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1 Introduction

Following the canonical procedure based on Noether’s theorem, one ends up with a canon-

ical energy-momentum tensor which is usually neither symmetric nor gauge invariant. Be-

cause of these pathologies, one often abandons the canonical energy-momentum tensor in

favor of the Belinfante-Rosenfeld improved energy-momentum tensor [1–3] which is both

symmetric and gauge invariant. The Belinfante-Rosenfeld tensor differs from the canonical

tensor by a so-called superpotential term which modifies the definition of the momentum

density but leaves both the total linear and angular momenta unchanged. It has the pecu-

liar feature that it denies the mere existence of spin density. Indeed, from the conservation

of total angular momentum ∂µJ
µνρ = 0 where Jµνρ = rνTµρ − rρTµν + Sµνρ with Tµν the

conserved total energy-momentum tensor and Sµνρ the spin density tensor, one deduces

that the antisymmetric part of the energy-momentum tensor is intimately related to the

quark spin density T νρ−T ρν = −∂µSµνρ. So, in the Belinfante-Rosenfeld approach, what is

usually refered to as “spin” is simply described as a flow of momentum. There is therefore

no clear distinction between spin and orbital angular momentum (OAM) in this approach,

just like there is no clear distinction between energy flow T i0 and momentum density T 0i.
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On the other hand, spin is an intrinsic property of a particle defined as one of the

two Casimir invariants of the Poincaré group (the other Casimir invariant being the mass).

Contrary to OAM, one cannot change the spin of a particle by changing the Lorentz frame.

Spin and OAM are distinguishable, and so dealing with a symmetric energy-momentum

tensor is not very natural in Particle Physics. Where does this symmetry requirement come

from? It is mainly motivated by General Relativity where gravity couples to a symmetric

energy-momentum tensor. It is however important to notice that General Relativity is a

classical theory while spin is fundamentally a quantum concept. Moreover, the symmetry

of the energy-momentum tensor in General Relativity follows from the postulated absence

of space-time torsion. More general theories relax the no-torsion assumption and do not

require the energy-momentum tensor to be symmetric. The gravitational effects of the

antisymmetric part of the energy-momentum tensor are however extremely small and are

expected to show up only under extreme conditions, see e.g. [4–6] and references therein.

Finally, we note that the classical argument in favor of a symmetric energy-momentum

tensor based on dimensional analysis and presented e.g. in section 5.7 of [7], is valid only

for the orbital form of angular momentum.

The early papers about the proton spin decomposition [8–10] start with the Belinfante-

Rosenfeld tensor, but then add appropriate superpotential terms to decompose the quark

angular momentum into spin and orbital contributions. According to textbooks [11, 12],

no such decomposition is possible for the gauge field angular momentum. Though, photon

spin and OAM are routinely measured in Quantum ElectroDynamics, see e.g. [13] and

references therein. In Quantum ChromoDynamics (QCD), a quantity called ∆G which can

be interpreted in the light-front gauge A0 +A3 = 0 as the gluon spin [8] has been measured

in polarized deep inelastic and proton-proton scatterings, see [14] for a recent analysis. In

order to account for these experimental facts, Chen et al. claimed in 2008 that the textbooks

were wrong, and proposed a formal gauge-invariant decomposition of the photon and gluon

angular momentum [15]. This triggered a lot of criticism and an outpouring of theoretical

papers, summarized in the recent reviews [16, 17]. The apparent contradiction with the

textbook claim was solved by realizing that the Chen et al. construction is intrinsically

non-local [18–20], whereas textbooks implicitly refered to local quantities only. It has

actually been known for quite some time that gauge invariance can be restored by allowing

the quantities to be non-local [21, 22]. Although there are in principle infinitely many

gauge-invariant non-local quantities reducing formally to the same gauge non-invariant

local expression in the appropriate gauge, the experimental conditions ultimately determine

which ones are accessible [23].

Parton distributions are typical examples of measurable non-local quantities. Gauge

invariance is ensured by a Wilson line whose path is determine by the factorization the-

orems [24]. Ji has shown that the kinetic OAM, which is local and gauge invariant, can

be expressed in terms of Generalized Parton Distributions (GPDs) that are accessible in

some exclusive experiments like e.g. Deeply Virtual Compton Scattering [9]. Since the

local expression for the canonical OAM is gauge non-invariant [8], it was thought for a long

time that it cannot be measured and should therefore be considered as unphysical. The

situation has changed once it has been realized that the non-local expression for the canon-
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Family Energy-momentum tensor Gauge invariant Local Symmetric

Belinfante-Rosenfeld [1–3] X X X

Kinetic Ji [9] X X −

Wakamatsu [41] X − −

Canonical
Jaffe-Manohar [8] − X −

Chen et al. [15] X − −

Table 1. Properties of the various forms of the energy-momentum tensor in a gauge theory.

ical OAM, which is gauge invariant, can be expressed in terms of kT -dependent GPDs,

also known as Generalized Transverse-Momentum dependent Distributions (GTMDs) [25–

27]. GTMDs are extremely interesting as they provide the maximal information about the

phase-space or Wigner distribution of quarks and gluons. Unfortunately, apart possibly in

the low-x regime, it is not known so far how to access these GTMDs experimentally [28].

The situation is however not hopeless since GTMDs can be accessed indirectly using re-

alistic models, see e.g. [25, 29–34]. Another possibility is to compute the GTMDs on the

lattice. The traditional approach is to compute moments of the parton distributions using

a tower of gauge-invariant local operators. Unfortunately, this approach does not allow

one to compute ∆G because the latter does not correspond to any gauge-invariant local

operator. However, new strategies have recently been proposed allowing in principle the

computation of matrix element of non-local operators on the lattice, and show already

encouraging results [35–40].

Many different forms have been proposed for the energy-momentum tensor in a gauge

theory. Their properties are summarized in table 1. All the forms can be sorted into two

families [19, 41, 42]: kinetic (or mechanical) and canonical. They all give the same total

linear momentum, but attribute different momentum densities to the various constituents.

