations with zero instanton charges and zero

vortex charges:

∑

i

(v1,i, v2,i;Bi) = (0, 0; 0). (4.19)

Let us define the order of neutral bions as the maximum instanton charge of a subgroup

of constituents.

The lowest order of neutral bions is 1/3 (the total instanton charge is therefore B =

1/3− 1/3):

(+1, 0;+1/3) + (−1, 0;−1/3) = (0, 0; 0),

(0,+1;+1/3) + (0,−1;−1/3) = (0, 0; 0),

(−1,−1;+1/3) + (+1,+1;−1/3) = (0, 0; 0). (4.20)

The neutral bions in the left sides can annihilate in a pair to the vacuum.
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There exist two kinds of neutral bions of the order 2/3 (B = 2/3− 2/3). The simplest

ones are composed of two fractional (anti-)instantons:

(−1, 0;+2/3) + (+1, 0;−2/3) = (0, 0; 0),

(0,−1;+1/3) + (0,+1;−2/3) = (0, 0; 0),

(+1,+1;+2/3) + (−1,−1;−2/3) = (0, 0; 0). (4.21)

They can annihilate in pair to the vacuum. More nontrivial ones are made of three frac-

tional instantons:

(+1, 0;+1/3) + (0,+1;+1/3) + (−1,−1;−2/3) = (0, 0; 0),

(0,+1;+1/3) + (−1,−1;+1/3) + (+1, 0;−2/3) = (0, 0; 0),

(−1,−1;+1/3) + (+1, 0;+1/3) + (0,+1;−2/3) = (0, 0; 0),

(−1, 0;−1/3) + (0,−1;−1/3) + (+1,+1;−2/3) = (0, 0; 0),

(0,−1;−1/3) + (+1,+1;−1/3) + (−1, 0;−2/3) = (0, 0; 0),

(+1,+1;−1/3) + (−1, 0;+1/3) + (0,−1;−2/3) = (0, 0; 0). (4.22)

Since each set of them is not a simple pair of fractional and anti-fractional instantons, it

does not have to annihilate to the vacuum. Instead it may constitute a stable bound state.

Interesting is that we have neutral bions of the order one (B = 1 − 1) that is not a

pair of instanton and anti-instanton:

[(+1, 0;+1/3) + (0,−1;+2/3)] + [(−1, 0;−1/3) + (0,+1;−2/3)]

= (+1,−1;+1) + (−1,+1;−1) = (0, 0; 0),

[(0,+1;+1/3) + (+1,+1;+2/3)] + [(0,−1;−1/3) + (−1,−1;−2/3)]

= (+1,+2;+1) + (−1,−2;−1) = (0, 0; 0),

[(−1,−1;+1/3) + (−1, 0;+2/3)] + [(+1,+1;−1/3) + (+1, 0;−2/3)]

= (−2,−1;+1) + (+2,+1;−1) = (0, 0; 0),

[(+1, 0;+1/3) + (+1,+1;+2/3)] + [(−1, 0;−1/3) + (−1,−1;−2/3)]

= (+2,+1;+1) + (−2,−1;−1) = (0, 0; 0),

[(0,+1;+1/3) + (+1,+1;+2/3)] + [(0,−1;−1/3) + (−1,−1;−2/3)]

= (+1,+2;+1) + (−1,−2,−1) = (0, 0; 0),

[(−1,−1;+1/3) + (−1, 0;+2/3)] + [(+1,+1;−1/3) + (+1, 0;−2/3)]

= (−2,−1;+1) + (+2,+1;−1) = (0, 0; 0). (4.23)

More surprisingly, there are neutral bions of the order greater than one, that do not

contain instanton or anti-instanton. For instance, the following is of the order 4/3:

[(+1, 0;+1/3) + (0,+1;+1/3) + (+1,+1;+2/3)]

+[(−1, 0;−1/3) + (0,−1;−1/3) + (−1,−1;+2/3)]

= (+2,+2;+4/3) + (−2,−2;−4/3) = (0, 0; 0). (4.24)
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4.3 Charged bions

