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1 Introduction

A lot of physics are based on principles of symmetry. Once a global symmetry G of a

theory is spontaneously broken into its subgroup H, the massless Goldstone bosons are in

one-to-one correspondence with the broken generators. The unbroken symmetry generators

Ti and the broken generators Xa have schematic commutation relations as

[T, T ] ∼ T, [X,T ] ∼ X, [X,X] ∼ T (1.1)
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This global symmetry G can be realized by proper defined fields of the Goldstone bosons,

and the nonlinear sigma model can be used to describe the behaviors of those Goldstone

bosons [1, 2]. Because the scattering amplitudes calculated at any point of the vacuum

moduli are identical, the vacuum structure after spontaneously global symmetry breaking

can be understood from the scattering amplitude point of view [3].

Roughly speaking, one could try to identify states in the Hilbert spaces of two different

vacua by a rotation eiQ
αθα along the moduli space, where θα is an expectation value of an

Goldstone boson connected to an charge operator Qα. The rotated vacuum is a coherent

state of zero momentum Goldstone bosons. However, actually the operator Qα for broken

symmetries does not exist due to the fact that the state created by it has an divergent

norm with the volume of space.

A proper strategy is proposed to study the vacuum as following. To reveal the structure

of group G from the behaviors of amplitudes with additional Goldstone bosons1 of zero

momentum, which reflect a different vacuum, one can regulate these constant scalar fields

by tiny momenta and send them to zero eventually with a very careful analysis. As already

shown in [3], the physical states in one vacuum can be expanded around those in another

vacuum as

|ψ〉θ = |ψ〉+ |ψ(1)〉+ |ψ(2)〉+ . . . . (1.2)

Here, |ψ〉 contains only hard pions while the variation |ψ(n)〉 contains information of n soft

pions with momenta τq1, τq2, . . . , τqn in which τ as a tiny constant number measures how

soft these momenta are.

For the first order variation including single soft pion, the emission will vanish at zero

momentum known as “Adler zero” [4, 5].

For the second order variation, the state containing double soft pions is related to

an [Xα, Xβ ] transformation of the amplitude with only hard pions, where the action of

[Xα, Xβ] on any vector index is

([Xα, Xβ ]V )ρ = V αδβρ − V βδρα,

and the amount of rotation on a hard pion i is given by

θi =
1

2

(pα − pβ) · pi
(pα + pβ) · pi

.

Only if the second order variation involves additional two soft pions together with a

complementary rotation of the generators for broken symmetries on the hard particles [3],

|ψ〉(2) = lim
τ→0

|ψ + πα(τp) + πβ(τq)〉

+
∑

i

1

2

(p− q) · pi
(p+ q) · pi

|πσ1 · · · ([Xα, Xβ ]π)σi
· · ·πσn〉 (1.3)

1In the following discussions, we will use “pion” in stead of “Goldstone boson” as a more concrete

physical description in the NLSM.
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then the double-soft pion emission can present the G invariance of the amplitude at this

order. How much the rotation is taken on the hard particles can be determined from

double-soft limit of the amplitude [3].

The single and double soft behaviors of pions can also be studied from a generalized

BCFW method and from current algebra point of view [6, 7]. The same leading order soft

behaviors also applies to fermions in Akulov-Volkov theory and supergravity theories in

both three and four dimensions [8, 9].

Inspired by a recent study on the sub- and subsub-leading single soft behaviors of

the tree-level gravity amplitudes [10],2 which gives an evidence to some new symmetry in

quantum gravity S-matrix [36–38], Cachazo, He and Yuan have proposed the new behaviors

with two soft particles in Galileon, Dirac-Born-Infeld, Einstein-Maxwell-Scalar, non-linear

sigma model and Yang-Mills-Scalar theories [39]. Further studies in gauge theories, super-

Yang-Mills theory and string theory have been made [40, 41].

Among all these progresses, the single and double-soft behaviors of amplitudes in

nonlinear sigma model (NLSM) with SU(N)× SU(N) → SU(N) are following.

• Single soft behavior: when the momentum of a particle i tends to zero, i.e., ki = τp

(τ → 0), the τ0 order of an n-point tree level partial amplitude A(1, . . . , i, . . . , 2n) in

NLSM behaves as

A(0)(1, . . . , ĩ, . . . , 2n) = 0, (1.4)

which is exactly the Adler’s zero result [4, 5] and studied by a generalized BCFW

recursion [6, 7].

• Double soft behavior: when two adjacent particles i, i + 1 are soft, i.e., ki = τp and

ki+1 = τq with τ → 0, the partial amplitude A(1, . . . , ĩ, ĩ+ 1, . . . , 2n) behaves as

A(1, . . . , ĩ, ĩ+ 1, . . . , 2n)

=
(
τ0S

(0)
i,i+1 + τ1S

(1)
i,i+1

)
A(1, . . . , i− 1, i+ 2, . . . , 2n) +O(τ2). (1.5)

In the above expression, the leading double soft factor S
(0)
i,i+1 is

S
(0)
i,i+1 =

(
− 1

2F 2

)
1

2

[
ki−1 · (p− q)

ki−1 · (p+ q)
+
ki+2 · (q − p)

ki+2 · (q + p)

]
(1.6)

which is related to the vacuum structure as discussed in [3]. The subleading double-

soft factor S
(1)
i,i+1 is

S
(1)
i,i+1 =

(
− 1

2F 2

)
(p · q)

[
ki−1 · q

(ki−1 · (p+ q))2
+

ki+2 · p
(ki+2 · (p+ q))2

]

+

(
− 1

2F 2

)[
pµqν

ki−1 · (p+ q)
J µν
i−1 +

qµpν
ki+2 · (p+ q)

J µν
i+2

]
, (1.7)

2more works, please see [8, 9, 11–35].
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in which the angular momentum operator J µν
a of a scalar particle a is defined by

J µν
a ≡ kµa

∂

∂ka,ν
− kνa

∂

∂ka,µ
. (1.8)

Both the Adler’s zero eq. (1.4) and the leading order of the double soft behav-

ior eq. (1.6) in NLSM were studied by the new BCFW recursion [7] and by

the Cachazo-He-Yuan (CHY) [42–44] formula [39]. Moreover, the subleading or-

der eq. (1.7) of the double soft behavior was also proposed in [39].

Although the single and double soft behaviors of the tree-level on-shell amplitudes in NLSM

have already been investigated from different compact amplitude constructions, i.e., BCFW

recursion and CHY formula, no insight into Feynman diagrams has been provided and the

corresponding soft behaviors of off-shell currents have not been fully understood. Berends-

Giele recursion relation [45] as a recursive construction of amplitudes from Feynman dia-

grams provides a way to systematically study the (single and double) soft behaviors. By

this means, we can find out how the soft behaviors emerge in their diagram structures.

This work is devoted to understanding the single and double soft behaviors of the

off-shell currents in NLSM from the Berends-Giele recursion relation (A brief review of

NLSM, Feynamn rules and Berends-Giele recursion are given in appendix A). With the

Cayley parameterization in NLSM, we find that the tree-level current J(2, . . . , ĩ, . . . , 2n),3

(defined by eq. (A.6)) with i as the soft particle behaves as

J(2, . . . , i− 1, ĩ, i+ 1, . . . , 2n)

=

{
0 (i is even)

(
1

2F 2

)
J(2, . . . , i− 1)J(i+ 2, . . . , 2n) (i is odd)

}
+O(τ), (1.9)

where ki = τp and τ → 0. In the on-shell limit, the amplitude A(1, 2, . . . , i, . . . , 2n) is

presented by lim
P 2
2,2n→0

(−1)P 2
2,2nJ(2, . . . , i, . . . , 2n) (where P2,2n denotes the sum of momenta

of all on-shell particles 2, . . . , 2n) and achieves Adler’s zero eq. (1.4) for both even and

odd i when ki → 0.

We then study the leading and sub-leading order behaviors of the off-shell currents with

two adjacent soft particles. According to different possible positions of the soft particles,

we consider the following two cases:

(A) the current with one soft particle adjacent to the off-shell particle,

(B) the current with no soft particle adjacent to the off-shell particle.

In both types, the momentum of the off-shell line is the sum of the momenta of all the

other on-shell particles. Recalling that the momentum conservation imposes a constraint

on external momenta, we can arbitrarily choose the dependent momentum and the expres-

sion eq. (1.5) for on-shell amplitudes indeed holds for all choices. The above two cases (A)

and (B) (for off-shell currents) actually respect to the different choices of the dependent

3In this paper, the particle 1 is chosen as the off-shell leg.
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momentum for the corresponding on-shell amplitudes with two soft particles. Particularly,

the first case corresponds to choosing the momentum of a particle adjacent to one soft

particle as the dependent one, while the second case corresponds to choosing the momen-

tum of a particle nonadjacent to any soft particle as the dependent one. The double soft

behaviors of these two types are following.

• For the first type, the current J(2̃, 3̃, 4, . . . , 2n) with two soft particles 2 and 3 be-

haves as

J(2̃, 3̃, 4, . . . , 2n) = τ0S
(0)
2,3J(4, . . . , 2n) + τ1S

(1)
2,3J(4, . . . , 2n) +O(τ), (1.10)

where k2 = τp and k3 = τq. The leading and subleading double soft factors S
(0)
2,3 and

S
(1)
2,3 are defined by

S
(0)
2,3 =

(
1

2F 2

)
k4 · p

k4 · (q + p)
, S

(1)
2,3 =

(
− 1

2F 2

)[
(p · q) k4 · p

(k4 · (p+ q))2
+

qµpνJ µν
4

k4 · (p+ q)

]
.

(1.11)

These factors apparently are different from the factors for on-shell amplitudes eq. (1.6)

and eq. (1.7). However, by taking the on-shell limit very carefully, we return to the

on-shell double soft behavior eq. (1.5) with the factors eq. (1.6) and eq. (1.7). The

behavior of current J(2, . . . , 2̃n− 1, 2̃n) with 2n − 1, 2n as the soft particles can be

obtained by considering the reflection symmetry directly.

• For the second type, we propose that the leading and subleading orders of the current

J(2, . . . , i− 1, ĩ, ĩ+ 1, i+ 2, . . . , n) with two soft particles i, i+ 1 are given by

J(2, . . . , i− 1, ĩ, ĩ+ 1, i+ 2, . . . , 2n) (1.12)

= τ0S
(0)
i,i+1J(2, . . . , i− 1, i+ 2, . . . , 2n) + τ1

[
S
(1)
i,i+1J(2, . . . , i− 1, i+ 2, . . . , 2n)

+

{ (
1

2F 2

)
J (1)(2, . . . , i− 1, ĩ)J(i+ 2, . . . , 2n) (i is even )

(
1

2F 2

)
J(2, . . . , i− 1)J (1)(ĩ+ 1, i+ 2, . . . , 2n) (i is odd)

}]
+O(τ2),

where ki = τp and ki+1 = τq. The soft factors S
(0)
i,i+1 and S

(1)
i,i+1 are same with the

on-shell double soft factors eq. (1.6) and eq. (1.7), i.e.,

S
(0)
i,i+1 = S

(0)
i,i+1, S

(1)
i,i+1 = S

(1)
i,i+1. (1.13)

Again, the soft behavior at off-shell level in general is not same with the on-shell

case eq. (1.5). There is an extra term expressed by the product of a subcur-

rent without any soft particle and the τ1 coefficient of a subcurrent with only one

soft particle. However, by taking the double soft limit of the on-shell amplitude

− lim
P 2
2,2n→0

P 2
2,2nJ(2, . . . , i, i + 1, . . . , 2n), one arrives the on-shell double soft behav-

ior eq. (1.5).
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Having the double soft behavior eq. (1.5) of amplitudes with two adjacent soft particles,

we will prove all the leading and subleading behaviors of amplitudes with two nonadja-

cent soft particles by Kleiss-Kuijf (KK) relation [46] in nonlinear sigma model (see the

proof [47, 48]).

