
J
H
E
P
0
8
(
2
0
1
5
)
0
3
8

Published for SISSA by Springer

Received: June 19, 2015

Accepted: July 7, 2015

Published: August 10, 2015

Scattering amplitudes in super-renormalizable gravity
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1 Introduction

Scattering amplitudes, in particular gauge invariant on-shell ones, are the observables of

major interest in particle physics experiments. The possibility of getting very precise and

well testable predictions for them is surely one of the biggest achievements of perturbative

quantum field theory. From a more theoretical point of view, they play a fundamental

role in constraining the higher derivative terms that are expected to arise at quantum level

as a consequence of the presence of divergences in loop diagrams in non-renormalizable

theories [1]. It is well known that, even for tree-level diagrams, the intermediate steps of

computation show a remarkable tangle that often disappears in the final physical ampli-

tudes [2]. This is a consequence of the ambiguity (and also the richness) intrinsic to the

Lagrangian off-shell formalism, which is invariant under gauge transformations and field

redefinitions. Recently there has been a wide interest in developing powerful methods for

on-shell scattering amplitudes, which have led to both improving calculation techniques
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and gaining new insights into the underlying mathematical structures (see [3] and refer-

ences therein).

On the other hand, since it is quite difficult to propose good and unambiguous quanti-

ties which could play the role of observables in pure quantum gravity, we concentrate our

attention on hypothetical experiments of graviton scattering described in the perturbative

framework of quantum field theory around flat Minkowski spacetime. Due to the kinemat-

ical constraints the first non-vanishing amplitude (for on-shell massless gravitons) must

describe a scattering process involving four particles. One example is the scattering of two

gravitons into two, which is the topic of this paper. Here due to tremendous complications

present at loop levels in quantum gravity, we consider only tree-level amplitudes (only in

the Born approximation). Physically these amplitudes correspond to the classical processes

of monochromatic gravitational wave scattering happening in the empty space. Of course

such effects are predicted by Einstein general relativity, which is a nonlinear theory of

gravitational interactions, but non-linearities are very little effects due to the smallness

of the ratio between the typical graviton energy and the Planck mass. Nonetheless, the

amplitudes are indeed very useful probes of quantum gravitational physics and are the first

must-be-taken step to quantum gravity phenomenology.

The first attempt to compute tree-level scattering amplitudes was undertaken in the

simplest quantum gravity theory, namely in the quantum version of Einstein gravity. There

it was found [2, 4] that the final results are quite simple and can be derived even without

performing detailed computations using Feynman diagram methods [5]. Due to dimensional

reasons (GN has energy dimension −2 in four dimensions) the amplitudes showed behavior

that grow unboundedly with increasing energy of the scattering process. Precisely they

grow as E2. This observation led to the conclusion that naive tree-level unitarity bound

on the scattering amplitudes is violated. Further, it was derived that either Einstein-

Hilbert quantum gravity becomes non-perturbative around Planck scale or the theory needs

an ultraviolet (UV) completion and can be viewed merely as a low energy effective field

theory of quantum gravity. We keep this message in mind and we study the scattering

processes in a class of theories which can be without problems in the UV regime, but at

the same time these theories remain always in the perturbative regime. Indeed, higher

derivative super-renormalizable theories are asymptotically free and the unitarity bound is

not violated. This is transparent in the prototype asymptotically free theory proposed by

Stelle in 1977 [6–8]. The energy scaling of the scattering amplitudes is proportional to E4 or

E2, but at a closer inspection it can be correct only up to the Planck scale because at very

high energy the interaction between gravitons becomes very weak and they travel almost

as free particles as a mere consequence of asymptotic freedom. Therefore, the scattering

amplitudes presented in this paper are meaningful up to the Planck scale (or the new scale

introduced in the theory), while a careful analysis is required around the Planck mass.

Moreover, despite the remarkable result of our computation, which states that ampli-

tudes in four dimensions are the same as in Einstein gravity, we could be able to determine

other phenomenological consequences of the graviton scattering processes. One of such

interesting implications concerns the production of micro black holes as resonances in the

elastic scattering of gravitons [9, 10]. Typically, as it is done in high energy physics, from a
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broadening of the cross section we would be able to read out the half-width and therefore

determine the life-time of such objects. This would shed a new light onto the interpretation

of Hawking evaporation process in the fully-fledged (opposed to semi-classical approach)

quantum field theory of gravitational interactions. Other implications for particle physics

and its unification with gravity would require the coupling of matter to gravity, which we

do not attempt to make here.

As the last piece of our original motivation we want to mention that the results of the

amplitude computation might have served well for the determination of form factors, which

are used in nonlocal theories (for the special case of constant form factors we would be able

to determine values of the couplings in front of terms quadratic in curvatures in the Stelle

gravity). But since in four spacetime dimensions we find no dependence on interpolating

functions (form factors) with the exception of terms quadratic in Riemann tensors, this

cannot be done based only on tree-level results for the minimal super-renormalizable or

finite theory. The situation is different in higher dimensions as we point out explicitly in

the second part of the paper and this is one of the new results of this paper. In the higher

dimensional setup, thanks to these amplitudes, we are able to determine some characteristic

features of the form factors. For fully unambiguous determination of the form factors in

the minimal nonlocal super-renormalizable theory we will need the full one-loop result,

which is right now beyond our capabilities. It can be quite pleasing that in four physical

dimensions tree-level amplitudes do not depend on the form factors, because then we can

view the presence of the form factors as the clever way of parametrizing our ignorance.

However, as we see on the tree-level nothing depends on it and actually we are not forced

to determine the form factor there. This changes one of the biggest drawback of the theory

(ambiguity related to the choice of the form factor) into a virtue (now tree-level scattering

amplitudes are independent of it). This further may lead to seeing the form factors as

something that does not have very important physical meaning. The form factor may be

used only as a way to interpolate between infrared (IR) and UV behavior of the theory in a

covariant way. Such ideas are similar to the ideas of the smooth covariant cutoff developed

in the field of functional RG [11–16]. We believe that the true significance of the form

factors used in nonlocal theories will be revealed only at the loop level. This is confirmed

by partial computations of the beta functions of running couplings, which indeed do depend

on the asymptotic form of the form factors used.

All of this has drawn our attention to investigations, with somewhat more traditional

techniques, of what kind of physical information can be obtained from tree-level on-shell

amplitudes for a class of weakly nonlocal theories of gravity, which have been the subject of

recent studies [17–29]. These theories turn out to be a particularly convenient theoretical

framework to perform quantum gravity computations, because they have been proven to

be ghost-free and super-renormalizable or finite at quantum level. We work in the quantum

field theory framework and we assume as our guiding principle the “validity of perturbative

expansion” [30–32]. Moreover, the following postulates are required: (i) spacetime diffeo-

morphism covariance; (ii) weak nonlocality (or quasi-polynomiality); (iii) unitarity (the

spectrum is tachyon- and ghost-free); (iv) super-renormalizability or finiteness. The main

difference with perturbative quantum Einstein gravity lies in the second requirement, which
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makes possible to achieve unitarity and renormalizability at the same time. In this way a

fully consistent quantum gravitational theory has been constructed free of any divergences.

However, the theory is not unique and all our ignorance is encoded in a form factor (entire

function) with very specific asymptotic limits in the ultraviolet and in the infrared fixed in

such a way to have a convergent quantum field theory. At classical level there are evidences

that we are dealing with a “singularity-free” gravitational theory in the case of physical

matter [33–48]. However, we know that Einstein spaces are exact vacuum solutions of the

weakly nonlocal theory, including the singular Schwarzschild spacetime [49–56].

The main findings of this paper consist of new results for tree-level scattering ampli-

tudes in Stelle gravity and its analytic nonlocal extensions. We find that the situation in

quadratic gravity in four dimensions is exactly the same as in Einstein gravity, while for

the Weyl conformal theory the four-graviton amplitudes are identically zero. In dimension

higher than four and when the terms quadratic in Riemann tensors are included the out-

come in Stelle gravity differs from the standard Einstein theory. If in four dimensions (or

extra dimensions) we allow for analytic nonlocal extensions involving the Riemann tensor,

then again we find a different outcome. We finally explain our results by proving a general

theorem about on-shell n−graviton scattering amplitudes and by explicitly considering di-

agrams from terms that cannot be redefined. We point out the possibility of determining

the form factors, when these theories are viewed as fundamental, and comparing them with

the experimental results about graviton scattering amplitudes. This may be taken as a first

step to verify this class of theories.

In this paper we mainly concentrate on the calculation of tree-level four-graviton scat-

tering amplitudes. The interested reader can also consider the following references [81–83],

where different methods than Feynman diagrams are used to compute scattering amplitudes

in gravity. In the remaining part of this introduction we remind the reader the construc-

tion of the weakly nonlocal quantum gravity. Later, in the second section, we start with

some kinematical considerations and we find the propagator and compact expressions for

vertices. We first perform the amplitude computation in quadratic Stelle theory [6] in

section three and then in the most general weakly nonlocal super-renormalizable theory

quadratic in the Ricci and scalar curvature tensors in section four. Moreover, in the fifth

section we interpret the technical results as a consequence of a general theorem based on

Anselmi’s field redefinition theorem [57, 58], and [59–62]. Finally, we discuss the general-

izations of our results (also some expectations beyond tree-level) and we give conclusions.

We supplement the paper by two appendices, where we put more technical details about

the propagator and variations of curvature invariants.

1.1 Weakly nonlocal gravity

The general D-dimensional theory weakly nonlocal and quadratic in Riemann, Ricci and

scalar curvature reads [17–21, 23, 24, 26, 28, 63–71],

Lg = −2κ−2
D

√−g [R+R γ0(�)R+Ric γ2(�)Ric+Riem γ4(�)Riem+V ] .(1.1)

The theories above consist of a weakly nonlocal kinetic operator and a local curvature

potential V. Therefore they are quite general, more general thing would be only to allow
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the potential to be nonlocal too. The local potential V for a gravitational theory, which is

however sufficient, is made up of the following three sets of operators

V =
N+2
∑

j=3

j
∑

k=3

∑

i

c
(j)
k,i

(

∇2(j−k)Rk
)

i
+

γ+N+1
∑

j=N+3

j
∑

k=3

∑

i

d
(j)
k,i

(

∇2(j−k)Rk
)

i

+

γ+N+2
∑

k=3

∑

i

sk,i

(

∇2(γ+N+2−k)Rk
)

i
, (1.2)

where operators in the third set are called killers, because they are crucial in making the

theory finite in any dimension. They are used to kill the beta functions. In (1.2) Lorentz

indices and tensorial structure have been neglected.1 For more details about notation in

the potential V we refer the interested reader to original papers [21, 22]. Moreover in (1.1)

� = gµν∇µ∇ν is the covariant box operator, and the functions γℓ(�) (ℓ = 0, 2, 4) (form

factors) will be shortly defined. When γ4(�) = 0 minimal unitarity requires

γ0(�) = −γ2(�)

2
= −eH(−�Λ) − 1

2�
, (1.3)

where H(z) is an entire function on the complex plane. Given the conditions (1.3), in the

perturbative spectrum of the theory we only have the massless transverse graviton, whose

propagator is modified only in a multiplicative way from the Einstein theory. In (1.3) Λ is

a fundamental invariant mass scale in our theory and we define z = −�Λ = −�/Λ2.