To the best of our knowledge, only the matrix elements of the local energy-momentum

tensors have been discussed in the literature so far. The first complete parametrization

of the matrix elements of the symmetric gauge-invariant local operator (i.e. Belinfante-

Rosenfeld tensor) has been given in [9] and further discussed in [43]. The matrix elements

of the asymmetric local gauge-invariant operator (i.e. Ji tensor) have first been discussed

in [10], but the correct parametrization in the off-forward case was given in [44]. There

has also been a simple attempt to parametrize in a similar way the matrix elements of the

asymmetric local gauge non-invariant operator (i.e. Jaffe-Manohar tensor), but this led to

the puzzling conclusion that canonical and kinetic matrix elements are the same [45]. We

will argue in the present paper that the reason for this puzzling conclusion comes from

missing terms in [45]. We will also show explicitly that two-parton Transverse-Momentum

Distributions (TMDs), though sensitive to OAM, cannot provide any quantitative model-

independent information about the OAM.

The paper is organized as follows. In section 2, we decompose the QCD energy-

momentum and generalized angular momentum tensors into quark and gluon contribu-
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tions, and compare the various forms found in the literature. In section 3, we provide

for the first time the parametrization of the generic non-local light-front gauge-invariant

energy-momentum tensor and discuss various constraints in section 4. In section 5, we

derive the relations between the scalar functions appearing in this parametrization and

derive the relations with the two-parton generalized and transverse-momentum dependent

distributions, obtaining on the way new sum rules. Finally, we gather our conclusions in

section 6. Some details about the parametrization are given in appendix A

2 The gauge-invariant linear and angular momentum tensors

In order to deal most conveniently with the various gauge-invariant decompositions pro-

posed in the literature, we consider the following five gauge-invariant energy-momentum

tensors

Tµν1 (r) = ψ(r)γµ
i

2

↔
Dνψ(r),

Tµν2 (r) = −2Tr[Gµα(r)Gνα(r)] + gµν
1

2
Tr
[
Gαβ(r)Gαβ(r)

]
,

Tµν3 (r) = −ψ(r)γµgAνphys(r)ψ(r),

Tµν4 (r) =
1

4
εµναβ∂α

[
ψ(r)γβγ5ψ(r)

]
,

Tµν5 (r) = −2∂αTr
[
Gµα(r)Aνphys(r)

]
,

(2.1)

where ε0123 = +1 and i
2

↔
Dµ = i

2

↔
∂µ + gAµ is the hermitian covariant derivative with

↔
∂µ =

→
∂µ −

←
∂µ. Similarly, we consider the following seven gauge-invariant generalized angular

momentum tensors

Lµνρa (r) = rνTµρa (r)− rρTµνa (r), a = 1, · · · , 5,

Sµνρ1 (r) =
1

2
εµνρσ ψ(r)γσγ5ψ(r),

Sµνρ2 (r) = −2Tr
[
Gµ[ν(r)A

ρ]
phys(r)

]
,

(2.2)

where x[µyν] = xµyν − xνyµ. The standard expressions for the Belinfante-Rosenfeld, Ji,

Wakamatsu and Chen et al. decompositions1 are then obtained by combining these contri-

butions according to tables 2 and 3, and using the following identities based on the QCD

equations of motion

ψ(r)γ[µi
↔
Dν]ψ(r) = −εµναβ∂α

[
ψ(r)γβγ5ψ(r)

]
,

2
[
DαGαβ(r)

]c
c′

= −g ψc′(r)γβψc(r),
(2.3)

where c, c′ are color indices in the fundamental representation and Dµ = ∂µ − ig[Aµ, ] is

the adjoint covariant derivative. In particular, because of the first identity in eq. (2.3), we

1We used the original covariant form of ref. [42] and not the one in ref. [16] which differs only by how

one separates the pure-boost terms into quark and gluon contributions.
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Belinfante-Rosenfeld Ji Wakamatsu (gik) Chen et al. (gic)

Tµνq (r) Tµν1 (r) + Tµν4 (r) Tµν1 (r) Tµν1 (r) Tµν1 (r) + Tµν3 (r)

TµνG (r) Tµν2 (r) Tµν2 (r) Tµν2 (r) + Tµν5 (r) Tµν2 (r)− Tµν3 (r) + Tµν5 (r)

Table 2. Expressions for the Belinfante-Rosenfeld, Ji, Wakamatsu and Chen et al. forms energy

momentum tensors for quarks and gluons.

Belinfante-Rosenfeld Ji Wakamatsu (gik) Chen et al. (gic)

Sµνρq (r) 0 Sµνρ1 (r) Sµνρ1 (r) Sµνρ1 (r)

Lµνρq (r) Lµνρ1 (r) + Lµνρ4 (r) Lµνρ1 (r) Lµνρ1 (r) Lµνρ1 (r) + Lµνρ3 (r)

SµνρG (r) 0 0 Sµνρ2 (r) Sµνρ2 (r)

LµνρG (r) Lµνρ2 (r) Lµνρ2 (r) Lµνρ2 (r) + Lµνρ5 (r) Lµνρ2 (r)− Lµνρ3 (r) + Lµνρ5 (r)

Table 3. Expressions for the Belinfante-Rosenfeld, Ji, Wakamatsu and Chen et al. forms of the

generalized spin and orbital angular momentum tensors for quarks and gluons.

can write Tµν4 (r) = −1
2 T

[µν]
1 (r) and therefore discard the tensor Tµν4 (r) in the following

discussions. Note that the tensors T
[µν]
1 (r), Tµν5 (r), Lµνρ4 (r)−Sµνρ1 (r) and Lµνρ5 (r)+Sµνρ2 (r)

have the form of a superpotential ∂αf
[αµ]···(r) [8]. Assuming as usual that surface terms

vanish, this means that we have

∂µT
[µν]
1 (r) = 0,

∫
d3r T

[nν]
1 (r) = 0,

∂µT
µν
5 (r) = 0,

∫
d3r Tnν5 (r) = 0,

T
[νρ]
1 (r) = −∂µSµνρ1 (r),

∫
d3r Lnνρ4 (r) =

∫
d3r Snνρ1 (r),

T
[νρ]
5 (r) = −∂µSµνρ2 (r),

∫
d3r Lnνρ5 (r) = −

∫
d3r Snνρ2 (r),

(2.4)

where n is a timelike or lightlike four-vector and d3r = εαβγδ n
α drβ ∧ drγ ∧ drδ is the

volume element. This ensures that the quark and gluon linear and angular momenta are

the same in the three kinetic decompositions∫
d3r TnνBel,a(r) =

∫
d3r TnνJi,a(r) =

∫
d3r TnνWak,a(r), a = q,G,∫

d3r JnνρBel,a(r) =

∫
d3r JnνρJi,a (r) =

∫
d3r JnνρWak,a(r), a = q,G,

(2.5)

where Jµνρ(r) = Sµνρ(r) + Lµνρ(r).

