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1 Introduction

By now all three lepton mixing angles have been measured with a certain degree of preci-

sion [1]1 (see also [2, 3])

sin2 θ13 = 0.0218(9)
+0.0010(1)
−0.0010 , sin2 θ12 = 0.304 +0.013

−0.012 , sin2 θ23 =

 0.452 +0.052
−0.028(

0.579 +0.025
−0.037

)
(1.1)

for a normal ordering (NO) and in brackets for an inverted ordering (IO) of the neutrino

masses, respectively. Assuming that neutrinos are Majorana particles and none of them to

be massless, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix UPMNS that

encodes lepton mixing does not only contain the three mixing angles θ12, θ13 and θ23, but

also three phases: the Dirac phase δ and the two Majorana phases α and β. The former can

be measured in neutrino oscillation experiments, while a linear combination of the latter

can be accessible in neutrinoless double beta decay experiments (for a review on leptonic

CP violation see [4]). No direct signals of CP violation have been observed in the lepton

sector and recent global fits only show a weak indication (below the 3 σ significance) of a

non-trivial value of the Dirac phase δ [1].

Many approaches have been pursued in order to describe the data on lepton mixing.

A particularly promising Ansatz assumes the existence of a flavor symmetry Gf , usually

finite, non-abelian and discrete, that is broken to different residual groups Ge and Gν in

1For data files see NuFIT webpage, http://www.nu-fit.org.
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the charged lepton and neutrino sectors, respectively (for reviews see [5–8]). In (the most

predictive version of) such a framework all three mixing angles together with the Dirac

phase δ can be fixed by the symmetries of the theory Gf , Ge and Gν , if the three generations

of left-handed (LH) leptons are assigned to an irreducible three-dimensional representation

3 of the flavor group Gf , i.e. to a representation that cannot be decomposed further in Gf .2

We note that this approach does not constrain lepton masses and thus all statements made

on the predictive power regarding lepton mixing angles and the Dirac phase δ are valid up

to possible permutations of rows and columns of the PMNS mixing matrix. For neutrinos

being Majorana particles surveys of finite, non-abelian and discrete subgroups of SU(3)

and U(3), see [9] and references therein, have shown that symmetries giving rise to mixing

angles which are in good agreement with experimental data in general lead to trimaximal

(TM) mixing [10–13] (and thus sin2 θ12 & 1/3) and a trivial Dirac phase δ = 0, π.

An extension of this approach that involves also CP as symmetry has been proposed

in [14] (see also [15, 16] as well as [17]). In this case, also the CP symmetry acts in general

in a non-trivial way on the flavor space [18–20] and conditions have to be fulfilled in order

for the theory to be consistent. The residual groups Ge and Gν are chosen as follows: Ge is

an abelian subgroup of Gf with three or more elements and Gν is the direct product of a Z2

group contained in Gf and the CP symmetry. Thus, the form of these groups is similar to

the one in the approach without CP. The advantages of the extension with CP are threefold:

Majorana phases are also predicted, the Dirac phase does not need to be trivial, if the lepton

mixing angles are accommodated well, and the mixing pattern contains one free parameter

θ. The latter allows for a richer structure of patterns that are in good agreement with

the experimental data. In particular, mixing does not need to be TM. At the same time,

being governed by only one free parameter all mixing parameters are strongly correlated.

Such correlations can be testable and/or distinguishable at future facilities [21–24]. The

value(s) of this free parameter that admit(s) a reasonable agreement with the experimental

data is (are) not fixed by the approach itself, but has (have) to be achieved in a concrete

model (see [25–28] for several successful models with different symmetries Gf and CP). This

approach has already been studied for a variety of flavor symmetries: A4 and S4 [14, 25–28],

∆(48) [29], ∆(96) [30] as well as ∆(3n2) and ∆(6n2) with general n [31, 32].3

Here we would like to consider A5 as flavor group. This group has already been

employed as flavor symmetry [34–40]. In particular, it has been shown to give rise to the

so-called “golden ratio” (GR) mixing pattern, sin2 θ23 = 1/2, θ13 = 0 and tan θ12 = 1/φ

with φ = (1 +
√

5)/2 ≈ 1.618 so that sin2 θ12 ≈ 0.276.4 Very recently, predictions of CP

phases have been discussed in a scenario with A5 as flavor group and a CP symmetry [44].

Since the authors assume a Klein group and a CP symmetry to be preserved in the neutrino

2Since lepton mixing like quark mixing only regards LH fields, we do not need to specify in this ap-

proach how right-handed (RH) charged leptons, and possibly RH neutrinos, transform under Gf , unless we

construct an explicit model in which this approach is realized.
3Note that a variant of this approach has been considered for Gf = ∆(6n2) in which the residual

symmetry in the neutrino sector is a Klein group contained in the flavor group and a CP symmetry [33].
4Different versions of the GR mixing pattern are known in the literature that lead to different predictions

for the solar mixing angle in terms of the golden ratio [37, 41–43]. These are based on different flavor

symmetries.
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sector, the mixing angles are fixed to the values of the GR mixing pattern, while possible

values of the two Majorana phases depend on the CP transformation that is preserved.

The latter is not constrained to correspond to an automorphism of the flavor group A5

and thus results obtained in [44] differ from ours. In [45] an Ansatz has been pursued in

which two CP symmetries are present as residual symmetries in the neutrino sector. The

combination of these two leads in general to a symmetry acting on the flavor space only.

Under certain conditions this can be a transformation belonging to a finite, non-abelian

and discrete group. Therefore, if the latter is the alternating group A5 results of our study

can also be achieved using the Ansatz with two CP transformations in the neutrino sector.

In the present paper we analyze the scenario with the flavor symmetry A5 and a

CP symmetry comprehensively, since we consider all CP symmetries that correspond to

involutive ‘class-inverting’ automorphisms of A5, all possibilities for Ge, i.e. Ge = Z3,

Ge = Z5 as well as Ge = Z2 × Z2, and all possible Z2 subgroups of A5 as residual flavor

symmetry in the neutrino sector. All these combinations of symmetries together with all

possible permutations of the rows and columns of the PMNS mixing matrix are subject

to an analytical and a numerical study. In particular, we perform a χ2 analysis using the

results of the mixing angles from the global fit [1]. As outcome we only find four patterns

that admit a reasonable agreement with the experimental data, i.e. at the 3 σ level or better,

for a particular choice of the parameter θ. Two of these four patterns predict a maximal

Dirac phase together with maximal atmospheric mixing, while the other two ones lead to

a trivial Dirac phase and in general non-maximal θ23. Majorana phases are trivial for all

four patterns. Thus, two out of these four lead to no CP violation. This fact can be traced

back to the existence of an accidental CP symmetry, common to the charged lepton and

neutrino sectors, as we discuss. As regards the reactor and the solar mixing angles, we note

that θ13 is in general accommodated well, whereas θ12 is subject to non-trivial constraints

in all four cases: two of the four patterns give rise to a lower bound sin2 θ12 & 0.276,

the value of the GR mixing pattern, one incorporates TM mixing and thus sin2 θ12 & 1/3

and the remaining one entails an upper limit sin2 θ12 . 1 − φ2/4 ≈ 0.345, a value that is

associated with a different version of the GR mixing pattern [41, 42].

The paper is organized as follows: in section 2 we recapitulate the approach with a

flavor and a CP symmetry as well as the main features of the group A5. We also discuss

the admitted CP transformations and relegate further details regarding their relation to

the automorphisms of A5 and their nature to appendix A. Section 3 contains the analytical

study of all patterns that can lead to a good agreement with the experimental data as well

as the results of our χ2 analysis. We summarize our main results in section 4. Besides

appendix A we include appendix B that contains our definitions of mixing angles, CP

phases and corresponding CP invariants JCP , I1 and I2.