A universal exponential form factor expH(z) compatible with the guiding principles of

quantum field theory and with the requirement of proper IR limit of the theory H(0) = 0

is [26]:

V −1(z) = eH(z) = e
a
2
[Γ(0,p(z)2)+γE+log(p(z)2)]

= ea
γE
2

√

p(z)2a

{

1+

[

ae−p(z)2

2p(z)2

(

1+O

(

1

p(z)2

))

+O
(

e−2p(z)2
)

]}

, (1.4)

where the last equality is correct only on the real axis. γE ≈ 0.577216 is the Euler-

Mascheroni constant and Γ(0, z) =
∫ +∞
z dt e−t/t is the incomplete gamma function with

its first argument vanishing. Now we define capital N by the following function of the

spacetime dimension D: 2N + 4 = D in even and 2N + 4 = D + 1 in odd dimensions.

Besides integer N in our theory we have also another integer number γ, which measures

how far the theory is from the minimal renormalizable one in given spacetime dimension.

The polynomial p(z) in (1.4) is of degree γ + N + 1 and such that p(0) = 0, which gives

the correct low energy limit of our theory (coinciding with Einstein gravity). The entire

function has asymptotic UV behavior given by the polynomial p(z)a in conical regions

around the real axis. However in most applications we will choose a monomial behavior

za(γ+N+1), where a is another positive integer number. Then these conical regions are with

an opening angle Θ = π/(4(γ+N+1)). For γ = N = 0 we have the maximal angle Θ = π/4

for all a.
1Definitions — The metric tensor gµν has signature (− + · · ·+) and the curvature tensors are defined

as follows: Rµ
νρσ = −∂σΓ

µ
νρ + . . . , Rµν = Rρ

µρν , R = gµνRµν . With symbol R we generally denote one of

the above curvature tensors.

– 5 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
8

1.2 Propagator, tree-level unitarity and power counting

We shortly discuss the propagator in a theory (1.1). Splitting the spacetime metric into the

Minkowski background plus fluctuations and after performing a gauge fixing, we can invert

the quadratic in fluctuation fields kinetic operator to finally get the two-point function in

Fourier space [86, 87] (see section (2.2) and appendix A for more details),

O−1=
V (k2/Λ2)

k2

(

P 2 − P 0θ

D − 2

)

. (1.5)

The indices for the operator O−1 and the projectors [86, 87, 90] {P 0θ, P 2} as well as gauge-

dependent terms in (1.5) have been omitted. The tensorial structure in (1.5) is the same

of Einstein gravity, but the multiplicative form factor V (k2/Λ2) in Fourier space makes

the theory strongly ultraviolet (UV) convergent without the need to modify the spectrum

or introducing ghost instabilities. The theory propagates only massless spin two particle

(graviton with two helicities), however the UV behavior of the propagator is modified. This

fact about the tree-level spectrum ensures us that we are dealing with a perturbatively

unitary theory.

We now review the power counting analysis of the quantum divergences [17–20, 26,

27, 29]. In the high energy regime, and in even dimension the above propagator (1.5) in

momentum space schematically scales as

O−1(k) ∼ 1

k2γ+D
in the UV . (1.6)

The interaction vertices can be collected in different sets, that may or may not involve

the entire functions expH(z). However, to find a bound on the quantum divergences it is

sufficient to concentrate on the leading operators in the UV regime. These operators scale

as the propagator giving the following upper bounds on the superficial degree of divergence

of any graph [17–20, 76–80],

ω(G) = DL+ (V − I)(2γ +D) . (1.7)

We rewrite above in a more convenient form as

ω(G) = D − 2γ(L− 1) . (1.8)

In (1.8), we used the topological relation between the numbers of vertices V , internal lines

I and the number of loops L: I = V + L − 1. Thus, if γ > D/2, in the theory only 1-

loop divergences survive. Therefore, the theory is super-renormalizable [28, 33, 34, 72–75]

and only a finite number of operators of mass dimension up to MD has to be included in

the action in even dimension. For odd dimension, if γ > (D − 1)/2, then the theory is

completely without divergences and hence automatically finite.

1.3 Super-renormalizable and finite gravitational theories in D = 4

The main reason to introduce a potential V in the action (1.1) is to make the theory finite

at quantum level. It is easy to see that it is always possible to choose the non-running

– 6 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
8

coefficients sk,i in (1.2) to make all the beta functions vanish. We consider the simplest case

of a monomial asymptotic behavior for the form factor, namely: pγ+N+1(z) = zγ+N+1. For

this particular choice of the form factor in the large z limit, the analysis of the previous

subsection shows that only divergences, which are to be renormalized by terms with D

derivatives (like RD/2/ǫ in dimensional regularization (DIMREG)), are generated at one-

loop. However, the killer operators in the last set of operators in (1.2) give contributions to

the beta functions of the theory linear in the front parameters sk,i. The latter ones can be

fixed in such a way to make the theory finite in any even dimension. The tensorial structure

of killers must reflect the structure of terms, which are renormalized in the original theory

(terms with D derivatives).

In D = 4 (N = 0) the whole situation is simple to describe, because we only need two

killer operators. The highest derivative terms in the kinetic part of the action come from

the form factor and are of the type R�
γR [84–87]. The minimal choice for a finite and

unitary theory of quantum gravity in four dimensions may consist of terms with γ = 3 (and

a = 1) in the kinetic part. This alone leads to one-loop super-renormalizable quantum

nonlocal gravity. For simplicity we introduce only two quartic killers and no cubic in

curvature operators. This is sufficient to make vanish all two beta functions for R2 and

R2
µν operators. The simplest Lagrangian with the Tomboulis type of form factor (1.4) may

be the following,

Lfin = − 2

κ24

√−g

[

R+Rµν
eH(−�Λ) − 1

�
Rµν −R

eH(−�Λ) − 1

2�
R

+s1R
2
�(R2) + s2RµνR

µν
�(RρσR

ρσ)

]

, (1.9)

where p(z) = z4, s1 = −2π2ω2(c1 + c2)/3, s2 = 8π2ω2c2 and ω2 = Λ−8 exp(γE/2) [21].

Here c1 and c2 are two constants independent on ω2, that have to be determined from the

calculation of the contributions to the beta functions from terms quadratic in curvature

and dominant at high energies. A more general Lagrangian can have a finite number of

other local terms, but still finiteness of the theory can be obtained exactly in the same way.

We recently proposed, following [29], another class of weakly nonlocal possibly finite

theories, which are constructed entirely from kinetic terms (only weakly nonlocal operators

quadratic in curvature appear), without local or nonlocal gravitational potential V cubic

in curvature or higher. The simplest nonlocal four-dimensional theory we can write to

achieve finiteness is exactly the one given in (1.1), but without assuming the relation (1.3)

(unitarity is anyhow achieved as proven in [23, 25]),

L = −2κ−2
4

√−g[R+Rγ0(�)R+Rµνγ2(�)Rµν +Rµνρσγ4(�)Rµνρσ ] , (1.10)

γℓ(�) =
eHℓ(−�Λ) − 1

�
.

We assume that all three form factors (for ℓ = 0, 2 and 4) have the Tomboulis form (1.4)

with the same degree of UV polynomial γ + 1. The operators in (1.10) can be written

equivalently in other bases using Weyl tensors Cµνρσγw(�)Cµνρσ or generalized Gauss-

Bonnet Lagrangian. The finite theory would boil down to some relations between UV
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polynomials for each form factor. At the moment we cannot definitely assert that the

theory is finite, because the beta functions for the operators R2 and R2
µν are quadratic in

three parameters defining the asymptotic UV behaviors of the entire functions Hℓ. This

theory and its generalizations are currently under careful investigation and the results will

be published in a future paper. Nevertheless, looking at the beta functions reported by

Kuz’min [29], it turns out that for γ > 4 we can always find a solution for

βR2 = 0 or βR2
µν

= 0 , (1.11)

hence in this class of theories only one beta function could be non-zero.

2 Four-graviton scattering amplitudes in higher derivative gravity

We start by studying the higher derivative gravity theory proposed and extensively studied

by Stelle in 1977. The action is quadratic in curvature and it is the limiting case of (1.1)

for the particular case of constant form factors and zero potential, namely:

γ0(�) = const = γ0 , γ2(�) = const = γ2 , γ4(�) = const = γ4 , V = 0 . (2.1)

Therefore, the higher derivative Stelle’s gravitational action reads

Sg = −2κ−2
D

∫

dDx
√−g

[

R+ γ0R
2 + γ2R

2
µν + γ4R

2
µνρσ

]

. (2.2)

In this section, before carrying out the computation of the on-shell four-graviton scattering

amplitudes, we derive the propagator and vertices and discuss some general properties of

helicity amplitudes.

2.1 Helicity amplitudes

For the external on-shell gravitons we assume the physical conditions in transverse traceless

gauge

∂µhµν = hµµ = 0 , (2.3)

which will turn out to be very convenient in order to simplify the algebra all along the

computation. In this gauge [4] the polarization tensors for gravitons with helicities ±2 in

four dimensions are related to those of photons with helicities ±1 by tensor product

ǫµν(p,±2) = ǫµ(p,±1)ǫν(p,±1) , (2.4)

where the polarization vectors satisfy

ǫµ(p, λ)p
µ = 0, ǫµ(p, λ)ǫ

µ(p, λ) = 0 ,

ǫµ(p,−λ) = ǫ∗µ(p, λ), ǫµ(p, λ)ǫ
µ(p,−λ) = 1 . (2.5)

Furthermore, we require the polarization vectors to form a complete basis for a representa-

tion of the SO(2) group of rotations in the transverse directions which leave pµ invariant.
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In the axial gauge we introduce the auxiliary vector qµ ∦ pµ such that q · p 6= 0, and the

sum on the polarizations reads

∑

λ=±1

ǫµ(p, λ)ǫ
∗
ν(p, λ) = ηµν −

pµqν + pνqµ
p · q . (2.6)

In particular, taking momenta in spherical coordinates (θ̄, φ) to be

pµ =
(

p0, p0 sin θ̄ cosφ, p0 sin θ̄ sinφ, p0 cos θ̄
)

, (2.7)

we can make the following explicit choice of the polarization basis,

ǫµ(p,±1) =
1√
2

(

0, cos θ̄ cosφ∓ i sinφ, cos θ̄ sinφ± i cosφ,− sin θ̄
)

. (2.8)

Therefore we choose the polarization vectors to be helicity eigenvectors. For the special

choice qµ = (p0,−~p) they satisfy (2.5) and (2.6).