The Wakamatsu and Chen et al. decompositions require the introduction of a pure-

gauge field

Apure
µ (r) ≡ i

g
W(r)∂µW−1(r), (2.6)

– 5 –
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whereW(r) (called Upure(r) in [19]) is some phase factor transforming asW(r) 7→ U(r)W(r)

under gauge transformations. The “physical” gluon field is then defined as

Aphys
µ (r) ≡ Aµ(r)−Apure

µ (r). (2.7)

In the gauge where W(r) = 1, the Chen et al. decomposition takes the same mathematical

form as the Jaffe-Manohar decomposition, and can therefore be considered as a gauge-

invariant extension of the latter [16, 19, 46, 47]. The phase factorW(r) is non-locally related

to the field strength and is in principle not unique [16, 19]. The original Wakamatsu [41]

and Chen et al. [15] decompositions correspond to a particular choice of the phase factor

which makes the physical field transverse ∇ · Aphys(r) = 0 in a given Lorentz frame.

Leaving the phase factor unspecified allows us to consider at once two whole classes of

decompositions differing simply by the precise form of the non-local phase factor. In order

to stress this point, we will follow from now on the terminology of ref. [16] and refer

to the Wakamatsu and Chen et al. decompositions as the gauge-invariant kinetic (gik)

and canonical (gic) decompositions, respectively. For a given phase factor, the difference

between the gauge-invariant kinetic and canonical decompositions lies in the separation

of total linear and orbital angular momentum into quark and gluon contributions. This

difference corresponds to

Tµν3 (r) = Tµνgic,q(r)− T
µν
gik,q(r) = −

[
Tµνgic,G(r)− Tµνgik,G(r)

]
,

Mµνρ
3 (r) = Mµνρ

gic,q(r)−M
µνρ
gik,q(r) = −

[
Mµνρ

gic,G(r)−Mµνρ
gik,G(r)

]
,

(2.8)

which are called potential linear and angular momentum tensors [41, 42], respectively.

3 Parametrization

In practice, since we want to relate the matrix elements of the gauge-invariant energy-

momentum tensor to measurable parton distributions, we choose the non-local phase factor

W(r) to be a Wilson line Wn(r, r0) connecting a fixed reference point r0 (usually taken

at infinity) to the point of interest r. According to the factorization theorems [24], these

Wilson lines run essentially in a straight line along the light-front (LF) direction given by

a lightlike four-vector n to the intermediate point rn = r±∞n, and then in the transverse

direction to r0. In some sense, these Wilson lines can be viewed as a background gluon

field generated by the hard part of the scattering. The Wilson line associated with the first

part of the path

Wn(r, rn) = P
[
e−ig

∫±∞
0 n·A(r+λn) dλ

]
(3.1)

is responsible for making the LF gauge n · A = 0 special, since this is the gauge where

Wn(r, rn) = 1. The transverse Wilson line Wn(rn, r0) is associated with the residual

gauge freedom and can be set to 1 using appropriate boundary conditions for the gauge

field [20, 27]. Our gauge-invariant canonical energy-momentum tensor will then be phys-

ically equivalent to the Jaffe-Manohar tensor considered in the LF gauge n · A = 0 with

appropriate boundary conditions.

– 6 –
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We will consider in the following the generic LF gauge-invariant energy-momentum

tensor of which the Belinfante-Rosenfeld, Ji, gauge-invariant kinetic and canonical energy-

momentum tensors represent particular cases. The matrix elements of the generic LF

gauge-invariant energy-momentum tensor depends in principle on n. This dependence

was overlooked in [45], leading to puzzling conclusions. Since any rescaled lightlike four-

vector αn specifies the same LF Wilson line, the matrix elements of the generic LF gauge-

invariant energy-momentum tensor actually depends, beside the average target momentum

P = (p′ + p)/2 and the momentum transfer ∆ = p′ − p, also on the following four-vector

N =
M2 n

P · n
(3.2)

with M the target mass, and on the parameter η = ±1 indicating whether the LF Wilson

lines are future-pointing (η = +1) or past-pointing (η = −1). Note that, contrary to n, the

lightlike four-vector N has the same dimension and transformation properties under space-

time symmetries as the momentum variables. Since P ·∆ = 0 and M2 = P ·N = P 2+∆2/4,

the scalar functions parametrizing the matrix elements of the generic LF gauge-invariant

energy-momentum tensor are functions of the two scalar variables ξ = −(∆ ·N)/2(P ·N)

and t = ∆2. Choosing the standard form for the lightlike four-vector n = (1, 0, 0,−1) leads

to the usual expression ξ = −∆+/2P+ with a± = a0 ± a3. Because these scalar functions

also depend on the parameter η, they are complex-valued just like the GTMDs [28, 48].

Using the techniques from the appendix A of ref. [28], we find that the matrix elements

of the generic LF gauge-invariant energy-momentum tensor for a spin-1/2 target can be

parametrized as

〈p′, S′|Tµνa (0)|p, S〉 = u(p′, S′)Γµνa (P,∆, N ; η)u(p, S), (3.3)

where S and S′ are the initial and final target polarization four-vectors satisfying p · S =

p′ · S′ = 0 and S2 = S′2 = −M2, and Γµνa stands for

Γµνa = MgµνAa1 +
PµP ν

M
Aa2 +

∆µ∆ν

M
Aa3 +

Pµiσν∆

2M
Aa4 +

P νiσµ∆

2M
Aa5 +

NµNν

M
Ba

1

+
PµNν

M
Ba

2 +
P νNµ

M
Ba

3 +
Nµiσν∆

2M
Ba

4 +
Nνiσµ∆

2M
Ba

5 +
∆µiσνN

2M
Ba

6 +
∆νiσµN

2M
Ba

7

+

[
MgµνBa

8 +
PµP ν

M
Ba

9 +
∆µ∆ν

M
Ba

10

+
NµNν

M
Ba

11 +
PµNν

M
Ba

12 +
P νNµ

M
Ba

13

]
iσN∆

2M2
+
Pµ∆ν

M
Ba

14

+
P ν∆µ

M
Ba

15 +
∆µNν

M
Ba

16 +
∆νNµ

M
Ba

17 +
M

2
iσµν Ba

18 +
∆νiσµ∆

2M
Ba

19

+
PµiσνN

2M
Ba

20 +
P νiσµN

2M
Ba

21 +
NµiσνN

2M
Ba

22 +
NνiσµN

2M
Ba

23

+

[
Pµ∆ν

M
Ba

24 +
P ν∆µ

M
Ba

25 +
∆µNν

M
Ba

26 +
∆νNµ

M
Ba

27

]
iσN∆

2M2
. (3.4)
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For convenience, we used the notation iσµb ≡ iσµαbα. The factors of i have been chosen

such that the real part of the scalar functions is η-even and the imaginary part is η-odd