2 Approach

We briefly recapitulate the essential ingredients of the approach [14] and summarize the nec-

essary information on the group A5. We list the candidates of generators of residual flavor

symmetries in the charged lepton and neutrino sectors as well as the CP transformations.

– 3 –
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At the end of this section we also comment on the possible presence of an accidental CP

symmetry common to charged leptons and neutrinos. Since we focus on the case in which

the generations of LH leptons are assigned to an irreducible three-dimensional representa-

tion 3 of the flavor group, the CP transformation X as well as the elements of the flavor

symmetry are represented by (unitary, complex) three-by-three matrices in the following.

Let us consider a theory with a flavor group Gf = A5 combined with a CP symmetry

that in general also acts non-trivially on the flavor space [17–20]. The CP transformation

X is a unitary and symmetric matrix

XX† = XX? = 1 . (2.1)

The requirement that X, the CP transformation associated with the CP symmetry pre-

served in the neutrino sector and subject to the condition in (2.3), must be a symmetric

matrix has been shown in [14] to be necessary, since otherwise the neutrino mass spectrum

would be partially degenerate and, consequently, inconsistent with experimental observa-

tions [1]. In order to ensure a consistent combination of the flavor and CP symmetry we

require that the subsequent action of the CP transformation, an element of the flavor group

and the CP transformation is equivalent to the action of an (in general different) element

of the flavor group

(X−1AX)? = A′ , (2.2)

with A and A′ representing (different) elements of Gf .5 As shown in [15–17], a CP trans-

formation corresponds to an automorphism of the flavor group. In particular, our request

that X fulfills (2.1) renders this automorphism involutive. Following the discussion in [16]

this automorphism should be class-inverting, i.e. the image of the element g under the

automorphism has to lie in the same class as the inverse of g. This is guaranteed for the

three-dimensional representation 3 by the fulfillment of the condition in (2.2). As we show

in appendix A the automorphisms corresponding to the CP transformations we consider in

our analysis are also class-inverting when acting on the other representations of the flavor

group A5.

The residual symmetry in the neutrino sector is assumed to be the direct product of a

Z2 symmetry contained in the flavor group and the CP symmetry. Thus, the matrix Z rep-

resenting the generator of the former symmetry and the CP transformation X have to fulfill

XZ? − ZX = 0 , (2.3)

which is a particular case of the condition in (2.2). We note that the presence of the resid-

ual symmetries given by Z and X implies the existence of a second CP transformation

Ỹ = ZX in the neutrino sector that fulfills the same conditions in (2.1)–(2.3) as the CP

transformation X [14].

In the charged lepton sector, in contrast, we take as residual group an abelian subgroup

of the flavor symmetry that offers the possibility to distinguish among the three generations

5We use throughout this paper lowercase letters for the abstract elements of the flavor group A5 and

capital letters for the matrix representatives (in the representation 3).
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of charged leptons, i.e. this group has to have at least three different elements. The residual

group can be described with a set of generators Qi, i = 1, 2, . . . that commute.

The derivation of lepton mixing in this scenario has already been presented in detail

in [14] and we only mention it briefly. In the charged lepton sector, the residual group gener-

ated by Qi constrains the charged lepton mass matrix ml, here given in the right-left basis,

Q†i m
†
lmlQi = m†lml . (2.4)

The matrices Qi are diagonalizable by the unitary matrix Ue, i.e. U †eQiUe is diagonal, which

is determined up to the ordering of its columns and possible overall phases of the single

columns. As a consequence, also the combination

U †e m
†
lml Ue is diagonal . (2.5)

Thus, Ue diagonalizes the charged lepton mass matrix as regards LH charged leptons. In the

neutrino sector, the light neutrino mass matrix mν is subject to the following conditions6

ZT mν Z = mν and Xmν X = m?
ν , (2.6)

if the Z2 and CP symmetry are imposed. Without loss of generality we can choose a basis

such that

X = Ω ΩT and Ω† Z Ω = diag ((−1)z1 , (−1)z2 , (−1)z3) , (2.7)

with Ω being unitary and zi = 0, 1. Since Z generates a Z2 symmetry, two of the three

parameters zi have to coincide. The matrix combination ΩT mν Ω is then real and block-

diagonal and thus can be diagonalized by a rotation Rij(θ) in the (ij)-plane through an

angle θ that is determined by the matrix entries of ΩT mν Ω. Their actual values are in

general not predicted in this approach and thus θ is taken to be a free parameter in the

interval between 0 and π in the following. The (ij)-plane is fixed by the degenerate sub-

sector of Ω† Z Ω, i.e. the two zi and zj that are equal. The positiveness of the light neutrino

masses (a vanishing neutrino mass can also be included) is ensured by the diagonal matrix

Kν with entries ±1 and ±i on its diagonal. So, the contribution to lepton mixing from the

neutrino sector is given by

Uν = ΩRij(θ)Kν , (2.8)

and the PMNS mixing matrix resulting from this approach reads

UPMNS = U †e ΩRij(θ)Kν . (2.9)

It is important to note that this mixing matrix is only determined up to permutations of its

rows and columns (and unphysical phases), since this approach does not make any predic-

tions concerning the mass spectrum of charged leptons and neutrinos. For example, if not

embedded in a model context, see e.g. [25], one cannot predict whether neutrinos follow NO

6We do not need to specify the generation mechanism of neutrino masses unless we construct an explicit

model. So, this mass matrix can arise from integrating out heavy RH neutrinos, from Higgs SU(2)L triplets

acquiring a vacuum expectation value, etc.
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or IO. It is also worth to emphasize that a mixing matrix of the form in (2.9) has one column

that is determined by group theory only and that does not depend on the free parameter θ.

We note also that two tuples (Q,Z,X) and (Q′, Z ′, X ′) lead to the same physical

results, if the generators of the symmetries are related by a similarity transformation Ω̃

Ω̃†Q′ Ω̃ = Q , Ω̃† Z ′ Ω̃ = Z and Ω̃†X ′ Ω̃? = X . (2.10)

The alternating group A5 describes the even permutations of five distinct objects. It

is isomorphic to the icosahedral rotation group I. It has 60 different elements, organized in

five conjugacy classes, and, thus, possesses five irreducible representations: 1, 3, 3′, 4 and

5. All representations apart from the singlet are faithful.7 The group A5 can be generated

with two generators s and t that fulfill the relations

s2 = e , t5 = e and (st)3 = e , (2.11)

with e denoting the neutral element of A5. Since we would like to assign LH leptons to

triplets, we are particularly interested in the representations 3 and 3′. The explicit form

of the generators s and t in the representation 3 can be chosen as [36]

S =
1√
5


1
√

2
√

2
√

2 −φ 1/φ
√

2 1/φ −φ

 and T =


1 0 0

0 eiΦ 0

0 0 e4 iΦ

 , (2.12)

with

φ =
1

2
(1 +

√
5) and Φ =

2π

5
. (2.13)

The generators in 3′ are easily obtained from S and T in (2.12) by using the combination

T 2 S T 3 S T 2 and T 2 as generators, see also [37]. This shows immediately that the set of

all matrices describing the representations 3 and 3′ is the same and thus all conclusions

obtained in a comprehensive study of mixing using the representation 3 also hold for 3′.

Consequently, it is irrelevant for our analysis whether LH leptons are in 3 or 3′ of A5 and,

without loss of generality, we assume in the following that LH leptons transform as 3 of A5.

The group A5 has several subgroups. In particular, the group contains 15 elements

that generate a Z2 symmetry which give rise to five distinct Klein groups. These are, like

the Z2 generating elements themselves, all conjugate to each other. Since we make explicit

use of these elements we mention them here

v1 = s , v2 = st2st3st2 , v3 = t2st3st2 , v4 = t4st , v5 = st3st2s ,

v6 = t2st3sts , v7 = tst4 , v8 = st2st3s , v9 = stst3st2 , v10 = st2st ,

v11 = t2st3 , v12 = tst3st2s , v13 = tst2s , v14 = t3st2 , v15 = st2st3st .