We denote by Fλ3,λ4;λ1,λ2
the helicity amplitudes for the scattering process 1+2 → 3+4

of spin 2 particles with helicities λi. The helicity amplitudes satisfy a number of relations

as a consequence of parity conservation and time reversal for a reaction a + b → a + b,

Bose symmetry for a reaction a + a → b + c, and invariance under particle-antiparticle

conjugation for a reaction a+ ā → b+ b̄, namely

Fλ3,λ4;λ1,λ2
= (−1)λ−µ F−λ3,−λ4;−λ1,−λ2

,

Fλ3,λ4;λ1,λ2
= (−1)λ−µ Fλ1,λ2;λ3,λ4

,

Fλ3,λ4;λ1,λ2
= (−1)λ−4 Fλ3,λ4;λ2,λ1

,

Fλ3,λ4;λ1,λ2
= (−1)λ−µ Fλ3,λ4;λ2,λ1

, (2.9)

where λ = λ1 − λ2 and µ = λ3 − λ4.

The most significant advantage of working with such amplitudes is that they are defined

as Lorentz invariant quantities for massless particles, which implies we are automatically

computing gauge invariant quantities, only dependent on the Mandelstam invariants s =

− (p1 + p2)
2, t = − (p1 − p3)

2

and u = − (p1 − p4)
2.

Using relationships (2.9), out of 16 amplitudes in four dimensions, we can single out

four independent helicity amplitudes [5]

A (++,++) ≡ F2,2;2,2, A (+−,+−) ≡ F2,−2;2,−2,

A (++,+−) ≡ F2,2;2,−2, A (++,−−) ≡ F2,2;−2,−2.
(2.10)

2.2 The two-point function

Let us start by considering the propagator of the Einstein-Hilbert theory assuming the

expansion of the metric around a flat background

gµν = ηµν + hµν , (2.11)
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where hµν is the fluctuation field. We will denote by O(n) the n-th order term of the

expansion of operator O in the fluctuation field. Furthermore we will distinguish between

on-shell and off-shell fields by underlining the latter.

The equation of motion is given by

SEH=−2κ−2
D

∫

dDx
√−gR =⇒ δSEH

δgµν
δgµν=−2κ−2

D

∫

dDx
√−g

(

1

2
gµνR−Rµν

)

δgµν .

(2.12)

We can always assume (δSEH/δgµν)
(0) = 0 because R(0) = R

(0)
µν = R

(0)
µνρσ = 0 as a conse-

quence of having chosen a flat background metric. The two point function is obtained by

considering the expansion to the second order

S
(2)
EH = −2κ−2

D

∫

dDx
(√−gR

)(2)

= −2κ−2
D

∫

dDx
[

(√−g
)(2)

R(0) +
(√−g

)(1)
R(1) +

(√−g
)(0)

R(2)
]

. (2.13)

For an on-shell graviton

R(1) = ∂a∂bh
ab −�haa = 0 ,

R(1)
µν =

1

2
(−∂µ∂νh

a
a + ∂µ∂

ahaν + ∂ν∂
ahaµ −�hµν) = 0 ,

R(1)
µν̺σ =

1

2
(−∂µ∂ρhνσ + ∂µ∂σhνρ + ∂ν∂ρhµσ − ∂ν∂σhµρ) 6= 0 , (2.14)

which in particular imply the minimum condition for the quadratized Einstein-Hilbert

action
(

δ2SEH

δgαβ(x)δgγδ(y)

)(0)

= 0 . (2.15)

For the higher derivative theory (2.2) we need to add the second order expansion of the

quadratic terms SQUAD

S
(2)
QUAD =

(

−2κ−2
D

)

∫

dDx
(√−g

)(0)
(

γ0R
(1)2 + γ2R

(1)2
µν + γ4R

(1)2
µνρσ

)

. (2.16)

To be able to define the inverse of the kinetic operator we add to the Lagrangian the

standard gauge-fixing term

Sgf = −2κ−2
D

∫

dDx

(

− 1

α

)

(∂ahaν − β∂νh
a
a)

2 ,

where we choose α = 1 and β = 1/2, corresponding to the usual harmonic gauge condition

∂ahaν =
1

2
∂νh

a
a . (2.17)

This is consistent with the physical conditions (2.3) chosen for on-shell gravitons. We can

rewrite the kinetic operator in the momentum space as follows,

1

2
hαβ(−k)

(

δ2 (Sg + Sgf)

δgαβ(−k)δgγδ(k)

)(0)

hγδ(k) ≡
1

2
hαβ(−k)Oαβ,γδ(k)hγδ(k) . (2.18)
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A standard procedure can be employed to compute the propagator iO−1
αβ,γδ(k) as reviewed

in appendix A.

2.3 The three and four-graviton vertices

Three graviton vertex — The three graviton vertex is obtained by collecting all terms in

the action that are cubic in the graviton field hµν . Since we are interested in the on-shell

four-point function, in particular in the scattering amplitudes of four massless gravitons,

we do not need to go through a lengthy computation keeping track of all terms eventually

vanishing on-shell. Therefore, we can make full use of the simplification brought about

by the linearized vacuum equation of motion for the physical field hµν in the harmonic

gauge (2.17), i.e. �hµν = 0. Actually, our choice of polarizations is such that we can assume

the conditions (2.3) all along our computation, which greatly simplifies the algebra. In fact,

these conditions imply that all the scalar operators are vanishing on-shell at linear order

in hµν , including the scalar curvature R(1) and the root of metric determinant
√−g (1).

One can further show that R
(1)
µν = 0 due to the linearized EOM. The diagrams we need to

compute are such that for each three graviton vertex two gravitons out of three are on-shell

and one is off-shell because it must be contracted with the propagator of the internal line

of the diagram. This means we can consider the physical and off-shell gravitons as different

fields, even from the combinatorial point of view. Hence the procedure is first to expand

the action to the first order in the off-shell field hµν and then to the second order in the

physical field hµν .

It is convenient to rewrite the action (2.2) in terms of the only two combinations of

the γℓ parameters that appear in the propagator, namely

Sg=−2κ−2
D

∫

dDx
√−g

(

R+ (γ0 − γ4)R
2 + (γ2 + 4γ4)R

2
µν+γ4

(

R2
µνρσ − 4R2

µν +R2
)

)

.

(2.19)

We note the last term is the famous Gauss-Bonnet density, which is topological in four

dimensions whereas for generic higher dimensions it gives rise to vertices only.

For the Einstein-Hilbert action SEH = −2κ−2
D

∫

dDx
√−gR we simply have for the three

graviton vertex:

i

(

δSEH

δgµν

)(2)

= i
(

−2κ−2
D

)

[

√−g

(

1

2
gµνR−Rµν

)

](2)

= i
(

−2κ−2
D

)

(

1

2
ηµνR(2) −Rµν(2)

)

(2.20)

Similar expressions arise from the scalar curvature square action

S′
0 = −2κ−2

D (γ0 − γ4)

∫

dDx
√−gR2, (2.21)

the Ricci square action

S′
2 = −2κ−2

D (γ2 + 4γ4)

∫

dDx
√−gR2

µ̺ , (2.22)
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and the Gauss-Bonnet action

S′
4 = −2κ−2

D γ4

∫

dDx
√−g

(

R2
µνρσ − 4R2

µν +R2
)

. (2.23)

The outcome is:

i

(

δS′
0

δgµν

)(2)

= i
(

−2κ−2
D

)

(γ0 − γ4)

[

2
√−g

(

gµν∇2 −∇µ∇ν +
1

4
gµνR−Rµν

)

R

](2)

= 2i
(

−2κ−2
D

)

(γ0 − γ4) (η
µν
�− ∂µ∂ν)R(2) , (2.24)

i

(

δS′
2

δgµν

)(2)

= i
(

−2κ−2
D

)

(γ2 + 4γ4)

[

√−g

(

1

2
gµνRκλRκλ − 2RµλRν

λ

)

](2)

+i
(

−2κ−2
D

)

(γ2+4γ4)
[√−g

(

−gµκgνλ∇2−gµν∇κ∇λ+gµκ∇λ∇ν+gνλ∇κ∇µ
)

Rκλ

](2)

= i
(

−2κ−2
D

)

(γ2 + 4γ4)
(

−ηµκηνλ�− ηµν∂κ∂λ + ηµκ∂λ∂ν + ηνλ∂κ∂µ
)

R
(2)
κλ ,

(2.25)

where � is the flat d’Alembertian operator. In D = 4, as far as the computation of vertices

is concerned, we can ignore the presence of S′
4 because of the Gauss-Bonnet theorem. The

terms in (2.20), (2.24) and (2.25) contributing to the three graviton vertex with two legs

on-shell are expressed in terms of the following second order expansions

R(2) = −∂bhac∂
chab +

3

2
∂chab∂

chab ,

R(2)
µν =

1

2
∂µh

ab∂νhab+hab (∂b∂ahµν+∂µ∂νhab−∂b∂µhνa−∂b∂νhµa)+∂bhµ
a (∂bhνa−∂ahνb) .

Four-graviton vertex — For the on-shell four-graviton amplitudes we only need the

four-graviton vertex with all the gravitons on-shell. Therefore, by the same arguments

used for the three vertex, we can argue that

i (SEH)
(4) = −2κ−2

D

∫

dDx
(√−gR

)(4)

= −2κ−2
D

∫

dDx
(

R(4) +
(√−g

)(2)
R(2)

)

,

i
(

S′
0

)(4)
= −2κ−2

D (γ0 − γ4)

∫

dDx
(

R(2)
)2

,

i
(

S′
2

)(4)
= −2κ−2

D (γ2 + 4γ4)

∫

dDx
(

R(2)
µν

)2
. (2.26)

Apart from (
√−g)(2) = −1

2hµνh
µν the only new quantity appearing in the four vertex is

R(4), whose expression is given in appendix B. We remind the derivation of all vertices

from SEH, S
′
0 and S′

2 is valid in any dimension D.