Xa
j (ξ, t; η) = Xe,a

j (ξ, t) + iη Xo,a
j (ξ, t) (3.5)

as a consequence of time-reversal symmetry. Hermiticity then implies that the real part of

Ba
j with j ≥ 14 is ξ-odd and the imaginary part is ξ-even. For the other functions, the real

part is ξ-even and the imaginary part is ξ-odd.

We have found by considering all possible and independent Dirac structures allowed by

space-time symmetries that the parametrization of the matrix elements of the generic LF

gauge-invariant energy-momentum tensor for a spin-1/2 target involves 32 complex-valued

scalar functions. This number can alternatively be obtained from a naive simple counting.

The generic energy-momentum tensor Tµνa has 4 × 4 = 16 components. The target state

polarizations ±S and ±S′ bring another factor of 2× 2 = 4, but parity symmetry reduces

the number of independent polarization configurations by a factor 2, leading to a total

of 32 independent complex-valued amplitudes 〈p′, S′|Tµνa (0)|p, S〉. These 32 independent

amplitudes correspond to 32 independent Dirac structures, a particular set being given

by eq. (3.4). Any other Dirac structure like e.g. γµ, iσµP or iεµνN∆γ5, can be expressed

onshell as a linear combination of these 32 structures, see appendix A of this paper.

4 Constraints

The parametrization (3.4) is very general as it is constrained only by space-time symme-

tries. It does however not take into account several constraints like linear and angular

momentum conservation, which will then reduce the number of independent scalar func-

tions in particular cases. We discuss in this section the various constraints and the relation

to former works on the local gauge-invariant energy-momentum tensor.

For latter convenience, we introduce the Sudakov decomposition of a generic four-vector

aµ = (a · n)n̄µ + (a · n̄)nµ + aµT (4.1)

together with the transverse Kronecker and Levi-Civita symbols

δµTν = δµν − nµn̄ν − n̄µnν ,
εµνT = εµναβnαn̄β ,

(4.2)

where n̄ is the lightlike four-vector satisfying n · n̄ = 1 and such that PµT = 0.

4.1 Local operators

The energy-momentum tensors Tµν1 (r) and Tµν2 (r) are local. The corresponding matrix

elements cannot therefore depend on N or η. All the scalar functions must then vanish

except the five real-valued functions Ae,aj (0, t) with a = 1, 2. These are related to the

– 8 –
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standard (local) energy-momentum form factors (FFs) [9, 16, 44] as follows

Aq(t) = Ae,12 (0, t), AG(t) = Ae,22 (0, t),

Bq(t) = Ae,14 (0, t) +Ae,15 (0, t)−Ae,12 (0, t), BG(t) = Ae,24 (0, t) +Ae,25 (0, t)−Ae,22 (0, t),

Cq(t) = Ae,13 (0, t), CG(t) = Ae,23 (0, t),

C̄q(t) = Ae,11 (0, t) +
t

M2
Ae,13 (0, t), C̄G(t) = Ae,21 (0, t) +

t

M2
Ae,23 (0, t),

Dq(t) = Ae,14 (0, t)−Ae,15 (0, t), 0 = Ae,24 (0, t)−Ae,25 (0, t).

(4.3)

The first four form factors parametrize the symmetric part of the local gauge-invariant

energy-momentum tensor, whereas the last one parametrizes its antisymmetric part. Since

Tµν2 (r) is symmetric, we have Ae,24 (0, t) = Ae,25 (0, t).

4.2 Light-front constraints

From our choice of the phase factor (3.1) it follows that Aphys ·N = 0 [18, 20], leading to

TµN3 (r) = TµN5 (r) = 0. (4.4)

Contracting our generic parametrization (3.4) with Nν , we find the relations

Aa1(ξ, t) +Ba
3 (ξ, t)− 2ξBa

17(ξ, t) = 0,

Aa2(ξ, t)− 2ξBa
14(ξ, t) = 0,

−2ξAa3(ξ, t) +Ba
15(ξ, t) = 0,

Aa4(ξ, t) +Ba
9 (ξ, t)− 2ξBa

24(ξ, t) = 0,

Aa5(ξ, t)− 2ξBa
19(ξ, t) = 0,

Ba
4 (ξ, t) +Ba

8 (ξ, t) +Ba
13(ξ, t)− 2ξBa

27(ξ, t) = 0,

−2ξBa
7 (ξ, t) +Ba

18(ξ, t) +Ba
21(ξ, t) = 0,

−2ξBa
10(ξ, t) +Ba

25(ξ, t) = 0,

(4.5)

for a = 3, 5 which we refer to as the LF constraints.

4.3 Four-momentum conservation

The total energy-momentum tensor Tµν(r) = Tµν1 (r) + Tµν2 (r) and the superpotential

terms T
[µν]
1 (r) and Tµν5 (r) are all conserved ∂µT

µν(r) = ∂µT
[µν]
1 (r) = ∂µT

µν
5 (r) = 0. This

translates at the level of the matrix elements as

∆µ〈p′, S′|Tµν(0)|p, S〉 = 0,

∆µ〈p′, S′|T [µν]
1 (0)|p, S〉 = 0,

∆µ〈p′, S′|Tµν5 (0)|p, S〉 = 0,

(4.6)
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and implies the following constraints

2∑
a=1

[
Ae,a1 (0, t) +

t

M2
Ae,a3 (0, t)

]
=
∑
a=q,G

C̄a(t) = 0,

A5
1(ξ, t) +

t

M2
A5

3(ξ, t)− 2ξB5
17(ξ, t) = 0,

−2ξB5
1(ξ, t) +

t

M2
B5

16(ξ, t) = 0,

−2ξB5
3(ξ, t) +

t

M2
B5

15(ξ, t) = 0,

−2ξB5
4(ξ, t)−B5

18(ξ, t) = 0,

t

M2
B5

6(ξ, t)− 2ξB5
22(ξ, t) = 0,

−B5
7(ξ, t) +B5

8(ξ, t) +
t

M2
B5

10(ξ, t)− 2ξB5
27(ξ, t) = 0,

−2ξB5
11(ξ, t)−B5

23(ξ, t) +
t

M2
B5

26(ξ, t) = 0,

−2ξB5
13(ξ, t)−B5

21(ξ, t) +
t

M2
B5

25(ξ, t) = 0,

(4.7)

which are compatible with eq. (4.5).

