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Abstract: The deep connection between gravitational dynamics and horizon thermo-

dynamics leads to several intriguing features both in general relativity and in Lanczos-

Lovelock theories of gravity. Recently in arXiv:1312.3253 several additional results

strengthening the above connection have been established within the framework of general

relativity. In this work we provide a generalization of the above setup to Lanczos-Lovelock

gravity as well. To our expectation it turns out that most of the results obtained in the

context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward

but non-trivial manner. First, we provide an alternative and more general derivation of

the connection between Noether charge for a specific time evolution vector field and grav-

itational heat density of the boundary surface. This will lead to holographic equipartition

for static spacetimes in Lanczos-Lovelock gravity as well. Taking a cue from this, we have

introduced naturally defined four-momentum current associated with gravity and matter

energy momentum tensor for both Lanczos-Lovelock Lagrangian and its quadratic part.

Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock

gravity by providing a direct generalization of previous results derived in the context of

general relativity.

Another very interesting feature for gravity is that gravitational field equations for

arbitrary static and spherically symmetric spacetimes with horizon can be written as a

thermodynamic identity in the near horizon limit. This result holds in both general rela-

tivity and in Lanczos-Lovelock gravity as well. In a previous work [arXiv:1505.05297] we

have shown that, for an arbitrary spacetime, the gravitational field equations near any null

surface generically leads to a thermodynamic identity. In this work, we have also general-

ized this result to Lanczos-Lovelock gravity by showing that gravitational field equations for

Lanczos-Lovelock gravity near an arbitrary null surface can be written as a thermodynamic

identity. Our general expressions under appropriate limits reproduce previously derived re-

sults for both the static and spherically symmetric spacetimes in Lanczos-Lovelock gravity.

Also by taking appropriate limit to general relativity we can reproduce the results presented

in arXiv:1312.3253 and arXiv:1505.05297.
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1 Introduction

In recent years, several interesting features have been derived for gravitational theories in

which the field equations do not contain more than second order derivatives of the dy-

namical variable. This general class of gravity theories are known as Lanczos-Lovelock
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theories of gravity which includes general relativity as a special case [1–4]. All these fea-

tures are shown to stem from the deep connection between gravitational dynamics and

horizon thermodynamics. Even though they first emerged in the context of general rel-

ativity showing that Einstein’s field equations near a horizon become a thermodynamic

identity [5–28], this result transcends general relativity and extends naturally to horizons

in spherically symmetric and static spacetimes within Lanczos-Lovelock theories of grav-

ity [29, 30]. Horizons in general (and black holes in particular) possess thermodynamic

attributes like entropy [31, 32] and temperature [33–36]. Also any null surface can act as a

local Rindler horizon for some observer [7]. The above framework allows one to introduce

observer-dependent thermodynamic variables near any arbitrary event in the spacetime.

From all these evidences it seems natural to think of gravitational dynamics as a long

wavelength thermodynamic limit of some microscopic degrees of freedom [37–42]. This

emergent gravity paradigm has received significant amount of support from later investi-

gations, especially from the following results:

• The action functional for gravity is expressible as a sum of a bulk term and a surface

term with a “holographic” relation between them. This result holds both in Einstein

gravity and in all Lanczos-Lovelock theories of gravity [43–45].

• Gravitational field equations when projected on an arbitrary null surface, reduces to

the Navier-Stokes equation of fluid dynamics in any spacetime [46–48].

• Gravitational field equations in all Lanczos-Lovelock models can be obtained from

thermodynamic extremum principles [40, 49] involving the heat density of null sur-

faces in the spacetime.

• In [50] a pair of conjugate variables fab =
√−ggab and N c

ab = −Γc
ab + (1/2)(Γd

bdδ
c
a +

Γd
cdδ

a
b ) have been introduced in terms of which the gravitational action can be inter-

preted as a momentum space action. Also variation of these variables has very natural

thermodynamic interpretation, δfab is related to variation of entropy and δN c
ab is re-

lated to variation of temperature when evaluated on an arbitrary null surface. This

idea has been generalized to Lanczos-Lovelock gravity in [51] by introducing a new

set of variables with identical thermodynamic interpretation.

• This paradigm also offers a possible solution to the cosmological constant problem.