3 The amplitudes in Stelle gravity

In this section we explicitly evaluate the four-graviton scattering amplitudes for quadratic

Stelle gravity using the method of Feynman diagrams. We distinguish the two cases of
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s channel t channel u channel

contact

Figure 1. Tree-level Feynman diagrams giving rise to the process of four-graviton scattering.

p1 p2

p3 p4

ε1µν ε2µν

ε∗3µν ε∗4µν

Figure 2. Kinematics of the process hh → hh.

four and higher dimensions. In the first case we have already introduced all the ingredients

which will be used in the computation. For the second one we will add new vertices and

extend the form of polarization tensors. This second case will be the first extension of our

results first obtained in quadratic four-dimensional Stelle theory.

3.1 4D Stelle gravity

In Born approximation there are four diagrams to be considered, which include the contact

one and the ones with virtual propagation in the s, t and u channels. They are depicted

in figure 1, while the kinematics of the process is showed in figure 2.

– 13 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
8

The exchange diagrams can be computed by contracting two three graviton vertices

with the propagator. Out of the five possible tensor structures in the propagator (see

appendix A) only three (X1, X2 and X3) are seen to have a non-vanishing contribution

as a consequence of the fact that we are considering on-shell gauge invariant amplitudes.

In order to be able to carry out the algebra effectively, it’s very convenient to express the

Mandelstam variables in terms of the energy E and the scattering angle θ in the center-of-

mass reference frame,

s = 4E2 , t = −2E2 (1− cos θ) and u = −2E2 (1 + cos θ) . (3.1)

With this choice of variables and assuming all the momenta lying in the plane defined by

φ = 0, the incoming (p1 and p2) and outgoing (p3 and p4) gravitons are identified by the

momenta (2.7) and polarizations (2.4) obtained from (2.8), where θ̄ is chosen to be 0, π,

θ and π + θ respectively. For outgoing gravitons the complex conjugates of polarization

tensors should be used.

The contributions from different diagrams to the amplitude for gravitons with all

helicities +2 are

As (++,++)=−i
(

− 2

κ24

)

9

8
E2 sin2 θ−i

(

− 2

κ24

)

9

4
E4

[

8(γ0−γ4)+(γ2+4γ4) (cos 2θ+3)
]

,

(3.2)

At (++,++)=−i

(

−2κ−2
4

)

cos4 θ
2

256(cos θ − 1)

[

E2(392 cos θ + 80 cos 2θ − 8 cos 3θ − 720) (3.3)

+(γ0 − γ4)E
4 (4 cos θ + 16 cos 2θ − 6 cos 3θ − 4 cos 4θ + 2 cos 5θ − 12)

+(γ2+4γ4)E
4 (2146 cos θ−216 cos 2θ−99 cos 3θ+6 cos 4θ+cos 5θ−1838)

]

,

Au (++,++)=−i

(

−2κ−2
4

)

sin4 θ
2

256(cos θ + 1)

[

E2(392 cos θ − 80 cos 2θ − 8 cos 3θ + 720) (3.4)

+(γ0 − γ4)E
4 (4 cos θ − 16 cos 2θ − 6 cos 3θ + 4 cos 4θ + 2 cos 5θ + 12)

+(γ2+4γ4)E
4 (2146 cos θ+216 cos 2θ−99 cos 3θ−6 cos 4θ+cos 5θ+1838)

]

,

Acontact(++,++)= i

(

−2κ−2
4

)

1024

[

E2(160 cos 2θ − 8 cos 4θ + 872) (3.5)

+(γ0 − γ4)E
4 (−34 cos 2θ + 4 cos 4θ + 2 cos 6θ + 18460)

+(γ2 + 4γ4)E
4 (1711 cos 2θ − 46 cos 4θ + cos 6θ + 9598)

]

.

These results themselves contain a nontrivial piece of information. In fact, in such a

covariant gauge as the harmonic one we have chosen, at any energy scale the propagator

behaves like
1

k2 (1− γ′k2)
=

1

k2
− 1

k2 − γ′−1
(3.6)

and because of the small k expansion
[

k2
(

1− γ′k2
)]−1

= k−2 + γ′ − γ′2k2 + . . . we would

expect quantities dependent on arbitrary powers of E2, whereas we find that only energies

up to the fourth power show up and in particular no energy powers appear in the denom-

inators. This is the sign of nontrivial cancellations happening between the three graviton
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vertices and propagators for each diagram. The ghost poles in (3.6) disappear at any en-

ergy scale and moreover we are safe from IR divergences. However the contribution from

each diagram is not separately gauge invariant and only the sum giving the full amplitude

matters.

Actually, it’s easy to check that the full scattering amplitude reads

A (++,++) = As (++,++) +At (++,++) +Au (++,++) +Acontact (++,++)

= −2i

(

− 2

κ24

)

E2 1

sin2 θ
,

which is the same result as the one for the tree-level amplitude of Einstein theory. We can

also find a similar result for the other three independent helicity amplitudes

A (+−,+−) = −1

8
i

(

− 2

κ24

)

E2 (1 + cos θ)4

sin2 θ
, (3.7)

A (++,+−) = A (++,−−) = 0 . (3.8)

As a consequence of another nontrivial cancellations these results coincide with the very

well known one [4] for tree-level graviton scattering in Einstein theory in spite of the fact

that the dimensional arguments that completely constrain the form of helicity amplitudes

in the latter case [5] can no longer be naively applied to quadratic gravity in D = 4,

because of the presence of new dimensionless couplings in the theory. We will find a

natural explanation for these surprising results in section 5.

3.2 D > 4 Stelle gravity

For D > 4 the situation becomes more complicated. First of all, the Gauss-Bonnet

term is no longer topological and so it gives a non-vanishing contribution to the three

and four-graviton vertices. Apart from the terms we have already computed, for S4 =
(

−2κ−2
D

)

γ4
∫

dDx
√−gR2

µνρσ we find

i

(

δS4

δgµν

)(2)

=
(

−2κ−2
D

)

γ4

[

2
√−g

(

1

4
gµνRκλρσRκλρσ−gντRµλρσRτλρσ+∇λ∇κR

(µ|λ|ν)κ

)

](2)

=
(

−2κ−2
D

)

γ4

[

1

2
ηµν

(

R
(1)
κλρσ

)2
−2ηντηµκR

(1)
κλρσR

(1)
τλρσ−

1

2
∂µ∂νR(2)+�Rµν(2)

]

,

i (S4)
(4)=

(

−2κ−2
D

)

γ4

∫

dDx
[ (

R(2)
µνρσ

)2
+ 2R(1)

µνρσR
(3)
µνρσ + 8 gτλ (1)R(1)

τνρσR
(2)
λνρσ

+12 gτλ (1)gκν (1)R(1)
τκρσR

(1)
λνρσ + 4 gτλ (2)R(1)

τνρσR
(1)
λνρσ +

√−g
(2)

(

R
(1)
κλρσ

)2 ]

.

(3.9)

The three and four-graviton vertices are therefore determined in terms of the on-shell non-

vanishing quantities, whose explicit expressions are given in appendix B. As we will see

from the results below, it is crucial to include the term
√−gR2

µνρσ in the action in higher

dimensions. This term is naturally motivated by effective field theory considerations and

addition of it is in another direction, how we can extend four-dimensional theory.
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An additional complication is given by the fact that in D > 4 the graviton has D(D−3)
2

polarizations. This is a trivial consequence of the fact that the little group for a massless

particle in D dimensions is SO(D − 2) and that the graviton is by definition identified

with the traceless symmetric rank 2 tensor representation. Because a massless vector

particle with momentum pµ (p2 = 0) has (D−2) independent polarizations ǫDµ (p, λ) we can

choose the Lorentz gauge condition pµǫµ = 0 and identify ǫµ up to a gauge transformation

ǫµ → ǫµ + γ pµ (for any γ) to single out an irreducible representation of SO(D− 2) with λ

identifying the elements of the vector basis. This basis can be conveniently chosen as the

one such that

H iǫDµ (p, λ) = λiǫDµ (p, λ),

with H i the elements of the Cartan subalgebra , i = 1, . . . , r. For SO(D− 2) we can break

up the (D− 2)-dimensional space into [D/2]− 1 different two-dimensional subspaces. The

rotation operator W k (k = 1, . . . , [D/2] − 1) acts on the subspace (2k, 2k − 1). Therefore

polarization vectors are identified by the D − 2 weights of the fundamental representation

of SO(D − 2). If we assume the momentum pµ to be in the (D − 1)-th spatial direction

and W [D/2]−1 to be the generator of rotations in the (D− 3, D− 2) plane, then we should

consider in particular the polarizations corresponding to the [D/2]−1 dimensional weights

(0, . . . , 0,±1), i.e. the D-vector (0, . . . , 0, 1,±i, 0). In the following computation we will

concentrate on this structure of D-dimensional polarization vectors. Now we want to

repeat the discussion in the section 2.1 for a general dimension D.

For a generic momentum whose spatial components are only in (D− 3, D− 2, D− 1)-

subspace

pµ =
(

p0, 0, . . . , 0, p0 sin θ̄ cosφ, p0 sin θ̄ sinφ, p0 cos θ̄
)

, (3.10)

we have

ǫDµ (p,±) =
(

0, . . . , 0, cos θ̄ cosφ∓ i sinφ, cos θ̄ sinφ± i cosφ,− sin θ̄
)

.

These polarizations can be used to construct two traceless symmetric tensors satisfying the

gauge condition pµǫµν = 0 and equivalent up to a gauge transformation ǫµν → ǫµν+aµpν+

aνpµ, where a · p = 0,

ǫDµν(p,±) = ǫDµ (p,±)ǫDν (p,±) .

Gravitons in D dimensions, which we consider here, are with two possible polarizations +

or −, similarly to the case in four dimensions.

