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Abstract: Transverse momentum dependent (TMD) parton distribution functions

(PDFs), TMDs for short, are defined as the Fourier transform of matrix elements of non-

local combinations of quark and gluon fields. The nonlocality is bridged by gauge links,

which for TMDs have characteristic paths (future or past pointing), giving rise to a process

dependence that breaks universality. It is possible, however, to construct sets of univer-

sal TMDs of which in a given process particular combinations are needed with calculable,

process-dependent, coefficients. This occurs for both T-odd and T-even TMDs, including

also the unpolarized quark and gluon TMDs. This extends the by now well-known example

of T-odd TMDs that appear with opposite sign in single-spin azimuthal asymmetries in

semi-inclusive deep inelastic scattering or in the Drell-Yan process. In this paper we ana-

lyze the cases where TMDs enter multiplied by products of two transverse momenta, which

includes besides the pT -broadening observable, also instances with rank-2 structures. To

experimentally demonstrate the process dependence of the latter cases requires measure-

ments of second harmonic azimuthal asymmetries, while the pT -broadening will require

measurements of processes beyond semi-inclusive deep inelastic scattering or the Drell-Yan

process. Furthermore, we propose specific quantities that will allow for theoretical studies

of the process dependence of TMDs using lattice QCD calculations.
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1 Introduction

When considering transverse momentum dependence of parton distribution functions

(PDFs) one must account for process dependence, which is related to the color flow in

the hard process and which is reflected in a process dependence of the gauge links (GLs)

or Wilson lines that appear in the definition of the quark and gluon transverse momentum

dependent (TMD) correlators [1–10]. In a field theoretical framework in terms of quark

and gluon field operators, these definitions involve nonlocal combinations of such fields and

hence necessarily also gauge links. To ‘feel’ the transverse momentum dependence they

necessarily involve (covariant) derivatives or gluon field operators [11, 12]. Probed in the

right way, however, through specific azimuthal asymmetries, often necessarily in combina-

tion with transverse spin asymmetries, the effects of transverse momentum dependence are

not suppressed by the high-energy scale in the process [13–15]. This involves processes that

are sensitive to an observable transverse momentum, which introduces another scale into

the process, allowing the unsuppressed appearance of operators that would be suppressed

with inverse powers of the hard scale in inclusive deep inelastic scattering. Such processes

should be based on TMD factorization [16, 17] in order to link the observable to TMD

correlators of quarks and gluons.

In the parametrization of TMD quark and gluon correlators one encounters the TMD

distribution functions depending on x and p2
T
. In addition transverse momenta may ap-

pear explicitly, e.g. in the simplest case there are terms in the correlator with a linear

proportionality to the (relative) transverse momentum of quarks with respect to parent

or produced hadrons. Examples of new terms in this case include single-spin asymmetries

that at the level of distribution functions are hard to obtain without transverse momen-

tum effects. They can be traced to particular time-reversal-odd (T-odd) matrix elements

involving gluonic pole matrix elements [18–23]. Starting with GL-dependent TMD corre-

lators, such matrix elements appear with calculable process-dependent gluonic pole factors
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depending on the path of the GL [8–10, 22, 24–26]. The path can be future or past-pointing

dependent on the color flow in the hard process. This leads for instance to the prediction of

the sign change (factors ±1) of comparable single-spin asymmetries in semi-inclusive deep

inelastic scattering (SIDIS) or the Drell-Yan process (DY) [3–5].

In this paper, we focus on the operator structure of the matrix elements in situations

where transverse momenta show up at the quadratic level, either as p2
T
or as a rank-2 tensor

combination. The first one is relevant in studies involving the p2
T
dependence of the TMDs

and its possible process dependence. In the case of tensor combinations it leads to TMD

functions in the parametrization that show up in the description of azimuthal asymmetries

such as cos(2ϕ) or sin(2ϕ), where ϕ is an appropriate azimuthal angle that can be defined

in processes where at least two hadrons are involved, such as SIDIS or DY.

The upshot of the paper is that transverse momentum dependence and the GL depen-

dence in the description of TMDs in terms of matrix elements of nonlocal combinations of

quark and gluon fields leads to a process dependence already for the rank-0 TMDs, which

are just the extension of the ‘standard’ collinear PDFs with an extra argument. In that

case it affects in particular the pT -width of the TMDs. Process dependence of unpolar-

ized TMDs has already been considered at small x in [27–30]. In this paper, we outline

the underlying operator structure, i.e. the split into universal operator combinations and

its process-dependent coefficients. Besides the pT -width of TMDs also situations are con-

sidered in which higher-rank effects in pT show up, e.g. those involving the pretzelocity

functions for transversely polarized quarks in a transversely polarized nucleon or in the

description of linearly polarized gluons in an unpolarized nucleon. We link appropriate

operators to a universal set of transverse momentum dependent distribution functions.