7A representation is called faithful, if all elements of the group are represented by different matrices in

this representation. So, in the case of A5 the 60 group elements are represented by 60 different matrices in

the representations 3, 3′, 4 and 5.

– 6 –
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They form the Klein groups Ki

K1 = {v1, v2, v3, e} , K2 = {v4, v5, v6, e}
K3 = {v7, v8, v9, e} , K4 = {v10, v11, v12, e} and K5 = {v13, v14, v15, e} , (2.14)

see also [37]. Furthermore, there are ten Z3 and six Z5 subgroups. Also these are all

conjugate to each other. For the complete list of generating elements of these subgroups

see appendix B in [37]. So, three different types of groups, Z3, Z5 and Z2×Z2, can function

as residual symmetry Ge in the charged lepton sector.

The form of the CP transformations we consider is

X = V X0 (2.15)

with X0

X0 =


1 0 0

0 0 1

0 1 0

 (2.16)

and V is the matrix representative of a Z2 generating element, i.e. V 2 = 1, or V = 1. So,

we find in total 16 different possible CP transformations. All of them fulfill (2.1). Notice

that the CP transformation X0 gives rise to the so-called µ-τ reflection symmetry [46–50]

whose phenomenological consequences have been studied in detail in the literature.

As one can check, it holds for X0

(X−1
0 SX0)? = S and (X−1

0 TX0)? = T . (2.17)

Thus, for the generators S and T in the representation 3 the condition in (2.2) is valid for

A = A′. As a consequence, the corresponding automorphism is the trivial one

s → s and t → t . (2.18)

The CP transformations X = V X0 correspond to different inner automorphisms of the

group A5 (i.e. automorphisms whose action on the elements of the group can be represented

by a similarity transformation with a(nother) group element) that map the generators s

and t in the following way

s → v s v−1 and t → v t v−1 . (2.19)

The automorphism group of A5 is the symmetric group S5 and the group of inner au-

tomorphisms is isomorphic to A5 itself. As we show in appendix A the 16 different CP

transformations we consider correspond to the 16 class-inverting involutive automorphisms

of A5. We thus discuss all CP transformations that can be consistently imposed according

to [16] and that fulfill the requirement in (2.1).

A last condition that needs to be examined is the constraint in (2.3), namely whether

the Z2 generator commutes with the chosen CP transformation. We find that for each Z

– 7 –
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four different possible CP transformations X are admitted: for Z being one of the non-

trivial elements of the Klein group Ki, i = 1, . . . , 5, the CP transformation X = V X0 with

V belonging to the same Klein group Ki (this time V = 1 is included) is a viable choice.

Taking into account that the Z2 generator Z and the CP transformation X automatically

imply the existence of a further CP transformation Ỹ , Ỹ = ZX, we can reduce the number

of independent choices of CP transformations for each Z2 generator Z to two.

Eventually, we mention that it can happen that an accidental CP symmetry Y , common

to the charged lepton and the neutrino sectors, exists that leads to trivial CP phases. This

can be checked by searching for a transformation Y that fulfills the following constraints

Y ?m†lml Y = (m†lml)
? and Y mν Y = m?

ν . (2.20)

These are equivalent to the conditions involving the generators of the different symmetries

Qi Y − Y QTi = 0 , (2.21)

ZY − Y Z? = 0 and XY ? − Y X? = 0 , (2.22)

with Y being a diagonal and real matrix in the neutrino mass basis, i.e. U †ν Y U?ν is diagonal

and real. For details see [14].

3 Lepton mixing

In order to study mixing comprehensively, we analyze all possible combinations of residual

symmetries in the charged lepton and neutrino sectors, i.e. all possible Ge and Gν (Z2

generators and CP transformations X). These can be expressed as tuples of generators

Qi of Ge and Z and X for Gν . As mentioned in section 2, Ge can be either a Z3, Z5 or

a Klein group, while one of the 15 different Z2 symmetries that each can be consistently

combined with four different CP transformations X specify the residual group Gν . Instead

of computing the mixing pattern for all these we can greatly reduce the number of cases that

we need to study by applying similarity transformations as well as the fact that for a pair

Z and X also the pair Z and Ỹ = ZX leads to the same mixing pattern. We allow for all

possible permutations of rows and columns of the mixing matrix. Furthermore, we consider

both possible neutrino mass orderings NO or IO in our (numerical) analysis. We exclude all

patterns that cannot accommodate the experimental data on lepton mixing angles at the

3σ level or better for (a) certain choice(s) of the free parameter θ. As a consequence, we end

up with in total only four cases. These we call in the following Case I to III and Case IV-

P1/Case IV-P2. We first study the mixing patterns analytically for each possible residual

symmetry Ge in the charged lepton sector and then show the results of a χ2 analysis of these

patterns, since they can accommodate the experimental data best. We briefly comment

on a fifth mixing pattern that can fit the data also well apart from the solar mixing angle

whose value turns out to be slightly smaller than the lower 3 σ bound on sin2 θ12 [1].

3.1 Ge = Z5: Case I and Case II

If we consider as Ge a Z5 symmetry, we find six different categories of tuples (Q,Z,X) with

Q being a generator of a Z5 group, taking into account the mentioned operations in order to

– 8 –
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relate different tuples (Q,Z,X). We can show that for each of these categories we can find a

representative tuple (Q,Z,X) with Q = T . Thus, the mixing matrix Ue resulting from the

charged lepton sector is the unit matrix, up to permutations of its columns and unphysical

phases. Out of these six representative tuples four lead to a mixing pattern that we dismiss,

because the column that is fixed by group theory is not compatible with the data at the

3σ level or better [1]. The two remaining representatives, which we can choose as

(Q,Z,X) = (T, T 2ST 3ST 2, SX0) (Case I) (3.1)

and

(Q,Z,X) = (T, ST 2ST,X0) (Case II) , (3.2)

give rise to a mixing matrix with a column whose components have the absolute values
sinϕ

cosϕ/
√

2

cosϕ/
√

2

 ≈


0.526

0.602

0.602

 , (3.3)

where we defined for convenience

tanϕ = 1/φ . (3.4)

This column can only be identified with the second one of the PMNS mixing matrix, if good

agreement with the experimental data should be achieved. Notice that the ordering of the

components in this column as well as its position within the PMNS mixing matrix are not

fixed by the approach we are using, since no constraints on the lepton masses are imposed.

We first derive the mixing pattern for the tuple in (3.1). As explained Ue = 1 and we

can take ΩI to be

ΩI =
1√
2


√

2 cosϕ −
√

2 i sinϕ 0

sinϕ i cosϕ −1

sinϕ i cosϕ 1

 , (3.5)

that fulfills (2.7) for X and Z chosen as in (3.1). Since z1 and z3 of the (diagonal) com-

bination Ω†I Z ΩI are equal, see (2.7) for definition, the correct indices ij of the rotation

matrix Rij(θ) in (2.8) are ij = 13. Thus, the PMNS mixing matrix reads

UPMNS = ΩIR13(θ)Kν . (3.6)

We can extract the mixing angles from (3.6) in the usual way and find

sin2 θ12 =
2

2 + (3 +
√

5) cos2 θ
, sin2 θ13 =

1

10

(
5 +
√

5
)

sin2 θ ,

sin2 θ23 =
1

2
−

√
2 (5 +

√
5) sin 2θ

7 +
√

5 + (3 +
√

5) cos 2θ
(Case I) . (3.7)

Furthermore, we can derive the following exact sum rule among the solar and the reactor

mixing angles

sin2 θ12 =
sin2 ϕ

1− sin2 θ13
≈ 0.276

1− sin2 θ13
& 0.276 . (3.8)

– 9 –
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This sum rule can also be directly obtained from |Ue2|2 = sin2 ϕ = 1/(1 + φ2) ≈ 0.276.