In this framework we have carried out the computation for the amplitude AD (++,++)
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in D = 5 and 6 dimensions. These are the results

AD=5 (++,++)

= −i
2

κ25

{

16E6γ24
[

1 + 8E2 (3(γ0 − γ4) + (γ2 + 4γ4))
]

(1− 4E2(γ2 + 4γ4)) [3 + 4E2 (16(γ0 − γ4) + 5(γ2 + 4γ4))]
− 2E2 1

sin2 θ

}

,

(3.11)

AD=6 (++,++)

= −i
2

κ26

{

8E6γ24
[

1 + 8E2 (3(γ0 − γ4) + (γ2 + 4γ4))
]

(1− 4E2(γ2 + 4γ4)) [1 + 2E2 (10(γ0 − γ4) + 3(γ2 + 4γ4))]
− 2E2 1

sin2 θ

}

.

(3.12)

Quite beautifully, each amplitude is the sum of two terms, one comes from the usual

Einstein gravity, whereas the other one is overall proportional to γ24 . This implies that

in the absence of the Riemann square action S4 the (quite boring) result found in four

dimensions holds true in higher dimensions too, making the scalar curvature square term S0

and the Ricci square term S2 undetectable in the tree-level graviton scattering amplitudes.

This is why the presence of the S4 term in the action is crucial in higher dimensions. The

mechanism of cancellation in the former case is the same as in four dimensions.

Another interesting feature is that, apart from the standard Einstein term, the re-

maining dependence of the amplitudes on the parameters of the quadratic terms is only

through the combinations γ0−γ4 and γ2+4γ4. To better understand we first define a new

quadratic action for gravity with parameters γ′0, γ
′
2 and γ4 according to

Sg = −2κ−2
D

∫

dDx
√−g

(

R+ γ′0R
2 + γ′2R

2
µν + γ4GB

)

, (3.13)

which is completely equivalent to (2.2), and where GB denotes the Gauss-Bonnet La-

grangian. We find precisely that γ′0 and γ′2 are equal to combinations appearing in (3.11)

and (3.12). Therefore those results can be rewritten in a more compact form

AD=5 (++,++) = −i
2

κ25

{

16E6γ24
[

1 + 8E2(3γ′0 + γ′2)
]

(1− 4E2γ′2) [3 + 4E2(16γ′0 + 5γ′2)]
− 2E2 1

sin2 θ

}

, (3.14)

AD=6 (++,++) = −i
2

κ26

{

8E6γ24
[

1 + 8E2(3γ′0 + γ′2)
]

(1− 4E2γ′2) [1 + 2E2(10γ′0 + 3γ′2)]
− 2E2 1

sin2 θ

}

. (3.15)

The dependence on the parameters γi in the two above formulas can be easily explained

diagrammatically. We know that the propagator derived from (3.13) doesn’t depend on γ4
coefficient in any D, only cubic and quartic vertices derived from the Gauss-Bonnet term

possess such dependence (precisely expressions for them are linear in the γ4 parameter).

The propagator depends only on κ−2
D , γ′0 and γ′2. Hence our conclusion is that besides

contribution to amplitudes (3.14) and (3.15) from Einstein gravity, we have additional

contributions from exchange diagrams, where both three graviton vertices are derived from

the Gauss-Bonnet term and on the internal line we have the full propagator of the theory.
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The dependence on γ′0 and γ′2 is only through the propagator, but not through vertices.

The dependence on κ−2
D is determined by dimensional reasons. The fact, that there is

no any linear dependence on γ4 in the final results forces us to believe that here we are

witnessing another cancellation between contact diagram with vertex from Gauss-Bonnet

term and exchange diagrams with two different vertices (one from GB, the second one from

standard terms R, R2 or R2
µν). This interpretation of the results is quite natural, because

we have modified the theory (with already many cancellations) only by addition of new

vertices coming from the Gauss-Bonnet term, but the propagator has remained the same.

We have also computed the amplitudes for other choices of polarizations and checked that

their general properties are similar.

Moreover, as it is obvious from (3.14) and (3.15) the new terms in the amplitudes

are associated with the appearance of arbitrary powers of E2 in the expansion of the

denominators in the infrared regime, while in the ultraviolet regime the highest power is

of course E4, because this is a quadratic gravity. This result already extends the previous

findings [62, 92], which were restricted only to the order E4 in energy expansion around

E = 0. When we treat the theory (3.13) as fundamental, then we do not need to focus

on the low energy limit of the amplitudes and we have the exact energy dependence in

the tree-level amplitudes. By comparing the cross sections computed in [92], we could in

principle read out the values of the parameters γ′0, γ
′
2, and γ4. Then it would be natural to

associate the parameter γ4 with the strength of Gauss-Bonnet interactions, while two other

γ′0 and γ′2 would be related to the masses of the ghost and the curvaton, which appear in

the spectrum of quadratic gravity. However, this theory is not unitary (due to the presence

of the ghost) and we cannot conclude about new physically meaningful contributions to

the graviton scattering compared to the amplitudes computed in Einstein gravity. In the

next section we would like to address the same issue in a more realistic theory.

4 Four-graviton scattering amplitudes in nonlocal gravity

In this section we explicitly calculate the four-graviton scattering amplitudes for the weakly

nonlocal theory (1.1) with zero potential (V = 0), namely

Lg = −2κ−2
D

√−g [R+Rγ0(�)R+Rµνγ2(�)Rµν +Rµνρσ γ4(�)Rµνρσ] . (4.1)

This is another direction of extension of our original four-dimensional result in Stelle grav-

ity from (3.1). Here we assume the theory to be valid in any dimension D, but the explicit

formulas will be given for the case D = 4 (in higher dimensions only the numerical coef-

ficients change, but the final results are the same). Additionally results from this section

can be used in particular for any local higher derivative theory, whose action is quadratic

in gravitational curvature and contains a finite number of derivatives. We remark that for

below results to hold true the assumptions about super-renormalizability (or only renormal-

izability), unitarity and nonlocality of the theory are not by any means necessary. Since we

compute the tree-level scattering these issues are irrelevant. We decide to speak about the

theory (1.1), because this is a candidate theory to have a good behavior at quantum level
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too and could be viewed as a fully consistent realization of quantum gravity in quantum

field theory framework.

The stunning result is once again the same of Einstein gravity for the case γ4(�) = 0

in any dimension. Since on-shell the expansion of two the simplest curvature invariants is

R ∼ O(h2) and Ric ∼ O(h2), the form factors are spectators in the expansion in number of

gravitons and many of the results of the previous section still apply to the general nonlocal

theory (4.1). In more technical terms, when we compute the variations to find propagator

and vertices, we don’t need to vary the form factors and original covariant boxes � being

the argument thereof. Putting all the n-point functions on flat spacetime we can substitute

these arguments with flat d’Alembertian operators. Finally after going to momentum space

we can easily replace them with negative invariant squares of the momenta — Mandelstam

variables — s, t and u for each channel respectively [27]. Only for the contact diagrams

we have to be careful and we closely investigate on which graviton legs the operator inside

the form factor acts to properly associate dependence on s, t and u in form factors in

momentum space.

We here report the result in D = 4 and with form factors appearing only inside cur-

vature scalar and Ricci tensor squared terms (no terms with Riemann tensors sandwiching

the form factor γ4(�)) for the amplitude A(++,++) and we explicitly show the cancella-

tions leading to the important result announced above. The amplitude A(++,++) gets

contributions from the contact diagram and ones with graviton exchanges in the s, t and

u channels (compare figure 1), namely

As(++,++) = −2κ−2
4

(

−9

8

t(s+ t)

s
+

9

32
γ2(s)

(

s2 + (s+ 2t)2
)

+
9

8
s2γ0(s)

)

, (4.2)

At(++,++) = −2κ−2
4

(

−1

8

(

s3 − 5s2t− st2 + t3
)

(s+ t)2

s3t

+
1

16
γ2(t)

(

2s4−10s3t−s2t2+4st3+t4
)

(s+t)2

s4
+
1

8
γ0(t)

t2(s+ t)4

s4

)

, (4.3)

Au(++,++) = −2κ−2
4

(

−1

8

(

s3 − 5s2u− su2 + u3
)

(s+ u)2

s3u

+
1

16
γ2(u)

(

2s4−10s3u−s2u2+4su3+u4
)

(s+u)2

s4
+
1

8
γ0(u)

u2(s+u)4

s4

)

, (4.4)

Acontact(++,++) = −2κ−2
4

(

−1

4

s4 + s3t− 2st3 − t4

s3
− 9

32
γ2(s)

(

s2 + (s+ 2t)2
)

−9

8
s2γ0(s)

− 1

16
γ2(t)

(

2s4 − 10s3t− s2t2 + 4st3 + t4
)

(s+ t)2

s4
−1

8
γ0(t)

t2(s+ t)4

s4

− 1

16
γ2(u)

(

2s4−10s3u−s2u2+4su3+u4
)

(s+ u)2

s4
−1

8
γ0(u)

u2(s+u)4

s4

)

. (4.5)

The full amplitude is given by the sum of above contributions (4.2)+(4.3)+(4.4)+(4.5),
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and the result is:

A(++,++) = As(++,++) +At(++,++) +Au(++,++) +Acontact(++,++)

= A(++,++)EH , (4.6)

where A(++,++)EH is the amplitude for the Einstein-Hilbert theory. Notice that all

terms but the first of equation (4.2) cancel with the last two terms of the first line of (4.5).

Analogously terms from (4.3) cancel with the second line of (4.5) and those from (4.4)

cancel with the last line of (4.5). For the other helicity amplitudes (2.10) we get analogous

simplifications.

Once the operator quadratic in Riemann tensor (or Weyl tensor, or the generalized

Gauss-Bonnet term) is turned on the scattering amplitudes change radically. Not only

amplitudes will explicitly depend on the form factor γ4(�), but also on the other form

factors in the theory, namely γ0(�) and γ2(�), as it is evident from the five- and six-

dimensional results reported in (3.14), (3.15) for the case of constant form factors. There

γ4 is an overall factor, and if it does not vanish, the results will depend also on γ0 and γ2.

However the mechanism for acquiring such dependences is exactly the same as described in

section 3.2. The case of computation with non-vanishing form factor γ4(�) is qualitatively

different from presented here. In this situation to obtain vertices we need to vary the form

factor and covariant boxes in it. The reason for this is simple to explain — the expansion

of Riemann tensor on-shell starts at the first order, Riem ∼ O(h), which is in opposition

to the case for Ricci tensor and curvature scalar.