4.4 Forward limit and momentum

In the forward limit ∆→ 0, the parametrization of the generic LF gauge-invariant energy-

momentum tensor reduces to

〈P, S|Tµνa (0)|P, S〉 = 2M2gµνAe,a1 + 2PµP νAe,a2 + 2NµNνBe,a
1

+ 2PµNνBe,a
2 + 2P νNµBe,a

3 + η εµνSP Bo,a
18

− η
[
PµενST Bo,a

20 + P νεµST Bo,a
21 +NµενST Bo,a

22 +NνεµST Bo,a
23

]
.

(4.8)

Since Tµν5 (r) is a total divergence, its matrix elements are proportional to ∆ and therefore

vanish in the forward limit, leading to

Ae,51 (0, 0) = Ae,52 (0, 0) = 0,

Be,5
1 (0, 0) = Be,5

2 (0, 0) = Be,5
3 (0, 0) = 0,

Bo,5
18 (0, 0) = Bo,5

20 (0, 0) = Bo,5
21 (0, 0) = Bo,5

22 (0, 0) = Bo,5
23 (0, 0) = 0.

(4.9)

Moreover, since the tensors Tµν1 (r) and Tµν2 (r) are local, the only non-vanishing scalars

Ba
j (0, 0) arise from the potential term Tµν3 (r). This means in particular that naive T-odd

effects in the forward limit are necessarily associated with the canonical momentum and

disappear when summed over all partons.

Contracting now eq. (4.8) with 1
2M2 Nµ gives the average four-momentum in the LF

form of dynamics

〈pνa〉 ≡
1

2M2
〈P, S|TNνa (0)|P, S〉 = P νAe,a2 +Nν(Ae,a1 +Be,a

2 ) +
η

2
ενST (Bo,a

18 −B
o,a
20 ). (4.10)
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In particular, using eq. (4.3) we recover the standard expression for the gauge-invariant

kinetic four-momentum in terms of the energy-momentum FFs

〈pνgik,a〉 = P νAa(0) +NνC̄a(0), a = q,G. (4.11)

Interestingly, the last term in eq. (4.10) is naive T-odd and can be interpreted as the

spin-dependent contribution to the momentum arising from initial and/or final-state in-

teractions. Because of the structure ενST , this naive T-odd contribution is transverse and

requires a transverse target polarization. As we will see in section 5.2, this is related to the

Sivers effect [49]. The combination of scalars Ae,a1 (0, 0) +Be,a
2 (0, 0) contributes only to the

energy and is therefore related to the interaction term in the Hamiltonian. In the forward

limit, the LF constraints (4.5) imply that

Ae,32 (0, 0) = 0, (4.12)

unless Be,3
14 (ξ, t) behaves as 1/ξ near ξ = 0. This suggests that the scalars Ae,12 (0, 0) and

Ae,22 (0, 0), and hence Aq(0) and AG(0), can be interpreted as the interaction-independent

contributions of, respectively, quarks and gluons to the four-momentum. This is further

supported by the observation that Ae,a2 (0, 0) is the only contribution to the longitudinal

momentum 〈pna〉, which is purely kinematical in LF quantization. In other words, while

for the longitudinal component 〈p+
gik,a〉 = 〈p+

gic,a〉, we have in general 〈pνgik,a〉 6= 〈pνgic,a〉 for

ν = −, T due to the B scalars in eq. (4.10). Note that these terms were not included in the

parametrization of ref. [45], explaining the puzzling conclusions about the equality between

matrix elements of kinetic and canonical momentum.

Finally, since the total four-momentum is 〈pν〉 = P ν , we obtain from eqs. (4.10)

and (4.3) the momentum constraints∑
a=1,2

Ae,a1 (0, 0) =
∑
a=q,G

C̄a(0) = 0,

∑
a=1,2

Ae,a2 (0, 0) =
∑
a=q,G

Aa(0) = 1,
(4.13)

which are consistent with eq. (4.7). In particular, the vanishing of the average total trans-

verse momentum, known as the Burkardt sum rule [50, 51], is trivially taken into account

in our parametrization because the potential term Tµν3 (r), and hence Bo,3
18 (0, 0)−Bo,3

20 (0, 0),

drops out of the sum over all partons.

4.5 Angular momentum

Since we have a complete parametrization of the matrix elements of the generic LF gauge-

invariant energy-momentum tensor, we can easily compute the matrix elements of the

corresponding OAM tensor Lµνρa (r) given by eq. (2.2). Because of the explicit factors of

position r, the matrix elements of the generic LF gauge-invariant OAM tensor need to be

handled with care [16, 44]. Focusing on the longitudinal component of OAM, we find

〈LaL〉 ≡
1

2M2
〈P, S|1

2
εTαβL

Nαβ
a (0)|P, S〉 =

εTαβ
2M2

[
i

∂

∂∆α
〈p′, S′|TNβa (0)|p, S〉

]
∆=0

=
S ·N
M2

Ae,a4 (0, 0). (4.14)
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For a longitudinally polarized target, we have S · N = M2 and so Ae,a4 (0, 0) can be in-

terpreted as the average fraction of target longitudinal angular momentum carried by the

OAM associated with the energy-momentum tensor Tµνa (r) in the LF form of dynam-

ics. We confirm in particular that the integrated OAM does not receive any naive T-odd

contribution [20, 27, 47, 52]. Using eq. (4.3), we also recover the standard expressions

for the Belinfante and Ji forms of longitudinal OAM in terms of the energy-momentum

FFs [9, 10, 16, 44]

〈JaBel,L〉 = 〈LaBel,L〉 =
1

2
[Aa(0) +Ba(0)]

S ·N
M2

, a = q,G,

〈LqJi,L〉 =
1

2
[Aq(0) +Bq(0) +Dq(0)]

S ·N
M2

.