This paper is organized as follows. In section 2, we discuss the single soft behavior of

off-shell currents in NLSM. With the help of the single soft results in section 2, we further

study the leading and subleading behaviors of the off-shell currents with two adjacent soft

particles in section 3. Then we contract back the on-shell condition of the currents, and find

out the consistent on-shell amplitudes results eq. (1.4) and eq. (1.5) in section 4. Using KK

relation, we derive all the double soft behaviors of amplitudes with two nonadjacent soft

particles in section 5. Finally, we give a conclusion and further discussion in the section 6.

The Feynman rules and Berends-Giele recursion are given in appendix A. The computation

details of the double-soft behaviors with the soft particles non-adjacent to the off-shell line

are collected in appendix B.

2 Single soft behavior of currents

In this section, we study the single soft behavior of off-shell currents from the Berends-

Giele recursion eq. (A.6) of U(N) nonlinear sigma model. The on-shell amplitudes of

SU(N) nonlinear sigma model can be obtained by taking on-shell limits [6, 7]. We first

display explicit calculations on the four- and six-point currents with one soft particle, then

provide a general proof of the leading order single soft behavior eq. (1.9).

2.1 Examples of lower-point currents

We write out expressions of the four- and six-point currents with a single soft particle

where the general single soft behavior can be detected.

2.1.1 Four-point current with one soft particle

In the four-point current J(2, 3, 4), any one of 2, 3 and 4 can be chosen as a soft particle.

Because of the reflection symmetry J(2, 3, 4) = J(4, 3, 2), we only consider the cases in

which 2 or 3 (equivalently, 3 or 4) carries a momentum τp (τ → 0) and obtain

J(2̃, 3, 4) =

(
− 1

2F 2

)
i

P 2
2,4

i(τp+ k4)
2 = 0 +O(τ), (2.1)

J(2, 3̃, 4) =

(
− 1

2F 2

)
i

P 2
2,4

i(k2 + k4)
2 =

1

2F 2
+O(τ), (2.2)

where Pi,j(i < j) denotes the sum of momenta
∑j

r=i kr. Since J(2) = J(4) = 1, the single

soft behaviors represented by eq. (2.1) and eq. (2.2) agree with the general formula eq. (1.9)

and give rise the expected Adler’s zero under the on-shell limit of the off-shell line.

2.1.2 Six-point current with one soft particle

The six-point current J(2, 3, 4, 5, 6) is expressed in terms of four diagrams in figure 1 via

the Berends-Giele recursion eq. (A.6). We now consider 2, 3 and 4 as soft particles in turn.

– 6 –
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(A) (B) (C) (D)

Figure 1. Diagrams which contribute to the six-point current J(2, 3, 4, 5, 6).

Diagram τ0 contribution LO results

Diagram (B) −
(

1
2F 2

)
(k3 + k4 + k6)

2J(2̃, 3, 4) 0

Diagram (C) −
(

1
2F 2

)
k26J(3, 4, 5) 0

Diagram (A) +
(

1
2F 2

)2
(k4 + k6)

2

0
Diagram (D) −

(
1

2F 2

)
(k4 + k5 + k6)

2J(4, 5, 6)

Table 1. The τ0 order terms of the diagrams (A), (B), (C), (D) in figure 1 with particle 2 soft.

The case with 6 or 5 as soft particle can be obtained from the case with 2 or 3 as soft

particle by reversing the order of all on-shell particles.

The particle 2 is soft. This is a boundary case where the soft particle 2 (k2 = τp,

τ → 0) is adjacent to the off-shell leg.

As shown in the last column “LO results” (short for “leading order results”) in table 1,

diagram (B) in figure 1 should vanish due to eq. (2.1), diagram (C) vanishes due to the on-

shell condition k26 = 0, while diagrams (A) and (D) cancel with each other because of the

explicit expression J(4, 5, 6) =
(
− 1

2F 2

)
i

P 2
4,6
i(k4+k6)

2 in diagram (D). Retrieving the prop-

agator of the off-shell leg, i.e., J(2̃, 3, 4, 5, 6) = τ0 i
P 2
2,6(k2=0)

i ((A) + (B) + (C) + (D)), we

achieve the expected soft behavior eq. (1.9) with the soft particle index of an even number.

The particle 3 is soft. While the particle 3 is soft, i.e., k3 = τq with τ → 0, J(2, 3̃, 4, 5, 6)

gains contributions as shown in table 2 from diagrams in figure 1.

In the third column “LO results” in table 2, we find that diagrams (A) and (B) cancel

with each other by writing explicitly subcurrent J(2, 3̃, 4) in diagram (B) with eq. (2.2).

Diagram (C) in figure 1 vanishes due to eq. (2.1). Contracting back the propagator of the

off-shell line with the remaining non-zero contribution from diagram (D) and considering

P2,6(k3 = 0) = (k2 + k4 + k5 + k6)
2, we have

J(2, 3̃, 4, 5, 6) =

(
1

2F 2

)2

J(2)J(4, 5, 6), (2.3)

which agrees with the expected result eq. (1.9) with the odd i.

– 7 –
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Diagram τ0 contribution LO results

Diagram (A)
(

1
2F 2

)2
(k2 + k4 + k6)

2

0

Diagram (B) −
(

1
2F 2

)
(k2 + k4 + k6)

2J(2, 3̃, 4)

Diagram (C) −
(

1
2F 2

)
(k2 + k6)

2 J(3̃, 4, 5) 0

Diagram (D) −
(

1
2F 2

)
(k2 + k4 + k5 + k6)

2J(2)J(4, 5, 6) −
(

1
2F 2

)
(k2 + k4 + k5 + k6)

2J(2)J(4, 5, 6)

Table 2. The τ0 order terms of the diagrams (A), (B), (C), (D) in figure 1 with particle 3 soft.

Diagram τ0 contribution LO results

Diagram (A)
(

1
2F 2

)2
(k2 + k6)

2

0

Diagram (C) −
(

1
2F 2

)
(k2 + k6)

2J(3, 4̃, 5)

Diagram (B) −
(

1
2F 2

)
(k2 + k3 + k6)

2 J(2, 3, 4̃) 0

Diagram (D) −
(

1
2F 2

)
(k2 + k5 + k6)

2J(4̃, 5, 6) 0

Table 3. The τ0 order terms of the diagrams (A), (B), (C), (D) in figure 1 with particle 4 soft.

The particle 4 is soft. If the soft particle is 4, we have k4 = τp with τ → 0.

In the last column “LO results” in table 3, diagrams (A) and (C) cancel out when we

apply the soft behavior of four-point current eq. (2.2) to J(3, 4̃, 5) in diagram (C). Diagrams

(B) and (D) vanish because both J(2, 3, 4̃) and J(4̃, 5, 6), where the soft particle 4 plays as

an even number one, have to be zero due to eq. (2.1). Contracting the propagator back, we

get J(2, 3, 4̃, 5, 6) = τ0 0 + O(τ) which agrees with the single soft behavior eq. (1.9) with

even i.

2.2 General proof

The six-point example can be easily extended to a higher-point study. Now let us elaborate

a general proof for the single soft behavior eq. (1.9). According to six-point examples, we

will consider the following three cases as well

• the boundary case in which the soft particle is adjacent to the off-shell line,

• the case in which the soft particle is an even number one and nonadjacent to the

off-shell line,

• The case in which the soft particle is an odd number one and nonadjacent to the

off-shell line.

We will prove the boundary case separately from two nonadjacent cases because of different

strategies to achieve the final conclusion.

– 8 –
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(D)

Figure 2. Diagrams for the current J(2̃, . . . , 2n) with 2 soft.

2.2.1 The soft particle is adjacent to the off-shell line

We choose the soft particle i as 2 or 2n which is adjacent to the off-shell line. Since both

2 and 2n are even, the τ0 term of J(2, . . . , 2n) will vanish eventually due to eq. (1.9). In

this boundary case, we actually only need to prove

J (0)(2̃, 3, . . . , 2n) = 0, (2.4)

where J (0) stands for the τ0 order. The other case with particle 2n soft can be obtained

via a reflection. The 4- and 6-point examples have already been illustrated in section 2.1,

and moreover, we assume that eq. (2.4) is satisfied by currents J(2̃, . . . , 2m) with m < n.

To prove eq. (2.4), we notice that in the Berends-Giele recursion of

J(2̃, 3, . . . , 2n) eq. (A.6), the soft particle 2 can be either in a subcurrent or connected

to the off-shell line directly. If the soft particle 2 is in a subcurrent J(2̃, . . . ) (see the di-

agram (A) in figure 2), the τ0 order of this subcurrent is zero according to our inductive

assumption. Thus the remaining diagrams are only those with 2 connected to the off-shell

line directly which can be further classified into two types.

• The soft particle belongs to a 2N + 2-point vertex (1 < N ≤ n − 1), as shown in

diagram (B) in figure 2. The leading order contribution of this type for given division

{2, . . . , 2n} → {A1} . . . {A2N} is

(
− 1

2F 2

)N i

P 2
3,2n

i

(
N∑

r=1

PA2r

)2 2N∏

s=1

J(As). (2.5)

• The soft particle belongs to a four-point vertex, as depicted by diagrams (C) and (D)

in figure 2. For a given diagram (B) in figure 2, we can always find a corresponding

diagram (C) whose leading order is

(
− 1

2F 2

)
i

P 2
3,2n(τ = 0)

i

(
τp+

2N∑

r=2

PAr

)2 ∣∣∣∣∣
τ=0

(
− 1

2F 2

)N−1 i
(∑2N

s=2 PAs

)2 i× (2.6)

×
(

N∑

t=1

PA2t

)2 2N∏

u=1

J(Au) = −
(
− 1

2F 2

)N i

P 2
3,2n

i

(
N∑

t=1

PA2t

)2 2N∏

u=1

J(Au).

This result cancels with the leading order of diagram (B), eq. (2.5).
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Figure 3. Diagrams for the current J(2, . . . , i− 1, ĩ, i+ 1, . . . , 2n) with i soft.

The only remaining contribution comes from the diagram (D). The τ0 order of diagram (D)

in figure 2 vanishes because the leading order four-point vertex now is (τp + k22n)
2|τ=0 =

k22n = 0 for massless particle 2n.

Therefore, the τ0 order behavior of a current with a soft particle adjacent to the

off-shell line is zero.

2.2.2 The soft particle is nonadjacent to the off-shell line

If the soft particle i is nonadjacent to the off-shell line, it can also be attached to the off-shell

line directly or in a subcurrent. The latter can be further classified into two classes: if the

soft particle i is at an even number position of a subcurrent, the τ0 order vanishes due to the

inductive assumption; if the soft particle lives in an odd number position of a subcurrent,

the leading order of the subcurrent is given by the non-zero term in equation eq. (1.9).

As shown in figure 3, for a given diagram (A) with the soft particle attached to the off-

shell line directly, one can always find a corresponding diagram (B) with the soft particle

sitting at the odd number position of a subcurrent. In both (A) and (B), the propagators

of the off-shell lines provide a same factor

i
(∑j

r=1 PAr
+
∑2N

s=j+1 PAs

)2 (2.7)

to the τ0 order. The product of subcurrents in each diagram is
∏j

r=1 J(Ar)
∏2N

s=j+1 J(As),

where we used our inductive assumption to express the leading order of subcurrent

J(Aj , ĩ, Aj+1) in diagram (B) as (1/2F 2)J(Aj)J(Aj+1).

