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1 Introduction

The recent developments in the field of higher-dimensional extended objects have led to the
deep understanding of the superstrings and supergravity theories. D-branes have been by
now well understood both from the conformal field theory (CFT) and from the geometric,
target-space viewpoint.! Such hyperplanes are dynamical rather than rigid and they are
defined by the property that open strings can end on them [3]. The incorporation of such
D-branes permits to argue that the different types of string theories are different states of
a single theory, which also contain states with arbitrary configurations of D-branes. The
dynamics of Dp-brane is governed by the action

S = Sppr + Swz, (1.1)

where Sppr is Dirac-Born-Infeld action

S=-T, / dpﬂae_q’\/—det(gag + bap + 21/ Fop) , (1.2)

and Swyz is Wess-Zumino action of the form

Swz =T, / Z O (2ma) b (1.3)

'For review and extensive list of references, see for example [1, 2].



where o#,p = 0,...,p label world-volume of Dp-brane, ®(x) is the dilaton and g.g, bag
given in (1.2) are the pull-backs of the target space metric and the NS-NS two form field
to the world-volume of Dp-brane

gag = gMNf)axM&ﬁxN, bag = bMNaaxMang y (1.4)

where 2 (o) are embedding coordinates of D1-brane. Finally, Fog = 0nA4s — 95A, is
the field strength for the world-volume gauge field A,. The coupling of Dp-brane to
the Ramond-Ramond fields is expressed through the Wess-Zumino term (1.3) where it is
understood that expressions given there are forms and the multiplications between them
have the form of the wedge product.

Motivated by the recent surge of interest in finding out the dualities in D-branes and
fundamental strings bound states in anti-de Sitter space and gaining more insight into
CFT, we study in this paper the dynamics of D1-branes described by Dirac-Born-Infeld
action and Wess-Zumino terms. The corresponding target-space geometries are three-
dimensional k-deformed AdS3 x S2 space-time. Very interesting class of deformations of
target space-time have been introduced in [14, 22] that preserve the integrability of the two-
dimensional quantum field theory on the world sheet.? In the x-deformed anti-de Sitter
background model, the metric is a direct sum of the deformed Ad.S,, and S™ parts and could
be truncated from the ten-dimensional metric to x-deformed AdSs x S3 for example [4]. The
presence of the deformation parameter s introduces new interesting results that reproduce
the ordinary undeformed case in the limit x — 0 as in [6]. Hence, it is interesting to study
the dynamics of D1-brane in given background as well. In fact, recently a one-parameter
model of the x-deformed background AdSs x S3 with non-trivial Ramond-Ramond (RR)
forms and dilaton was proposed in [7]. A remarkable property of given background is that
it depends on parameter a where it is presumed that a is a particular function of x while the
full solutions were constructed for the special values a = 0 and @ = 1 only. In our present
work, we will use these one-parameter backgrounds to analyze static and time-dependent
solutions of D1-brane equations of motion in the background with non-trivial dilaton and
with RR fields. Our analysis will reveal subtle features. Specifically, for the x deformed
AdS3 background with a = 0 we will show that D1-brane does not see the presence of the
singularity of the x-deformed background and can reach p — oo limit. We also find that
the static solutions are very simple deformations of the static solution known as AdS D1-
brane in AdSs background with RR flux. Since such a solution has not been found in the
global coordinates before we present this result in the appendix A. Moreover, appendix B
exhibits static solutions of pD1-branes in AdS3 space-time with non-trivial Byg field. The
case of (1,q) string was analyzed previously in [18], but we provide an extended analysis
here for the (p, ¢) string in order to see the S-duality between given solution and the static
D1-brane solution in undeformed AdS3 space-time with Ramond-Ramond fields.

We also consider static and time-dependent solutions of D1-brane equations of motion
for the r-deformed background when the value of the parameter a is equal to 1. In this
case we find D1-brane cannot cross the singularity p, = % and we also find that the static
solutions is more complicated than in case a = 0.

*For further works, see [4-17].



The plan of this paper is as follows: in section 2 we will consider static D1-brane in
the k-deformed background AdS3 x S® [7]. We study the solutions of the corresponding
equations of motions and discuss the possibility of the D1-brane to reach the p — oo limit
of the deformed AdS3 x S3 space. In section 3 we consider a time-dependent ansatz. In
conclusion 4 we present summary of our results and their possible extension. Finally, some
details of the calculations are summarized in the appendices. In appendix A we find static
D1-brane solutions in non-deformed AdSs; x S3 background with non-trivial RR fields. In
appendix B, we find static solutions of pD1-branes in non-deformed AdS3 space-time with
non-trivial Byg field in global coordinates which is simple generalization of the solution
found in [18].