In the analysis of operator structures it is convenient to use pT moments of TMDs,

which formally are ill-defined. The average partonic transverse momentum 〈p2
T
〉 is a theo-

retical quantity that beyond tree level requires a regularization and prescription in order

to be well-defined. It is not directly observable. In this article we will not focus on this

aspect and just view such transverse moments as idealized quantities, that are limits of

well-defined Bessel moments for example [31, 32]. Such Bessel moments are less sensitive

to the large pT behavior of the TMDs, but they are still scale dependent and under changes

in scale they will involve operator mixing between quark and gluon operators, and even

between operator combinations describing unpolarized and polarized gluons. We will come

back to the latter at the end of section 4.

Assuming a proper definition in this way, and assuming TMD factorization, the pT mo-

ments can be connected to experimental observables. Of course, in practice the isolation of

the average partonic transverse momentum from experimental measurements is extremely

challenging due to the multitude of contributing effects. For example, the transverse mo-

mentum imbalance of dijet, dimuon and diphoton pairs in hadron-hadron collisions has

been used to extract the average partonic transverse momentum [33, 34]. Dimuons and

diphotons are primarily sensitive to quark contributions, but under scale changes also gluon

contributions enter. Dijets probe the transverse momentum of both quarks and gluons al-

ready at the leading order. In the analysis the observed transverse momentum QT of the

pair was divided into three parts: 〈Q2
T
〉pair/2 = 〈p2

T
〉intrinsic + 〈p2

T
〉soft + 〈p2

T
〉NLO, based on

– 2 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
3

the fact that the ‘intrinsic’ transverse momentum distribution of partons beyond tree level

is broadened by hard and soft emissions. Therefore, the theoretical description will require

inclusion of “Y -terms” to bridge the low and high parts in the observable transverse mo-

mentum QT . To reduce the sensitivity to the large pT contributions, here one could also

consider extracting the Bessel moments directly from experimental data. See ref. [35] for

a first analysis of this kind.

There are further complications in the experimental extractions. Although there is no

contribution from fragmentation for these particular observables, the experimental trans-

verse momentum resolution of the pair is a clear limiting factor and generally is of the same

order or larger than the average partonic transverse momentum. In principle there are also

contributions from spin correlation effects that were not accounted for in the experimental

extraction [36, 37], and another effect not accounted for in the extractions, is the process

dependent color flow factors arising from initial and/or final state interactions (ISI/FSI).

In fact, due to the presence of both ISI and FSI in dijet production, TMD factorization

of that process is not expected to be valid [38]. The extraction of the average partonic

transverse momentum from the dijet imbalance in hadron-hadron collisions is therefore

questionable, unless one can demonstrate that the spin correlation effects and the ISI/FSI

effects are negligibly small.

Despite the many complications in going from experimental measurements to trust-

worthy extractions of the pT widths of TMDs, it seems useful to investigate the possible

effects of the color flow, and to find ways to assess the importance of such effects. The aim

of this article is to shed light on this aspect and to propose ways to investigate it further

quantitatively using lattice calculations, as we will discuss in section 5.

2 Definitions and parametrization of TMD correlators

The quark and gluon TMD correlators in terms of matrix elements of quark fields [1, 2]

including the Wilson lines U needed for color gauge invariance of the TMD case [5, 6] are

given by [7, 8]

Φ
[U ]
ij (x, pT ;n) =

∫
d ξ·P d2ξT

(2π)3
eip·ξ〈P ,S|ψj(0)U[0,ξ]ψi(ξ)|P ,S〉

∣∣
ξ·n=0

, (2.1)

2xΓ[U,U ′]µν(x, pT ;n) =

∫
d ξ·P d2ξT

(2π)3
eip·ξ〈P ,S|Fnµ(0)U[0,ξ] F

nν(ξ)U ′
[ξ,0] |P ,S〉

∣∣
ξ·n=0

(2.2)