• If i = 2l, which means we are considering J(2, . . . , 2̃l, . . . , 2n), the j in the diagrams

(A) and (B) must be an even number. The leading order of the vertex in diagram

– 10 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
8

(A) in figure 3 reads

(
− 1

2F 2

)N

i




j−2
2∑

u=0

PA2u+1 + τp+

N∑

v= j+2
2

PA2v




2 ∣∣∣∣∣
τ=0

=

(
− 1

2F 2

)N

i




j−2
2∑

u=0

PA2u+1 +
N∑

v= j+2
2

PA2v




2

, (2.8)

while the leading order of the vertex in diagram (B) in figure 3 reads

(
1

2F 2

)(
− 1

2F 2

)N−1

i




j−2
2∑

u=0

PA2u+1 +
N∑

v= j+2
2

PA2v




2

. (2.9)

The isolated
(

1
2F 2

)
in eq. (2.9) comes from the τ0 order expression of

J({Aj}, ĩ, {Aj+1}) which is mentioned before. The results from eq. (2.8) and eq. (2.9)

cancel with each other exactly once given the same division in diagrams (A) and (B).

• If i = 2l+ 1, which means we are considering J(2, . . . , 2̃l + 1, . . . , 2n), j has to be an

odd number. The leading order of the vertex in (A) reads

(
− 1

2F 2

)N

i




j−1
2∑

u=0

PA2u+1 +
N∑

v= j+1
2

PA2v




2

, (2.10)

while the leading order of the vertex in (B) reads

(
1

2F 2

)(
− 1

2F 2

)N−1

i




j−1
2∑

u=0

PA2u+1 + τp+
N∑

v= j+1
2

PA2v




2 ∣∣∣∣∣
τ=0

= −
(
− 1

2F 2

)N

i




j−1
2∑

u=0

PA2u+1 +
N∑

v= j+1
2

PA2v




2

. (2.11)

Again, the leading contributions from the vertices of diagram (A) and (B) in figure 3

cancel with each other.

The diagram (C) in figure 3 as a special case of (A) contains a four-point vertex

and needs to be considered independently. In this case, i = 2l + 1 is required and no

corresponding diagram (B) can be found to cancel the leading term of (C). The τ0 order

of the diagram (C) in figure 3 gives

(
− 1

2F 2

)
i

P 2
2,2n(k2l+1 = 0)

i

(
2l∑

r=2

kr +
2n∑

s=2l+2

ks

)2

J(2, . . . , 2l)J(2l + 1, . . . , 2n) (2.12)

=

(
1

2F 2

)
J(2, . . . , 2l)J(2l + 1, . . . , 2n).

Thus the soft behavior eq. (1.9) has been proven.
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3 Double soft behavior of currents with two adjacent soft particles

In this section, we will discuss the leading and subleading order behaviors of a current

J(. . . , ĩ, ĩ+ 1, . . . ) where the momenta of two adjacent particles i, i + 1 tend to zero.

In general, i in J(. . . , ĩ, ĩ+ 1, . . . ) can be either even or odd. A current with an even i

can always be reflected to a current with an odd i via eq. (A.8). Thus we only need to

prove one case. In this section, we prove the leading and subleading double soft behaviors

of J(. . . , ĩ, ĩ+ 1, . . . ) with even i. Before the general proof, we first illustrate explicit

calculations on the double soft behaviors of four- and six- point currents.

3.1 Four-point current with two soft particles

We now consider the four-point current J(2̃, 3̃, 4) where the soft particle 2 is adjacent to

the off-shell line. The momenta of the soft particles 2 and 3 are k2 = τp and k3 = τq

respectively. The current can be explicitly written as

J(2̃, 3̃, 4) =

(
− 1

2F 2

)
i

(τp+ τq + k4)2
2iτk4 · p =

(
1

2F 2

)
k4 · p

k4 · (p+ q) + τp · q . (3.1)

Here we have used on-shell conditions for external particles k22 = p2 = q2 = 0. After

expanding the current with respect to τ , we find the leading and subleading terms under

τ → 0 is

J(2̃, 3̃, 4) = τ0
(

1

2F 2

)
k4 · p

k4 · (p+ q)
+ τ1

(
− 1

2F 2

)
(p · q) k4 · p

(k4 · (p+ q))2
+O(τ2). (3.2)

Recalling that J(4) = 1, J µν
4 [J(4)] has to vanish. Thus the above equation gives the

expected leading and subleading terms of double soft behavior of the four-point current,

as proposed in eq. (1.10).

3.2 Six-point current with two soft particles

The six-point current with two soft particles i, i+ 1 is more complicated but can present

most properties in an arbitrary-point current. As already discussed at the beginning of

this section, we only need to consider even i. For the six-point case, i can be chosen as 2

or 4, which corresponds to the following two classes according to the position of the soft

particle i

(a) i = 2, the soft particle i is adjacent to the off-shell line, i.e., J(2̃, 3̃, 4, 5, 6),

(b) i = 4, neither i nor i+ 1 is adjacent to the off-shell line, i.e., J(2, 3, 4̃, 5̃, 6).

These two classes for six-point current are very simple but largely show the logics in a

general case.

Take the particles 2 and 3 as soft. The six-point current J(2̃, 3̃, 4, 5, 6) with 2 and 3

soft is

J(2̃, 3̃, 4, 5, 6) =
i

P 2
2,6(k2 = τp, k3 = τq)

i
[
TA(2̃, 3̃)+TB(2̃, 3̃)+TC(2̃, 3̃)+TD(2̃, 3̃)

]
, (3.3)

– 12 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
8

τ0 τ1

TA(2̃, 3̃) P 2
4,6J(4, 5, 6) 2(k4 + k6) · p

TB(2̃, 3̃)
k4·p

k4·(p+q)

(
−P 2

4,6

)
J(4, 5, 6) −(p · q) k4·p

(k4·(p+q))2

(
−P 2

4,6

)
J(4, 5, 6)− 2(k4 + k6) · (p+ q) k4·p

k4·(p+q)

TC(2̃, 3̃) 0 0

TD(2̃, 3̃) −P 2
4,6J(4, 5, 6) −2P4,6 · pJ(4, 5, 6)

Table 4. The τ0 and τ1 order terms of diagrams (A), (B), (C) and (D) in figure 1 with particles 2

and 3 soft. The constant 1
2F 2 has been set to 1 for convenience. The expression of the subcurrent

J(4, 5, 6) = (−1) i

P 2

4,6

i(k4 + k6)
2 has been taken into account. On-shell conditions are considered in

TC(2̃, 3̃).

where TA(2̃, 3̃), TB(2̃, 3̃), TC(2̃, 3̃) and TD(2̃, 3̃) come from (excluding the propagator of the

off-shell line) the diagrams (A), (B), (C) and (D) in figure 1. While τ → 0, the propagator

of the off-shell line is expanded as

1

P 2
2,6(k2 = τp, k3 = τq)

= τ0
1

P 2
4,6

− τ1
2P4,6 · (p+ q)

(P 2
4,6)

2
+O(τ2). (3.4)

Inserting the leading and subleading order expressions of J(2̃, 3̃, 4) as well as the leading

order behavior of J(3̃, 4, 5) into the diagrams (B) and (C) in figure 1 respectively, we

calculate complete contributions (apart from the propagator of the off-shell line) from

figure 1 (see table 4).

• Leading order: from table 4, we observe that the τ0 terms of TA(2̃, 3̃) and TD(2̃, 3̃)

cancel with each other. The τ0 term of TC(2̃, 3̃) vanishes because it contains a subcur-

rent J(3̃, 4, 5) whose leading order has been proven to be zero in the previous section.

Only the diagram (B) in figure 1 contains a nonzero contribution. Substituting the τ0

terms of the propagator eq. (3.4) and TB(2̃, 3̃) into eq. (3.3), we obtain the expected

leading order double soft behavior

J (0)(2̃, 3̃, 4, 5, 6) =

(
1

2F 2

)
k4 · p

k4 · (p+ q)
J(4, 5, 6) = S

(0)
2,3J(4, 5, 6), (3.5)

where we have put the factor
(

1
2F 2

)
back.

• Subleading order: through table 4 and eq. (3.4), we read off the coefficient of τ1

in eq. (3.3)

J (1)(2̃, 3̃, 4, 5, 6) = −2P4,6 · (p+ q)

P 2
4,6

(
1

2F 2

)
k4 · p

k4 · (p+ q)
J(4, 5, 6)

+
1

P 2
4,6

(
1

2F 2

)2
[
−2(k4 + k6) · p+ 2(k4 + k6) · (p+ q)

k4 · p
k4 · (p+ q)

]

+
1

P 2
4,6

(
1

2F 2

)[
−(p · q) k4 · p

(k4 · (p+ q))2
P 2
4,6J(4, 5, 6) + 2P4,6 · p J(4, 5, 6)

]
.

(3.6)
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τ0 τ1

TA(4̃, 5̃) (k2 + k3 + k6)
2J(2, 3, 6) 2(k2 + k6) · p

TB(4̃, 5̃) 0 −(k2 + k3 + k6)
2J (1)(2, 3, 4̃)

TC(4̃, 5̃)
k3·q

k3·(p+q)

[
−(k2 + k3 + k6)

2
]
J(2, 3, 6) −(p · q) k3·q

(k3·(p+q))2

[
−(k2 + k3 + k6)

2
]
J(2, 3, 6)

TD(4̃, 5̃)
k6·p

k6·(p+q)

[
−(k2 + k3 + k6)

2
]
J(2, 3, 6)

−2(k2 + k6) · (p+ q) k6·p
k6·(p+q)

+(p · q) k6·p
(k6·(p+q))2

[
−(k2 + k3 + k6)

2
]
J(2, 3, 6)

Table 5. The τ0 and τ1 order terms of the diagrams (A), (B), (C), (D) in figure 1 with particles

4, 5 soft. As in table 4, the constant 1
2F 2 has been set to 1. The expression of the subcurrent

J(2, 3, 6) = (−1) i

(k2+k3+k6)2
i(k2 + k6)

2 has been taken into account. On-shell conditions are used

to derive TB(4̃, 5̃).

Using the following property

kr · p
kr · (p+ q)

2K · (p+ q)− 2K · p =
pµqν

kr · (p+ q)
J µν
r K2, (3.7)

we simplify the second line of eq. (3.6) as well as the sum of the first line and the

second term of the third line there. Then the subleading order of eq. (3.6) becomes

J (1)(2̃, 3̃, 4, 5, 6) =

(
− 1

2F 2

)[
(p · q) k4 · p

(k4 · (p+ q))2
+

qµpνJ µν
4

k4 · (p+ q)

]
J(4, 5, 6)

= S
(1)
2,3J(4, 5, 6). (3.8)

Thus the expected subleading order double soft behavior is also achieved.

Take the particles 4 and 5 as soft. If the particles 4 and 5 are soft, we have

J(2, 3, 4̃, 5̃, 6) =
i

P 2
2,6(k4 = τp, k5 = τq)

i
[
TA(4̃, 5̃)+TB(4̃, 5̃)+TC(4̃, 5̃)+TD(4̃, 5̃)

]
, (3.9)

where the propagator can be expanded as

1

P 2
2,6(k4 = τp, k5 = τq)

= τ0
1

(k2 + k3 + k6)2
− τ1

2(k2 + k3 + k6) · (p+ q)

((k2 + k3 + k6)2)2
+O(τ2). (3.10)

Substituting the soft behaviors of J(2, 3, 4̃), J(3, 4̃, 5̃) and J(4̃, 5̃, 6) into contributions from

the diagrams (B), (C) and (D) in figure 1 respectively and expanding the vertices into

series of τ , we find the leading and subleading contributions (apart from the propagator of

the off-shell line) from all diagrams (A), (B), (C) and (D) (see table 5).