Using for sin2 θ13 its best fit value (sin2 θ13)bf = 0.0219 we find for the solar mixing angle

sin2 θ12 ≈ 0.283 which is within the 3 σ range, see (1.1). This value coincides with the one

obtained from a χ2 analysis, see table 1. The non-trivial lower bound on the solar mixing

angle, see (3.8), is also nicely seen in figure 1 (and implicitly also in the sin2 θ13-sin2 θ12

plane in figure 2). For the atmospheric mixing angle a simple approximate relation to the

reactor mixing angle is given by

sin2 θ23 ≈
1

2

(
1± (1−

√
5) sin θ13

)
≈ 0.5∓ 0.618 sin θ13 ≈

{
0.409 for θ < π/2

0.591 for θ > π/2
, (3.9)

if we use again the best fit value (sin2 θ13)bf = 0.0219. The first subleading term arises at

sin3 θ13 and can thus be safely neglected in this estimate. We can clearly see having a look

at the different symbols in figures 1 and 2 that values of θ ≤ π/2 lead to sin2 θ23 ≤ 1/2,

while larger values, π/2 ≤ θ ≤ π, entail sin2 θ23 ≥ 1/2. This is also confirmed by the two

different ‘best fitting’ values θbf ≈ 0.174 and θbf ≈ 2.967 that are obtained for NO and IO,

respectively, see table 1.

Note that the formulae for the mixing angles θ12 and θ13 remain invariant, if we replace

θ by π − θ, while the relative sign in the expression for sin2 θ23 changes. The same effect

can be achieved, if we consider the PMNS mixing matrix in (3.6) with second and third

rows exchanged.

As one can check, all CP invariants JCP , I1 and I2 vanish exactly and thus an accidental

CP symmetry must be present. Indeed, there is one, namely

Y =


1 0 0

0 1 0

0 0 1

 , (3.10)

that fulfills the conditions in (2.20)–(2.22) for the tuple (Q,Z,X) shown in (3.1). The

vanishing of sin δ can also be confirmed by verifying that the condition presented in [45] is

fulfilled.

In a similar manner we can study the lepton mixing that can be obtained for the

second tuple (Q,Z,X), the one in (3.2). The form of the matrix ΩII that fulfills (2.7) for

Z = ST 2ST and X = X0 can be chosen as

ΩII =
1√
2


−
√

2 cosϕ −
√

2 sinϕ 0

− e−3 iΦ sinϕ e−3 iΦ cosϕ −e−7 iΦ/4

−e−2 iΦ sinϕ e−2 iΦ cosϕ e−3 iΦ/4

 . (3.11)

Like in the preceding case, also here the necessary rotation Rij(θ) is in the (13)-plane.

Thus, taking into account that Ue is trivial, the PMNS mixing matrix is of the form (up

to permutations of rows and columns and unphysical phases)

UPMNS = ΩIIR13(θ)Kν . (3.12)
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The predictions for the solar and the reactor mixing angles are the same as for the first

tuple, namely

sin2 θ12 =
2

2 + (3 +
√

5) cos2 θ
, sin2 θ13 =

1

10

(
5 +
√

5
)

sin2 θ (Case II) . (3.13)

Thus, also the sum rule and the estimate given in and below (3.8) hold. In figure 1 the non-

trivial lower bound on sin2 θ12 is visible also for Case II. The results for the atmospheric

mixing angle and the Dirac phase instead are different, since both of them are predicted

to be maximal

sin2 θ23 =
1

2
and | sin δ| = 1 (Case II) . (3.14)

The sign of sin δ depends on whether θ ≶ π/2. The corresponding Jarlskog invariant JCP
reads8

JCP = − 1

20
√

2

√
5 +
√

5 sin 2θ . (3.15)

Like in the first case also in this case the Majorana phases are trivial. We can check that

the conditions found in [45] for cos δ = 0 and θ23 = π/4 are fulfilled in the case at hand.

Furthermore, we can verify with the help of the formulae given in [45] that both Majorana

phases must be trivial.

We notice that the replacement of the parameter θ by π− θ does not change the form

of the mixing angles, while the sign of JCP and, consequently, of sin δ changes. The very

same result is achieved, if we exchange the second and third rows of the mixing matrix

in (3.12). Consequently, we expect to find two best fitting values of the parameter θ. This

is confirmed by the results of the χ2 analysis in table 1. As expected, the sum of these two

best fitting values equals π.

One of the categories initially dismissed by the criterion that the absolute values of the

group theoretically fixed column of the PMNS mixing matrix should agree at the 3 σ level

or better with the values given in [1] might still be interesting in a concrete model in which

(small) corrections can lead to the agreement with experimental data. A representative of

this case is the tuple (Q,Z,X) = (T, S,X0). The absolute values of the elements of the fixed

column are
(
cosϕ, sinϕ/

√
2, sinϕ/

√
2
)T ≈ (0.851, 0.372, 0.372)T . Thus, this column can

be identified with the first one of the PMNS mixing matrix. This pattern fails to describe

the data well without corrections mainly because of the tight relation between the solar and

the reactor mixing angle that can be derived. We find sin2 θ12 = 1− 5+
√

5
10 (1−sin2 θ13)

. 0.276

that leads for (sin2 θ13)bf = 0.0219 to a too small solar mixing angle sin2 θ12 ≈ 0.260. At

the same time, the atmospheric mixing angle is maximal. The Dirac phase is also maximal,

whereas both Majorana phases are trivial. So, this case shows strong similarities to Case

II with the representative tuple shown in (3.2).

8For sin 2θ = 0 the Jarlskog invariant vanishes. If this happens, one of the mixing angles becomes either

0 or π/2 and thus the Dirac phase δ becomes unphysical. Clearly, these values of θ are highly disfavored

by experimental data.
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3.2 Ge = Z3: Case III

If we do the same analysis for the case Ge = Z3, we find eight categories of tuples (Q,Z,X).

We can always fix Q = T 2ST 2. In this case Ue is not trivial anymore and is of the form

Ue =


−
√

7+3
√

5
3(5+

√
5)

−
√

(5−
√

5)
15

2√
3(5+

√
5)

2√
3(5+

√
5)
−1

2 −
1
30

√
75 + 30

√
5 −1

2 + 1
30

√
75 + 30

√
5

2√
3(5+

√
5)

1
2 −

1
30

√
75 + 30

√
5 1

2 + 1
30

√
75 + 30

√
5

 . (3.16)

Using the representatives of the eight different categories we see that indeed only one of

these can lead to a mixing that is compatible with experimental data. The column that is

fixed by group theory is in this case TM [10–13]

1√
3


1

1

1

 ≈


0.577

0.577

0.577

 (3.17)

and has therefore to be identified with the second column of the PMNS mixing matrix.