When the nonlocal generalized Gauss-Bonnet operator

GBγ4(�) = Riem γ4(�)Riem− 4Ric γ4(�)Ric+R γ4(�)R (4.7)

is switched on the amplitudes will depend explicitly on γ4(�) (through vertices) and on

γ′0(�) = γ0(�)− γ4(�) and γ′2(�) = γ2(�)+4γ4(�) (through propagators). This operator

is non-trivial in any dimension D ≥ 4, and gives rise only to new vertices, but not to the

full propagator of the theory. As it is now obvious from the discussion in section 3.2 the

vertices derived from this term contain derivatives of the form factor with respect to its

argument (up to the second order). Moreover the argument of the form factor, which is the

covariant box operator (acting on a tensor field up to rank four) must be varied too (up to

the second order), which complicates the situation quite a lot. Therefore the computation

of such vertices is quite involved and we don’t attempt to present the exact results here.

We only remark that the results for constant form factors in section 3.2 for D > 4 are

consistent with these qualitatively described here. The presence of a non-constant form

factor γ4(�) in a nonlocal theory (4.1) is crucial even in D = 4 and there in an ideal

graviton scattering experiment we could fit the form factors γ′0(�), γ′2(�) and γ4(�) by

measuring the cross section.
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5 General n−graviton scattering amplitudes in local and nonlocal theo-

ries

Having discussed the scattering amplitudes in four-dimensional Stelle theory and in sim-

ple extensions of it in the previous sections (higher dimensional setup, inclusion of terms

quadratic in Riemann tensor, and nonlocal form factors), now we wish to explore other

possible directions about how we could extend our results. The main motivation is to

seek a well-defined setup in which amplitudes will differ significantly from those obtained

in Einstein theory and therefore would permit for unambiguous verification of the theory

by comparing predictions for cross sections with hypothetical experiments on gravitational

wave scattering. As we will see in this section it is still difficult to depart from very ubiq-

uitous results of Einstein gravity. As a first step we will try to describe the situation when

n-point correlation functions are considered. In this area the theorem (first proven by

Anselmi in [57, 58]) will reveal to be very enlightening for the tree-level situation. We will

again find typically only standard results from Einstein theory and a justification for this

will be given. A special role will be assigned to the Riemann tensor and to the form factor

γ4(�). At the end we will comment on other possible extensions by the inclusion of other

operators: local (and higher in curvatures) and in a sense more nonlocal, and by going

beyond tree-level. In this way we will touch on any reasonable extension of the original

theory (2.2). Exploration of all these directions in an exhaustive way is beyond the scope

of this paper and we will leave it for future publications.

Let us consider the case of higher than four-graviton scattering amplitudes at tree

level. For this goal we present here the following theorem.

Theorem. All the n-point functions in any gravitational theory (in particular super-

renormalizable or finite) with an action

Lgr = −2κ−2
D

√−g [R+R γ0(�)R+Ric γ2(�)Ric+V(R,Ric,Riem,∇) ] , (5.1)

give the same on-shell tree-level amplitudes as the Einstein-Hilbert theory, LEH =

−2κ−2
D

√−gR, provided that the potential V is at least quadratic in Ric and/or R. In

particular for any theory in which we can recast the potential in the following form

V = Ric · Ṽ ·Ric ≡ Rµν [Ṽ(R,Ric,Riem,∇)]µνρσRρσ, (5.2)

the theorem is still valid (Ṽ is in full generality a differential operator with contravariant

indices µ, ν, ρ, σ acting on the Ricci tensor to the right, containing at least one power of

gravitational curvature.)

Proof. The proof is based on the field redefinition theorem proved by Anselmi [57] at

perturbative level and to all orders in the Taylor expansion of the redefinition of the metric

field.

First we assume that we have given two general weakly nonlocal action functionals

S′(g) and S(g′), respectively defined in terms of the metric fields g and g′, such that

S′(g) = S(g) + Ei(g)Fij(g)Ej(g) , (5.3)
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where F can contain derivative operators and Ei = δS/δgi is the EOM of the theory with

action S(g).2 The statement of the theorem is that there exists a field redefinition

g′i = gi +∆ijEj ∆ij = ∆j i, (5.4)

such that, perturbatively in F , but to all orders in powers of F , we have the equivalence

S′(g) = S(g′) . (5.5)

Above ∆ij is a possibly nonlocal operator acting linearly on the EOM Ej , with indices i

and j in the field space, and it is defined perturbatively in powers of the operator Fij(g),

namely ∆ij = Fij(g) + . . . Let us consider the first order in the Taylor expansion for the

functional S(g′), which reads

S(g′) = S(g +∆g) ≈ S(g) +
δS

δgi
δgi = S(g) + Ei δgi . (5.6)

If we can find a weakly nonlocal expression for δgi such that

S′(g) = S(g) + Ei δgi (5.7)

(note that the argument of the functionals S′ and S is now the same), then there exists

a field redefinition g → g′ satisfying (5.5). Hence the two actions S′(g) and S(g′) are

tree-level equivalent.
�

As it is obvious from above, in the proof of our theorem it was crucial to use classical

EOM Ei. In the theory (5.1) this implies Ric = 0 in vacuum regions without the presence

of any matter source. These are the conditions we have imposed on the linearized level

when we defined asymptotic states of on-shell gravitons as perturbative states of our theory.

Now we can apply the above field redefinition theorem to our class of theories (1.1),

where we do not include terms with Riemann tensor Riem. Since we are interested in

S(g′) ≡ SEH(g
′) and S′(g) ≡ Sgr(g), the relation (5.3) reads

S(g′) = SEH(g) +Rµν(g)F
µν,ρσ(g)Rρσ(g) = S′(g) . (5.8)

Here we also used that in the spectrum of Einstein-Hilbert theory we only have the mass-

less spin 2 graviton (contrary to the case of the theory described by the action (5.1) with

polynomial form factors) and the on-shell scattering of such particles we relate in the two

theories. It would be clearly nonsensical to apply the theorem for scattering of other par-

ticles (appearing e.g. in theory (5.1)) and attempt to relate it to the scattering amplitudes

in the Einstein two-derivative theory.

If the potential V is at least quadratic in R and/or Ric, namely takes the form (5.2),

where Ṽ is a rank four tensor made of any tensor including Riemann tensor, its contractions

2Here we use a compact deWitt notation and with the indices i, j on fields we encode all Lorentz, group

indices, and the spacetime dependence of the fields. Additionally, we assume that the field space is flat and

we do not need to raise indices in sums there.
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and derivative operators, then the tensor Fij(g) used in the field redefinition (5.3) exists,

it is weakly nonlocal, and equals to

Fµν,ρσ = gµνgρσγ0(�) + gµρgνσγ2(�) + Ṽ(R,Ric,Riem,∇)
µνρσ

. (5.9)

In the additional part of our theorem we will discuss about the possibility of recasting the

potential V in the form (5.2). Of course due to the known ambiguity related to an order of

writing covariant derivatives (non-commuting on a general manifold) in tensorial expres-

sions, this last remark is not very precise. More precisely we require that the contribution

to the EOM from the potential V should vanish, when the ansatz Ric = 0 is used. (This

is the conclusion about vacuum spacetime in Einstein gravity, which on the linearized level

coincides with the on-shell conditions for the massless gravitons.) We do not say that in

order to use the theorem the initial potential V must be in the form (5.2), it only must be

possible to cast it in such form.

Our results about Stelle theory in four dimensions reported in section 3.1 can be

understood in the following way. First, we may employ Gauss-Bonnet theorem to reduce the

action to the form with only the Ricci scalar and the Ricci tensor square terms. Secondly, we

can use the field redefinition theorem to prove that this theory is equivalent to the Einstein-

Hilbert theory regarding the on-shell tree-level graviton amplitudes. Another convenient

choice is to start with a theory written in a Weyl basis with the quadratic part consisting of

the Ricci scalar square R2 and the Weyl tensor square C2. We can take the limit in which

only the coefficient in front of C2 survives so that the theory is now conformally invariant

at classical level for D = 4. The operator C2 should contribute with the fourth power in the

energy to the four-graviton scattering amplitudes, but conformal invariance requires the

scattering amplitudes to be numbers independent on the scale. Therefore, the amplitudes

must be zero because the graviton field is dimensionless and there is no other scale in

Weyl gravity. On the other hand, in N = 4 super-Yang-Mills theory we can have non-zero

amplitudes because the gauge bosons have energy dimension one. However, we explicitly

proved that also the operator R2 does not give any contribution to the amplitudes, so

that we can conclude the scattering amplitudes for any purely quadratic gravity in D = 4

are vanishing.

As a special case, our explicit computation confirms that the four-graviton scattering

amplitudes in four dimensional Weyl conformal gravity [89] is identically zero, namely

L = −αg
√−g CµνρσC

µνρσ =⇒ A(4-graviton) ≡ 0 . (5.10)

This derives from the fact that in any CFT S matrix must be trivial.

In D > 4, operators quadratic in the Riemann tensor (with or without form factors)

cannot be recast in the form of operators quadratic in the Ricci and scalar curvatures

without introducing extra vertices because the generalized Gauss-Bonnet operator (4.7) is

no more topological. Therefore, they could contribute to the scattering amplitudes. This

completely explains the results found in section 3.2 and also explain why in the case of

form factors sandwiched among Riemann tensors the results will deviate from the ones

computed in Einstein theory. In the four dimensional case the generalized Gauss-Bonnet
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term (4.7) does have an impact on the EOM and the Ricci-flatness ansatz is not valid in

the vacuum of the theory. Therefore, also in this case we cannot apply the theorem and the

amplitudes differ from those of the Einstein theory in agreement with the results reported

in section 4. In particular the amplitudes in the Einstein-Hilbert action supplemented by

the two-loop correction term (Goroff-Sagnotti term [61]), understood as an effective field

theory, will not coincide with those from pure Einstein theory.

We comment also on applications of the above theorem to the case of dimension D. For

the case of a finite theory the result can be extended to any order in the loop expansion if

we neglect the finite contributions to the quantum action. In even dimension we can easily

achieve finiteness by using of killers constructed at least out of two Ricci tensors (compare

formula (1.9) for D = 4). Note that in odd dimension, for γ > (D−1)/2 in the description

after formula (1.4), the theory (4.1) is finite in DIMREG without the need to add any killer

operator. We also note that in D = 3 the Riemann tensor is not independent from the

Ricci tensor and the scalar, therefore three-dimensional Einstein-Hilbert gravity without

matter is finite at quantum level (but without perturbative degrees of freedom).