• Leading order: plugging all τ0 terms shown in table 5 and the τ0 term of equa-

tion eq. (3.10) into eq. (3.9), we immediately obtain

J (0)(2, 3, 4̃, 5̃, 6) =
1

2

(
− 1

2F 2

)[
k6 · (q − p)

k6 · (q + p)
+
k3 · (p− q)

k3 · (p+ q)

]
J(2, 3, 4)

= S
(0)
4,5J(2, 3, 4), (3.11)
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where we have put
(

1
2F 2

)
back. This is nothing but the expected leading order double

soft behavior eq. (1.12).

• Subleading order: the subleading order of J(2, 3, 4̃, 5̃, 6) can be arranged as

J (1)(2, 3, 4̃, 5̃, 6) (3.12)

= −2(k2 + k3 + k6) · (p+ q)

(k2 + k3 + k6)2

(
1

2F 2

)[
k3 · q

k3 · (p+ q)
+

k6 · p
k6 · (p+ q)

− 1

]
J(2, 3, 6)

+
1

(k2 + k3 + k6)2

(
1

2F 2

)2 [
−2(k2 + k6) · p+ 2(k2 + k6) · (p+ q)

k6 · p
k6 · (p+ q)

]

+

(
1

2F 2

)[
−(p · q)

(
k3 · q

(k3 · (p+ q))2
+

k6 · p
(k6 · (p+ q))2

)
J(2, 3, 6) + J (1)(2, 3, 4̃)

]
.

Here, the first line on the right hand side is a product of the τ1 term of the propagator

in equation eq. (3.10) and the sum of τ0 terms of the T ’s in table 5, while the sum

of the second and the third lines corresponds to the product of the τ1 term of the

propagator eq. (3.10) and the sum of τ0 terms of the T ’s in table 5. Applying the

property eq. (3.7) to the first line and noticing that 2K · (p + q) = 2K · p + 2K · q,
we have

−
(

1

2F 2

)
1

(k2 + k3 + k6)2

[(
pµqνJ µν

6

k6 · (p+ q)
+

qµpνJ µν
3

k3 · (p+ q)

)
(k2 + k3 + k6)

2

]
J(2, 3, 6).

(3.13)

The second line of eq. (3.12) can also be simplified as
(

1

2F 2

)
1

(k2 + k3 + k6)2

[
pµqνJ µν

6

k6 · (p+ q)

(
(k2 + k3 + k6)

2J(2, 3, 6)
)]

(3.14)

=

(
1

2F 2

)
1

(k2+k3+k6)2

[(
pµqνJ µν

6

k6 · (p+ q)
+

qµpνJ µν
3

k3 · (p+ q)

)(
(k2+k3+k6)

2J(2, 3, 6)
)]
,

where we used the explicit form of J(2, 3, 6) as well as the property eq. (3.7) again,

and also added J µν
3

(
(k2 + k3 + k6)

2J(2, 3, 6)
)
to the final results due to (k2 + k3 +

k6)
2J(2, 3, 6) = ( 1

2F 2 )(k2 + k6)
2 and J µν

3

(
(k2 + k3 + k6)

2J(2, 3, 6)
)
= 0.

Finally, we achieve the subleading order behavior of J (1)(2, 3, 4̃, 5̃, 6) as

J (1)(2, 3, 4̃, 5̃, 6) =

(
− 1

2F 2

)[
(p · q)

(
k3 · q

(k3 · (p+ q))2
+

k6 · p
(k6 · (p+ q))2

)
(3.15)

+

(
qµpνJ µν

6

k6 · (q + p)
+

pµqνJ µν
3

k3 · (p+ q)

)]
J(2, 3, 6)

+

(
1

2F 2

)
J (1)(2, 3, 4̃)J(6)

= S
(1)
4,5J(2, 3, 6) +

(
1

2F 2

)
J (1)(2, 3, 4̃)J(6), (3.16)

which is the expected subleading behavior of J (1)(2, 3, 4̃, 5̃, 6) with 4 and 5 as soft.
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3.3 General proof

Enlightened by the explicit four-point and six-point examples, we turn to prove the double

soft behavior of an arbitrary-point current J(2, . . . , 2̃l, 2̃l + 1, . . . , 2n) now. As done in the

six-point example, we first consider the boundary case where one of the soft particles is

adjacent to the off-shell line, i.e., l = 1, and then study the case with no soft particle

adjacent to the off-shell line, i.e., l > 1.

3.3.1 One soft particle is adjacent to the off-shell line

Let us start from the double soft behavior of the current J(2̃, 3̃, . . . , 2n) where the soft

particle 2 is adjacent to the off-shell line. We express J(2̃, 3̃, . . . , 2n) in terms of products

of lower-point subcurrents by Berends-Giele recursion, then classify all diagrams emerging

from Berends-Giele recursion into three types according to the positions of the soft particles:

• type-1 diagrams with both soft particles 2 and 3 attached to the off-shell line, as

shown in figure 4,

• type-2 diagrams with the soft particle 2 attached to the off-shell line and the soft

particle 3 in a subcurrent, as shown in figure 5,

• type-3 diagrams with both soft particles 2 and 3 in the same subcurrent, as shown

in figure 6.

With this classification, the current J(2̃, 3̃, . . . , 2n) is given by

J(2̃, 3̃, . . . , 2n) =
i

P 2
2,2n(k2 = τp, k3 = τq)

i
[
TA
Type-1(τ) + TA

Type-2(τ) + TA
Type-3(τ)

]
, (3.17)

where TA
Type-1(τ), T

A
Type-2(τ) and T

A
Type-3(τ),

4 denote the contributions from different types

(apart from the propagator of the off-shell line) . When τ → 0, the propagator can be

easily expanded as

1

P 2
2,2n(k2 = τp, k3 = τq)

= τ0
1

P 2
4,2n

− τ1
2P4,2n · (p+ q)

(
P 2
4,2n

)2 +O(τ2). (3.18)

The contributions from these three types will be considered one by one.

• Type-1: diagrams of this type are typically shown in figure 4. The sum of all diagrams

with M > 0 (see diagram (A) in figure 4) is expanded as

TA
Type-1(A)(τ) = τ0

∑

{4,...,2n}→{A1,...,A2M+1}

(
− 1

2F 2

)M+1
(

M∑

r=0

PA2r+1

)2 2M+1∏

j=1

J (Aj)

+τ1
∑

{4,...,2n}→{A1,...,A2M+1}

(
− 1

2F 2

)M+1

2

(
M∑

r=0

PA2r+1

)
· p

2M+1∏

j=1

J (Aj) .

(3.19)

4The superscript ‘A’ implies that the soft particle 2 is adjacent to the off-shell line; readers will see

another superscript ‘N’ in section 3.3.2 and appendix B.

– 16 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
8

Figure 4. A typical diagram with the soft particles 2 and 3 attached to the off-shell line is given

by (A). (B) is the boundary case with the off-shell line connected to a four-point vertex.

Figure 5. A typical diagram with the soft particles 2 attached to the off-shell line and the soft

particle 3 in a subcurrent is given by (A). (B) and (C) are two boundary cases with the off-shell

line connected to a four-point vertex.

Figure 6. A typical diagram with both soft particles 2 and 3 in the same subcurrent.
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The special case with M = 0 is depicted by the diagram (B) in figure 4 and its first

two orders are

TA
Type-1(B)(τ) = τ0

(
− 1

2F 2

)
P 2
4,2nJ(4, . . . , 2n) + τ1

(
− 1

2F 2

)
2P4,2n · p J(4, . . . , 2n).

(3.20)

Considering the Berends-Giele recursion of the current J(4, . . . , 2n), we find that the

τ0 terms of eq. (3.19) and eq. (3.20) cancel with each other. Thus only the τ1 term

survives from summing over all type-1 diagrams and is expressed as

TA
Type-1(τ) = τ1

[
∑

{4,...,2n}→{A1,...,A2M+1}

(
− 1

2F 2

)M+1

2

(
M∑

r=0

PA2r+1

)
· p

2M+1∏

j=1

J (Aj)

+

(
− 1

2F 2

)
2P4,2n · pJ(4, . . . , 2n)

]
. (3.21)

• Type-2: diagrams with the soft particle 2 attached to the off-shell line and the soft

particle 3 in a subcurrent can be further classified into (A), (B) and (C) as shown in

figure 5.

– Diagram (A) represents the case with the off-shell line attached to a 2M+2-point

(M > 1) vertex.

– Diagram (B) stands for the case in which the off-shell line is attached to a 4-point

vertex with a combination of {A′
2, . . . , A

′
2M} as the last subcurrent.

– Diagram (C) is the case that the off-shell line is attached to a 4-point ver-

tex whose other three legs are connected to the soft particle 2, the subcurrent

J(3̃, 4, . . . , 2n− 1) and the particle 2n.

Apparently, (C) is the boundary case of (B) while setting {A′
2, . . . , A

′
2M} = {2n},

while both (C) and (B) are the boundary cases of (A) with M = 1.

We now show that all the leading and subleading terms in Type-2 diagrams cancel

out. Given the division {4, . . . , 2n} → {A′
1}, . . . , {A′

2M} in which {A′
1} can only

contain particles of an even number while {Aj}(j > 1) can only contain particles of

an odd number, the contribution from the diagram (A) in figure 5 can be written

explicitly as

(
− 1

2F 2

)M
(
τp+

M∑

r=1

PA′

2r

)2

J(3̃, A′
1)

2M∏

j=2

J(A′
j)

= τ1
(
− 1

2F 2

)M
(

M∑

r=1

PA′

2r

)2

J (1)(3̃, A′
1)

2M∏

j=2

J(A′
j) +O(τ2), (3.22)

where we used the fact that J (0)(3̃, . . . ) with a single soft particle 3 (the even i case

of the single soft behavior eq. (1.9)) has to vanish. Correspondingly, the diagram (B)
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contributes

(
− 1

2F 2

)(
τp+

2M∑

r=2

PA′

r

)2

J(3̃, A′
1)×

×



(
− 1

2F 2

)M−1 i
(∑2M

r=2 PA′

r

)2 i

(
M∑

t=1

PA′

2t

)2 2M∏

r=2

J(A′
r)


 (3.23)

to the division {A′
1}, . . . , {A′

2M}. Those factors in the brackets of eq. (3.23) come

from the Berends-Giele recursion of the subcurrent J(A′
2, . . . , A

′
2M ) in the diagram

(B) of figure 5. Expanding eq. (3.23) with respect to τ and using J (0)(3̃, . . . ) = 0,

we find that the τ0 order of eq. (3.23) vanishes. The subleading order of eq. (3.23) is

identical to the negative of eq. (3.22). Thus the subleading terms from diagrams (A)

and (B) cancel out. The only contribution isolated from (A) and (B) is the diagram

(C), because no counter diagram in (A) can be used to cancel with (C). The diagram

(C) is written as
(
− 1

2F 2

)
(τp+ k2n)

2J(3̃, 4, . . . , 2n− 1). (3.24)

The τ0 and τ1 terms will vanish due to the on-shell condition k22n = 0 and

J (0)(3̃, A′
1, . . . , A

′
2n−1) = 0.