Immediately, we know that the solar mixing angle has a lower bound, sin2 θ12 & 1/3, see

the sum rule in (3.23), the result of the χ2 analysis in table 1 and the lower bound in

figure 1. We use as representative the tuple

(Q,Z,X) = (T 2ST 2, ST 2ST 3S,X0) (Case III) . (3.18)

A possible admitted form of the matrix Ω is

ΩIII =
1√
2


√

2 cosϕ 0 −
√

2 sinϕ

eiΦ sinϕ e9 iΦ/4 eiΦ cosϕ

e−iΦ sinϕ e11 iΦ/4 e−iΦ cosϕ

 . (3.19)

As can be seen, the form of the matrix Ω is quite similar to the ones used in the other

cases, see (3.5) and (3.11). The matrix Uν is composed as follows

Uν = ΩIIIR13(θ)Kν , (3.20)

since, as in the cases above, z1 and z3 of the matrix combination Ω†IIIZΩIII are equal. The

PMNS mixing matrix is then given by

UPMNS = U †e ΩIIIR13(θ)Kν . (3.21)

We can extract the following results for the solar and the reactor mixing angles

sin2 θ12 =
1

2 + sin 2θ
and sin2 θ13 =

1

3
(1− sin 2θ) (Case III) (3.22)

that fulfill the exact — and well-known — sum rule [10–13]

sin2 θ12 =
1

3 (1− sin2 θ13)
&

1

3
. (3.23)
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If we use (sin2 θ13)bf = 0.0219 as best fit value for sin2 θ13, we arrive at sin2 θ12 ≈ 0.341

which is the value that is also obtained in our χ2 analysis, see table 1. The atmospheric

mixing angle as well as the Dirac phase are, as in Case II, maximal

sin2 θ23 =
1

2
and | sin δ| = 1 (Case III) . (3.24)

Again, the actual sign of sin δ depends on the choice of θ. The form of the Jarlskog invariant

is

JCP =
cos 2θ

6
√

3
. (3.25)

If cos 2θ vanishes, JCP equals 0. Since at the same time one mixing angle becomes 0 or

π/2, the Dirac phase δ turns out to be unphysical for cos 2θ = 0. As happened for Case I

and II, also here the mixing pattern that is well compatible with experimental data gives

rise to trivial Majorana phases.

We note that the formulae of the mixing angles remain invariant, if we replace θ with

π/2 − θ. Thus, we expect (at least) two best fit solutions. This expectation is confirmed

by our χ2 analysis, see table 1. Replacing θ with π/2 − θ leads, at the same time, to an

additional sign for JCP and thus sin δ. Similarly, the exchange of the second and third

rows of the PMNS mixing matrix in (3.21) does not alter the results for the mixing angles,

but changes the sign of the Jarlskog invariant and thus of sin δ.

3.3 Ge = Z2 × Z2: Case IV-P1 and Case IV-P2

For the remaining possibility Ge = Z2 × Z2 we find that all admitted combinations of Q1,

Q2 with Z and X describing the residual symmetry Gν = Z2 × CP can be classified in

four different categories of tuples ({Q1, Q2} , Z,X). Thus, it is sufficient to calculate the

mixing pattern for one representative of each category. Note that we can always choose a

representative for which Ge = K1, see (2.14), i.e. Q1 and Q2 can be chosen as Q1 = S and

Q2 = T 2ST 3ST 2. So, the form of the matrix Ue is

Ue =
1√
2


√

2 cosϕ 0 −
√

2 sinϕ

sinϕ −1 cosϕ

sinϕ 1 cosϕ

 . (3.26)

It turns out that only one category of tuples is capable of accommodating the experimental

values of the mixing angles well for a particular choice of the parameter θ, while the other

three ones fail to do so. In particular, two out of these three lead to patterns with only one

non-vanishing mixing angle, since the generators Qi are diagonalized by the same matrix

as the Z2 generator Z. A representative of the category that allows for good agreement

with the data is

({Q1, Q2} , Z,X) =
({
S, T 2ST 3ST 2

}
, ST 2ST,X0

)
(Case IV) . (3.27)
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We can check that the column that does not depend on the free parameter θ has components

with absolute values of the form

1

2


φ

1

1/φ

 ≈


0.809

0.5

0.309

 . (3.28)

Thus, this column can be identified with the first one of the PMNS mixing matrix. We call

this situation Case IV-P1. We note that we can exchange the second and third components

of the vector in (3.28), i.e. we can exchange the second and third rows of the resulting PMNS

mixing matrix, and also obtain good agreement with the experimental data. This situation

is denoted by Case IV-P2 in the following. The crucial change occurs in the predicted value

of the atmospheric mixing angle, see (3.33) and (3.37).

A unitary matrix Ω that fulfills the conditions in (2.7) for Z = ST 2ST and X = X0 is

ΩIV =
1√
2


√

2 sinϕ −
√

2 cos2 ϕ
√

2 cosϕ sinϕ

e−iΦ/2 cosϕ e−iΦ/2
(
e15 iΦ/4 + cosϕ

)
sinϕ e−iΦ/2

(
e15 iΦ/4 cosϕ− sin2 ϕ

)
−e−2 iΦ cosϕ e−2 iΦ

(
e15 iΦ/4 − cosϕ

)
sinϕ e−2 iΦ

(
e15 iΦ/4 cosϕ+ sin2 ϕ

)
 .

(3.29)

Since the diagonal matrix Ω†IV Z ΩIV reveals equal z2 and z3 in the convention of (2.7),

the form of the neutrino mixing matrix is given by, up to permutations of columns and

unphysical phases,

Uν = ΩIVR23(θ)Kν . (3.30)

Taking into account the contribution to leptonic mixing coming from the charged lepton

sector that is encoded in the matrix Ue in (3.26), the PMNS mixing matrix is of the form,

up to permutations of rows and columns and unphysical phases,

UPMNS = U †e ΩIVR23(θ)Kν . (3.31)

We find for the mixing angles the following expressions

sin2 θ12 =
(5− 2

√
5) cos2 θ

1 + (5− 2
√

5) cos2 θ
, sin2 θ13 =

1

8

(
5−
√

5
)

sin2 θ (Case IV) (3.32)

sin2 θ23 =
3 (5−

√
5) + (9− 5

√
5) cos 2θ + 8 sin 2θ

25− 3
√

5 + 5 (3−
√

5) cos 2θ
(Case IV-P1) . (3.33)

For this case, as mentioned above, the absolute values of the elements of the first column

of the PMNS mixing matrix are ordered in the same way as in (3.28). From (3.32) we can

derive an exact sum rule relating the solar mixing angle to the reactor one

sin2 θ12 = 1− 3 +
√

5

8 (1− sin2 θ13)
≈ 0.331 , (3.34)

if we insert the experimental best fit value (sin2 θ13)bf = 0.0219. We note that in this case

a non-trivial upper bound on sin2 θ12 exists, namely sin2 θ12 . 1− φ2/4 ≈ 0.345. This can

– 14 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
7

also be directly derived from the constraint that |Ue1|2 = φ2/4 = (3 +
√

5)/8 ≈ 0.655. This

bound is marked with a (dashed red) vertical line in figure 1. Furthermore we can obtain

an approximate relation of the atmospheric mixing angle and sin θ13

sin2 θ23 ≈
1

10

(
5−
√

5
)

+
2

5

√
5 + 2

√
5 sin θ13 ≈ 0.276 + 1.23 sin θ13 , (3.35)

using that θ lies in the interval [0, π/2] (and thus cos θ =
√

1− sin2 θ).9 Subleading cor-

rections are of order sin2 θ13 at maximum. For (sin2 θ13)bf = 0.0219, we find

sin2 θ23 ≈ 0.459 . (3.36)

This estimate is consistent with the result of our χ2 analysis, see table 1.

If we permute the second and the third rows, the form of the reactor as well as of the

solar mixing angle is the same, while the atmospheric one turns out to be 1 − sin2 θ23, i.e.

here the atmospheric mixing angle reads

sin2 θ23 = 1− 3 (5−
√

5) + (9− 5
√

5) cos 2θ + 8 sin 2θ

25− 3
√

5 + 5 (3−
√

5) cos 2θ
(Case IV-P2) . (3.37)

So, in this case the approximate sum rule relating θ23 and θ13 is given by

sin2 θ23 ≈
1

10

(
5 +
√

5
)
− 2

5

√
5 + 2

√
5 sin θ13 ≈ 0.724− 1.23 sin θ13 . (3.38)

Again, we assume 0 ≤ θ ≤ π/2 (and for θ lying in the interval [π/2, π] see footnote 9). For

(sin2 θ13)bf = 0.0219 we get

sin2 θ23 ≈ 0.541 (3.39)

which is consistent with the value obtained from the χ2 fit, see table 1.