In the same way, charged bions are configurations with zero instanton charges and non-zero

vortex charges:

∑

i

(v1,i, v2,i;Bi) = (v1, v2, 0), (v1, v2) 6= (0, 0). (4.25)

We define the order of charged bions as the same way with that of neutral bions. Charged

bions of the order 1/3 are composed of two fractional (anti-)instantons with the topological

charges B = ±1/3 are

(+1, 0;+1/3) + (0,−1;−1/3) = (1,−1; 0),

(+1, 0;+1/3) + (+1,+1;−1/3) = (2,+1; 0),

(0,+1;+1/3) + (−1, 0;−1/3) = (−1,+1; 0),

(0,+1;+1/3) + (+1,+1;−1/3) = (+1,+2; 0),

(−1,−1;+1/3) + (−1, 0;−1/3) = (−2,−1; 0),

(−1,−1;+1/3) + (0,−1;−1/3) = (−1,−2; 0). (4.26)

We may call them “mesons.”

Similarly to this, charged bions of the order 2/3, which are composed of two fractional

(anti-)instantons with the topological charges B = ±2/3 are:

(−1, 0;+2/3) + (0,+1;−2/3) = (−1,+1; 0),

(−1, 0;+2/3) + (−1,−1;−2/3) = (−2,−1; 0),

(0,−1;−1/3) + (+1, 0;−2/3) = (+1,−1; 0),

(0,−1;−1/3) + (−1,−1;−2/3) = (−1,−2; 0),

(+1,+1;−1/3) + (+1, 0;−2/3) = (+2,+1; 0),

(+1,+1;−1/3) + (0,+1;−2/3) = (+1,+2; 0). (4.27)

In addition, there are charged bions of the order 2/3 (B = 2/3− 2/3), that are composed

of three distinct fractional (anti-)instantons:

(+1, 0;+1/3) + (0,+1;+1/3) + (+1, 0;−2/3) = (+2,+1; 0),

(+1, 0;+1/3) + (0,+1;+1/3) + (0,+1;−2/3) = (+1,+2; 0),

(0,+1;+1/3) + (−1,−1;+1/3) + (+1, 0;−2/3) = (+1,+1; 0),

(0,+1;+1/3) + (−1,−1;+1/3) + (−1,−1;−2/3) = (−2,−1; 0),

(−1,−1;+1/3) + (+1, 0;+1/3) + (−1,−1;−2/3) = (−1,−2; 0),

(−1,−1;+1/3) + (+1, 0;+1/3) + (+1, 0;−2/3) = (+1,−1; 0), (4.28)
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and those composed of the two same and one distinct (anti-)fractional instantons:

2(+1, 0;+1/3) + (+1, 0;−2/3) = (+3, 0; 0),

2(0,+1;+1/3) + (0,+1;−2/3) = (0,+3; 0),

2(−1,−1;+1/3) + (−1,−1;−2/3) = (−3,−3; 0),

2(+1, 0;+1/3) + (0,+1;−2/3) = (+2,+1; 0),

2(+1, 0;+1/3) + (−1,−1;−2/3) = (+1,−1; 0),

2(0,+1;+1/3) + (+1, 0;−2/3) = (+1,+2; 0),

2(0,+1;+1/3) + (−1,−1;−2/3) = (−1,+1; 0),

2(−1,−1;+1/3) + (+1, 0;−2/3) = (−1,−2; 0),

2(−1,−1;+1/3) + (0,+1;−2/3) = (−2,−1; 0). (4.29)

5 Generalization to the SU(N) principal chiral model

It is straightforward to generalize our results to the SU(N) principal chiral model with the

center symmetric twisted boundary condition in eq. (2.3). The fixed manifold N is

U = diag.(eiα1 , eiα2 , · · · , e−i
∑

N−1

a=1
αa), N ≃ U(1)N−1. (5.1)

The non-trivial first homotopy group

π1(N ) ≃ Z
N−1 (5.2)

admits homotopically distinct N − 1 kinds of vortices. The fundamental vortices in the

SU(N) principal chiral model can be obtained by embedding the one in eq. (3.3) of the

SU(2) principal chiral model to the SU(N) matrix:

U1(r, θ, z) =







cos f(r)e+iθ − sin f(r)e+iα(z) 0

sin f(r)e−iα(z) cos f(r)e−iθ 0

0 0 1N−2






,

U2(r, θ, z) =











1 0 0

0 cos f(r)e+iθ − sin f(r)e+iα(z)

0 sin f(r)e−iα(z) cos f(r)e−iθ

1N−3











,

...