In this paradigm (a) the field equations are invariant under addition of a constant

to the matter Lagrangian, (b) the cosmological constant appears as an integration

constant and finally (c) its value can be determined by postulating a dimensionless

number (known as CosMIn) to have a value 4π [52, 53]. This dimensionless number

counts the number of modes that cross the Hubble volume at the end of inflation and

re-enters the Hubble volume at the beginning of late-time acceleration phase [53].

Recently in [54] the connection between gravity and thermodynamics has been explored

further in the context of general relativity. It has been demonstrated in [54] that, in the

context of general relativity, the following results hold:

– 2 –
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• The total Noether charge contained in a 3-volume R, evaluated for a specific time

evolution vector field, can be interpreted as the surface heat density of the boundary

∂R of the volume.

• The time evolution of the spacetime itself can be described by the difference between

surface and bulk degrees of freedom. Here the surface degrees of freedom, Nsur is

equal to the area of the boundary and Nbulk is the Komar energy modulo average

Unruh-Davies temperature of the boundary surface. For static spacetime this will

lead to holographic equipartition: Nsur = Nbulk.

• For suitably defined gravitational momentum related to a specific time evolution

vector, total energy (gravity+matter) in a bulk volume R turns out to be the heat

density of the surface ∂R.

• For a bulk region bounded by null surfaces, the total Noether charge within that

region is related to ‘heating’ of the boundary surface.

In the past, virtually every result related to thermodynamic structure of gravity in the

context of general relativity has been generalized to Lanczos-Lovelock models of gravity.

In this case as well it is worth investigating whether the above description can also be

generalized to Lanczos-Lovelock gravity. This is very important since the expression for

horizon entropy in general relativity is just a quarter of the horizon area, while in Lanczos-

Lovelock models, the corresponding expression is much more complex. Given this fact it is

not clear a priori whether our results — interpretation of Noether charge for both timelike

and null surfaces along with gravitational momentum—will generalize to Lanczos-Lovelock

gravity. We will show in this work that, all these results possess a natural generalization

to Lanczos-Lovelock gravity.

There is another very important and curious connection between gravitational dynam-

ics and horizon thermodynamics. This originates from the fact that field equations for

gravity near a horizon in both static [30] and spherically symmetric spacetime [29] can

be written as a thermodynamics identity. In this work, we will try to generalize this re-

sult for an arbitrary spacetime with a null surface, which is neither static nor spherically

symmetric. As we have mentioned earlier — by introducing local Rindler horizon it is

possible to attribute thermodynamical entities like temperature and entropy to the null

surface. Also components of energy momentum tensor has physical interpretation, e.g.,

the T r
r component (where r is like the radial coordinate) can be taken as a measure of

radial pressure in spherically symmetric spacetime. Then we can consider an infinitesimal

displacement of the null surface along the outgoing null geodesic ka with affine parameter

λ. From the above virtual displacement we can ask the physical meaning of the following

object TδλS−PδλV . In both static and spherically symmetric spacetimes the above object

is δλE, for some suitably defined energy E. Thus through this exercise it would be possible

to identify the energy (the relation of this object with standard notions of energy will be

discussed elsewhere) for an arbitrary null surface through its appearance in the thermo-

dynamic identity. Starting from this thermodynamic identity in an arbitrary spacetime

– 3 –
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with a null surface, taking suitable limits we can arrive at both the static and spherically

symmetric results respectively. Thereby verifying previous results along this direction in

the literature explicitly from our general formulation.

The paper is organized as follows: first in section 2 we have provided a brief introduc-

tion to Lanczos-Lovelock gravity to make the reader familiar with notations and conven-

tions. Next in section 3 we will derive the equivalence of gravitational Field equation with

a thermodynamic identity for an arbitrary null surface, which then is applied in section 4

to static spacetime and spherically symmetric spacetime to retrieve the respective result in

those cases as well. Furthermore, in section 5 we have presented all the results generalized

to Lanczos-Lovelock gravity, which involves Noether charge, gravitational momentum and

null surfaces. Finally, we have concluded with a discussion on our results. All the relevant

derivations are summarized in appendix A.1, appendix A.2 and appendix A.3.

Throughout this paper, we work in a D dimensional spacetime where we use metric

signature (−,+,+,+, . . .) with all the fundamental constants G, ~ and c being set to unity.

All the Latin indices a,b,. . . run from 0 to (D − 1), Greek indices µ, ν, . . . run from 1 to

(D − 1) and capitalized Latin indices A,B,. . . stand for transverse coordinates.