• Type-3: figure 6 presents this type of contribution. Given division {4, . . . , 2n} →

{A1}, . . . , {A2M+1}, we can expand the vertex (τp + τq +
M∑
r=0

PA2r+1)
2 with respect

to τ and also express the subcurrent J(2̃, 3̃, A1) due to the inductive assumption of

the double soft behavior for lower-point current. After summing over all possible

divisions, we obtain

TA
Type-3(τ) = τ0S

(0)
2,3

(
−P 2

4,2n

)
J(4, . . . , 2n)

+τ1
∑

{4,...,2n}→{A1,...,A2M+1}

(
− 1

2F 2

)M

×

×
[
2

(
M∑

r=0

PA2r+1

)
· (p+ q)S

(0)
2,3 J(A1)

2M+1∏

s=2

J(As) (3.25)

+

(
M∑

r=0

PA2r+1

)2 (
S
(1)
2,3J(A1)

) 2M+1∏

s=2

J(As)

]
,

where the Berends-Giele recursion of J(4, . . . , 2n) has been used.

We already observed the cancellation among all diagrams of type-2, and now we

sum TA
Type-1(τ) in eq. (3.21) and TA

Type-3(τ) in eq. (3.26) together. Taking the propa-

gator eq. (3.18) into account, we obtain the leading and subleading terms of eq. (3.17)

as follows.
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• Leading order: the nontrivial τ0 contribution only comes from eq. (3.26) is written as

i

P 2
4,2n

iS
(0)
2,3

(
−P 2

4,2n

)
J(4, . . . , 2n) = S

(0)
2,3J(4, . . . , 2n). (3.26)

• Subleading order: the τ1 coefficient can be rearranged as

S
(0)
2,3

2P4,2n · (p+ q)

P 2
4,2n

(−1) J(4, . . . , 2n) +

(
1

2F 2

)
2P4,2n · p
P 2
4,2n

J(4, . . . , 2n)

+
∑

{4,...,2n}
→{A1,...,A2M+1}

(
− 1

P 2
4,2n

)(
− 1

2F 2

)M
[
−
(

1

2F 2

)
2

(
M∑

r=0

PA2r+1

)
· p

+2

(
M∑

r=0

PA2r+1

)
· (p+ q)S

(0)
2,3

]
2M+1∏

j=1

J (Aj)

+
∑

{4,...,2n}
→{A1,...,A2M+1}

(
− 1

P 2
4,2n

)(
− 1

2F 2

)M

×

×
[(

M∑

r=0

PA2r+1

)2 (
S
(1)
2,3J(A1)

) 2M+1∏

s=2

J(As)

]
. (3.27)

Considering the explicit expression of S
(0)
2,3 in eq. (1.6), we apply the property eq. (3.7)

to the first two terms in eq. (3.27) as well as the expression inside the brackets of

the third term in eq. (3.27). Then the first three terms together with the angular

momentum part isolated from S
(1)
2,3 in the last term give

(
− 1

2F 2

)
qµpνJ µν

4

k4 · (p+ q)
J(4, . . . , 2n), (3.28)

where we used the explicit Berends-Giele recursion of J(4, . . . , n). In the end, the

coefficient of τ1 in eq. (3.27) is given by

S
(1)
2,3J(4, . . . , 2n), (3.29)

which agrees with our expectation of the subleading order double-soft behavior of

J(2̃, 3̃, 4, . . . , 2n) as shown in eq. (1.10).

3.3.2 Both soft particles are nonadjacent to the off-shell line

We have proved the double soft behavior of J(2̃, 3̃, 4, . . . , n), now let us study the behavior

of J(2, . . . , 2l− 1, 2̃l, 2̃l + 1, 2l+2, . . . , 2n) (1 < l < n) with 2l and 2l+1 soft. Similar with

what we have done in the boundary case with the soft particle 2 adjacent to the off-shell

line, we again classify the contributions in the Berends-Giele recursion into three types:

• type-1 diagrams with the soft particles 2l and 2l + 1 attached to the off-shell line

directly, as shown in figure 7,
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Figure 7. Type-1: diagrams with the soft particles 2l and 2l + 1 attached to the off-shell line

directly

Figure 8. Type-2: diagrams with the soft particle 2l (or 2l + 1) attached to the off-shell line and

the other one 2l + 1 (or 2l) in a subcurrent

• type-2 diagrams with the soft particle 2l (or 2l + 1) attached to the off-shell line and

the other one 2l + 1 (or 2l) in a subcurrent, as shown in figure 8,

• type-3 diagrams with both soft particles 2l and 2l + 1 in a same subcurrent, as shown

in figure 9.

Then the current is given by

J(2, . . . , 2l − 1, 2̃l, 2̃l + 1, 2l + 2, . . . , 2n) (3.30)

=
i

P 2
2,2n(k2l = τp, k2l+1 = τq)

i
[
TN
Type-1(τ) + TN

Type-2(τ) + TN
Type-3(τ)

]
,

where TN
Type-1(τ), T

N
Type-2(τ) and T

N
Type-3(τ) denote the contributions from the above 3 types

respectively. The type-1 diagrams are typically expressed by figure 7, the type-2 diagrams

are classified into (A) and (B) (see figure 8), while the type-3 diagrams are further classified
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Figure 9. Type-3: diagrams with both soft particles 2l and 2l + 1 in a same subcurrent

into four types (A), (B), (C) and (D), as shown in figure 9. Using the inductive assumptions

for single and double soft behaviors of lower-point subcurrents, we express all contributions

of figures 7, 8 and 9 explicitly and collect the results in appendix B. The propagator of the

off-shell line is expanded with respect to τ as

1

P 2
2,2n(k2l = τp, k2l+1 = τq)

= τ0

(
1

P 2
2,2n

)(0)

+ τ1

(
1

P 2
2,2n

)(1)

+O(τ2), (3.31)

where the coefficients of τ0 and τ1 are

(
1

P 2
2,2n

)(0)

=
1

(P2,2l−1 + P2l+2,2n)
2 ,

(
1

P 2
2,2n

)(1)

= −2 (P2,2l−1 + P2l+2,2n) · (p+ q)
[
(P2,2l−1 + P2l+2,2n)

2
]2 .

(3.32)

Inserting eq. (3.31) as well as TN
Type-1(τ), T

N
Type-2(τ) and T

N
Type-3(τ) into eq. (3.30), we obtain

the leading and subleading double soft behaviors as follows.

• Leading order: the leading order of J(2, . . . , 2̃l, 2̃l + 1, . . . , 2n) is given by summing

the second row of table 6. The total contribution of the expression at row 2, column

2 and the first two terms at row 2, column 4 provides the sum of diagrams with

particles 2l − 1, 2l + 2 in different subcurrents (i.e., figure 7 and the diagrams (A),

(B) in figure 9) in the Berends-Giele recursion of J(2, . . . , 2l− 1, 2l+2, . . . , 2n). The
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i
P 2
2,2n(τ)

iTN
Type-1(τ)

i
P 2
2,2n(τ)

iTN
Type-2(τ)

i
P 2
2,2n(τ)

iTN
Type-3(τ)

S(0)J(2, . . . , 2̃l, 2̃l + 1, . . . , 2n) i

(

1

P2
2,2n

)(0)

iT
N(0)
Type-1 0

i

(

1

P2
2,2n

)(0)

i

[
T

N(0)
Type-3(A)

+T
N(0)
Type-3(B)

+T
N(0)
Type-3(C)

+T
N(0)
Type-3(D)

]

S
(1)
A J(2, . . . , 2̃l, 2̃l + 1, . . . , 2n) 0 0

i

(

1

P2
2,2n

)(0)

i

[
T

N(1)
Type-3(A2)

+T
N(1)
Type-3(B1)

+T
N(1)
Type-3(C2)

+T
N(1)
Type-3(D1)

]

S
(1)
B J(2, . . . , 2̃l, 2̃l + 1, . . . , 2n)

i

(

1

P2
2,2n

)(0)

iT
N(1)
Type-1

+i

(

1

P2
2,2n

)(1)

iT
N(0)
Type-1

0

i

(

1

P2
2,2n

)(0)

i

[
T

N(1)
Type-3(A1)

+T
N(1)
Type-3(A3)

+T
N(1)
Type-3(B2)

+T
N(1)
Type-3(C1)

+T
N(1)
Type-3(C3)

+T
N(1)
Type-3(D2)

]

+i

(

1

P2
2,2n

)(1)

i

[
T

N(0)
Type-3(A)

+T
N(0)
Type-3(B)

+T
N(0)
Type-3(C)

+T
N(0)
Type-3(D)

]

(
1

2F 2

)
J(2, . . . , 2l − 1)

×J (1)(2̃l + 1, 2l + 2, . . . , 2n)
0

i

(

1

P2
2,2n

)(0)

i

[
T

N(1)
Type-2(A)

+T
N(1)
Type-2(B)

]
(

i

P2
2,2n

)(0)

i

[
T

N(1)
Type-3(C4)

+T
N(1)
Type-3(D3)

]

Table 6. The three types of contributions to the leading and subleading order double soft behaviors.

coefficient of this term is
(
− 1

2F 2

)
+

(
1

2F 2

)
k2l−1 · q

k2l−1(p+ q)
+

(
1

2F 2

)
k2l+2 · p

k2l+2(q + p)
= S

(0)
2l,2l+1. (3.33)

The last two terms in row 2 column 4 produce the sum of diagrams with 2l − 1

and 2l + 2 in a same subcurrent in the expression of J(2, . . . , 2l − 1, 2l + 2, . . . , 2n).

The accompanied coefficient is also S
(0)
2l,2l+1. All together, the second row in table 6

contributes an S
(0)
2l,2l+1J(2, . . . , 2l−1, 2l+1, . . . , 2n) which agrees with our expectation

of the leading order term.

• Subleading order: the subleading order is obtained from nonzero terms from row 3

to row 5 in table 6.

1. S
(1)
A J(2, . . . , 2l − 1, 2l + 2, . . . , 2n), where S

(1)
A is defined by the first term

of eq. (1.7), only gains contribution from row 3, column 4 in table 6. The

first two terms there present all the diagrams of J(2, . . . , 2l − 1, 2l + 1, . . . , 2n)

with particles 2l − 1, 2l + 2 in different subcurrents. The coefficient is given by

(
− 1

2F 2

)
(p · q) k2l−1 · q

(k2l−1 · (p+ q))2
+

(
− 1

2F 2

)
(p · q) k2l+2 · q

(k2l+2 · (p+ q))2
= S

(1)
A .

(3.34)

The last two terms there gives the sum of all diagrams of J(2, . . . , 2l − 1, 2l +

1, . . . , 2n) with 2l−1, 2l+2 in a same subcurrent, and the prefactor is also S
(1)
A .

Thus the row 3 precisely gives S
(1)
A J(2, . . . , 2l − 1, 2l + 2, . . . , 2n) as shown at

row 3, column 1.

2. S
(1)
B J(2, . . . , 2l− 1, 2l+ 2, . . . , 2n), where S

(1)
B is defined by the term containing

angular momenta in equation eq. (1.7), gains contribution from row 4 in ta-

ble 6. To check this result, we apply the property eq. (3.7) repeatedly and then
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find that

i

(
1

P 2
2,2n

)(1) [
iT

N(0)
Type-1 + i

(
T
N(0)
Type-3(A) + T

N(0)
Type-3(B) + T

N(0)
Type-3(C) + T

N(0)
Type-3(D)

)]

=
1

(P2,2l−1 + P2l+2,2n)2

[
−S(1)

B (P2,2l−1 + P2l+2,2n)
2
]

×J(2, . . . , 2l − 1, 2l + 2, . . . , 2n). (3.35)

Considering that i
(

1
P 2
2,2n

)(0)
i
[
T
N(1)
Type-1 + T

N(1)
Type-3(A1) + T

N(1)
Type-3(C1)

]
contains S

(1)
B

acting on the vertices, while i
(

1
P 2
2,2n

)(0)
i
[
T
N(1)
Type-3(A3)+T

N(1)
Type-3(B2)+T

N(1)
Type-3(C3)+

T
N(1)
Type-3(D2)

]
contains S

(1)
B acting on different subcurrents, one obtains

i

(
1

P 2
2,2n

)(0)

iT
N(1)
Type-1 + i

(
1

P 2
2,2n

)(0)

i
[
T
N(1)
Type-3(A1) + T

N(1)
Type-3(A3)

+ T
N(1)
Type-3(B2) + T

N(1)
Type-3(C1) + T

N(1)
Type-3(C3) + T

N(1)
Type-3(D2)

]

=
1

(P2,2l−1 + P2l+2,2n)2

×
[
S
(1)
B (P2,2l−1 + P2l+2,2n)

2J(2, . . . , 2l − 1, 2l + 2, . . . , 2n)
]
.(3.36)

Finally, the sum of the equations eq. (3.35) and eq. (3.36) which come from row

4 of table 6 gives S
(1)
B J(2, . . . , 2l − 1, 2l + 2, . . . , 2n).