2 D1l-brane in k-deformed background

In this section, we will study time-independent solutions of the equations of motion that
follow from D-brane actions (1.2) and (1.3) in case when D1-brane is embedded in x-
deformed AdS; x S3 background [7] that has the form

1 0> dp?
ds? = ——— —(1 >dt2 + p2dx?
LN r” do? d2 2dy? 2.1
+1+H2L22 )t e ;i + rdy*, (2.1)
L L

with non-trivial dilaton and Ramond-Ramond fields

) o (—RE(1+RE)

R <%>212 ’
c® :21_(1W[p2(dt+/@Ld<p)/\<dX+/€ d¢>
12
—r?(Ldyp — kdt) A (dzp + ke dx)}
L 20 _ (1—-r2£ )(1—|—n )

(14 55 (r? = p? +12p?))?

V/ 2
c® = Lt w [%lt/\dx—i—&[r — %+ 12( T)Q]dt/\dcp
L(L+ 55(r% = p? + p2r?)) L

+z(pr)2dx Adip — 12 Ldp N dl/f] ; (2.2)

where L is the inverse curvature scale. Consider D1-brane in given background whose
dynamics is governed by the action

S =—-Tphy /nge_q)\/—detgag — (2na!)?F2, 4+ Tp1 /d2aC](\3,)N87-a:M8033N . (2.3)



Generally, the equations of motion for 2™ that follow from given action have the form

_o  gunOszgP¥detgas

—d,
v/ —detgag — (2ma/)2F2,

TD1€

TD16,¢ O 10ar ™ Ogzt gt
2 V/—detgas — (2ma)2F2,

+TD167¢8M(I)\/—detga5 — (27d!)2F2, +

+Tp10yC) 0ra™ 0pa” — Tp104[e*PC )\ 052N = 0, (2.4)
where €77 = —e?” = 1. On the other hand the equation of motion for A, implies

e~ *(2nd )2 Fy,
ot V/—detgas — (2ma/)2F2,

~1I, (2.5)

where II is constant that counts the number of fundamental strings. Using this result, we
II y/—det
(270! ) Fry = Jof___ (2.6)
2ra 2 20 41
D1€ @ra’)2

Then the equations of motion (2.4) simplify as

express Fr, as

T2
Tp10a | /€722 + —ELT12g) N Opa™ g™
T

—det
T Y R Vel

_ 112
\/ I

T T2
5 [e—2® 4 T—gﬂ28MgKLaaxK85$Lgﬁa\/—detgaﬁ

FTp10y C2) 0,25 0,2" — Tp1a[ePC12 052N = 0, (2.7)

where T = ﬁ This is the form of the equation of motion for D1-brane that we will be
our starting point. If we now return to the specific background given in (2.2) , we see that
since the background depends on r through its square we find that the equation of motion
for constant r has the form

o
or2

that has solution » = 0. In the same way we can show that the equations of motions for

r=20 (2.8)
@ and ¢ have the solutions ¢ = 1) = 0. In other words we will not consider solutions with
non-trivial behavior on deformed S®).

2.1 Static solutions

Let us now consider the static D1-brane solution when we assume the following ansatz
’=71, x=0, p=pkx) (2.9)

so that
_ _ /12 /
9rr = Gtt » Joo = Gxx + GppP P =——. (210)



For this ansatz the equation of motion for z° = t is obeyed automatically. In order to solve
for p it is more convenient to consider the equation of motion for x since the background
fields do not depend on y explicitly. Then, we obtain

T? v -
e—2% 4 L1772 I + C(i) =(C, C = constant . (2.11)

Ixx
T%l vV 9xx T .gppp/2 X

From given equation we derive the differential equation for p in the form
—20 | Tpy 2) 2
12 1 (e + T%ll_[ gtthX 2.12
pPr= 2) ~9xx| - ( : )
9pp (C+Cy)?

In the following, we will solve this equation for different background fields by considering

two a-families.