All CP phases are trivial. This points towards an accidental CP symmetry in the

theory. This is clear, since the CP transformation X = X0 is not only present in the

neutrino sector, but also — as one can check explicitly — in the charged lepton one.

Note that there is no evident symmetry as regards the parameter θ in the formulae

of the mixing angles: while θ12 and θ13 remain invariant, if we replace the parameter θ

with π − θ, this is not the case for the atmospheric mixing angle and thus we expect in

general only one value of θ for which the mixing angles can be accommodated best. This

is confirmed in our numerical analysis, see table 1.

3.4 Numerical discussion

In the following we present our results of a χ2 analysis for the different cases, Case I through

IV-P2. The χ2 function is defined in the usual way

χ2 = χ2
12 + χ2

13 + χ2
23 (3.40)

with χ2
ij =

(
sin2 θij − (sin2 θij)

bf

σij

)2

for ij = 12, 13, 23 . (3.41)

9For π/2 ≤ θ ≤ π we can derive a similar relation that shows, however, that the measured values of the

atmospheric and the reactor mixing angle cannot be accommodated well at the same time.
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Case I Case II Case III Case IV-P1 Case IV-P2

(Qi, Z,X)
(
T, T 2ST 3ST 2, SX0

) (
T, ST 2ST,X0

) (
T 2ST 2, ST 2ST 3S,X0

) ({
S, T 2ST 3ST 2

}
, ST 2ST,X0

)
NO IO NO IO NO IO NO IO NO IO

χ2

min 5.64 3.46 4.04 7.74 8.84 12.56 4.48 11.80 6.19 6.43

θbf 0.174 2.967

{
0.175

2.967

{
0.604

0.967

{
0.603

0.967
0.254 0.258 0.255 0.254

sin2 θ12 0.283 0.283 0.283 0.283 0.341 0.341 0.331 0.330 0.331 0.331

sin2 θ13 0.0217 0.0219 0.0218 0.0220 0.0217 0.0218 0.0219 0.0225 0.0220 0.0218

sin2 θ23 0.408 0.592 0.5 0.5 0.475 0.478 0.524 0.525

JCP 0 0 ∓0.0325 ∓0.0326 ±0.0342 ±0.0342 0 0 0 0

sin δ 0 0 ∓1 ±1 0 0 0 0

Table 1. Results of χ2 analysis for Case I through Case IV-P2, displayed separately for the

assumption of NO and IO. We remind the reader of the representative tuples (Qi, Z,X) that we

have chosen for the different cases. χ2
min is the smallest value of χ2 that can be obtained for a

particular mixing pattern at the best fitting value(s) θbf. We mention for each pattern and neutrino

mass ordering only the lowest value of χ2
min that can be achieved. All values of sin2 θij are obtained

at the given θbf. For Case II and Case III that predict maximal atmospheric mixing and a maximal

Dirac phase δ, the sign of the Jarlskog invariant JCP (and of sin δ) depends on the chosen value of

θbf and upper (lower) signs correspond to the smaller (larger) value of θbf. Majorana phases are

trivial in all cases, sinα = 0 and sin β = 0.

sin2 θij are the mixing angles derived in the different cases, e.g. see (3.7) for Case I, that

depend on the continuous parameter θ, ranging from 0 to π,
(
sin2 θij

)bf
are the best fit

values and σij the 1σ errors reported in (1.1). Note that these errors also depend on

whether sin2 θij is larger or smaller than the best fit value. Since the global fit results

for the mixing angles (slightly) differ for the case of NO or IO, we consider these two

separately and calculate for all patterns the χ2 function χ2
NO under the assumption of

NO being realized in nature and χ2
IO for IO. In particular, in doing so we do not take

into account the fact that NO is slightly disfavored by ∆χ2 = 0.97 compared to IO [1].

A mixing pattern is considered to agree reasonably well with the experimental data, if

χ2 . 27 and all mixing angles sin2 θij are within the 3 σ intervals given in (1.1).10 The

χ2 functions χ2
NO and χ2

IO are minimized at the best fitting point(s) θ = θbf and we only

report the global minimum/a in table 1 for each case.11 Since the indication of a preferred

value of the Dirac phase δ coming from global fit analyses is rather weak [1], i.e. below the

3σ significance, we do not include any information on δ in the χ2 function in (3.40).

10The upper limit on χ2, χ2 . 27, is chosen, since it results from summing three 3 σ gaussian errors for

one degree of freedom.
11We have tested the validity of our χ2 analysis by constructing a likelihood function to fit the various

cases that uses the one-dimensional χ2 projections provided in [1]. These results are consistent with those

in table 1, up to the fact that the roles of the local and the global minimum in Case I become exchanged

for NO. However, the difference between these two minima turns out to be statistically insignificant.

– 16 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
7

Our findings for the different cases are summarized in table 1. As one can see, these

results agree well with our analytical estimates and observations made in subsections 3.1–

3.3. In particular, the sum of the two best fitting values of θ for NO and IO in Case

I, θbf, NO and θbf, IO, approximately equals π, since the formulae for the mixing angles

θ12 and θ13 are invariant under the transformation θ → π − θ, while sin2 θ23 turns into

cos2 θ23. Similarly, the sum of the two best fitting points θbf,1 and θbf,2 ((almost) the

same for NO and IO) equals π in Case II. Also related to the symmetry properties of the

formulae for the solar and the reactor mixing angles is the observation in Case III that

the two best fitting points (for NO and IO), θbf,1 and θbf,2, sum up to π/2. Case IV does

not reveal such a symmetry in the parameter θ and thus we discuss in this case the results

corresponding to two different permutations, Case IV-P1 and Case IV-P2, that are related

by the exchange of the second and third rows of the PMNS mixing matrix. This allows

us to accommodate sin2 θ23 < 1/2 as well as sin2 θ23 > 1/2. In other cases the discussion

of this permutation is already implicitly included in our analysis. In Case I and Case

II we also confirm the estimate made for the solar mixing angle sin2 θ12 that is bounded

from below sin2 θ12 & 0.276, while the lower bound in Case III is 1/3. The upper bound

sin2 θ12 . 0.345 found in Case IV-P1 and IV-P2 is obeyed as well, see table 1 and figure 1.

As can be read off from table 1 for Case II and III, ∆χ2 = χ2
min, IO − χ

2
min, NO ≈ 3.7

showing that NO is better compatible with maximal atmospheric mixing sin2 θ23 = 1/2.

This is simply due to the asymmetric 1 σ errors of the atmospheric mixing angle for NO

and IO, see (1.1). Concerning the results for Case IV-P2 one might have naively expected

that χ2
min, IO is smaller than χ2

min, NO, since the value obtained for the atmospheric mixing

angle at the best fitting point θbf ≈ 0.255 is larger than π/4, i.e. sin2 θ23 > 1/2. However,

due to the large 1 σ error associated with sin2 θ23 in the case of NO, for a value of the

latter larger than (sin2 θ23)bf
NO = 0.452, namely +0.052 and a smaller one in the case of IO,

for values of sin2 θ23 smaller than the best fit value (sin2 θ23)bf
IO = 0.579, namely −0.037,

see (1.1), respectively, we find that NO fits slightly better in this case.

The results found in table 1 can be nicely visualized in the different sin2 θij planes, see

figures 1 and 2. We plot the experimentally preferred 1 σ, 2σ and 3σ areas at two degrees

of freedom in different colors (green, yellow and blue, respectively) for a neutrino mass

spectrum with NO and IO (left and right panels, respectively) in the sin2 θij planes using

the data sets available in [1].12 In order not to penalize NO we subtract ∆χ2 = 0.97 in this

case so that the minimum value of ∆χ2 is zero for both mass orderings. The experimental

best fit values of sin2 θij are presented by a cross in each plane. The shaded areas are to

be compared with the black curves parameterized with θ shown for Case I through IV-P2.