For the case of a 1-loop super-renormalizable theory in D = 4 the theorem can be

applied at any order in the loop expansion including quantum loop divergences of ampli-

tudes and the quantum logarithmic corrections coming together with the one-loop running

of gravitational couplings. However, we again expect deviations from Einstein Hilbert am-

plitudes due to other quantum finite contributions. It is crucial here that the theory is

one-loop super-renormalizable, because we only have divergences at the controllable one-

loop level. In a general renormalizable theory we would have divergences of the type R2

and R2
µν at any loop order in D = 4, and the structure of the RG equations for the

running coupling constants or the finite terms in the effective action will be much more

complicated. In the case of theories renormalizable (and super-renormalizable) in higher

dimension D ≥ 6 we cannot apply our theorem any more, because then operators of the

type Riem3 in the potential V are needed for having a renormalizable theory.

To make the discussion of the redefinition theorem more transparent we present here

an example of its use.

Example. For the finite four-dimensional theory (1.9), the following choice of F

makes (1.9) tree-level equivalent to the Einstein-Hilbert theory (all the graviton scattering

amplitudes are the same):

Fµν,ρσ=gµρgνσ
eH(−�Λ) − 1

�
− 1

2
gµνgρσ

eH(−�Λ) − 1

�
+s1g

µνgρσR�(R·)+s2R
µν
�(Rρσ·).

(5.11)

(When the action of the field redefinition (contraction Fµν,ρσRρσ) is evaluated, we substi-

tute the center dot in the last two terms above by the Ricci tensor on the right Rρσ.)

Remark. We here showed that Sgr and SEH are tree-level equivalent and all the on-shell

scattering amplitudes can be equivalently calculated using one or the other theory. How-

ever, off-shell amplitudes do not match, because in proving the theorem we made crucial

use of the equations of motion Ric = 0, that uniquely characterize the perturbative gravi-

ton field in vacuum in both the theories. Similarly in the domain of classical field theory
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other non-perturbative solutions exist in Sgr, which are not shared by SEH. Therefore the

two theories are equivalent only in the framework of perturbation theory, and full matching

of the amplitudes happens only at tree-level.

As reviewed in section 1.3, we can introduce other operators, local or nonlocal, to

make the theory (1.1) finite at quantum level. In this section making use of the field

redefinition theorem we proved that the killer operators in the action (1.9) do not give

tree-level contributions to the n−graviton on-shell scattering amplitudes. However, (1.9)

is not unique and we are free to introduce other killers that can affect the n-point functions.

One example of such killers is the following quartic operator in the Riemann tensor,

s4Riem2
�

γ−2Riem2, (5.12)

which gives contribution to the four and n−graviton scattering amplitudes (n ≥ 4), as

shown in the proof above, because we can extract from it at least four-graviton fields

around flat spacetime (we remind that we get Riem ∼ O(h), while Ric ∼ O(h2) when

expanding the metric around Minkowski spacetime with on-shell metric fluctuations).

Beyond tree-level amplitudes. Finally, we expand about the operators we expect beyond

the simplest tree-level computation. In this short subsection the main emphasis is placed

on the finite terms and their contributions to the scattering amplitudes at loop levels. Of

course it is known that such terms are not universal and the results for the amplitudes are

unambiguous only if some renormalization conditions at some energy scale are fixed (below

it is assumed that is is already done).

At quantum level Einstein gravity is non-renormalizable and we expect contributions

to n−gravi–ton amplitudes from many other operators unlike the case of 1-loop super-

renormalizable or finite theories. For the latter we expect to have an upper limit on the

number of derivatives in the UV for the operators in quantum effective action (precisely

2γ + 4 in D = 4), while for Einstein gravity we formally have up to infinite number of

them.

At one-loop a super-renormalizable theory in D = 4 gets extra nonlocal contributions

that in the UV look like

R log

(

− �

µ2

)

R , Ric log

(

− �

µ2

)

Ric , (5.13)

and by virtue of the results in this paper they do not contribute to any graviton scattering

amplitudes. Conversely the finite contribution, which arises in higher dimensions,

Riem log

(

− �

µ2

)

Riem , (5.14)

will give an explicit or implicit (after recasting in terms of the operators (5.13) plus extra

vertices) contribution. Moreover, we have an upper limit for the UV energy scaling of the

scattering amplitudes evaluated with the quantum action. For the super-renormalizable

theory without Riemann tensors, or a finite theory with killers not involving them, the

upper limit is E4 in D = 4, while in extra dimensions it is ED.
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With the field redefinition at hand we may attempt to compute the contribution even

beyond tree-level in theories for which we can still apply our theorem. In this situation the

two theories differ only by the Jacobian of the transformation that we need to include when

we compute the partition function with the path integral method. As we proved above the

action functionals are equivalent, i.e. S(g′) = S′(g). In the path integral we also have to be

careful about the change of the measure — Jacobian of the transformation. The Jacobian

of the field redefinition transformation g → g′ is given by

J = Det
δg

δg′
= Det

δgµν(x)

δg′ρσ(x
′)

= Tr log
δgµν(x)

δg′ρσ(x
′)
. (5.15)

Its divergent part vanishes in DIMREG scheme for the case of any analytic field redefini-

tion. However, the finite non-analytic contributions to the quantum action, if any, take

part in the Jacobian that we can compute perturbatively. For this purpose we introduce

two ghost-like auxiliary fields (similar to Faddeev-Popov ghosts), which have fermionic

statistics [59]. Next, we can consider Feynman loop diagrams with these fields and we

compute the contribution of the Jacobian to the scattering amplitudes. At the zero-loop

order (tree-level) the Jacobian is one and we should do not worry about the inclusion of

diagrams with the new ghosts in the amplitudes. The contribution of the Jacobian starts

at the one-loop order.

In D = 5 we may expect the following finite terms in the effective action,

q0R
√
−�R , q2Ric

√
−�Ric , q4Riem

√
−�Riem . (5.16)

The non-analytic functions (like the above square root) of the covariant box operator

appear due to dimensional reasons in any odd dimension. Only the last operator with two

Riemann tensors will contribute to the amplitudes, and the coefficient q4 will keep track of

all the other form factors present in the classical or quantum action as explicitly evaluated

in section 4.

We do not know at the moment the other finite contributions to the quantum action,

but we know, as already mentioned, what the upper limit for the energy scaling of the

finite contributions to the quantum action is: E4 in D = 4. In the high energy regime

(E ≫ κ−1
D ∼ MP ∼ Λ) we expect these finite contributions to approach the form of the

following operators:

R 1

�
R 1

�
R2 , R 1

�
R 1

�
R 1

�
R2 , R 1

�
R 1

�
R 1

�
. . .

1

�
R2 , . . . , (5.17)

which probably contribute to the scattering amplitudes.

Anyhow, only an explicit calculation of the one-loop scattering amplitudes will tell us

the form of such corrections.

6 Conclusions

In this paper we have performed a tree-level computation of on-shell four-graviton scatter-

ing amplitudes in the context of higher derivative Stelle theories and nonlocal gravitational
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theories quadratic in the curvature with non-locality specified by form factors. The the-

ories in the first class are known to be generically non-unitary due to the appearance of

non-physical poles in the spectrum [6]. Conversely, the second class of theories, under some

specific choice of the form factors, have been proven to be good candidates for a ghost-free

and super-renormalizable or finite theory of quantum gravity [17–21, 23, 26, 28]. In both

cases we have checked that, in the absence of terms quadratic in the Riemann tensor, the

amplitudes coincide with the ones found in Einstein theory. Furthermore, the four-graviton

scattering amplitudes in Weyl conformal gravity are identically zero.

We provided an explanation of this result on the basis of a field redefinition map of

quadratic gravity into the usual Einstein-Hilbert action [57]. This map is defined pertur-

batively at all orders in the parameters appearing in quadratic gravity. This ensures the

two theories, sharing the same unperturbed action, are completely equivalent from the

point of view of the tree-level amplitudes. More specifically this equivalence holds only

as long as the two theories are supposed to have the same free spectrum. We cannot use

the map to address the computation of observable quantities involving poles not present

in Einstein theory.

The idea that field redefinitions do not affect the physical S matrix was actually dis-

cussed in the context of quantum field theory, specifically renormalization theory, a long

time ago and it actually lies at the core of the fundamental results about the quantum

divergences of Einstein gravity [60, 61]. An application of the field redefinition very sim-

ilar to the one in this paper can be found in [62]. In [62] the authors argue that, just

thanks to field redefinition, the order α′k4 four-graviton amplitudes calculated in string

theory can be derived from an effective action, where only the Gauss-Bonnet density shows

up, consistently with the previous predictions in [91]. The field redefinition was also used

to prove that in any higher derivative effective gravitational action the effective graviton

propagator is always without ghosts. Similar results are derived at large in [58]. Our cal-

culation is actually very near in the spirit to the one in [92], where the effective quadratic

action, reproducing the string theory amplitudes at the order α′k4, is determined by only

considering the O(k4) amplitudes. However, in the approximation considered, the presence

of the additional poles in the propagator contributes only linearly in γ0 and γ2.

In this paper we have considered the full non-linear dependence including the full

propagator of quadratic gravity and checked the redefinition theorem to all orders in γ0
and γ2. When the Riemann square term contributes to the interaction vertices (in D > 4)

we have found additional terms in the amplitudes, depending on γ0 and γ2, which were

neglected in previous computations. This is justified because the previous computations

were to order O(k4), while the first non-vanishing vertices’ contribution are possible to be

derived from terms at least cubic in curvature (so at least of order O(k6)). Furthermore,

the on-shell four-graviton amplitudes for a large class of weakly nonlocal gravity theories

have been computed drawing on the fact that the form factors present in the action can be

treated without much effort when on-shell gravitons are considered [25, 27]. We emphasize

that our results differ from the standard ones obtained in Einstein gravity for the case

of Gauss-Bonnet term in higher dimensions and also in the case of generalized Gauss-

Bonnet terms (sandwiching a function of the d’Alembertian � operator (4.7)) in D ≥

– 27 –
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4. In principle, this allows us to determine the form factors by comparing the results

for amplitudes with hypothetical experimental data on graviton scattering. In particular

we are able to determine the coefficients in the most general quadratic Stelle theory in

D = 6 dimensions. Among other extensions of our results we mentioned amplitudes with

any number of external gravitons (n ≥ 4) and our expectations about results beyond

the tree-level.

Finally, although the original motivation of this study was to evaluate scattering ampli-

tudes in a particular class of weakly nonlocal theories of gravity, the outcome of the paper

is a general feature of any higher derivative local or nonlocal gravitational theory: Ein-

stein quantum gravity [58], conformal gravity, effective string theory, and local or nonlocal

higher derivative super-renormalizable theories [85]. We are now motivated to introduce

more advanced techniques in order to calculate n−point functions in local or nonlocal

gravity involving the Riemann or Weyl tensors [93].