2.1.1 The case a =0
Let us begin with the case a = 0 so that we have the following background fields

2
o _ [ K @_1,
e = 1-— ﬁp2, CtX = EIO . (213)
Then (2.12) gives

T2 2 22

2 p4(1+T§>1H2_%p2)<1+%> 2 K22 02

; B (221 8) . e
c>(1+ £7)

This equation can be integrated at least in principle. However, when we choose C' = L the

~

given equation simplifies considerably

d
P = dy (2.15)
2 (/T2
(e +) -1
that has a solution
L? 1
p* (2.16)

- (Tilnz + ﬁ2> cos?(x — xo0)
Th,

We choose the integration constant by requiring that D1-brane approaches p — oo for
x — 0. Hence, the final result is
L? 1
2 _
P =T —— - (2.17)
<T§1 112 +,€2> sin® x
D1

Surprisingly, we find that there is only mirror modification of the static solution of D1-
brane in AdSs background with non-trivial RR fields that is presented in appendix (A),
where this modification is given by the presence of the deformation parameter x. Further,
we also see that D1-brane can be stretched through the singularity p. = % and can reach
p — oo. This is very remarkable result especially in the light of the solution that we find

in case a = 1.



2.1.2 Thecasea =1

In this case, the relevant components of the background fields at » = 0 are

e 1 C(z)_\/l—i-Hij

e e o (2.18)
1— K28y A k22, L
Again (2.12) gives
1 p? 2 4 1 T}27‘1 HQ
( + ﬁ) P ( B 2& + T2 ) 2 2
” 1=K D1 2 2P p

)

1—&2% L

We simplify this equation by choosing C' = i —- Hence, the previous equation has the
form
dp
pr2naxpmin 5 =dx, (220)
p(pIZIlax - p2) P2 ~ Phin
where ) )
L L
p?nax = P p?nin - 72 - (221)

(1 + ,{2)H2T71271
T2

D1

Solving this equation, we get

VP P Prmin v%%my—pﬁm+-v%2—pim
+ In
Pmax 2\/ pr2nax - pr2nin \/p?nax - Io?nin - \/ﬂQ - prznin

We choose the integration constant xo in such a way that for p — ppin , x — 5. Then

=X—Xo - (2.22)

we obtain
T

Xo=75 - (2.23)

From (2.22), we see that D1-brane does not reach the maximum value ppyax for y in the
interval x € (0,27). More precisely, D1-brane reaches the maximum value at ppax for
X — —oo that implies that D1-brane has to wrap compact x direction infinitely many
times. We also see that now D1-brane does not cross the singularity at p. = % In
summary, we see qualitative different behaviors of these two solutions corresponding to the
cases a = 0 and a = 1. We will also see this difference in case of pure time-dependent

solutions that will be analyzed in the next section.

3 Time-dependent solution

In order to find time-dependent solution, we consider an ansatz

t=1,x=0, p=p) (3.1)



so that

grr = g1t + 9pp(P)* . Goo = Gxx - (3.2)
For such ansatz, we find that the equation of motion for x is automatically obeyed. On
the other hand, the equation of motion for ¢ gives

2
2oy i IO 6B o 0= const (3.3)
TDl —9ut — Qpp(ﬁ)Q

that implies following differential equation for p

—Ju gttgxx ( 20 + Fl HQ)
N () . (3.4)
9pp (C+CL)?

In the following we will consider two different one-parameter a-families of background fields.

3.1 The case a =0
Substituting the fields of (2.13) in (3.4), we obtain

2
(1.2 |, P ) (R )
p=(1+5%) [1- (3.5)

BT ) o)

Let us impose the condition C' = L that simplifies the given equation considerably. For

this condition, the turning point at which p = 0 will be at
L

pmaX Eal—————
/HZTFl + K2

Hence, we see that in this case the D1-brane does not cross the

(3.6)

which is less than %
L
p
On the other hand let us consider the case when II = 0. From (3.5), we obtain

ik
p:<y+§> 1??12%2 (3.7)
L

It seems interesting that now the expressions containing the deformation parameter s

singularity at p. =

disappear. The turning point is at

02

2

= 3.8
pt.p. 1 — 2% ( )

this implies that in order to have real solution we have to demand that C' < % For C' = é
we realize that the D1-brane reaches p — oo asymptotically. More explicitly, in such case
we can easily integrate the differential equation with the result

1P

2p— Ltan " — =1, (3.9)

and we see that for ¢ — oo D1-brane approaches (p = 00).