(4.15)

Remarkably, thanks to eq. (2.4) we can also express the quark and gluon spin con-

tributions in terms of the scalar functions parametrizing the generic LF gauge-invariant

energy-momentum tensor. From the integral relations in eq. (2.4), we find that the quark

and gluon longitudinal spin contributions are given by

〈SqL〉 ≡
1

2M2
〈P, S|1

2
εTαβS

Nαβ
1 (0)|P, S〉 = −1

2

[
Ae,14 (0, 0)−Ae,15 (0, 0)

] S ·N
M2

,

〈SGL 〉 ≡
1

2M2
〈P, S|1

2
εTαβS

Nαβ
2 (0)|P, S〉 = −S ·N

M2
Ae,54 (0, 0)

(4.16)

where we have used eq. (2.3) to express Lµνρ4 (r) in terms of Tµν1 (r). The scalars

−1
2 [Ae,14 (0, 0) − Ae,15 (0, 0)] = −1

2Dq(0) and −Ae,54 (0, 0) can therefore be interpreted as the

average fraction of target longitudinal angular momentum carried by the spin of quarks

and gluons, respectively. It is easy to check that the following relations

〈SaL〉+ 〈Lagik,L〉 = 〈JaBel,L〉, a = q,G (4.17)

are satisfied and that the longitudinal component of the potential OAM is given by

〈Lqgic,L〉 − 〈L
q
gik,L〉 = −

[
〈LGgic,L〉 − 〈LGgik,L〉

]
=
S ·N
M2

Ae,34 (0, 0). (4.18)

Note that the differential relations in eq. (2.4), which translate at the level of matrix

elements as
〈p′, S′|T [νρ]

1 (0)|p, S〉 = −i∆µ〈p′, S′|Sµνρ1 (0)|p, S〉,

〈p′, S′|T [νρ]
5 (0)|p, S〉 = −i∆µ〈p′, S′|Sµνρ2 (0)|p, S〉,

(4.19)

do not provide additional constraints. Indeed, at O(∆0), they just reduce to the antisym-

metric part of the forward limit (4.8). At higher orders in ∆, the identification of coefficients

between the l.h.s. and the r.h.s. of eq. (4.19) are spoiled by the condition P ·∆ = 0 which

follows from the onshell relation for the target (P ± ∆
2 )2 = M2.

In ref. [45], the LF constraint TµNgic,q(r) = TµNgik,q(r) (i.e. TµN3 (r) = 0 according to table 2)

has been used to derive the relation between the canonical and kinetic functions. However,

the contributions from the B scalar functions were not included in the parametrization

of the canonical energy-momentum tensor in the LF gauge, and so the author concluded

– 12 –
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that Xq(t) = Xcan
q (t) for X = A,B,D (i.e. A3

j (ξ, t) = 0 for j = 1, 2, 4, 5) instead of (4.5),

leading naturally to 〈Lqgic,L〉 = 〈Lqgik,L〉 according to eq. (4.18) and hence to the puzzling

conclusion 〈Jqgic,L〉 = 〈Jqgik,L〉.
Finally, since the total angular momentum is 1/2, we obtain from eqs. (4.14) and (4.16)

the angular momentum constraint which can be rewritten in terms of the energy-momentum

FFs using eq. (4.3)∑
a=1,2

[Ae,a4 (0, 0) +Ae,a5 (0, 0)] =
∑
a=q,G

[Aa(0) +Ba(0)] = 1. (4.20)

Combined with the momentum constraints (4.13), this leads to∑
a=1,2

[Ae,a4 (0, 0) +Ae,a5 (0, 0)−Ae,a2 (0, 0)] =
∑
a=q,G

Ba(0) = 0 (4.21)

which is known as the anomalous gravitomagnetic moment sum rule [53, 54].

5 Link with measurable parton distributions

Now we are going to see how the scalar functions parametrizing the matrix elements of

the generic LF gauge-invariant energy-momentum tensor are related to GPDs accessed

in exclusive scatterings [55] and TMDs accessed in semi-inclusive scatterings [24]. For

convenience, we shall focus in the following on the quark sector. The gluon sector proceeds

analogously.

5.1 Generalized Parton Distributions

The quark vector GPD correlator is defined as

F
[γµ]
S′S (P, x,∆, N)

= (P · n)

∫
dλ

2π
eixλ(P ·n) 〈p′, S′|ψ

(
− λ

2
n

)
γµWn

(
− λ

2
n,
λ

2
n

)
ψ

(
λ

2
n

)
|p, S〉. (5.1)

Remarkably, its second Mellin moment is related to the matrix elements of the quark LF

gauge-invariant energy-momentum tensor [16, 20, 55]∫
dxxF

[γµ]
S′S (P, x,∆, N) =

1

M2
〈p′, S′|TµNq (0)|p, S〉. (5.2)

Note that we do not need to specify whether this corresponds to the kinetic or canonical

version of the LF gauge-invariant energy-momentum tensor simply because TµNgik,q(r) =

TµNgic,q(r) owing to eq. (4.4).

Up to twist 4, the quark vector GPD correlator (5.1) is parametrized as [28]

F
[/n]
S′S(P, x,∆, N) = u(p′, S′)

[
/nHq +

iσn∆

2M
Eq
]
u(p, S),

F
[γµT ]

S′S (P, x,∆, N) = u(p′, S′)

[
MiσnαT
P · n

Hq
2T +

/n∆α
T

2(P · n)
Eq2T

+
∆α
T

M
H̃q

2T − γ
α
T

(
Ẽq2T − ξE

q
2T

)]
u(p, S),

F
[/̄n]
S′S(P, x,∆, N) =

M2

(P · n)2
u(p′, S′)

[
/nHq

3 +
iσn∆

2M
Eq3

]
u(p, S).