Acknowledgments
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A Details on the propagator

In this appendix we will closely follow the procedure employed in [86, 87]. Lorentz covari-

ance and Bose symmetry allow us to rewrite the kinetic operator Oαβ,γδ(k) in (1.5) making

use of the following basis,

X1 = ηµνηρσ , X2 =
1

2
(ηµρηνσ + ηµσηνρ) , X3 = ηµν

kρkσ
k2

+ ηρσ
kµkν
k2

, (A.1)

X4 =
1

4

(

ηµρ
kνkσ
k2

+ ηµσ
kνkρ
k2

+ ηνρ
kµkσ
k2

+ ηνσ
kµkρ
k2

)

, X5 =
kµkνkρkσ

(k2)2
. (A.2)

We note that Oαβ,γδ(k) =
∑5

i=1 fiXi does not depend on γ0, γ2, and γ4, but only on the

two linear combinations γ0 − γ4 and γ2 + 4γ4, because the integral
∫

dDx
(

R(1)2
µνρσ − 4R(1)2

µν +R(1)2
)

(A.3)

is identically zero in any dimension D. From action (4.1) we read the coefficients fi:

f1 =
(

−2κ−2
D k2

)

[

1

4
+ 2k2

(

(γ0 − γ4) +
1

4
(γ2 + 4γ4)

)]

,

f2 =
(

−2κ−2
D k2

)

(

−1

2

)

[

1− k2 (γ2 + 4γ4)
]

,

f3 =
(

−2κ−2
D k2

) (

−2k2
)

[

(γ0 − γ4) +
1

4
(γ2 + 4γ4)

]

,

f4 =
(

−2κ−2
D k2

) (

−k2
)

(γ2 + 4γ4) ,

f5 =
(

−2κ−2
D k2

)

k2 [2 (γ0 − γ4) + (γ2 + 4γ4)] . (A.4)
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In order to define the graviton propagator we have to invert the kinetic operator O.

These calculations are most conveniently carried out in terms of the Barnes-Rivers opera-

tors [88, 90] in the space of symmetric rank-two tensors. The complete set of D-dimensional

operators is given by

P 1
µν,ρσ =

1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ) ,

P 2
µν,ρσ =

1

2
(θµρθνσ + θµσθνρ)−

1

D − 1
θµνθρσ ,

P 0θ
µν,ρσ =

1

D − 1
θµνθρσ , P 0ω

µν,ρσ = ωµνωρσ , P̄ 0
µν,ρσ = P 0θω

µν,ρσ + P 0ωθ
µν,ρσ ,

P 0θω
µν,ρσ =

1√
D − 1

θµνωρσ , P 0ωθ
µν,ρσ =

1√
D − 1

ωµνθρσ ,

where θµν and ωρσ are the usual transverse and longitudinal vector projection operators

θµν = ηµν −
kµkν
k2

, ωµν =
kµkν
k2

,

that satisfy the relations: θµρθ
ρ
σ = θµν , ωµρω

ρ
ν = ωµν , and θµρω

ρ
ν = 0. The operators P 1,

P 2,P 0θ and P 0ω are idempotent, mutually orthogonal, and satisfy the following complete-

ness relation,
[

P 1 + P 2 + P 0θ + P 0ω
]

µν,ρσ
=

1

2
(ηµρηνσ + ηµσηνρ) ≡ Iµν,ρσ .

They project out the spin-1, spin-2, and two spin-0 parts of the field. The two spin-0

transfer operators are such that

P̄ 0P 1 = P 1P̄ 0 = P̄ 0P 2 = P 2P̄ 0 = 0 ,
(

P̄ 0
)2

= P 0θ + P 0ω , (A.5)

P 0ωP̄ 0 = P̄ 0P 0θ = P 0ωθ , P 0θP̄ 0 = P̄ 0P 0ω = P 0θω . (A.6)

We decompose the operator O in the projectors basis

Oαβ,γδ(k) = c1P
1 + c2P

2 + cω0P
0ω + cθ0P

0θ + c̄0P̄
0, (A.7)

where the coefficients c1, c2, c
ω
0 , c

θ
0, c̄0 are obtained using the tensorial identities

X1 = (D − 1)P 0θ + P 0ω +
√
D − 1P̄ 0 , X2 = P 1 + P 2 + P 0θ + P 0ω

X3 =
√
D − 1P̄ 0 + 2P 0ω , X4 =

1

2
P 1 + P 0ω , X5 = P 0ω . (A.8)

The coefficients ci are explicitly:

c1 = f2 +
1

2
f4 =

(

−2κ−2
D k2

) 1

2

c2 = f2 = 2κ−2
D k2

(

1− k2 (γ2 + 4γ4)
)

,

cθ0 = (D − 1) f1 + f2=
(

−2κ−2
D k2

) 1

4

[

(D − 3)+2k2 (4 (D−1) (γ0 − γ4) +D (γ2 + 4γ4))
]

,

cω0 = f1 + f2 + 2f3 + f4 + f5 =
(

−2κ−2
D k2

)

(

−1

4

)

,

c̄0 =
√
D − 1 (f1 + f3) =

(

−2κ−2
D k2

) 1

4

√
D − 1 . (A.9)
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The problem of finding O−1
αβ,γδ(k) = s1P

1 + s2P
2 + sω0P

0ω + sθ0P
0θ + s̄0P̄

0 boils down to

solving the linear system

O · O−1 =



















c1 0 0 0 0

0 c2 0 0 0

0 0 cθ0 0 c̄0
0 0 c̄0 0 cω0
0 0 0 cω0 c̄0
0 0 0 c̄0 cθ0

































s1
s2
sθ0
sω0
s̄0















=



















1

1

1

0

1

0



















.

Using the echelon matrix form [86, 87]



















c1 0 0 0 0 1

0 c2 0 0 0 1

0 0 cθ0 0 c̄0 1

0 0 c̄0 0 cω0 0

0 0 0 cω0 c̄0 1

0 0 0 c̄0 cθ0 0



















∼



















c1 0 0 0 0 1

0 c2 0 0 0 1

0 0 cθ0 0 c̄0 1

0 0 0 cω0 c̄0 1

0 0 0 0 cθ0c
ω
0 − c̄20 −c̄0

0 0 0 0 0 0



















,

the propagator is given by

O−1 =
1

c1
P 1 +

1

c2
P 2 +

1

cθ0c
ω
0 − c̄20

(

cω0P
0θ + cθ0P

0ω − c̄0P̄
0
)

.

B Useful expansions

We list the expansions that are necessary to determine the propagator and vertices used

in the paper. The expansion of the metric around flat spacetime is defined as

gµν = ηµν + hµν , (B.1)

We will always assume hµν as an on-shell field satisfying the conditions �hµν = 0, ∂µhµν =

0, hµµ = 0. This is convenient to reduce the expressions to a compact form which is the one

we actually need in most computations for on-shell gravitons amplitudes. When we want

to refer to unconstrained off-shell fields we will adopt the notation hµν .

gµν(1) = −hµν ,

gµν(2) = hµaha
ν ,

(√−g
)(2)

= −1

2
habh

ab ,

R(1) = ∂a∂bh
ab −�haa ,

R(2) = −∂bhac∂
chab +

3

2
∂chab∂

chab ,
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R(4) = −12habhcd∂bhde∂cha
e + 18 ha

chab∂bh
de∂chde + 24 ha

chabhde∂c∂bhde

−24ha
chabhde∂c∂ehbd + 36hab hcd∂cha

e∂dhbe − 24habhcd ∂bha
e∂dhce

−24ha
chab hde∂e∂chbd + 24ha

chabhde ∂e∂dhbc + 24habhcd∂dhce ∂ehab

−6habhcd∂ehcd ∂ehab − 24habhcd∂dhbe ∂ehac + 18habhcd∂ehbd ∂ehac

−24ha
chab∂chde ∂ehb

d − 12ha
chab∂dhce ∂ehb

d + 36ha
chab∂ehcd ∂ehb

d,

R(1)
µν =

1

2

(

−∂µ∂νh
a
a + ∂µ∂

ahaν + ∂ν∂
ahaµ −�hµν

)

,

R(2)
µν =

1

2
∂µh

ab∂νhab+hab (∂b∂ahµν+∂µ∂νhab−∂b∂µhνa−∂b∂νhµa)+∂bhµ
a(∂bhνa−∂ahνb),

R(1)
µν̺σ =

1

2
(−∂µ∂ρhνσ + ∂µ∂σhνρ + ∂ν∂ρhµσ − ∂ν∂σhµρ) , (B.2)

R(2)
µν̺σ = −1

2
∂ahνσ∂

ahµρ +
1

2
∂ahνρ∂

ahµσ +
1

2
∂ahνσ∂µhρa −

1

2
∂ahνρ∂µhσa

−1

2
∂ahµσ∂νhρa +

1

2
∂µhσa∂νhρ

a +
1

2
∂ahµρ∂νhσa −

1

2
∂µhρ

a∂νhσa

+
1

2
∂ahνσ∂ρhµ

a − 1

2
∂νhσa∂ρhµ

a − 1

2
∂ahµσ∂ρhνa +

1

2
∂µhσa∂ρhν

a

−1

2
∂ahνρ∂σhµ

a +
1

2
∂νhρa∂σhµ

a +
1

2
∂ρhνa∂σhµ

a

+
1

2
∂ahµρ∂σhνa −

1

2
∂ρhµ

a∂σhνa −
1

2
∂µhρa∂σhν

a , (B.3)

R(3)
µν̺σ = −3

2
hab∂ahµσ∂bhνρ +

3

2
hab∂ahµρ∂bhνσ − 3

2
hab∂ahνσ∂µhρb +

3

2
hab∂ahνρ∂µhσb

−3

2
hab∂µhσb∂νhρa +

3

2
hab∂ahµσ∂νhρb −

3

2
hab∂ahµρ∂νhσb +

3

2
hab∂µhρa∂νhσb

−3

2
hab∂bhνσ∂ρhµa +

3

2
hab∂νhσb∂ρhµa −

3

2
hab∂µhσb∂ρhνa +

3

2
hab∂ahµσ∂ρhνb

+
3

2
hab∂bhνρ∂σhµa −

3

2
hab∂νhρb∂σhµa −

3

2
hab∂ρhνb∂σhµa

+
3

2
hab∂µhρb∂σhνa −

3

2
hab∂ahµρ∂σhνb +

3

2
hab∂ρhµa∂σhνb. (B.4)
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