(color summation or tracing implicit), where we use the Sudakov decomposition pµ =

xPµ + pµ
T
+ σnµ for the momentum pµ of the produced quark or gluon. In the TMD

case, there are for a spin 1/2 nucleon in general eight leading contributing terms in the

parametrization of the TMD correlator [14, 39], but as already explained in the Introduction

we focus only on specific examples, namely unpolarized quarks in an unpolarized nucleon

or transversely polarized quarks in a transversely polarized nucleon,

Φ[U ](x, pT ;n) =

{
f
[U ]
1 (x, p2

T
) + h

[U ]
1 (x, p2

T
) γ5 /ST

+ h
⊥[U ]
1T (x, p2

T
)
pTαβS

{α
T
γ
β}
T
γ5

2M2

}
/P

2
. (2.3)
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The spin vector is parametrized as Sµ = SLP
µ + Sµ

T
+M2 SLn

µ (with in our case SL not

needed). The symmetric traceless second rank tensor is pαβ
T

= pα
T
pβ
T
− 1

2p
2
T
gαβ
T

. In this

parametrization this traceless tensor is used. Often one also encounters the expression in

which just the symmetric combination pα
T
pβ
T
is used. In that case one has a trace term that in

the above expression is absorbed into h1 introducing the combination h
[U ]
1 = h

[U ]
1T +h

⊥[U ](1)
1T .

The notation h
⊥(1)
1T indicates weighting with powers of −p2

T
/2M2 = p2

T
/2M2, of which the

general definition reads:

f (n)
... (x, p2

T
) =

(
−p2

T

2M2

)n

f...(x, p
2
T
), (2.4)

and which upon integration are referred to as transverse moments. For gluons one has for

the leading correlator in a polarized nucleon in general eight GL-dependent functions. We

limit ourselves to unpolarized nucleons with for gluons the parametrization [40]

2xΓµν(x, pT ) = −gµνT f
g[U,U ′]
1 (x, p2

T
) +

pµνT
M2

h
⊥g[U,U ′]
1 (x, p2

T
), (2.5)

which for gluons is sufficient to illustrate the complications when a product of two transverse

momenta is involved. The (formal) integrated correlators are given by

Φij(x) =

∫
d ξ·P

2π
eip·ξ〈P ,S|ψj(0)U

[n]
[0,ξ]ψi(ξ)|P ,S〉

∣∣
ξ·n=0,ξT=0

, (2.6)

2xΓµν(x) =

∫
d ξ·P

(2π)
eip·ξ 〈P ,S|Fnµ(0)U

[n]
[0,ξ] F

nν(ξ)U
[n]
[ξ,0] |P ,S〉

∣∣
ξ·n=0,ξT=0

, (2.7)

where the GLs are reduced to a unique straight-line GL which runs from 0 to ξ along n,

thus removing the link dependence. The relevant parametrizations for the collinear quark

and gluon correlators in the examples (eqs. (2.3) and (2.5)) which we study in this paper are

Φ(x) =

{
f1(x) + h1(x) γ5 /ST

}
/P

2
, (2.8)

2xΓµν(x) = −gµν
T

fg
1 (x). (2.9)

Here we do not discuss any complicating issues associated with scale dependence of the

distribution functions and with convergence of the pT integrals. These are addressed briefly

in 5 and more extensively in [32, 41, 42]. In the next sections, we make the GL dependence

in the TMD functions like f
[U ]
1 (x, p2

T
) for quarks or f

g[U,U ′]
1 (x, p2

T
) for gluons explicit.

3 Quark correlators of rank 2 in a nucleon target

In this section, we study the quark correlator in eq. (2.3) and we will identify the pT

dependence with specific operators. For this we notice that the pT -integrated collinear

correlator, ∫
d2pT Φ[U ](x, pT ) = Φ(x), (3.1)

– 4 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
3

is GL-independent. Likewise one can consider higher transverse moments. Using the

starting operator expression in eq. (2.1) one finds rank-2 collinear correlators [6, 25],

∫
d2pT

pα
T
pβ
T

M2
Φ[U ](x, pT ) = Φ

αβ
∂∂ (x) +

2∑

c=1

C
[U ]
GG,cΦ

αβ
GG,c(x), (3.2)

which are symmetric but not traceless. Subtracting its trace we get

∫
d2pT

pαβ
T

M2
Φ[U ](x, pT ) = Φ

αβ
∂∂ (x)−

1

2
gαβ
T

Φ∂·∂(x)+
2∑

c=1

C
[U ]
GG,c

(
Φ

αβ
GG,c(x)−

1

2
gαβ
T

ΦG·G,c(x)

)
.