(5.3)
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From eq. (5.2) together with eq. (4.3), we then find the relations between the second Mellin

moment of vector GPDs and the energy-momentum FFs in the quark sector∫
dxxHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t),∫
dxxEq(x, ξ, t) = Bq(t)− 4ξ2Cq(t),∫

dxxHq
2T (x, ξ, t) = 0,∫

dxxEq
2T (x, ξ, t) = 0,∫

dxx H̃q
2T (x, ξ, t) = −2ξ Cq(t),∫

dxx Ẽq2T (x, ξ, t) = −1

2
[Aq(t) +Bq(t)−Dq(t)],∫

dxxHq
3(x, ξ, t) =

1

2
Aq(t) + C̄q(t)− 2ξ2 P

2

M2
Cq(t)

+
t

8M2
[Bq(t)− 8Cq(t)−Dq(t)],∫

dxx [Hq
3(x, ξ, t) + Eq3(x, ξ, t)] =

P 2

2M2
Dq(t).

(5.4)

The relations involving twist-3 GPDs are consistent with those found in ref. [56] where the

parametrization is related to the one we used as follows

Hq
2T (x, ξ, t) = −2ξ Gq4(x, ξ, t),

Eq2T (x, ξ, t) = 2 [Gq3(x, ξ, t)− ξGq4(x, ξ, t)],

H̃q
2T (x, ξ, t) =

1

2
Gq1(x, ξ, t),

Hq(x, ξ, t) + Eq(x, ξ, t) + Ẽq2T (x, ξ, t) = −Gq2(x, ξ, t) + 2[ξGq3(x, ξ, t)−Gq4(x, ξ, t)].

(5.5)

The explicit relations involving twist-4 GPDs are new but somewhat academical as these

functions are much harder to access experimentally.2

Thanks to eq. (4.19), the antisymmetric part of the LF gauge-invariant kinetic energy-

momentum tensor can be related to the local axial-vector correlator

− i

2
εµν∆α

∫
dxF

[γαγ5]
S′S (P, x,∆, N) = 〈p′, S′|T [µν]

gik,q(0)|p, S〉. (5.6)

From the parametrization [55]∫
dxF

[γµγ5]
S′S (P, x,∆, N) = u(p′, S′)

[
γµγ5G

q
A(t) +

∆µγ5

2M
GqP (t)

]
u(p, S), (5.7)

2We note in passing a typo in ref. [16] where a factor 1
2

is missing in front of the Dq(t) energy-momentum

FF in the r.h.s. of eq. (432).
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where GqA(t) =
∫

dx H̃q(x, ξ, t) is the axial-vector FF and GqP (t) =
∫

dx Ẽq(x, ξ, t) is the

induced pseudoscalar FF, it is easy to show using onshell identities that [10, 16, 44]

GqA(t) = −Dq(t). (5.8)

This is naturally consistent with the observation in section 4.5 that the scalar −1
2Dq(0)

can be regarded as the quark spin contribution to the total angular momentum in a longi-

tudinally polarized target.

5.2 Transverse-Momentum dependent Distributions

The quark vector TMD correlator is defined as3

Φ
[γµ]
S′S (P, x, kT , N ; η)

= (P · n)

∫
d(k · n̄)

∫
d4z

(2π)4
eik·z 〈p, S′|ψ

(
− z

2

)
γµWn

(
− z

2
,
z

2

)
ψ

(
z

2

)
|p, S〉. (5.9)

Similarly to the GPD case, the second Mellin moment of this correlator is related to the

forward matrix elements of the quark LF gauge-invariant energy-momentum tensor∫
dx d2kT xΦ

[γµ]
S′S (P, x, kT , N ; η) =

1

M2
〈p, S′|TµNq (0)|p, S〉. (5.10)

Remarkably, treating with due care the LF Wilson line [16, 20, 27, 57–60], one can similarly

show that the second transverse moment of Φ
[γµ]
S′S is related to the forward matrix elements

of the quark LF gauge-invariant canonical energy-momentum tensor∫
dx d2kT k

α
T Φ

[γµ]
S′S (P, x, kT , N ; η) = δαTν 〈p, S′|T

µν
gic,q(0)|p, S〉. (5.11)

That the relation holds for the canonical version of the LF gauge-invariant energy-

momentum tensor is determined by the particular shape (3.1) of the Wilson line. Working

instead with a straight Wilson line connecting directly the points ± z
2 , the relation (5.11)

would hold for the kinetic version of the LF gauge-invariant energy-momentum ten-

sor [20, 61, 62]. We stress once again that our choice for the Wilson line (3.1) was simply

motivated by the fact that factorization theorems require Wilson lines that run essentially

along the LF direction n [24].

Up to twist 4, the quark vector TMD correlator (5.9) is parametrized as [28, 63, 64]

Φ
[/n]
SS(P, x, kT , N ; η) = 2(P · n)

[
f q1 − η

εkST
M2

f⊥q1T

]
,

Φ
[γµT ]

SS (P, x, kT , N ; η) = 2M

[
kµT
M

f⊥q − η
εµST
M

f qT

− η
(kµTkTν −

1
2 δ

µ
Tνk

2
T ) ενST

M3
f⊥qT − η

(S · n) εµkT
(P · n)M

f⊥qL

]
,

Φ
[/̄n]
SS(P, x, kT , N ; η) =

2M2

P · n

[
f q3 − η

εkST
M2

f⊥q3T

]
,

(5.12)

3For simplicity, we considered the naive definition of the TMD correlator where the soft factor is not

included [24]. This allows one to treat in a simple way the kT -integrations. A more careful treatment based

on the proper definition of TMDs proceeds analogously.
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where we have extracted explicitly the η-dependence. From eq. (5.10) together with

eq. (4.3) and the forward limit ∆ → 0 of the LF constraints (4.5), we find the relations

between the second Mellin moment of vector TMDs and the energy-momentum FFs in the

quark sector

∫
dx d2kT x f

q
1 (x, k2

T ) = Aq(0),∫
dx d2kT x f

q
T (x, k2

T ) = 0,∫
dx d2kT x f

q
3 (x, k2

T ) =
1

2
Aq(0) + C̄q(0).

(5.13)

Together with eq. (5.4), these relations are consistent with the fact that the GPD and

TMD correlators have the same collinear forward limit

∫
d2kT Φ

[γµ]
SS (P, x, kT , N ; η) = F

[γµ]
SS (P, x,∆ = 0, N) (5.14)

which implies ∫
d2kT f

q
1 (x, k2

T ) = Hq(x, 0, 0),∫
d2kT f

q
T (x, k2

T ) = 0 = Hq
2T (x, 0, 0),∫

d2kT f
q
3 (x, k2

T ) = Hq
3(x, 0, 0).