Finally, for C > 3 L the D1-brane reaches p — 0o since the expression under the square
root is then always posmve without any restrictions on the radial coordinate p. In other
words, D1-brane with zero electric field can probe the space-time beyond the singularity

Pe = % as well.

3.2 Thecasea=1

In this case, substituting the fields of (2.18) in (3.4), the differential equation has the form

L (C(i—mzp>+mﬂ>

We are interested in the special case when II = 0. In this case, we find the turning point at

o —(20A-1)+ \/(2CA - 11)2 —4C2(A2 — L) o)
P 2(A2 — ﬁ)

where A = Y25 1*"‘2 - O 5> After the analysis of the expression under the square root
(the discriminant), we reahze that it is always positive. Then we have to consider two cases.
In the first case, A% — % < 0 then to have an overall positive quantity, we require a

condition
VAl 21 VAl 241
Ce<L< A >L< e )) (3.12)
K K
In the second case we have A2 — 2 > 0 that gives
VAl 21 V1 2+1
Ce (—oo,L<+IZ>) U <L<+IZ+>OO> (3.13)
K K
In this case however we have also to demand that
20A-1<0 (3.14)

that implies

Ce [(— oo,QL?(\/l +r2—/1-r2)U (;{2(\/1 + 241 - n2),oo)>} (3.15)

Now, however we find that the second condition is always obeyed since the second interval
is included in the first. Therefore, there always exist real roots corresponding to the turning

points py.y..
Let us try to determine the value of the turning point for large % > 1 (large energy
limit). In this case, we can write A ~ —%n2 and we obtain
2 2 / 2
2, =iy L LVl A (3.16)
T K2 20%% O 2kK2



so that when we restrict to the terms linear in % < 1 we obtain two roots

L2 LV1+ k2
= 5 (1 555

K2 C  2kr?
2 T2
. = L~ 1_£1;"{2 . (3.17)
o g2 C  2kr?

In other words we find two situations. In the first case D1-brane is in the region below the
singularity p? = % and can reach its turning point at p?nin and then it returns back. In
the second case, D1-brane is in the region p? > p2,__i.e. beyond the singularity. However,
it is important that in both of these cases, D1-brane cannot go through the singularity.
Finally, we compare this result with the analysis of the time-dependent solution of
the fundamental string in s-deformed background. Recall that the fundamental string is

described by the Nambu-Gotto action

S =—-Tr /deJ\/—detga/g, JaB = gMNﬁaxMag:UN . (3.18)

The equation of motion for ¢ for the time dependent ansatz again implies

gug"" \/—gxx<9tt +gpp0%) =C, C = constant . (3.19)

Solving given equation for p we obtain

(3.20)

po 1 (1+p2> (02 = p*)(p* + p3)

= A7 T9 2
CL L? 1 K22,

where

L2 02 02 2 02
2 2
P —? —<1+/€ 2>+\/(1+/€22> +472 )

L? C? c2\? c?
2 2
= (1+/<; 2>+\/<1+/€2 2) +4—

Note that for large C', p_ has the form

1 L?

We see that the allowed regions for the propagation of the string is (0, p2) and (%, 00). In
other words, strings cannot cross the singularity at p? = i—j when it is originally confined in
the region around the point p = 0. On the other hand, for % < 1 we obtain p? ~C? < L?
and the string is confined in the region around p = 0 there is no sign of the deformation of
the target space-time.



4 Conclusion

In this paper we have studied the dynamics of D1-brane in x-deformed AdS3 x S3 back-
ground with non-trivial dilaton and Ramond-Ramond fields [7]. We have found that the
background with a = 0 possesses many interesting properties. We have shown that the
static solution of D1-brane in the presence of RR-charges can reach p — oo limit of the
deformed AdS3 x S® space-time and that given solution is a slight modification from the
AdS D1-brane solution in undeformed AdSs x S® background with Ramond-Ramond flux
that is found in appendix (A). Moreover, it is also very interesting that the time dependent
solution does not see the presence of the singularity at p. = % In other words, D1-brane
in deformed AdS3 x S3 space-time can cross given singularity and reach p — co. Hence,
D1-brane can be considered as natural probe of given space-time.

These results are in sharp contrast with the case a = 1 where we have shown that the
D1-brane does not reach the singularity. Explicitly, it was shown that in such conditions the
D1-brane can move in the region beyond the singularity or in a region below the singularity,
but it can not cross the singularity in both situations. The latter result was confirmed by
analyzing the dynamics of the fundamental string in given background. Again, it was
demonstrated that a string originally confined in the region around p = 0 can not cross
the singularity.