(3.3)

These are relations involving on the right-hand side correlators with specific operator matrix

elements, among them two (c = 1, 2) gluonic pole matrix elements ΦGG, c, multiplied with

gluonic pole factors C
[U ]
GG,c. The explicit operator structure of these matrix elements before

doing the pT -integration is given by

Φ
[U ]

Ô,ij
(x, pT ) =

∫
d ξ·P d2ξT

(2π)3
eip·ξ〈P ,S|ψj(0)U[0,ξ]Ô(ξ)ψi(ξ)|P ,S〉

∣∣∣
ξ·n=0

, (3.4)

where the Ô(ξ) operators are rank-2 combinations of i∂α
T
(ξ) = iDα

T
(ξ)−Aα

T
(ξ) and Gα(ξ),

defined in a color gauge invariant way (thus including GLs),

Aα
T
(ξ) =

1

2

∫ ∞

−∞
dη·P ǫ(ξ·P − η·P )U

[n]
[ξ,η]F

nα(η)U
[n]
[η,ξ], (3.5)

Gα(ξ) =
1

2

∫ ∞

−∞
dη·P U

[n]
[ξ,η]F

nα(η)U
[n]
[η,ξ], (3.6)

with ǫ(ζ) being the sign function. Note that Gα(ξ) = Gα(ξT ) does not depend on ξ·P ,

implying in momentum space p ·n = p+ = 0, hence the name gluonic pole matrix elements.

To be precise, the correlator ΦGG,c contains the operator GαGβ/M2. Including the quark

fields in the correlator, the different color possibilities correspond to the color singlet com-

binations Tr(ψψGG) (c = 1) or Tr(ψψ)Tr(GG) (c = 2). The other correlator in eq. (3.2),

Φ∂∂ , contains the operator (i∂α
T
)(i∂β

T
)/M2. The collinear correlators Φ∂∂ and ΦGG,c are

universal. In our particular examples, both of them are rank-2 symmetric correlators, but

in general these are not traceless.

In the next step, we are going to study the parametrization of the correlators. For

this we will distinguish among the terms in the parametrization with different numbers

of transverse momenta, i.e. terms with definite rank. To illustrate the procedure, it is

sufficient to distinguish in our example the symmetric terms up to rank 2,

Φ[U ](x, pT ) = Φ̃[U ](x, p2
T
) + Φ̃α[U ](1)

α (x, p2
T
) +

pTαβ

M2
Φ̃αβ[U ](x, p2

T
), (3.7)

parametrized as

Φ̃[U ](x, p2
T
) + Φ̃α[U ](1)

α (x, p2
T
) =

{
f
[U ]
1 (x, p2

T
) + h

[U ]
1 (x, p2

T
) γ5 /ST

}
/P

2
, (3.8)

Φ̃αβ[U ](x, p2
T
) +

1

2
gαβ
T

Φ̃γ[U ]
γ (x, p2

T
) = h

⊥[U ]
1T (x, p2

T
)
S
{α
T
γ
β}
T
γ5 + gαβ

T
γ5/ST

2

/P

2
, (3.9)
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where the tensor Φ̃αβ is symmetric but not traceless. Note that the weighted trace term

Φ̃
α [U ](1)
α (x, p2

T
) then contributes to the parametrization of the rank-0 part, while the trace

term also has to be subtracted in the rank-2 part. This suggests absorption of the first two

terms in eq. (3.8) into one term, Φ̃[U ] + Φ̃
α[U ](1)
α −→ Φ̃[U ], which indeed is possible if we

realize that the terms are GL-dependent anyway. We note that the notation using tildes

above the quark and gluon correlators in this expansion sometimes slightly differs from

that in previous studies. In this paper, we simply use tildes for particular definite rank

parts in the parametrization, which thus only depend on x and p2
T
.

The pT -integrated and weighted collinear correlators in eqs. (3.1), (3.2) and (3.3) are

independent of the GL. The GL dependence is contained in the gluonic pole factors. It is

then natural to also split the rank-2 contributions in eq. (3.7) and start with the expansion

Φ[U ](x, pT ) = Φ̃(x, p2
T
) +

pTαβ

M2
Φ̃αβ
∂∂ (x, p

2
T
)

+
2∑

c=1

C
[U ]
GG,c

[
Φ̃
(1)
G·G,c(x, p

2
T
) +

pTαβ

M2
Φ̃αβ
GG,c(x, p

2
T
)
]
+ . . . . (3.10)

Also in this expansion we thus must account for the trace terms appearing as (univer-

sal) matrix elements Φ̃∂·∂(x, p
2
T
) and Φ̃G·G(x, p

2
T
) in the rank-0 part. In the remaining

part indicated by the dots only terms with additional G·G will appear since, for the pT

dependence, rank-2 structures are the highest ones for quark matrix elements in a spin

1/2 hadron. Because Φ(x) and Φ̃∂·∂(x) are GL-independent we can make the substitution

Φ̃(x, p2
T
) + Φ̃

(1)
∂·∂ (x, p

2
T
) −→ Φ̃(x, p2

T
). The rank-0 trace part of the gluonic pole correlator,

however, must be kept and parametrized in analogy to the rank-0 part Φ(x, p2
T
). It cannot

contribute to the integrated correlators, thus requiring that upon integration Φ̃
(1)
G·G,c(x) = 0.