2 A brief introduction to Lanczos-Lovelock gravity

In this paper, we will work exclusively within the framework of Lanczos-Lovelock gravity.

Thus before going to the main body of this work it is advantageous to introduce some

definitions and notations that we will follow throughout [4]. For that purpose we will

provide a brief introduction to the Lanczos-Lovelock gravity itself.

We will start by consider the most general setup of a D-dimensional spacetime in which

the action functional for gravity is described by an arbitrary function of metric gab and

curvature Ra
bcd. Thus the action functional takes the following form:

A =

∫

V

dDx
√−gL

(

gab, Ra
bcd

)

(2.1)

It should be emphasized that the gravitational Lagrangian introduced above depends both

on the curvature and the metric but not on the derivatives of the curvature i.e., the La-

grangian contains terms only up to second order derivatives of the metric. The most

important quantity, which will be extremely helpful for our later purpose, derived from the

Lagrangian, is the following tensor:

P abcd =

(

∂L

∂Rabcd

)

gij

(2.2)

This tensor has all the algebraic symmetry properties of the curvature tensor, namely: (a)

antisymmetry in first two and last two indices, (b) symmetry under pair exchange and

finally (c) cyclic identity. Using this tensor an analogue of the Ricci tensor in general

relativity can be constructed by the following definition

Rab ≡ P aijkRb
ijk. (2.3)

– 4 –
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This tensor is indeed symmetric under interchange of the indices (a, b) alike the Ricci

tensor; but the result is nontrivial to prove (for this result and other properties of these

tensors, see [46]). Having defined the action functional the next obvious task is to consider

a variation of the action functional to get the field equations. The variation of the action

presented in eq. (2.1) leads to the result:

δA =

∫

V

dDx
√−gEabδg

ab +

∫

V

dDx
√−g∇jδv

j (2.4)

where Eab represents the field equation term resulting from the variation of the bulk part

of the action and δva is the boundary term which we generally set to zero at the boundaries

(if the boundary term contains normal derivatives then we need to add a counter term to

the action). Both the field equation term and the boundary term are given by the following

expressions:

Eab ≡ Rab −
1

2
gabL− 2∇m∇nPamnb (2.5a)

δvj = 2P ibjd∇bδgdi − 2δgdi∇cP
ijcd (2.5b)

The quantity P abcd involves second order derivatives of the metric which in turn implies that

the term ∇m∇nPamnb in Eab contains fourth order derivatives of the metric. Therefore, in

order to get field equation containing only second order derivatives of the metric we must

impose an extra condition on P abcd, such that

∇aP
abcd = 0. (2.6)

Hence the problem of obtaining field equation having up to second order derivatives of the

metric from an action functional reduces to that of finding scalar functions of curvature and

metric such that eq. (2.6) is satisfied. It turns out that such a scalar indeed exists and is

unique; it is given by the Lanczos-Lovelock Lagrangian [3, 4, 29, 38, 43] in D dimensions, as

L =
∑

m

cmLm =
∑

m

cm
m

∂Lm

∂Rabcd

Rabcd =
∑

m

cm
m

P abcd
(m) Rabcd (2.7)

The Lagrangian Lm is a homogeneous function of Rabcd of order m which can be written

as Lm = Qabcd
(m) Rabcd. This can be used to identify P abcd

(m) = mQabcd
(m) . From now on we shall

work with this mth order Lagrangian since any result obtained for Lm can be generalized

to most general Lagrangian in eq. (2.7) in a straightforward manner. Henceforth we shall

drop the m index. For this mth order Lanczos-Lovelock Lagrangian we have the following

explicit expression for P ab
cd in terms of the curvature tensor:

P ab
cd =

∂Lm

∂Rcd
ab

=
m

16π

1

2m
δaba2b2...ambm
cdc2d2...cmdm

Rc2d2
a2b2

. . . Rcmdm
ambm

≡ mQab
cd (2.8)

where we have δaba2b2...ambm
cdc2d2...cmdm

to be completely antisymmetric determinant tensor. This

relation will be used extensively later.