We have further examined the static gauge ansatz of pD1-branes bound to ¢ fundamen-
tal strings with non-trivial NS-NS flux in global coordinates. After solving the equations
of motion, we were able to generalize Bachas result [18] for the constant C' that determines
the radius of AdS. We have shown that C is proportional to the number of fundamental
strings in the bound state and inversely proportional to the number of D1-branes. Fi-
nally, we considered the time-dependent solution of pD1-branes bound to ¢ fundamental
strings in the same background. We were able to show that in the limit 7, ;) — ¢TF the
fundamental string can indeed reach p — oo.

The present analysis can be extended in various directions. First of all it would be
very interesting and challenging to study the dynamics of pD1-branes in the x-deformed
AdS3 x S3 with complex deformation parameter. Further one can try to find the complete
solution with arbitrary parameter a then proceed with a similar analysis as we did in this
paper. It would be also interesting to perform analysis of D1-brane and fundamental string
configurations that could describe Wilson loops in dual field theory. We hope to return to
these problems in future.
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A D1-brane as probe of AdSs; x S3 background with Ramond-Ramond
background

In this appendix we consider the static solution of D1-brane equations of motions in the
non deformed AdSs x S% background with non-zero Ramond Ramond field. Let us be

,10,



more explicit and consider the case of the near horizon limit of D1-D5 brane system that
in global coordinates has the form?
2 p* 2 P’ - 2 2 2
+L*(d6? + cos® 0d¢? + sin® Bdx?)

@5 2

e =R2, O =-F2p, Y =Qssin®0, (A1)

12 I3

where ¢, ¢, X, ym € [0,27] and 0 € [0, 7] and where

R2=,/g;, 12 = /QiQs . (A.2)

The equations of motion for D1-brane in given background have the form

Tpie~®grnnOpzy g?detg
V/ —detg — (2ma/)2F2,

Tpy e_q>6MgKL0aa:K05:L‘Lng°‘detg
2 \/—detgas — (2ma/)2F2,

(e}

—0q [CMNaﬁxNeO‘B} =0, (A.3)
while the equation of motion for A, again implies

e ?(2nd )2 Fy,
T > >
\/_detgaﬁ - (271—0/) (FTO')

=TI (A.4)

Let us now presume an ansatz where the D1-brane is wrapping 7 and ¢ directions and
where p = p(0),
' =1,0=0,p=p(p) (A.5)

where we use the notation ¢® = 7, 0! = o keeping in mind that ¢ is dimensionless. For the

ansatz (A.5), the equation of motion (A.3) for M = 0 is automatically satisfied while that
of ¢ implies

m\2
\/Tj%1 + <27r0/> €_q>ggogo\/ —99°% +Tp1 %pQ =C, C = constant (A.6)

that can be solved for p’ as

4 p° N2 2
o P (1 + ﬁ) 2 14
p = 0/2(1 B L]é/p2)2 - P 1 + ﬁ ) (A7)

2
where K2 = %
(TH1+(5757)?)

such a way that

dp 1,6t us now choose the constant C’ in

and where now p’ = P

C'=-KL (A.8)

#We follow the conventions used in [19, 20].

— 11 —



when the equation above simplifies considerably

P
o = 2o/ - K — KoL (A.9)

and hence we find the solution

2 K?L? 1
ro_ . (A.10)
L2 1—-KZ2L2cos?(¢ — o)

We again choose the integration constant that for ¢ — 0, the system approaches p — oo
so that

p? 1T 1

L2 TI2T2 sin¢p
This is the solution corresponding to AdS D1-brane in AdS3 background with non-trivial

(A.11)

RR fields. In the next appendix we show that given configuration is S-dual to the specific
bound state of D1-branes and fundamental strings in AdSs background with non-trivial
Bns two form.