(5.15)

More interesting are the relations involving the second transverse moment of TMDs.

From eq. (5.11) and the forward limit ∆→ 0 of the LF constraints (4.5), we find

∫
dx d2kT

k2
T

2M2
f⊥q1T (x, k2

T ) = −1

2

[
Bo,3

18 (0, 0)−Bo,3
20 (0, 0)

]
,∫

dx d2kT
k2
T

2M2
f⊥q(x, k2

T ) = C̄q(0) + Ae,31 (0, 0),∫
dx d2kT

k2
T

2M2
f⊥qL (x, k2

T ) =
1

2
Bo,3

18 (0, 0),∫
dx d2kT

k2
T

2M2
f⊥q3T (x, k2

T ) =
1

4

[
Bo,3

18 (0, 0) +Bo,3
20 (0, 0) + 2Bo,3

22 (0, 0)
]
.

(5.16)

Interestingly, all these quantities involve only the energy-momentum FF C̄q(0) and scalar

functions associated with the potential term Tµν3 (r). Since all these quark contributions

are exactly canceled by the corresponding gluon contributions, see eq. (4.13) and table 2,
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we obtain the following sum rules

∑
a=q,G

∫
dx d2kT

k2
T

2M2
f⊥a1T (x, k2

T ) = 0,

∑
a=q,G

∫
dx d2kT

k2
T

2M2
f⊥a(x, k2

T ) = 0,

∑
a=q,G

∫
dx d2kT

k2
T

2M2
f⊥aL (x, k2

T ) = 0,

∑
a=q,G

∫
dx d2kT

k2
T

2M2
f⊥a3T (x, k2

T ) = 0.

(5.17)

The first sum rule is known as the Burkardt sum rule [50, 51] and simply expresses the fact

that the total momentum transverse to the target momentum has to vanish. The other

three sum rules are to the best of our knowledge new. They express the fact that the total

flow of transverse momentum has also to vanish. They involve higher-twist TMDs and are

therefore much harder to test experimentally. Nevertheless, it would be very interesting to

test them using phenomenological models, Lattice QCD and perturbative QCD.

As a final remark, we would like to stress that the above results show explicitly that

TMDs cannot provide any information about the scalar Ae,a4 (0, 0), which means no quan-

titative model-independent information about the parton OAM, as anticipated e.g. in [65]

6 Conclusions

There has been a prejudice against the canonical form of the quark and gluon energy-

momentum tensor, and consequently of the corresponding linear and orbital angular mo-

menta, due to the fact that it cannot be written locally in a gauge-invariant way. A

gauge-invariant expression can however be obtained by relaxing the locality requirement in

a way that does not harm causality. This indicates that the canonical energy-momentum

tensor can be considered as a physical object and measured experimentally. In particular,

it can be accessed via particular moments of two- and three-parton correlators which are

extracted from numerous physical processes.

In this study, we provided for the first time a complete parametrization for the ma-

trix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-

momentum tensor. We found that a generic canonical energy-momentum tensor for a

spin-1/2 target consists in 32 independent complex amplitudes. We discussed in detail the

various constraints on these amplitudes imposed by non-locality, linear and angular mo-

mentum conservation. This generalizes therefore former works on the symmetric, local and

gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld

energy-momentum tensor.

We also showed that some of the amplitudes can be expressed in terms of particular

moments of two-parton generalized and transverse-momentum dependent distributions,

and are therefore clearly measurable. In particular, we proved explicitly that two-parton
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transverse-momentum dependent distributions cannot provide any quantitative model-

independent information about the parton orbital angular momentum. On the way, we

recovered the Burkardt sum rule, expressing basically conservation of transverse momen-

tum, and derived three new sum rules involving higher-twist distributions. We obtained

these results by choosing the non-local phase factors defined by a lightlike four-vector n,

in order to make contact with parton physics and factorization theorems.

We believe the present paper will help clarify the differences between canonical and

kinetic energy-momentum tensors, and their links with parton distributions. We also expect

getting more insights into these matters in a near future coming from explicit results

obtained within covariant models, Lattice QCD and perturbative QCD.
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A Parametrization

From the discrete space-time symmetries, we find that the Dirac structure Γµνa associated

with the matrix elements of the generic LF gauge-invariant energy-momentum tensor has

to satisfy the following constraints

Γµνa (P,∆, N ; η) = γ0Γ†µνa (P,−∆, N ; η)γ0 Hermiticity

= γ0Γµ̄ν̄a (P̄ , ∆̄, N̄ ; η)γ0 Parity

= (−iγ5C)Γ∗µ̄ν̄a (P̄ , ∆̄, N̄ ;−η)(−iγ5C) Time-reversal

(A.1)

where C is the charge conjugation matrix and b̄ = bµ̄ = (b0,−~b). Using the Gordon

identities

u(p′, S′)γµu(p, S) = u(p′, S′)

[
Pµ

M
+
iσµ∆

2M

]
u(p, S),

0 = u(p′, S′)

[
∆µ

2M
+
iσµP

M

]
u(p, S),

(A.2)

we can discard the γµ and iσµP structures from the parametrization. Similarly, we can

discard the structure εµναPγ5 thanks to the following onshell identity

u(p′, S′)
[
2εµναPγ5 + ∆µσνα + ∆νσαµ + ∆ασµν

]
u(p, S) = 0 . (A.3)

Contracting the ε identity

gαβεµνρσ + gαµενρσβ + gανερσβµ + gαρεσβµν + gασεβµνρ = 0 (A.4)

with Pβ∆ρNσ gives

Pαεµν∆N + gα[µεν]∆NP + ∆αεµνNP −Nαεµν∆P = 0. (A.5)
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Contracting further with Nα, Pα and ∆α leads to

(P ·N) εµν∆N +N [µεν]∆NP + (∆ ·N) εµνNP = 0,

P 2 εµν∆N + P [µεν]∆NP − (P ·N) εµν∆P = 0,

∆[µεν]∆NP + ∆2 εµνNP − (∆ ·N) εµν∆P = 0.

(A.6)

Multiplying now by u(p′, S′)γ5u(p, S) and using eq. (A.3), the first two identities allow us

to discard the structures εµν∆Nγ5 and ∆[µσν]∆ while the last identity is trivially satisfied.

We are then left with the 32 independent structures given in eq. (3.4).
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