3.
(

1
2F 2

)
J(2, . . . , 2l − 1)J (1)(2̃l + 1, 2l + 2, . . . , 2n) is obtained from the row 5 in

table 6. Cancelation happens between Type-3(C4) from the diagram (C) in fig-

ure 9 and Type-2(A) from the diagram (A) in figure 8, and between Type-3(D3)

and Type-2(B) as well. The only term which cannot be canceled is the one with

the off-shell line connected to a four-point vertex in the diagram (A) of figure

figure 8. All in all, we have

T
N(1)
Type-3(C4) + T

N(1)
Type-2(A) =

(
1

2F 2

)
J(2, . . . , 2l − 1)J(2̃l + 1, 2l + 2, . . . , 2n),

T
N(1)
Type-3(D3) + T

N(1)
Type-2(B) = 0. (3.37)

4 Behaviors of amplitudes with one soft particle and two adjacent soft

particles

In section 2 and section 3, how the currents present with single and double soft pions

emitted has been elaborated. Now let us study the single and double soft behaviors of

on-shell amplitudes, in other words, on-shell limits of off-shell currents.

When we consider the single and double soft behaviors of amplitudes, all external

particles should be on-shell, i.e., k2i = 0. Hence, we should first impose the on-shell

condition of the off-shell line and then follow similar discussions in sections 2 and 3. One
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may expect to obtain the behaviors in another way: by directly multiplying a P 2
2,2n to the

already known off-shell behaviors (see eq. (1.9), eq. (1.10) and eq. (1.12)) and taking the

on-shell limit P 2
2,2n → 0. However, we have to be careful with the order of the on-shell limit

and the soft limit. For all diagrams in the current J(2, . . . , ĩ, . . . , 2n) (2 ≤ i ≤ 2n) with

one soft particle and the current J(2, . . . , ĩ, ĩ+ 1, . . . , 2n) (2 < i < 2n − 1) with two soft

particles, the on-shell limit and the soft limit can be exchanged. Thus there is no ambiguity

to obtain the behaviors of amplitudes by taking the on-shell limits of the already known

soft behaviors of these currents, as shown in the introduction.

The more subtle case is the on-shell limit of the boundary current with one of the

two soft particles adjacent to the off-shell line. As stated in the introduction, in this case,

the momentum of the particle adjacent to a soft one is chosen to be dependent on others.

Among all diagrams of the boundary current, e.g., J(2̃, 3̃, 4, . . . , 2n), the diagram (B) in

figure 4 is special since it gives a different result when we exchange the order of soft limit

and on-shell limit.

If we take the double soft limit of the diagram (B) in figure 4 first, both the four-point

vertex and the denominator of the off-shell propagator in J(4, . . . , 2n) are nonzero because

the on-shell condition k21 = P 2
2,2n = 0 was not taken into account at this step. However,

as claimed, when we consider the double soft behavior of amplitudes, k21 = 0 should be

imposed first. The four-point vertex and the off-shell propagator of J(4, . . . , 2n) in the

diagram (B) of figure 4 with k21 = 0 should be zero. Thus this case is adjusted as

(
1

2F 2

)
(τp+ P4,2n)

2

P 2
4,2n

[
−P 2

4,2nJ(4, . . . , 2n)
]

=

(
1

2F 2

)
(τq + k1)

2

(τp+ τq + k1)2
A(4, . . . , 2n)

=

(
1

2F 2

)[
k1 · q

k1 · (p+ q)
− τ(k1 · q)

p · q
(k1 · (p+ q))2

]
A(4, . . . , 2n) +O(τ2), (4.1)

where the momentum conservation and on-shell condition k21 = P 2
2,2n = 0 have been con-

sidered. After this adjustment of diagram (B) in figure 4, we recall that k1 is chosen as

the dependent momentum and does not appear in the explicit amplitude expressions, thus,

the differential operator with respect to k1 in the angular momentum does not take effect.

Finally, the double soft behavior of on-shell amplitude is precisely given by eq. (1.5).

5 Double soft behavior of amplitudes with two nonadjacent soft particles

Having the leading and subleading behaviors of amplitudes (currents) with two adjacent

soft factors, we now turn to the behaviors with two nonadjacent soft particles. While

considering J(2, . . . , ĩ, . . . , j̃, . . . , 2n), we have to encounter more cases according to different

positions of soft particles ĩ and j̃. Particularly, we have following cases

• both soft particles i, j are adjacent to the off-shell line

• only one of soft particles i, j is adjacent to the off-shell line

• none of the soft particles is adjacent to the off-shell line
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and either one of i, j can be chosen as even or odd number. We claim that the soft behavior

for off-shell current with two nonadjacent soft particles can be calculated out by Berends-

Giele recursion. Nevertheless, to avoid repeated and tedious discussions, we will achieve

the results via another approach, i.e., the KK relation [46] in NLSM [47, 48],

A (1, 2, . . . , i− 1, i, i+ 1, . . . , 2n) =
∑

α∈OP ({2,...,i−1}
⋃

{i+1,...,2n}T )

(−1)2n−iA (1, {α}, i) ,

(5.1)

where the sum goes over all possible permutations α with keeping the relative orders of

elements in the set {2, . . . , i − 1} and reversing the relative orders of elements in the set

{i+ 1, . . . , 2n}.
We focus on the on-shell amplitudes A(1, . . . , ĩ, . . . , j̃, . . . , 2n) for convenience. Accord-

ing to different positions of ĩ and j̃, we reclassify the amplitudes into two categories.

• Amplitudes in which ĩ and j̃ do not share any adjacent particle.

• Amplitudes in which ĩ and j̃ share one common adjacent particle.

Apparently, the off-shell current with both soft particles adjacent to the off-shell line is

just the off-shell version of the second category by taking the common particle as the off-

shell leg. Since partial amplitudes have cyclic symmetry, without loss of generality we can

choose 1 and i (with k1 = τp, ki = τq) as the two soft particles. In the the remaining part

of this section, we will prove following double soft behaviors

A(1̃, 2, . . . , i− 1, ĩ, i+ 1, . . . , 2n) = 0 +O(τ2), (3 < i < 2n− 1) (5.2)

A(1̃, 2, 3̃, 4, . . . , 2n) =





0 +O(τ2) (n = 2)

τ1
(

1

2F 2

)
p · q

k2 · (p+ q)
A(2, 4, . . . , 2n) +O(τ2) (n > 2)

. (5.3)

All amplitudes with two nonadjacent soft particles can be obtained by considering cyclic

symmetry. Although the following proof is done by KK relation, we have alternatively

verified these behaviors using Berends-Giele recursion. Since KK relation in nonlinear

sigma model has already been extended to off-shell currents [48], one can also have a

similar discussion for off-shell currents.

5.1 Two soft particles do not share any common adjacent particle

By the KK relation eq. (5.1), amplitude A(1̃, 2 . . . i− 1, ĩ, i+ 1, . . . , 2n) where the two soft

particles 1̃ and ĩ with momenta k1 = τp and ki = τq do not share any adjacent particle

can be rewritten as

A (1, 2, . . . , i− 1, i, i+ 1, . . . , 2n) =
∑

α∈OP ({2,...,i−1}
⋃

{i+1,...,2n}T )

(−1)2n−iA (1, {α}, i) , (5.4)

where 3 < i < 2n − 1. The right hand side of eq. (5.4) is a combination of amplitudes

with two adjacent soft particles 1 and i. The element α1 can be chosen as either 2 or 2n,
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while the element α2n−2 can be chosen as either i − 1 or i + 1. Thus one can classify the

amplitudes on the right hand side of eq. (5.4) according to different choices of (α1, α2n−2)

as following

• (2,i-1): this type of amplitudes has a general form A(1̃, 2, . . . , i − 1, ĩ) and the total

contribution of this type gives

I1 =
∑

β∈OP ({3,...,i−2}
⋃

{i+1,...,2n}T )

(−1)2n−iA
(
1̃, 2, {β}, i− 1, ĩ

)
. (5.5)

Now, A(1̃, 2, . . . , i − 1, ĩ) satisfy the two adjacent soft particles behaviors eq. (1.5),

thus we arrive

I1 =
∑

β∈OP ({3,...,i−2}
⋃

{i+1,...,2n}T )

(−1)2n−i (5.6)

×
[
τ0S

(0)
i,1 (ki−1, k2) + τ1S

(1)
i,1 (ki−1, k2)

]
A (2, {β}, i− 1) +O(τ2),

where the double soft factors S
(0)
i,1 (ki−1, k2) and S

(1)
i,1 (ki−1, k2) are defined by eq. (1.6)

and eq. (1.7) and we rewrite them as functions of the momenta of those adjacent hard

particles explicitly. After exchanging the summation and the soft factors, we obtain

I1 = (−1)2n−i
[
τ0S

(0)
i,1 (ki−1, k2) + τ1S

(1)
i,1 (ki−1, k2)

]

×


 ∑

β∈OP ({3,...,i−2}
⋃

{i+1,...,2n}T )

A (2, {β}, i− 1)


+O(τ2), (5.7)

The sum in the last brackets is nothing but the KK relation expression of

A(2, 3, . . . , i− 2, i− 1, i+ 1, . . . , 2n) up to a factor (−1)2n−i, thus

I1 =
[
τ0S

(0)
i,1 (ki−1, k2) + τ1S

(1)
i,1 (ki−1, k2)

]

×A(2, 3, . . . , i− 2, i− 1, i+ 1, . . . , 2n) +O(τ2). (5.8)

• (2,i+1): following a similar discussion in the (2, i − 1) case, we apply the double

soft behavior with two adjacent soft particles as well as KK relation. Then the

contribution of this type is written as

I2 =
∑

β∈OP ({3,...,i−1}
⋃

{i+2,...,2n}T )

(−1)2n−iA
(
1̃, 2, {β}, i+ 1, ĩ

)
(5.9)

= (−1)
[
τ0S

(0)
i,1 (ki+1, k2) + τ1S

(1)
i,1 (ki+1, k2)

]

×A(2, 3, . . . , i− 2, i− 1, i+ 1, . . . , 2n) +O(τ2).

• (2n,i-1): this type contributes

I3 =
∑

β∈OP ({2,3,...,i−2}
⋃

{i+1,...,2n−1}T )

(−1)2n−iA
(
1̃, 2n, {β}, i− 1, ĩ

)
(5.10)

= (−1)
[
τ0S

(0)
i,1 (ki−1, k2n) + τ1S

(1)
i,1 (ki−1, k2n)

]

×A(2, 3, . . . , i− 2, i− 1, i+ 1, . . . , 2n) +O(τ2).
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• (2n,i+1): this type contributes

I4 =
∑

β∈OP ({2,3,...,i−1}
⋃

{i+2,...,2n−1}T )

(−1)2n−iA
(
1̃, 2n, {β}, i+ 1, ĩ

)
(5.11)

=
[
τ0S

(0)
i,1 (ki+1, k2n) + τ1S

(1)
i,1 (ki+1, k2n)

]

×A(2, 3, . . . , i− 2, i− 1, i+ 1, . . . , 2n) +O(τ2).