UN (r, θ, z) =







cos f(r)e−iθ 0 + sin f(r)e−iα(z)

0 1N−2 0

− sin f(r)e+iα(z) 0 cos f(r)e+iθ






. (5.3)

Anti-vortices can be obtained as Ua(r,−θ) with a = 1, · · · , N − 1. These are not homo-

topically independent of each other. We take the first N − 1 as the independent basis of
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the first homotopy group in eq. (4.2), in which the topological vortex charges in eq. (4.4)

are (N − 1 vectors)

u1 = (1, 0, · · · , 0), u2 = (0, 1, 0, · · · , 0), · · · ,

uN−1 = (0, 0, 0, · · · , 0, 1), uN = (−1,−1, · · · ,−1) ∈ Z
N−1 ≃ π1(N ), (5.4)

respectively. The last one is not independent of the rests as can be seen from the fact that

the vortex charges are canceled out when all three are present together:

N
∑

a=1

ua = (0, 0, · · · , 0). (5.5)

In eq. (5.3), α is a U(1) modulus of a vortex that is constant if the vortex does not wrap

the S1 direction.

When a vortex wraps the S1 direction, the modulus α must change along the vortex

enforced by the twisted boundary condition in eq. (2.3):

exp iα(z +R) = exp

[

iα(z) +
2πi

N

]

, (5.6)

where z is coordinate along S1 with the period R. This boundary condition can be satisfied

by the two different minimum paths with the following z-dependence of α:

α(z) =















α+(z) = α0 +
2π

N

z

R

α−(z) = α0 −
2π(N − 1)

N

z

R

. (5.7)

Correspondingly, each of them carries fractional instanton (baryon) number:

B = ±
1

2π
[α]z=R

z=0 =











±
1

N
for α = α+

∓
N − 1

N
for α = α−

, (5.8)

where the upper and lower signs correspond to a vortex or anti-vortex, respectively. We

thus have found 2N (2N − 2 independent) types of elementary fractional instantons as

well as 2N (2N −2 independent) types of elementary fractional anti-instantons, labeled by

(v1, · · · , vN−1;B).

Neutral bions and charged bions can be constructed in the same way with the SU(3)

case, but the number of combinations grows drastically. We need a more systematic analysis

that we leave for a future study.

6 More general twisted boundary conditions

The more general twisted boundary condition for the SU(N) principal chiral model was

given in eq. (2.6). In this case, the boundary condition on the U(1) moduli are

exp iαa(z +R) = exp [iαa(z) + i(ma+1 −ma)], (6.1)
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with mN+1 ≡ m1 +2π. This can be satisfied by the following z-dependence of the moduli:

α(z) =











α+(z) = +(ma+1 −ma)
z

R

α−(z) = −(2π −ma+1 +ma)
z

R

. (6.2)

Correspondingly, each of them carries fractional instanton (baryon) number that are not

rational number anymore:

Ba = ±
1

2π
[αa]

z=R
z=0 =

{

±(ma+1 −ma) for α = α+

∓(2π −ma+1 +ma) for α = α−
. (6.3)

The sum of all fractions is of course unity:

N
∑

a=1

Ba =
mN+1 −m1

2π
= 1. (6.4)

In the previous sections, we have defined bions as configurations with zero instanton

charges, that is enough for the ZN symmetric twisted boundary conditions. In refs. [8, 9],

an invariant definition of bions using the Lie algebra was given. Here, we follow their

definition of bions. Instead of using the Lie algebra, it is enough to regard bions in the

previous sections remain bions for generic boundary conditions. In this case, cancellation

of instanton charges for bions becomes very restrictive and is drastically simplified, since

fractions of instanton charges are not rational. For non-degenerate and generic ma without

any particular relation such as ma + mb = mc, fractional instanton charges cannot be

canceled out among different types of fractional instantons. Consequently, only neutral

bions of the minimum orders composed of a vortex and an anti-vortex of the same kind with

the same U(1) moduli shift along the S1 direction have zero instanton charges. We conclude

the existence of 2N neutral bions of the minimum order, but higher order ones, having zero

instanton charges for the ZN symmetric boundary condition, have instanton charges.