Following the naming convention in ref. [9] for the universal functions getting a superscript

(A) for functions in Φ̃∂∂ and a superscript (Bc) for functions in Φ̃GG,c, this leads to the

following parametrization in terms of universal functions,

Φ̃(x, p2
T
) =

{
f1(x, p

2
T
) + h1(x, p

2
T
) γ5 /ST

}
/P

2
, (3.11)

Φ̃αβ
∂∂ (x, p

2
T
) +

1

2
gαβ
T

Φ̃∂·∂(x, p
2
T
) = h

⊥(A)
1T (x, p2

T
)
S
{α
T
γ
β}
T
γ5 + gαβ

T
γ5/ST

2

/P

2
, (3.12)

Φ̃
(1)
G·G,c(x, p

2
T
) =

{
δf

(Bc)
1 (x, p2

T
) + δh

(Bc)
1 (x, p2

T
) γ5 /ST

}
/P

2
,

Φ̃αβ
GG,c(x, p

2
T
) +

1

2
gαβ
T

Φ̃G·G,c(x, p
2
T
) = h

⊥(Bc)
1T (x, p2

T
)
S
{α
T
γ
β}
T
γ5 + gαβ

T
γ5/ST

2

/P

2
, (3.13)

with δf
(Bc)
1 (x) = δh

(Bc)
1 (x) = 0. Making the trace term Φ∂·∂ explicit by introducing

additional functions δf
(A)
1 and δh

(A)
1 would be overcomplete.1

Returning to our starting GL-dependent parametrization in eq. (2.3), we have now

constructed the universal set of functions, including f1 and h1T , their pT -width effects

1Note the missing factor of 1/2 for the terms in the last line of eq. 29 in ref. [9]. Also the order of some

Dirac matrices in the eqs. 31-33 of the same reference should be reversed.
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δf
(Bc)
1 and δh

(Bc)
1 and three pretzelocity functions that give the GL-dependent distribution

functions,

f
[U ]
1 = f1 +

2∑

c=1

C
[U ]
GG,c δf

(Bc)
1 + . . . , (3.14)

h
[U ]
1 = h1 +

2∑

c=1

C
[U ]
GG,c δh

(Bc)
1 + . . . , (3.15)

h
⊥[U ]
1T = h

⊥(A)
1T +

2∑

c=1

C
[U ]
GG,c h

⊥(Bc)
1T + . . . . (3.16)

Note that all functions in these equation depend on x and p2
T
. For the pretzelocity distribu-

tions, this has been discussed in [9], but the broadening effects parametrized with two func-

tions δf
(Bc)
1 is new. In principle traces of higher-rank tensors will give broadening effects

coming with color factors C
[U ]
GGGG,c, etc. These will not lead to new functions, but just to ad-

ditional process-dependent broadening effects δδf1, δδh1 and also broadening effects δh
⊥(1)
1T

in the pretzelocity functions. These satisfy δδf1(x) = δδf
(1)
1 = 0, δδh1(x) = δδh

(1)
1 = 0

and δh
⊥(1)
1T (x) = 0, etc. Such functions, however, only start playing a role in processes

with rather complex color flow. Furthermore they just represent modulations in the p2
T

dependence. Comparing δδf1 with δf1 and f1, respectively, such modulations are expected

to correspond to short distance effects in impact parameter space in the matrix elements.

We expect these to become smaller and hope that this can be studied in lattice studies as

discussed in section 5.