On these curves we indicate the point(s) θbf at which the χ2 function for NO and IO,

respectively, is minimized with a red dot. Furthermore, an arrow on each curve marks

the direction of increasing θ in the interval 0 ≤ θ ≤ θbf(,1). We use the convention that

the arrow always belongs to the closest label I, II, etc. of a certain case. Since the curve

representing the results of Case I appears to be disconnected in the upper plots in figure 2

12Those for sin2 θ13-sin2 θ12 and sin2 θ13-sin2 θ23 are explicitly given in [1], while the one for the third

sin2 θij plane can be simply constructed by summing up the values of the one-dimensional χ2 projections for

sin2 θ12 and sin2 θ23. This is justified, since these two mixing angles are to good approximation uncorrelated.

We thank Thomas Schwetz-Mangold for help regarding this point.
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Figure 1. Results for the mixing angles sin2 θ23 and sin2 θ12 for Case I to III and Case IV-P1 and

IV-P2. The plot on the left side assumes NO, while the one on the right IO. The curves of the various

cases are superimposed to the experimentally preferred 1 σ (green), 2σ (yellow) and 3 σ (blue) areas

at two degrees of freedom adapted from [1]. In drawing these areas we have subtracted ∆χ2 = 0.97

in the case of NO so that the minimal value of ∆χ2 is zero for both mass orderings. The experimental

best fit value is indicated with a cross. The best fitting value of θ is indicated on each curve with a red

dot. For clarity we mark on the curve belonging to Case I some particular values of the parameter

θ with different symbols in black: star for θ = π/19, square for θ = π/17, dot for θ = 16π/17 and

triangle for θ = 18π/19. In addition, an arrow indicates on each curve the direction of increasing θ

in the interval 0 ≤ θ ≤ θbf(,1) (the arrow always belongs to the closest label I, II, etc.). Note that the

curves belonging to Case II and Case III partly overlap. Dashed red vertical lines indicate the non-

trivial lower (upper) bound on the solar mixing angle in Case I, II and III (Case IV-P1 and IV-P2).

due to the chosen scales of the axes we indicate different values of the parameter θ with

different symbols on the curve. In figure 1 dashed red vertical lines show the lower and

upper bounds on sin2 θ12 that exist in the various cases, see (3.8), (3.23) and comment

below (3.34). Several curves (partly) overlap in the different planes: in figure 1 and the

upper two plots in figure 2 clearly the curves belonging to Case II and III overlap, since

both these cases predict maximal atmospheric mixing; furthermore, in the lower plots in

figure 2 the curves of Case I and II as well as of Case IV-P1 and Case IV-P2 lie on top of

each other, since the relation between the solar and the reactor mixing angles is identical

in these cases. Eventually, we note that in the plots showing sin2 θ23 on the vertical axis

in figures 1 and 2, the fact that the patterns of Case IV-P1 and IV-P2 are related by the

exchange of the second and third rows in the PMNS mixing matrix is clearly visible, since

their curves are symmetric with respect to the value sin2 θ23 = 1/2. The curve belonging

to Case I itself possesses this property showing that values of sin2 θ23 smaller or larger than

1/2 can be achieved for different choices of the parameter θ. For this reason the best fitting

point θbf is at a (very) different position for NO and for IO in figure 1 as well as in the

upper plots of figure 2. This does not occur in the other cases.
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Figure 2. Results for the mixing angles sin2 θ23,12 with respect to sin2 θ13 for Case I to III and

Case IV-P1 and IV-P2. For conventions see caption of figure 1. The two curves for Case I in the

upper two plots appear not to be connected due to the range plotted. Furthermore, note that the

curves belonging to Case II and Case III overlap in the sin2 θ13-sin2 θ23 plane. Similarly, the curves

for Case I and II as well as for Case IV-P1 and IV-P2, respectively, lie on top of each other in the

sin2 θ13-sin2 θ12 plane.

We note that for Case I there exists a second (local) minimum of the χ2 function for

NO and IO with χ2
min . 27. As can be guessed this second minimum for NO is obtained

at θbf ≈ 2.967 for χ2
min ≈ 10.42 and the mixing angles are very similar to those achieved

at the global minimum of IO, sin2 θ12 ≈ 0.283, sin2 θ13 ≈ 0.0217 and sin2 θ23 ≈ 0.592. In

the same vein we find a second (local) minimum of the χ2 function for IO at the best

fitting point θbf ≈ 0.174 for χ2
min ≈ 24.52. The values obtained for the mixing angles are

practically those of the global minimum of NO, i.e. sin2 θ12 ≈ 0.283, sin2 θ13 ≈ 0.0217 and
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sin2 θ23 ≈ 0.408, compare table 1. In all other cases the global minimum of the χ2 function

that we mention in table 1 is the only minimum with χ2
min . 27.

A closer look at table 1 reveals that the solar mixing angle differs by up to 20% between

Case I/Case II with sin2 θ12 ≈ 0.283 and Case III/Case IV-P1 and IV-P2 where larger values

of sin2 θ12 are obtained. The experiment JUNO [51] will be able to reduce the error on

the best fit value of sin2 θ12 to ∼ 0.7% at the 2σ level, thus allowing for a discrimination

among Case I/Case II and Case III/Case IV-P1 and IV-P2. According to the RENO-50

collaboration their planned experiment can achieve a similar reduction of the error [52].

For the atmospheric mixing angle, no distinction is possible among Case II and III, since

θ23 is maximal in both cases. However, the predictions for Case I and Case IV-P1/Case

IV-P2 considerably differ: for NO (IO) the atmospheric mixing angle is smaller (larger) in

Case I than in Case IV-P1 (Case IV-P2). This difference is large enough to be possibly

distinguished in the experiment NOνA [53]. This experiment can also help in measuring

the Dirac phase δ, especially, if running in both, the neutrino and the anti-neutrino, modes

so that a discrimination between Case II/Case III where δ is maximal and Case I/Case

IV-P1 and IV-P2 with δ = 0, π might be possible. In contrast, the predictions for θ13 are

almost the same in Case I through Case IV-P1 and IV-P2 and, hence, it is unlikely that

they can be distinguished at future neutrino facilities.

Furthermore, we mention the outcome of our χ2 analysis for the additional case for

Ge = Z5 where we can choose as representative generators of the residual symmetries

(Q,Z,X) = (T, S,X0). We remind the reader that this case fails in giving a good fit to the

solar mixing angle. We find two best fitting points θbf,1 ≈ 0.283(4) and θbf,2 ≈ 2.858 for

NO (IO) whose sum approximately equals π. Like in the cases above, this is expected from

some symmetry of the formulae for the solar and the reactor mixing angles. The minimal

χ2 values for NO and IO are at these two points χ2
min, NO ≈ 14.08 and χ2

min, IO ≈ 17.83,

respectively. Thus, also here ∆χ2, the difference of χ2
min, IO and χ2

min, NO, is about 3.7,

since the atmospheric mixing angle is fixed to be maximal by this pattern. The values

obtained for the other mixing angles are sin2 θ12 ≈ 0.260 and sin2 θ13 ≈ 0.0216(7) and the

Dirac phase δ is maximal. In particular, we find for θ = θbf,1, sin δ = −1 and JCP ≈
−0.0315(6) for NO (IO) and for the other value θ = θbf,2, sin δ = 1 and a positive sign also

for JCP . Like in the cases presented in table 1 the two Majorana phases α and β are trivial.