On the other hand, charged bions have instanton charges in general, because different

vortices cannot cancel their instanton charges unless a particular relation such asma+mb =

mc exists.

A partially degenerated case is interesting since vortices would carry non-Abelian mod-

uli. We will return to this case in a future.

7 Relation to Yang-Mills fractional instantons and bions

A CPN−1 instanton with the twisted boundary condition is decomposed into a set of

N fractional instantons which are half twisted domain walls. The same relation holds

between a Yang-Mills instanton and a BPS monopole. In ref. [29, 30, 80], CPN−1 fractional

instantons were realized as fractional Yang-Mills instantons trapped inside a vortex in a

U(N) gauge theory. This explains a correspondence between fractional instantons and

bions in the CPN−1 on R
1 × S1 and those in SU(N) Yang-Mills in on R

3 × S1. In this
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section, we point out fractional instantons and bions in the SU(N) principal chiral model

also correspond to SU(N) Yang-Mills fractional instantons and bions.

Let us consider the U(N) gauge theory in d = 4 + 1 dimensions (A,B = 0, · · · , 4).

The matter contents are U(N) gauge field AA(x), 2N complex scalar fields H(x) =

(H1(x), H2(x)) (decomposed into two N ×N matrices of scalar fields) in the fundamental

representation charged under U(1), an N × N matrix Σ(x) of scalar fields in the adjoint

representation neutral under U(1). The Lagrangian is given by [40–42]

L = −
1

4g2
trFABF

AB +
1

g2
tr (DAΣ)

2 + tr |DAH|2 − V (7.1)

V =
g2

4
tr (HH† − v21N )2 + tr |ΣH −HM |2, (7.2)

where the covariant derivatives are given by DAH = ∂AH − iAAH and DAΣ = ∂AΣ −

i[AA,Σ], g is the gauge coupling constant that we take common for the U(1) and SU(N)

factors of U(N), v is a real constant giving the vacuum expectation value of H, M is a 2N

by 2N mass matrix given as M = diag.(m1N ,−m1N ). The U(N) gauge (color) symmetry

and the flavor symmetry act on fields as

AA → gAAg
−1 + ig∂Ag

−1, Σ → gΣg−1, H → gH, g ∈ U(N)C, (7.3)

H1 → H1ULe
+iα, H2 → H2URe

−iα, UL,R ∈ SU(N)L,R. (7.4)

The model admits two disjoint vacua

H = (v1N ,0N ) , Σ = −m1N : SU(N)C+L,

H = (0N , v1N ) , Σ = +m1N : SU(N)C+R (7.5)

with the unbroken color-flavor locked global symmetries g = UL and g = UR, respectively.

The model admits a non-Abelian domain wall solution interpolating between the two

vacua in eq. (7.5), that is obtained by embedding the CP 1 domain wall [69–72]. The

solution perpendicular to the x4 coordinate can be given by [40–42, 73–77]

Hwall = V Hwall,0

(

V † 0

0 V

)

=
v

√

1 + e∓2m(x4−X)

(

1N , e∓m(x4−X)U
)

,

Σwall = V Σwall,0V
†, A4,wall = V A4,wall,0V

†, (7.6)

with V ∈ SU(N), and we have defined the moduli U ≡ V 2eiϕ ∈ U(N) of the domain wall:

Mwall ≃ R×U(N) ∋ (X,U). (7.7)

The width of the domain wall is m−1.