4 Gluon correlators of rank 2 in a nucleon target

As the second example, we consider the gluon correlator in an unpolarized nucleon with

the GL-dependent parametrization given in eq. (2.5). As for quarks the integrated and

weighted results for gluon correlators give two types of matrix elements,
∫

d2pT Γµν[U,U ′](x, pT ) = Γµν (x), (4.1)

∫
d2pT

pα
T
pβ
T

M2
Γµν[U,U ′](x, pT ) = Γ

µν;αβ
∂∂ (x) +

4∑

c=1

C
[U,U ′]
GG,c Γ

µν;αβ
GG,c(x). (4.2)

For the gluonic pole correlators the index c now runs over 4 possibilities involving differ-

ent color tracings. Including the two gluon fields in the correlator Γ (denoted with F )

the relevant color structures are Tr(F [G, [G,F ]]), Tr(F{G, {G,F}}), Tr(FF )Tr(GG) and

Tr(FG)Tr(FG), respectively. These transverse moments can be used to identify universal

functions after introducing a parametrization in terms of definite rank,

Γµν[U,U ′](x, pT ) = Γ̃µν (x, p2
T
) +

pTαβ

M2
Γ̃µν;αβ

∂∂ (x, p
2
T
)

+
4∑

c=1

C
[U,U ′]
GG,c

[
Γ̃
µν (1)

G·G,c(x, p
2
T
) +

pTαβ

M2
Γ̃µν;αβ

GG,c(x, p
2
T
)
]
+ . . . , (4.3)
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with Γ̃
µν (1)

∂·∂ (x, p
2
T
) absorbed in Γ̃µν(x, p2

T
), just as we did for the quark correlator in

eq. (3.10). In the parametrization of the gluonic pole term a trace term Γ̃
µν (1)

G·G,c(x, p
2
T
)

is needed which must satisfy Γ̃
µν (1)

G·G,c(x) = 0. With this expansion we can express the

correlators in a universal set of TMDs depending on x and p2
T
,

Γ̃µν (x, p2
T
) = −gµν

T
fg
1 (x, p

2
T
), (4.4)

Γ̃µν;αβ
∂∂ (x, p

2
T
) +

1

2
gαβ
T

Γ̃µν
∂·∂(x, p

2
T
) =

g
µ{α
T

g
β}ν
T

− gαβ
T

gµν
T

2
h
⊥g(A)
1 (x, p2

T
), (4.5)

Γ̃
µν; (1)

G·G,c(x, p
2
T
) = −gµν

T
δf

g(Bc)
1 (x, p2

T
), (4.6)

Γ̃µν;αβ
GG,c(x, p

2
T
) +

1

2
gαβ
T

Γ̃µν
G·G,c(x, p

2
T
) =

g
µ{α
T

g
β}ν
T

− gαβ
T

gµν
T

2
h
⊥g(Bc)
1 (x, p2

T
), (4.7)

where the p2
T
-integrated function δfg

1 (x) = 0. Returning to the GL-dependent functions in

eq. (2.5) we find

f
g[U,U ′]
1 = fg

1 +
4∑

c=1

C
[U,U ′]
GG,c δf

g(Bc)
1 + . . . , (4.8)

h
⊥g[U,U ′]
1 = h

⊥g(A)
1 +

4∑

c=1

C
[U,U ′]
GG,c h

⊥g(Bc)
1 + . . . . (4.9)

We already commented in the Introduction on the fact that the UV behavior of the

functions requires care including operator mixture. The function h⊥g
1 is also a good ex-

ample of the situation in which the large pT behavior of the function involves convolutions

with functions corresponding to a different operator structure, that is in this context op-

erators of a different rank. In this case it is the unpolarized gluon distribution that in the

evolution equation also contributes to the large pT behavior of h⊥g
1 as already pointed out

in refs. [43, 44].

5 Gauge link dependence in lattice studies

TMDs are GL-dependent, but as the gauge links can be calculated for a particular hard

process, one can express the GL dependence in gluonic pole factors. This will affect all

TMDs, even the unpolarized quark and gluon TMDs causing a process dependence in

their p2
T
behavior and leading to nonuniversal T -even functions. To probe this process

dependence in case of the unpolarized quark TMDs, one has to go beyond the comparison

between relatively simple processes like SIDIS and DY, since the gluonic pole factors are

both unity for simple future- and past-pointing gauge links,

f
[+]
1 (x, p2

T
) = f

[−]
1 (x, p2

T
) = f1(x, p

2
T
) + δf

(B1)
1 (x, p2

T
). (5.1)

In hadron-hadron scattering to hadronic final states one will find effects of unpolarized

quarks coming from (among others) the correlators Φ[�+] and Φ[(�)+]. These gauge links

are more complex than the simple staples U
[±]
[0,ξ] which are consecutive Wilson lines U

[±]
[0,ξ] =
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U
[n]
[0−,±∞−]