Summing over all contributions together and considering the explicit forms of double soft

factors eq. (1.6) and eq. (1.7), we finally find fully cancellation among the leading and

subleading factors. Then we have proven the behavior eq. (5.2).

5.2 Two soft particles share one common adjacent particle

If two soft particles share one common adjacent particle, for example, A(1̃, 2, 3̃, 4, . . . , 2n),

we should isolatedly consider the behavior because in this case 2 can be either chosen as

α1 or α2n−2. A very special case is the four-point amplitude A(1̃, 2, 3̃, 4), where the two

soft particles share two adjacent particles, namely 2 and 4. In this case, one can obtain

the behavior directly by Feynman rules

A(1̃, 2, 3̃, 4) = O(τ2). (5.12)

If n > 2, the two soft particles share one common adjacent particle. We apply KK

relation to rewrite A(1̃, 2, 3̃, 4, . . . , 2n) as

A(1̃, 2, 3̃, 4, . . . , 2n) = (−1)2n−3
∑

α∈OP ({2}
⋃

{4,...,2n}T )

A(1̃, {α}, 3̃). (5.13)

In this case, (α1, α2n−2) can be chosen as (2, 4), (2n, 4) or (2n, 2). In each type of contri-

butions, we can apply the double soft behavior eq. (1.5) as well as KK relation eq. (5.1).

Then the behavior of A(1̃, 2, 3̃, 4, . . . , 2n) reads

A(1̃, 2, 3̃, 4, . . . , 2n) =
[
τ0
(
S
(0)
3,1(k4, k2)− S

(0)
3,1(k4, k2n) + S

(0)
3,1(k2n, k2)

)
(5.14)

+τ1
(
S
(1)
3,1(k4, k2)− S

(1)
3,1(k4, k2n) + S

(1)
3,1(k2n, k2)

)]
A(2, 4, . . . , 2n).

Substituting the definitions of the soft factors eq. (1.6) and eq. (1.7) into the above equation,

we find that all the leading order factors as well as the angular momentum parts in the

subleading factors cancel out. The left term gives out the behavior eq. (5.4).

6 Conclusion

In this work, we studied the single and double soft behaviors of tree-level currents in

NLSM. We proved the leading behavior eq. (1.9) of currents with a single soft particle.

Furthermore, we proposed and proved the leading and subleading behaviors of currents

containing two adjacent soft particles (see eq. (1.10) and eq. (1.12)). The soft behaviors of

the on-shell limits of currents were shown to be the right behaviors eq. (1.4) and eq. (1.5).
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By KK relation, we derived all double nonadjacent soft behaviors eq. (5.2) and eq. (5.3)

for on-shell amplitudes.

This work provided a systematic study of the leading single soft behavior and the

first two leading order double soft behaviors of tree amplitudes in NLSM by Berends-Giele

recursion (Feynman diagrams) and KK relation.

There are some interesting problems related to our present results:

• As mentioned in the introduction, the inspiration of this subleading double soft be-

havior in the effective theory comes from a) the study of global symmetry breaking

from an amplitude point of view and b) the recent soft theorems research in different

frameworks. Actually, the leading order behavior can be studied by current algebra

as well [49, 50]. Concerning the subleading results derived in this paper, we are cu-

rious on several points: how to understand these results from the current algebra

point of view? Do these nice structures indicate some hidden symmetry or deeper

physics insight?

• Although, the leading and subleading order double soft behaviors as well as the

leading order single soft behavior of currents have been proved, the subleading order

of a current with a single soft particle is still unknown. Thus it is worthy studying

the subleading order single soft behavior.

• The behaviors of currents with more soft particles will be complicated and deserves

further study.

• All discussions in this work are limited at tree level. Loop level extension is expected.
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A Feynman rules and Berends-Giele recursion in NLSM

We review Feynman rules and Berends-Giele recursion in NLSM. Most of the notations

agree with those in [6, 7]. This part has some overlaps with [47, 48].

A.1 Feynman rules

Lagrangian. The Lagrangian of U(N) non-linear sigma model is

L =
F 2

4
Tr(∂µU∂

µU †), (A.1)
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where F is a constant of one mass dimension. Using Caylay parametrization as in [6, 7],

the U is defined by

U = 1 + 2
∞∑

n=1

(
1

2F
φ

)n

, (A.2)

where φ =
√
2φata and ta are generators of U(N) Lie algebra.

Color decomposition. The full tree amplitudes can be given by a trace form color

decomposition5

M(1a1 , . . . , nan) =
∑

σ∈Sn−1

Tr(T a1T aσ2 . . . T aσn )A(1, σ). (A.3)

Since traces have cyclic symmetry, the partial amplitudes A also satisfy cyclic symmetry

A(1, 2, . . . , n) = A(n, 1, . . . , n− 1). (A.4)

Feynman rules for partial amplitudes

Under Cayley parametrization eq. (A.2), vertices in the Feynman rules for partial

amplitudes are

V2n+1 = 0, V2n+2 =

(
− 1

2F 2

)n
(

n∑

i=0

p2i+1

)2

=

(
− 1

2F 2

)n
(

n∑

i=0

p2i+2

)2

. (A.5)

Here, pj denotes the momentum of the leg j; momentum conservation has been considered.

A.2 Berends-Giele recursion

From the above Feynman rules, one can construct tree-level currents6 through Berends-

Giele recursion

J(2, . . . , 2n) =
i

P 2
2,2n

n∑

m=2

∑

Divisions

iV2m(p1 = −P2,2n, PA1 , · · · , PA2m−1)×
2m−1∏

k=1

J(Ak), (A.6)

where p1 = −P2,n = −(p2 + p3 + · · · + pn) is the momentum of the off-shell leg 1. In

the second sum, ‘Divisions’ denote all possible divisions of on-shell particles {2, . . . , 2n} →
{A1}, . . . , {A2m−1} with odd number elements in each subset. For example, if n = 6

and m = 2, we have three divisions {2, 3, 4, 5, 6} → {2, 3, 4}, {5}, {6}, {2, 3, 4, 5, 6} →
{2}, {3, 4, 5}, {6} and {2, 3, 4, 5, 6} → {2}, {3}, {4, 5, 6}. The starting point of this recursion

is J(2) = J(3) = · · · = J(n) = 1.

Since there is at least one odd-point vertex for a current containing odd lines (in-

cluding the off-shell line), according to the vanishing odd-point vertex as in eq. (A.5), we

always have

J(2, . . . , 2n+ 1) = 0, (A.7)

5In [6] and [7], this decomposition is mentioned as flavor decomposition.
6In this paper, an n-point current is mentioned as the current with n−1 on-shell legs and one off-shell leg.
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for (2n + 1)-point amplitudes. The currents with even points are nonzero in general and

are built up by only odd numbers of even-point subcurrents. Due to the vanishment of

odd-point currents, our discussion in this paper only concern even-point currents.

The current apparently have reflection symmetry

J(2, 3, . . . , 2n) = J(2n, . . . , 3, 2). (A.8)

B Computation details for nonadjacent case in section 3.3.2

In this section, we illustrate all computation details from diagrams in figures 7, 8 and 9.

Type-1. The type-1 diagrams with two soft particles i, i + 1 attached to the off-shell

line are typically described by figure 7. When τ → 0, the sum of diagrams in this type is

expanded as

TN
Type-1(τ) = τ0T

N(0)
Type-1 + τ1T

N(1)
Type-1, (B.1)

where T
N(0)
Type-1 and T

N(1)
Type-1 are given by

T
N(0)
Type-1 =

∑

{2,...,2l−1}→{A1},...,{A2j−1}
{2l+2,...,2n}→{A2j},...,{A2M+1}

(
− 1

2F 2

)M+1
(

M+1∑

r=0

P2r−1

)2 2M+1∏

s=1

J(As), (B.2)

T
N(1)
Type-1 =

∑

{2,...,2l−1}→{A1},...,{A2j−1}
{2l+2,...,2n}→{A2j},...,{A2M+1}

(
− 1

2F 2

)M+1

2

(
M+1∑

r=0

P2r−1

)
· q

2M+1∏

s=1

J(As), (B.3)

where we have summed over all possible divisions {2, . . . , 2l− 1} → {A1}, . . . , {A2j−1} and

{2l + 2, . . . , 2n} → {A2j}, . . . , {A2M+1} with elements of odd number in each set.

Type-2. Type-2 diagrams are shown by two diagrams in figure 8. The diagram (A) of

figure 8 stands for those with 2l connected to the off-shell line and 2l + 1 in a nontrivial

subcurrent, while the diagram (B) has 2l in a nontrivial subcurrent but 2l + 1 connected

to the off-shell line. As proven before, the behavior of currents of the forms J(2̃l + 1, . . . )

and J(. . . , 2̃l) have to vanish. The τ0 order term should be zero and the τ1 order term of

the sum of all type-2 diagrams is

TN
Type-2(τ) = τ1

[
T
N(1)
Type-2(A) + T

N(1)
Type-2(B)

]
, (B.4)

Here, T
N(1)
Type-2(A) is the sum of τ1 coefficient of all possible (A) diagrams in figure 8 and

given by

T
N(1)
Type-2(A) =

∑

{2,...,2l−1}→{A1},...,{A2j−2},{A
L
2j−1}

{2l+2,...,2n}→{AR
2j−1},{A2j},...,{A2M+1}

(
− 1

2F 2

)M+1

(B.5)

×
(

M∑

r=0

PA2r+1

)2

J(AL
2j−1)J(2̃l + 1, AR

2j−1)
2M+1∏

s=1
s 6=2j−1

J(As),
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where we have defined PA2j−1 ≡ PAL
2j−1

+ PAR
2j−1

. We emphasize that there should be

even number of elements in {AR
2j−1} because {2̃l + 1, AR

2j−1} should contain odd number

of elements. The sum of all possible (B) diagrams in figure 8, T
(1)
Type-2(B)(2̃l, 2̃l + 1), is

expressed by

T
N(1)
Type-2(B) =

∑

{2,...,2l−1}→{A1},...,{A2j−1},{A
L
2j}

{2l+2,...,2n}→{AR
2j},{A2j+1},...,{A2M+1}

(
− 1

2F 2

)M+1

(B.6)

×
(

M∑

r=0

PA2r+1

)2

J(AL
2j)J(2̃l + 1, AR

2j)
2M+1∏

s=1
s 6=2j

J(As),

where {AR
2j} contains even number of elements.

Type-3. When two soft particles are in a same subcurrent, we have following four kinds

of diagrams (see the four diagrams in figure 9).

• Diagrams containing a subcurrent with the form J(. . . , 2̃l, 2̃l + 1): in this case, we

substitute the double soft behavior of lower-point currents with 2l + 1 adjacent to

the propagator. The sum of diagrams of this kind is written as

TN
Type-3(A)(τ) = τ0T

N(0)
Type-3(A) + τ1

[
T
N(1)
Type-3(A1) + T

N(1)
Type-3(A2) + T

N(1)
Type-3(A3)

]
, (B.7)

where

T
N(0)
Type-3(A) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
1

2F 2

)
k2l−1 · q

k2l−1 · (p+ q)
(B.8)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As),

T
N(1)
Type-3(A1) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
1

2F 2

)
k2l−1 · q

k2l−1 · (p+ q)
(B.9)

×
(
− 1

2F 2

)M

2

(
M∑

r=0

PA2r+1

)
· (p+ q)

2M+1∏

s=1

J(As),

T
N(1)
Type-3(A2) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
− 1

2F 2

)
(p · q) k2l−1 · q

(k2l−1 · (p+ q))2
(B.10)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As),
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T
N(1)
Type-3(A3) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
− 1

2F 2

)
qµpνJ µν

2l−1

k2l−1 · (q + p)
J(A2j−1) (B.11)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1
s 6=2j−1

J(As).