B pD1-branes in AdSs with Byns field in global coordinates

Let us now consider a collection of pD1-branes in AdS3 background with the metric

2 1

ds* = —(1 + p—)dtQ + —dp? + pPdx? (B.1)
L? 1+ P
L2
but with non-zero Byg field in the form
2

Since we are interested in the collective dynamics of the bound state of p D1-branes it is
clear that given action is the standard DBI action multiplied with the number p so that

S =—pTm /dea\/—detgag — (bro + 27/ Frp )2 . (B.3)

Note that the equations of motion for ™ that follow from given action have the form

PTp1 OmgrLOarOpal gP detgas
2 \/_detgaﬁ - (b‘l‘o’ + 271'0/Fﬂ7)2
(bro + (27 ) Fro)bprNOpz™N (bro + (270 ) Fro )bprn Oy Y

V/—detgas — (bro + 2T’ Frq)? \/—detgas — (bro + 270/ Frq)?

(bTU + (27TO/)FTU)6M()KL37—JCK80:UL B

gun sz g"*detgas
V/—detgas — (bro + 270/ Frq)?

- aoz lpTDl

_pTDl a’r [

+ pTp10s [

+pT, B.4
pEo1 V/—detgas — (bro + 2T’ Fry)? (B4)
The equation of motion for A, implies
b 2w’ F.
pI'p1 ro £ o =1 (B.5)

V/—detgas — (bro + 270/ Frq)? 27!’

— 12 —



where ¢ is the number of fundamental strings bound to p D1-branes. Note that using the
previous result we can express b, + (27a/) F;o as

Tp1\/—detga
bro + (2710") Frop = ALV CY0h (B.6)

\ pQT/%n + q2T12Pl

Let us now choose the following ansatz

t=71, x=o0,p=plo). (B.7)

In this case we find that the equation of motion for ¢ is automatically obeyed while the
equation of motion for y implies

2 2
\/(pTD1)2 + (%) gxxgaa —detg + %btpt = \/(pTD1)2 + ( 1 ) C, (B'8)

2ma/

where C' is a constant. From given equation we obtain differential equation for p

4 02\ 2
P 1 + Iz 2
)2 = ( ) P <1 + p) . (B.9)

2
C— qTr 2 L2
2T2 2T2 Lp
Pl +q7 1%,

If we choose the integration constant C' to be equal to

LqTr

\ p2T1271 + QQTI%H

we find simple differential equation for p

2 272

' p* p°ThH,
W L -1 B.11
P=p1 212, (B.11)

p_qIr 1

L pTpisiny

C=-

(B.10)

that has solution

(B.12)

which is the generalization of the solution found in [18] to the case of the bound state of
p D1-branes and ¢ fundamental strings. Note that the special case when we have p = I
D1-branes and ¢ = 1 fundamental strings is S-dual to the solution found in the previous
section which is the bound state of single D1-brane and II fundamental strings. It is also
instructive to consider time-dependent solution corresponding to the motion of the bound
state of pD1-branes and ¢ fundamental strings in given background when we consider
an ansatz

=7, p=p), x=o0. (B.13)

Then the equation of motion for ¢ implies

\/P2T3, + q2TE, 919" \/—detgas — ¢Tri1bey, = C (B.14)
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and hence we obtain

\/_gtt ) + (p*T ,%1 + ¢*TE)) 9rt9xx (B.15)
- qTFlbtx) ) ’

For the background given in (B.1) and (B.2) we obtain that there is a turning point at

~(1PThy + T3 — 254Tr) +\/( 2Tg1 + 2T2, — 2T )2 + 4p2CaT2,
2p
L2

PP =

(B.16)
Note that there is a special formal case when p = 0 when the turning point occurs at
2 _ c?
qTr1(qTr1 — %2)

(B.17)

We see that given turning point is real when C' < Q‘ﬁ%. We also see from (B.17) that the
string can reach p — oo when

Cor = nglL . (B.18)

In fact, it is easy to see that for C' > C,, the expression under the square root in (B.15) is
always positive for all p. Hence, for C' > C,,. and for p the given configuration can always
reach p — oo.

Finally, we would like to compare the given result with the analysis of the motion of
fundamental strings in the given background. Recall that the dynamics of the classical
string is governed by the Nambu-Gotto action

l
1
Sna = —TFl/dT/ da{ —detgapg + §eo"BBMN8axM85xN , (B.19)
0
where €7 = —¢?7 = 1. Now the equation of motion of ™ takes the form
Oy, [gMNQg:L‘N Bo —detgag + eaﬁBMNé?ng] =0. (B.20)

Consider the time-dependent ansatz as in case of D1-brane

V=7, X=0, Goo=0vys Grr =i+ 9pp(p)? . (B.21)

Then the equation of motion for y is obeyed automatically while that for ¢ implies