UT
[0T ,ξT ]U

[n]
[±∞−,ξ−]

along minus direction or in the transverse direction at plus or

minus light-like infinity. The GL U [�+] indicates a future-pointing GL that loops around

once more, U
[�+]
[0,ξ] = U

[+]
[0,ξ]U

[−]
[ξ,0]U

[+]
[0,ξ], while U [(�)+] indicates a future-pointing GL U [+] and

an additional traced GL U [(�)] = Tr(U
[+]
[0,ξ]U

[−]
[ξ,0])/Nc [9, 10, 45]. We find in these cases2

f
[�+]
1 (x, p2

T
) = f1(x, p

2
T
) + 9 δf

(B1)
1 (x, p2

T
), (5.2)

f
[(�)+]
1 (x, p2

T
) = f1(x, p

2
T
) + δf

(B1)
1 (x, p2

T
) + δf

(B2)
1 (x, p2

T
). (5.3)

We emphasize once more that the collinear integrated functions are the same in all cases.

It should be mentioned though that strictly speaking one should not consider the collinear

parton distribution functions as integrals over TMDs, as the latter require regularization of

rapidity or light-cone divergences, and thereby do not necessarily lead to unique answers for

integrals [41, 42]. In general, higher transverse moments, including the average transverse

momentum 〈p2
T
〉 ≡ 2M2f

(1)
1 (x), will diverge too, simply because the perturbative power

law tail of the TMDs will not fall off sufficiently fast. For the purpose of regularizing this

kind of divergence, a generalization of the weighting with powers of transverse momentum

was suggested in [31], the so-called Bessel weighting. Bessel moments can be given as

derivatives of Fourier transformed TMDs f̃(x, b2T ) in impact parameter space,

f̃ (n)(x, b2T ) = n!

(
−

2

M2
∂
b
2

T

)n

f̃(x, b2T ). (5.4)

In the limit bT → 0 the conventional transverse moments are retrieved, including their

divergences. The Bessel weighting regularized version of the average transverse momentum

is given by [32]:

〈p2
T
〉(x, b2T ) ≡ 2M2f̃

(1)
1 (x, b2T ) = 4π

∫
d|pT |

|pT |
2

|bT |
J1(|bT ||pT |) f1(x,p

2
T ). (5.5)

Upon taking Mellin moments, this quantity can be evaluated on the lattice [46, 47], which

suggests a lattice study of the GL dependence of f̃
(1)[U ]
1 (x, b2T ). For this purpose one can

for example consider regularized versions of ratios such as

f
(1)[�+]
1 (x)

f
(1)[+]
1 (x)

= 1 + 8
R1

1 +R1
,

f
(1)[(�)+]
1 (x)

f
(1)[+]
1 (x)

= 1 +
R2

1 +R1
, (5.6)

where Rc ≡ δf
(1)(Bc)
1 (x)/f

(1)
1 (x). The Bessel-weighted generalizations of these ratios can

be evaluated on the lattice, e.g.

f̃
[1](1)[�+]
1 (b2T ;µ, ζ)

f̃
[1](1)[+]
1 (b2T ;µ, ζ)

=
〈P |ψ(0, 0T )γ

+ U
[+]
[0,b]U

[−]
[b,0]U

[+]
[0,b] ψ(0, bT )|P 〉

〈P |ψ(0, 0T )γ+ U
[+]
[0,b] ψ(0, bT )|P 〉

, (5.7)

where the first superscript [1] refers to the lowest Mellin moment n = 1 and (1) to the

Bessel-moment given above. These ratios offer a way to quantify the importance of gauge

2Compared to ref. [9] there is a redefinition of gluonic pole matrix elements and gluonic pole coefficients,

leaving the product of the two unchanged.
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loops and of the process dependence of f1. Although it is not expected that the ratios

are scale-independent, some of the scale dependence (of both µ and ζ) may cancel in the

ratio [31]. But even information about them at some fixed scales would already be very

interesting. Any deviation from unity indicates first of all the relevance of gluonic pole

matrix elements and second, the effect of the flux through a Wilson loop. How the latter

changes with b is especially interesting. If the effect of an additional winding in the Wilson

line enclosing the entire flux through the plane does not affect the average transverse

momentum squared significantly, then one can conclude that the process dependence is

not important to take into account for the unpolarized T-even distributions. Extensions

to other T-even and T-odd functions are straightforward.