The low-energy dynamics of of the non-Abelian domain wall can be described by

the effective theory within the moduli approximation [78, 79], by promoting the moduli

parameters X and U to moduli fields X(xµ) and U(xµ), respectively (µ = 0, 1, 2, 3) on the
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world volume of the domain wall, and by performing integration over the codimension. We

thus obtain the effective theory [40–42]:

Lwall =
v2

2m
∂µX∂iX − f2

πtr
(

U †∂µUU †∂µU
)

, f2
π ≡

v2

4m
, (7.8)

that is a U(N) principal chiral model we are discussing.

It was shown in ref. [41] that Yang-Mills instantons inside the domain wall are described

by Skyrmions in the principal chiral model on the domain wall. This setting physically

realizes the Atiyah-Manton construction of Skyrmions from instanton holonomy [81, 82].

Furthermore, it has been recently found in ref. [37] that magnetic monopoles inside the

domain wall are described by vortices in the principal chiral model with the twisted mass

term in eq. (2.7). In fact, the instanton charge π3 in eq. (6.3) is proportional to the

monopole charge. Interpolating solutions for the SU(2) case were already constructed

numerically in the Skyrme model with the twisted boundary condition [83]. In the limit of

m → 0, the width of the domain wall diverges and further taking v → 0, the system leaves

from the Higgs phase recovering the pure Yang-Mills theory. The fractional instantons and

bions become those in Yang-Mills theory. Therefore, this setting offers a correspondence

between fractional instantons and bions in the SU(N) principal chiral model and those in

Yang-Mills theory.

8 Summary and discussion

We have classified fractional instantons and bions in the SU(N) principal chiral model on

R
2 × S1 with twisted boundary conditions. This model allows N kinds of global vortices

with U(1) moduli, among which N − 1 kinds are independent. Fractional instantons are

N (N − 1 independent) kinds of global vortices wrapping around S1 with U(1) moduli

twisted with the angle 2π/N along the world-line S1. We have found that they carry

1/N instanton (baryon) numbers for the ZN symmetric twisted boundary condition and

irrational instanton numbers for the generic boundary conditions with the general phases

ma. We have classified neutral and charged bions for the SU(3) case with the Z3 symmetric

twisted boundary condition. We have found for the generic boundary conditions that

there are only the simplest neutral bions composed of a pair of (anti-)fractional instantons

have zero instanton charges and instanton charges are not canceled out for charged bions

unless some particular relation holds among ma. We have also discussed a correspondence

between fractional instantons and bions in the SU(N) principal chiral model and those in

Yang-Mills theory through a non-Abelian Josephson junction.

We have studied ZN center symmetric twisted boundary condition and non-degenerate

(ma 6= mb for a 6= b) boundary conditions. A partially degenerated case will be interesting

since vortices would carry non-Abelian moduli in this case. We will return to this case in

a future.

In this paper, we have put the twisted boundary conditions by hand, but the ZN

symmetric boundary condition was chosen for the CPN−1 model from the effective potential

in quantum theory [9, 10]. The same analysis should be done in our case. Although the
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principal chiral model is not renormalizable in perturbation in three dimensions, they are

renormalizable at large N . We will return to this problem in the future.

In order to generalize to the principal chiral model with arbitrary groups, the descrip-

tion of bions in terms of the Lie algebra and the root system given in refs. [8, 9] should

be useful.

In the context of the Skyrme model, Skyrmion chains on R
2 × S1 with a twisted

boundary condition were studied before [83], in which a vortex structure was found. If we

add the Skyrme term to our model, we can consider SU(N) Skyrmion chains.

The fractional instantons in the principal chiral model are all global vortices and the

interaction between them is long range, Eint ∼ ± log ρ with the distance ρ. Therefore, they

are confined. If we gauge the U(1)N−1 center action, vortices become local vortices, i.e.,

of the Abrikosov-Nielsen-Olesen type [84, 85], for which the interaction is exponentially

suppressed with respect to the distance. While this case will be interesting on its own,

fractional instantons are also local and the total action is the sum of actions of individual

fractional instantons so that they would be useful for resurgence of the quantum field theory.

Supersymmetric extension is possible by generalizing the target space to the cotangent

bundle, T ∗SU(N), that is Kähler.
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