2 P2\ 2
gl )

p? = S>C0<=2 (B.23)
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Let us try to integrate the equation of motion for C' = % when we obtain

(1 + 22—22)

Vit 5

dp =dt (B.24)

Integrating both sides we obtain

r_ Tt \/1;@—_“))2 (B.25)

L2

and we see that given string reaches p = oo in the limit { — oco. It is also easy to see that
for C' > L/2 there is no turning point and fundamental string always reaches p — oo which
is well known fact [18].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] C.V. Johnson, D-branes, Cambridge University Press, Cambridge, U.K. (2003).
[2] C.V. Johnson, D-brane primer, hep~th/0007170.

[3] J. Polchinski, Dirichlet branes and Ramond-Ramond charges,
Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].

[4] B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdS, x S™ supercosets,
JHEP 06 (2014) 002 [arXiv:1403.5517] [INSPIRE].

[5] G. Arutyunov, R. Borsato and S. Frolov, S-matriz for strings on n-deformed AdSs x S°,
JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].

[6] M. Khouchen and J. Kluson, Giant magnon on deformed AdSs x S3,
Phys. Rev. D 90 (2014) 066001 [arXiv:1405.5017] INSPIRE].

[7] O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of
AdS,, x S™ supercoset string models, Nucl. Phys. B 891 (2015) 106 [arXiv:1411.1066]
[INSPIRE].

[8] B. Hoare and A.A. Tseytlin, On integrable deformations of superstring o-models related to
AdS,, x S™ supercosets, Nucl. Phys. B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].

[9] S.J. van Tongeren, On classical Yang-Bazter based deformations of the AdSs x S°
superstring, JHEP 06 (2015) 048 [arXiv:1504.05516] INSPIRE].

[10] A. Banerjee, S. Bhattacharya and K.L. Panigrahi, Spiky strings in s»-deformed AdS,
JHEP 06 (2015) 057 [arXiv:1503.07447] INSPIRE].

[11] K.L. Panigrahi, P.M. Pradhan and M. Samal, Pulsating strings on (AdSs x xS%),,
JHEP 03 (2015) 010 [arXiv:1412.6936] [SPIRE].

[12] G. Arutyunov and S.J. van Tongeren, Double Wick rotating Green-Schwarz strings,
JHEP 05 (2015) 027 [arXiv:1412.5137] [INSPIRE].

,15,


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/0007170
http://dx.doi.org/10.1103/PhysRevLett.75.4724
http://arxiv.org/abs/hep-th/9510017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510017
http://dx.doi.org/10.1007/JHEP06(2014)002
http://arxiv.org/abs/1403.5517
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5517
http://dx.doi.org/10.1007/JHEP04(2014)002
http://arxiv.org/abs/1312.3542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3542
http://dx.doi.org/10.1103/PhysRevD.90.066001
http://arxiv.org/abs/1405.5017
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5017
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.006
http://arxiv.org/abs/1411.1066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1066
http://dx.doi.org/10.1016/j.nuclphysb.2015.06.001
http://arxiv.org/abs/1504.07213
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07213
http://dx.doi.org/10.1007/JHEP06(2015)048
http://arxiv.org/abs/1504.05516
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05516
http://dx.doi.org/10.1007/JHEP06(2015)057
http://arxiv.org/abs/1503.07447
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07447
http://dx.doi.org/10.1007/JHEP03(2015)010
http://arxiv.org/abs/1412.6936
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6936
http://dx.doi.org/10.1007/JHEP05(2015)027
http://arxiv.org/abs/1412.5137
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5137

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

B. Hoare, Towards a two-parameter g-deformation of AdSs x S% x M* superstrings,
Nucl. Phys. B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].

F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the
q-deformed AdSs x S° superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].

A. Banerjee and K.L. Panigrahi, On the rotating and oscillating strings in (AdSz x S% ).,
JHEP 09 (2014) 048 [arXiv:1406.3642] [INSPIRE].

G. Arutyunov and S.J. van Tongeren, AdS_5 x S° mirror model as a string o-model,
Phys. Rev. Lett. 113 (2014) 261605 [arXiv:1406.2304] [iNSPIRE].

G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality
of the (AdS5x S°)n superstring, Theor. Math. Phys. 182 (2015) 23 [Teor. Mat. Fiz. 182
(2014) 28] [arXiv:1403.6104] [INSPIRE].