6 Discussion and conclusions

Even if quark TMDs in hadron-hadron scattering processes involve a combination of cor-

relators Φ[�+], Φ[(�)+], and some others with more complex gauge link structures, the con-

sequences for process dependence of the unpolarized quark TMD f
[U ]
1 will most likely be

hard to investigate experimentally. This will be looked at more carefully in a future study,

which also includes other TMDs such as the T-even and T-odd rank-1 functions. Lattice

calculations, however, could offer possibilities to investigate the gauge link dependence. For

the gluon case, the situation may experimentally be somewhat less complicated, while the

lattice calculation will be much more demanding in that case. The unpolarized gluon TMD

f
g[U,U ′]
1 depends on two links and again the two simplest processes are sensitive to the same

function: production of a colorless final state in hadron-hadron scattering, such as in the

case of the Drell-Yan process or Higgs production, probes f
g[−,−]
1 [48, 49], while cc produc-

tion in SIDIS probes f
g[+,+]
1 [37]. Like f

[+]
1 = f

[−]
1 , it turns out that f

g[−,−]
1 = f

g[+,+]
1 , which

follows from a P and T transformation. For T-odd TMDs this equality does not hold [45],

e.g. for the gluon Sivers function f
⊥g[−,−]
1T 6= f

⊥g[+,+]
1T . Processes in which other f

g[U,U ′]
1

functions contribute are for instance pp → H jetX and pp → γ jetX. In pp → H jetX [50]

the subprocesses qq̄ → Hg, qg → Hq, and gg → Hg contribute, but when the momen-

tum fractions of both initial partons is sufficiently small, the latter dominates, offering the

possibility of accessing a single f
g[U,U ′]
1 , which can be evaluated following the procedures

as outlined in ref. [7]. A simpler way to probe a different f
g[U,U ′]
1 is in pp → γ jetX, if

one can select a kinematic region where the partonic subprocess qg → γq dominates over

qq̄ → γg. In this case one can access f
g[+,−]
1 . Such a study has already been proposed in pA

scattering in [27, 28]. Large A and small x (high energy) help to select the gluon induced

subprocesses and lead to simplifications regarding the study of the process dependence of

the gluon TMD f
g[U,U ′]
1 [27, 29, 30]. In several of the mentioned processes also h

⊥g[U,U ′]
1

can be accessed [50–52] with the same link structure as f
g[U,U ′]
1 . A study of h

⊥g[U,U ′]
1 in eA

and pA collisions has been performed in [53].

The average transverse momentum 〈p2
T
〉 and its broadening ∆p2

T
≡ 〈p2

T
〉A − 〈p2

T
〉p with

atomic number A has been studied extensively in the literature in terms of the collinear

factorization approach at twist-4 [54–62]. The relevant twist-4 parton distribution func-

tions [63, 64] are (at tree level) related to the first transverse moment f
(1)
1 (x) for quarks

– 10 –
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and gluons, but also determine the large-pT perturbative tail of the TMDs f
[U ]
1 and f

g[U,U ′]
1 .

The collinear twist-4 functions involve only light-cone operators, all having the GLs with

finite paths along the light-cone and are thus process-independent. In the twist-4 calcu-

lations the process dependence is attributed to the hard partonic scattering factors. This

implies process-dependent relations between the TMDs f
[U ]
1 and f

g[U,U ′]
1 and the twist-4

functions, in analogy to the relation between the Sivers and Qiu-Sterman functions [6]. See

ref. [61] for a detailed discussion of the process dependence of nuclear broadening in the

twist-4 approach.

To conclude, in this paper we have elucidated the operator structure of quark and

gluon correlators relevant to situations where transverse momenta show up at the quadratic

level, including as examples the quadratic pT dependence but including in this both the

p2
T
dependence of the functions as well as the rank-2 tensor combination multiplying these

functions. From this analysis it becomes clear which parts of the pT dependence of TMDs

give process dependence. This is achieved by splitting the TMDs into universal operator

combinations and process-dependent coefficients. This is of relevance (among other cases)

for the pT -width of TMDs which enters in pT -broadening observables, for observables in-

volving pretzelocity functions for transversely polarized quarks in a transversely polarized

nucleon, and for observables sensitive to linearly polarized gluons in an unpolarized nucleon.

For the unpolarized gluon TMD f
g[U,U ′]
1 we have discussed ways to experimentally test the

nonuniversality, in both electron-proton and proton-proton collisions. It would be very

interesting if it could be established experimentally that even such a T-even TMD shows

process dependence due to the gauge link structure. As it may be challenging to achieve

this goal, we propose a way to study the gauge link dependence of f
[U ]
1 quantitatively using

lattice QCD computations.
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