All patterns that can accommodate the experimental data well for a certain value

of θ predict trivial Majorana phases independently of θ. However, this is not a general

result of the scenario with the flavor group A5 and a CP symmetry. Instead there are

also patterns that lead to three non-trivial CP phases which depend on the parameter θ

and that are also non-trivial at the best fitting point(s) θbf. For Ge being a Klein group,

there exists a further category which can accommodate three non-trivial mixing angles,

see discussion at the beginning of subsection 3.3. This category also predicts non-trivial

and non-maximal Dirac and Majorana phases. A representative is ({Q1, Q2} , Z,X) =

(
{
S, T 2ST 3ST 2

}
, ST 3ST 2S, T 4STX0). The third column of the PMNS mixing matrix has

then components that are the same as in (3.28) up to permutations. Thus, the reactor and

the atmospheric mixing angles do not depend on θ and are outside the experimentally pre-

ferred 3σ ranges. As a consequence, the χ2 values for NO and IO are (much) larger than 100
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and it appears in general difficult to achieve good agreement with the data, even if correc-

tions to the leading order results presented here are expected to exist in an explicit model.

4 Summary

We have discussed a scenario for three Majorana neutrinos with the flavor group A5 and a

CP symmetry. These symmetries are broken to residual groups Ge = Z3, Z5 or Z2×Z2 and

toGν = Z2×CP in the charged lepton and neutrino sectors, respectively. As a consequence,

lepton mixing angles as well as CP phases can be predicted in terms of a single free param-

eter θ that varies between 0 and π. We have comprehensively studied all possible residual

groups Ge, possible choices of Z2 being a subgroup of A5 and CP symmetries that can be

consistently combined. We have shown explicitly that the automorphisms corresponding

to the CP transformations we consider are class-inverting and involutive and, furthermore,

that these are the only automorphisms of A5 with such properties. Performing a detailed

analytical and numerical study, we found that only four mixing patterns exist (two for

Ge = Z5 and one each for the other two choices, Ge = Z3 and Ge = Z2×Z2) that can accom-

modate the experimental data on lepton mixing angles at the 3 σ level or better for a partic-

ular value of the parameter θ. The reactor mixing angle is usually accommodated very well,

while the solar one is bounded from below by three of the four patterns (sin2 θ12 & 0.276 for

Case I and Case II and sin2 θ12 & 1/3 for Case III, since this pattern has a TM column) and

bounded from above, sin2 θ12 . 0.345, by the pattern called Case IV-P1/Case IV-P2. In-

terestingly enough, two of the four patterns, Case II and Case III, predict a maximal Dirac

phase δ (together with maximal atmospheric mixing), while the other two patterns lead to

sin δ = 0 (and θ23 is in general non-maximal). Common to all patterns is the prediction of

trivial Majorana phases. Thus, in two of the four setups an accidental CP symmetry, com-

mon to the charged lepton and neutrino sectors, is present. Furthermore, we mention the

existence of one further case for the choice Ge = Z5 that can be obtained by using as genera-

tors of the residual symmetries (Q,Z,X) = (T, S,X0). This case fits the experimental data

well to a certain extent. It mainly fails because of a too small value of the solar mixing an-

gle, sin2 θ12 ≈ 0.260. However, this could be easily reconciled with the experimental results

in an explicit model with small corrections. The further predictions of this pattern are prac-

tically identical to those of Case II, i.e. the Dirac phase and the atmospheric mixing angle

are maximal, the two Majorana phases are trivial and the reactor mixing angle can be ac-

commodated well. As mentioned, all patterns that are preferred by experimental data turn

out to lead to trivial Majorana phases. However, this is not a generic feature of our scenario

with the flavor group A5 and a CP symmetry, but occurs, because none of the patterns with

non-trivial Majorana phases admits a reasonable fit to the data on lepton mixing angles. In-

terestingly enough, the absence of non-trivial Majorana phases and the correlation between

having a maximal Dirac phase and maximal atmospheric mixing or a trivial Dirac phase and

non-maximal θ23 for patterns that fit the data well have already been observed in analyses

of scenarios with the flavor group Gf = S4 (or Gf = A4) and a CP symmetry [14, 25–28].

Note added. At the very final stages of the completion of this work a paper [54] dealing

with the same topic appeared on the arXiv. Our results agree with those obtained in [54].
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However, the χ2 analysis in this work has been performed using results of a different global

fit [1]. In addition, the authors of [54] display results for neutrinoless double beta decay

and some model realization.
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A Comments on automorphisms of A5

The CP transformations in (2.15) all correspond to inner automorphisms, see (2.19). We

can check that these are class-inverting [16] and involutive. The latter feature is required,

since X has to be a symmetric matrix in the flavor space, as explained below (2.1). Both

properties are in particular given, if the twisted Frobenius-Schur indicator ει(r) of an

automorphism ι is +1 in all irreps. r. The definition of ει(r) in the case at hand is

ει(r) =
1

60

∑
g∈A5

χr(g
ιg) (A.1)

with χr(h) being the character of the element h and ιg the image of the element g under

the automorphism ι. An easy way to check [55–57] that ει(r) = +1 for all r is to verify the

equality ∑
r

χr(e) =
∣∣{g ∈ A5 | ιg = g−1

}∣∣ (A.2)

with χr(e) being the character of the neutral element e in the irrep r, i.e. we sum over the

dimensions of all irreps. of A5 on the left-hand side of (A.2). For the trivial automorphism,

see (2.18), the equality in (A.2) is obvious: the left-hand side is the sum of the dimensions of

the irreps. r that is 16, while the right-hand side is the number of elements of the group A5

that fulfill g = g−1. Clearly these are all Z2 generating elements together with the neutral

element. Thus, these are 16 elements. For the automorphisms corresponding to choices of

X other than X0, see (2.15), we can do this computation using GAP [58] and also verify in

these cases that the twisted Frobenius-Schur indicator for all irreps r is +1. Thus, all CP

transformations in (2.15) correspond to class-inverting, involutive automorphisms. Further-

more, we can compute the twisted Frobenius-Schur indicator for all other automorphisms

ι and in all representations r of A5 and find that none of the other ones fulfills ει(r) = ±1

for all r. So, none of the other automorphisms of A5 is class-inverting and involutive.

B Convention for lepton mixing parameters and CP invariants

We use the following convention for the PMNS mixing matrix

UPMNS = Ũ diag
(

1, ei α/2, ei (β/2+δ)
)

(B.1)

– 22 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
7

with Ũ being defined, similar to the Cabibbo-Kobayashi-Maskawa mixing matrix [59],

Ũ =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13 e
−i δ

0 1 0

− sin θ13 e
i δ 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 .

(B.2)

The mixing angles θij are taken to be in the interval between 0 and π/2. The Dirac phase

δ as well as the two Majorana phases α and β can assume values between 0 and 2 π. The

Dirac phase δ can be extracted using the Jarlskog invariant JCP [60]

JCP = Im
(
UPMNS,11U

?
PMNS,13U

?
PMNS,31UPMNS,33

)
=

1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ . (B.3)

Similar invariants, called I1 and I2, can be defined for the Majorana phases

I1 = Im
(
U2
PMNS,12(U?PMNS,11)2

)
= sin2 θ12 cos2 θ12 cos4 θ13 sinα , (B.4)

I2 = Im
(
U2
PMNS,13(U?PMNS,11)2

)
= sin2 θ13 cos2 θ12 cos2 θ13 sinβ . (B.5)

Notice that the Dirac phase δ has a physical meaning only if all mixing angles are different

from 0 and π/2. Analogously, the vanishing of the invariants I1,2 only implies sinα = 0,

sinβ = 0, if solutions with sin 2θ12 = 0, cos θ13 = 0 or sin 2θ13 = 0, cos θ12 = 0 are

discarded. Furthermore, notice that one of the Majorana phases becomes unphysical, if

the lightest neutrino mass vanishes.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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