C. Bachas and M. Petropoulos, Anti-de Sitter D-branes, JHEP 02 (2001) 025
[hep-th/0012234] [INSPIRE].

J. Raeymaekers and K.P. Yogendran, Supersymmetric D-branes in the D1-D5 background,
JHEP 12 (2006) 022 [hep-th/0607150] [INSPIRE].

B. Janssen, Y. Lozano and D. Rodriguez-Gomez, Giant gravitons in AdSs x S® x T* as fuzzy
cylinders, Nucl. Phys. B 711 (2005) 392 [hep-th/0406148] [INSPIRE].

C. Ahn and P. Bozhilov, Finite-size giant magnons on n-deformed AdSs x S°,
Phys. Lett. B 737 (2014) 293 [arXiv:1406.0628] [INSPIRE].

F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdSs x S° superstring
action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] INSPIRE].

T. Kameyama and K. Yoshida, Anisotropic Landau-Lifshitz o-models from q-deformed
AdSs x S° superstrings, JHEP 08 (2014) 110 [arXiv:1405.4467] [INSPIRE].

C. Klimeik, Integrability of the bi- Yang-Baxter o-model, Lett. Math. Phys. 104 (2014) 1095
[arXiv:1402.2105] [INSPIRE].

C. Klimcik, On integrability of the Yang-Baxter o-model, J. Math. Phys. 50 (2009) 043508
[arXiv:0802.3518] [NSPIRE].

T. Kameyama and K. Yoshida, A new coordinate system for q-deformed AdSs x S° and
classical string solutions, J. Phys. A 48 (2015) 075401 [arXiv:1408.2189] [INSPIRE].

C. Kliméik, Yang-Baxter o-models and dS/AdS T duality, JHEP 12 (2002) 051
[hep-th/0210095] [INSPIRE].

T. Kameyama and K. Yoshida, Minimal surfaces in q-deformed AdSs x S° with Poincaré
coordinates, J. Phys. A 48 (2015) 245401 [arXiv:1410.5544] [InSPIRE].

,16,


http://dx.doi.org/10.1016/j.nuclphysb.2014.12.012
http://arxiv.org/abs/1411.1266
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1266
http://dx.doi.org/10.1007/JHEP10(2014)132
http://arxiv.org/abs/1406.6286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6286
http://dx.doi.org/10.1007/JHEP09(2014)048
http://arxiv.org/abs/1406.3642
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3642
http://dx.doi.org/10.1103/PhysRevLett.113.261605
http://arxiv.org/abs/1406.2304
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2304
http://dx.doi.org/10.1007/s11232-015-0243-9
http://arxiv.org/abs/1403.6104
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6104
http://dx.doi.org/10.1088/1126-6708/2001/02/025
http://arxiv.org/abs/hep-th/0012234
http://inspirehep.net/search?p=find+EPRINT+hep-th/0012234
http://dx.doi.org/10.1088/1126-6708/2006/12/022
http://arxiv.org/abs/hep-th/0607150
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607150
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.022
http://arxiv.org/abs/hep-th/0406148
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406148
http://dx.doi.org/10.1016/j.physletb.2014.08.064
http://arxiv.org/abs/1406.0628
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0628
http://dx.doi.org/10.1103/PhysRevLett.112.051601
http://arxiv.org/abs/1309.5850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5850
http://dx.doi.org/10.1007/JHEP08(2014)110
http://arxiv.org/abs/1405.4467
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4467
http://dx.doi.org/10.1007/s11005-014-0709-y
http://arxiv.org/abs/1402.2105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2105
http://dx.doi.org/10.1063/1.3116242
http://arxiv.org/abs/0802.3518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3518
http://dx.doi.org/10.1088/1751-8113/48/7/075401
http://arxiv.org/abs/1408.2189
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2189
http://dx.doi.org/10.1088/1126-6708/2002/12/051
http://arxiv.org/abs/hep-th/0210095
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210095
http://dx.doi.org/10.1088/1751-8113/48/24/245401
http://arxiv.org/abs/1410.5544
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.5544

	Introduction
	D1-brane in kappa-deformed background
	Static solutions
	The case a=0
	The case a=1


	Time-dependent solution
	The case a=0
	The case a=1

	Conclusion
	D1-brane as probe of AdS(3) x S**3 background with Ramond-Ramond background
	pD1-branes in AdS(3) with B(NS) field in global coordinates