• Diagrams containing a subcurrent with the form J(2̃l, 2̃l + 1, . . . ): we apply the soft

behavior to the lower-point subcurrent with 2l adjacent to the off-shell line. The

contribution of this type is then given by

TN
Type-3(B)(τ) = τ0T

N(0)
Type-3(B) + τ1

[
T
N(1)
Type-3(B1) + T

N(1)
Type-3(B2)

]
, (B.12)

where

T
N(0)
Type-3(B) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
1

2F 2

)
k2l+2 · p

k2l+2 · (q + p)
(B.13)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As),

T
N(1)
Type-3(B1) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
− 1

2F 2

)
(p · q) k2l+2 · p

(k2l+2 · (q + p))2
(B.14)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As),

T
N(1)
Type-3(B2) =

∑

{2,...,2l−1}→{A1}...{A2j−1}
{2l+2,...,2n}→{A2j}...{A2M+1}

(
− 1

2F 2

)
pµqνJ µν

2l+2

k2l+2 · (p+ q)
J(A2j) (B.15)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1
s 6=2j

J(As).

• Diagrams containing a subcurrent of the form J(. . . , 2̃l, 2̃l + 1, . . . ) with odd numbers

of elements on the left of 2l and even number of elements on the right of 2l + 1: the

total contribution from diagrams of this kind is given by

TN
Type-3(C) = τ0T

N(0)
Type-3(C) + τ1

[
T
N(1)
Type-3(C1)+T

N(1)
Type-3(C2)+T

N(1)
Type-3(C3)+T

N(1)
Type-3(C4)

]
,

(B.16)
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where

T
N(0)
Type-3(C) =

∑

{2,...,2l−1}→{A1},...,{A2j−2},{A
L
2j−1}

{2l+2,...,2n}→{AR
2j−1},{A2j}...,{A2M+1}

(
− 1

2F 2

)
1

2

×
[
k2l+2 · (q − p)

k2l+2 · (q + p)
+
k2l−1 · (p− q)

k2l−1 · (p+ q)

]

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As), (B.17)

T
N(1)
Type-3(C1) =

∑

{2,...,2l−1}→{A1},...,{A2j−2},{A
L
2j−1}

{2l+2,...,2n}→{AR
2j−1},{A2j}...,{A2M+1}

(
− 1

2F 2

)
1

2

×
[
k2l+2 · (q − p)

k2l+2 · (q + p)
+
k2l−1 · (p− q)

k2l−1 · (p+ q)

]

×
(
− 1

2F 2

)M

2

(
M∑

r=0

PA2r+1

)
· (p+ q)

2M+1∏

s=1

J(As),(B.18)

T
N(1)
Type-3(C2) =

∑

{2,...,2l−1}→{A1},...,{A2j−2},{A
L
2j−1}

{2l+2,...,2n}→{AR
2j−1},{A2j}...,{A2M+1}

(
− 1

2F 2

)
(p · q)

×
[

k2l+2 · p
(k2l+2 · (q + p))2

+
k2l−1 · q

(k2l−1 · (p+ q))2

]

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As), (B.19)

T
N(1)
Type-3(C3) =

∑

{2,...,2l−1}→{A1},...,{A2j−2},{A
L
2j−1}

{2l+2,...,2n}→{AR
2j−1},{A2j}...,{A2M+1}

(
− 1

2F 2

)

×
[

qµpνJ µν
2l+2

k2l+2 · (q + p)
+

pµqνJ µν
2l−1

k2l−1 · (p+ q)

]
J(A2j−1)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1
s 6=2j−1

J(As), (B.20)

T
N(1)
Type-3(C4) =

∑

{2,...,2l−1}→{A1},...,{A2j−2},{A
L
2j−1}

{2l+2,...,2n}→{AR
2j−1},{A2j}...,{A2M+1}

(
1

2F 2

)
J(AL

2j−1)J(2̃l + 1, AR
2j−1)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1
s 6=2j−1

J(As), (B.21)

where PA2j−1 = PL
A2j−1

+ PR
A2j−1

.
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• Diagrams containing a subcurrent with the form J(. . . , 2̃l, 2̃l + 1, . . . ) with even num-

bers of elements on the left of 2l and odd numbers of elements on the right of 2l + 1

The total contribution of diagrams of this kind is given by

TN
Type-3(D) = τ0T

N(0)
Type-3(D) + τ1

[
T
N(1)
Type-3(D1) + T

N(1)
Type-3(D2) + T

N(1)
Type-3(D3)

]
, (B.22)

where

T
N(0)
Type-3(D) =

∑

{2,...,2l−1}→{A1},...,{A2j−1},{A
L
2j}

{2l+2,...,2n}→{AR
2j},{A2j+1}...,{A2M+1}

(
− 1

2F 2

)
1

2

×
[
k2l+2 · (q − p)

k2l+2 · (q + p)
+
k2l−1 · (p− q)

k2l−1 · (p+ q)

]

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As), (B.23)

T
N(1)
Type-3(D1) =

∑

{2,...,2l−1}→{A1},...,{A2j−1},{A
L
2j}

{2l+2,...,2n}→{AR
2j},{A2j+1}...,{A2M+1}

(
− 1

2F 2

)
(p · q)

×
[

k2l+2 · p
(k2l+2 · (q + p))2

+
k2l−1 · q

(k2l−1 · (p+ q))2

]

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1

J(As), (B.24)

T
N(1)
Type-3(D2) =

∑

{2,...,2l−1}→{A1},...,{A2j−1},{A
L
2j}

{2l+2,...,2n}→{AR
2j},{A2j+1}...,{A2M+1}

(
− 1

2F 2

)

×
[

qµpνJ µν
2l+2

k2l+2 · (q + p)
+

pµqνJ µν
2l−1

k2l−1 · (p+ q)

]
J(A2j)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1
s 6=2j

J(As), (B.25)

T
N(1)
Type-3(D3) =

∑

{2,...,2l−1}→{A1},...,{A2j−1},{A
L
2j}

{2l+2,...,2n}→{AR
2j},{A2j+1}...,{A2M+1}

(
1

2F 2

)
J(AL

2j , 2̃l)J(2̃l + 1, AR
2j)

×
(
− 1

2F 2

)M
(

M∑

r=0

PA2r+1

)2 2M+1∏

s=1
s 6=2j

J(As). (B.26)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 35 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
8
(
2
0
1
5
)
0
5
8

References

[1] S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1,

Phys. Rev. 177 (1969) 2239 [INSPIRE].

[2] C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological

Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

[3] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?,

JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

[4] S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved

axial vector current, Phys. Rev. 137 (1965) B1022.

[5] L. Susskind and G. Frye, Algebraic aspects of pionic duality diagrams,

Phys. Rev. D 1 (1970) 1682 [INSPIRE].

[6] K. Kampf, J. Novotny and J. Trnka, Recursion relations for tree-level amplitudes in the

SU(N) nonlinear σ-model, Phys. Rev. D 87 (2013) 081701 [arXiv:1212.5224] [INSPIRE].

[7] K. Kampf, J. Novotny and J. Trnka, Tree-level amplitudes in the nonlinear σ-model,

JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].

[8] W.-M. Chen, Y.-t. Huang and C. Wen, New fermionic soft theorems for supergravity

amplitudes, Phys. Rev. Lett. 115 (2015) 021603 [arXiv:1412.1809] [INSPIRE].

[9] W.-M. Chen, Y.-t. Huang and C. Wen, From U(1) to E8: soft theorems in supergravity

amplitudes, JHEP 03 (2015) 150 [arXiv:1412.1811] [INSPIRE].

[10] F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091

[INSPIRE].

[11] E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077

[arXiv:1404.5551] [INSPIRE].

[12] B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from

scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].

[13] Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons

and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].

[14] S. He, Y.-t. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and

gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

[15] A.J. Larkoski, Conformal invariance of the subleading soft theorem in gauge theory,

Phys. Rev. D 90 (2014) 087701 [arXiv:1405.2346] [INSPIRE].

[16] F. Cachazo and E.Y. Yuan, Are soft theorems renormalized?, arXiv:1405.3413 [INSPIRE].

[17] N. Afkhami-Jeddi, Soft graviton theorem in arbitrary dimensions, arXiv:1405.3533

[INSPIRE].

[18] T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity,

Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].

[19] Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading)

soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].

[20] B.U.W. Schwab, Subleading soft factor for string disk amplitudes, JHEP 08 (2014) 062

[arXiv:1406.4172] [INSPIRE].

– 36 –

http://dx.doi.org/10.1103/PhysRev.177.2239
http://inspirehep.net/search?p=find+J+Phys.Rev.,177,2239
http://dx.doi.org/10.1103/PhysRev.177.2247
http://inspirehep.net/search?p=find+J+Phys.Rev.,177,2247
http://dx.doi.org/10.1007/JHEP09(2010)016
http://arxiv.org/abs/0808.1446
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1446
http://dx.doi.org/10.1103/PhysRevD.1.1682
http://inspirehep.net/search?p=find+J+Phys.Rev.,D1,1682
http://dx.doi.org/10.1103/PhysRevD.87.081701
http://arxiv.org/abs/1212.5224
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5224
http://dx.doi.org/10.1007/JHEP05(2013)032
http://arxiv.org/abs/1304.3048
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3048
http://dx.doi.org/10.1103/PhysRevLett.115.021603
http://arxiv.org/abs/1412.1809
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1809
http://dx.doi.org/10.1007/JHEP03(2015)150
http://arxiv.org/abs/1412.1811
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1811
http://arxiv.org/abs/1404.4091
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4091
http://dx.doi.org/10.1007/JHEP08(2014)077
http://arxiv.org/abs/1404.5551
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5551
http://dx.doi.org/10.1103/PhysRevLett.113.101601
http://arxiv.org/abs/1404.7749
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7749
http://dx.doi.org/10.1103/PhysRevD.90.085015
http://arxiv.org/abs/1405.1015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1015
http://dx.doi.org/10.1007/JHEP12(2014)115
http://arxiv.org/abs/1405.1410
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1410
http://dx.doi.org/10.1103/PhysRevD.90.087701
http://arxiv.org/abs/1405.2346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2346
http://arxiv.org/abs/1405.3413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3413
http://arxiv.org/abs/1405.3533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3533
http://dx.doi.org/10.1088/0264-9381/31/22/225008
http://arxiv.org/abs/1405.5122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5122
http://dx.doi.org/10.1088/0264-9381/32/5/055003
http://arxiv.org/abs/1406.1462
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1462
http://dx.doi.org/10.1007/JHEP08(2014)062
http://arxiv.org/abs/1406.4172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4172


J
H
E
P
0
8
(
2
0
1
5
)
0
5
8

[21] M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on soft theorems: trees, loops and strings,

arXiv:1406.5155 [INSPIRE].

[22] J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and

graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].

[23] Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons

from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].

[24] C.D. White, Diagrammatic insights into next-to-soft corrections,

Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].

[25] M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension,

JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].

[26] C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions,

JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].

[27] S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes

with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].

[28] Y.-J. Du, B. Feng, C.-H. Fu and Y. Wang, Note on soft graviton theorem by KLT relation,

JHEP 11 (2014) 090 [arXiv:1408.4179] [INSPIRE].

[29] M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem,

Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].

[30] Z.-W. Liu, Soft theorems in maximally supersymmetric theories,

Eur. Phys. J. C 75 (2015) 105 [arXiv:1410.1616] [INSPIRE].
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