– 5 –
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Diffeomorphism invariance is a property that any generally covariant theory shares,

including the Lanczos-Lovelock theories of gravity. This has serious implications; the invari-

ance of action functional under an infinitesimal coordinate transformation, xa → xa+ξa(x)

lead to conservation of a current, usually called the Noether current. From variation of

action functional we can get the Noether current having the following expression [4, 38]:

Ja ≡
(

2Eabξb + Lξa + δξv
a
)

(2.9)

(However in a recent work [54] it has been shown that the conservation of Noether cur-

rent follows from identities in differential geometry alone; which has been generalized for

Lanczos-Lovelock gravity in [55].) In the above expression the last term, δξv
a represents

the boundary term of the Lanczos-Lovelock Lagrangian. From the conservation property

of the Noether current i.e., ∇aJ
a = 0, we can define an antisymmetric tensor known as

Noether Potential as, Ja = ∇bJ
ab. General expressions for these quantities can be found

in [38]. In the context of Lanczos-Lovelock theories, we have ∇aP
abcd = 0, and the Noether

current and Noether potential simplifies to (for most general case see [56])

Jab = 2P abcd∇cξd (2.10a)

Ja = 2P abcd∇b∇cξd = 2Rabξb + 2P ija
k £ξΓ

k
ij (2.10b)

where Γa
bc is the metric compatible connection.

A direct thermodynamic interpretation can be presented for the Noether current. For

that one requires to associate Wald entropy with horizons in all Lanczos-Lovelock models.

The corresponding entropy density (which, integrated over the horizon gives the entropy)

is given by [7, 57–64]

s = −2π
√
qP abcdµabµcd (2.11)

where µab is the bi-normal to the (D − 2)-dimensional surface and q is the respective

determinant. The best way to see that this is indeed the entropy density is to consider

the Einstein-Hilbert limit. In which case we have P ab
cd = (1/32π)(δac δ

b
d − δadδ

c
b) and µab =

(uarb − raub) with u2 = −1 and r2 = +1 leading to s =
√
q/4.

3 Equivalence of gravitational field equation near an arbitrary null sur-

face to thermodynamic identity

An arbitrary spacetime with a null surface can always be parametrized using Gaussian Null

Coordinates (henceforth refereed to as GNC). This coordinate system can be constructed in

analogy with Gaussian normal coordinates. In the non-null case the construction proceeds

by invoking geodesics normal to the desired surface. While for a null surface characterized

by null normal ℓa the normal geodesics are on the surface. Then construction of coordinates

off the surface can be achieved by introducing an auxiliary null vector ka satisfying ℓak
a =

−1 and moving away from the null surface along the null geodesics of ka. The construction

of such a coordinate system for an arbitrary spacetime with a null surface has been detailed

– 6 –
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in [65–67] and the line element in this D-dimensional spacetime turns out to have the

following form:

ds2 = −2rαdu2 + 2dudr − 2rβAdudx
A + qABdx

AdxB (3.1)

where xA’s are the (D−2) transverse coordinates. Note that the above line element contains

(D − 2)(D − 1)/2 independent parameters in qAB, (D − 2) independent parameters in βA
and finally one independent parameter α. All of them are dependent on the coordinates
(

u, r, xA
)

. The surface r = 0 is the null surface under our consideration. The null normal

ℓa and the auxiliary vector ka has the following expressions [67]:

ℓa = (0, 1, 0, 0) , ℓa =
(

1, 2rα+ r2β2,−rβA
)

(3.2a)

ka = (−1, 0, 0, 0) , ka = (0,−1, 0, 0) (3.2b)

It turns out that, for the r = 0 surface the non-affinity parameter corresponding to the

null normal ℓa is obtained from ℓb∇bℓ
a = κℓa. This yields the non-affinity parameter to

be: κ = α. While the vector ka = −∇au, is tangent to the ingoing null geodesic and is

affinely parametrized, with affine parameter r. Hence on the null surface we denote λH to

be the value of the affine parameter. Also in the remaining discussion we will work with λ

being identified as: λ− λH = r.

The mth order Lanczos-Lovelock Lagrangian in D dimension is given by (throughout

this paper we will follow the notation of [4, 26, 30]):

Lm =
1

16π

1

2m
δa1b1...ambm
c1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

(3.3)

A general Lanczos-Lovelock Lagrangian consists of a linear combination of various m terms

with different coefficients. However a result if true for a given order m, will hold for the

most general linear combination, follows immediately. Thus we will restrict ourselves by

considering a mth order Lanczos-Lovelock Lagrangian (in the literature it has often been

argued that pure Lovelock is more fundamental than the total Lanczos-Lovelock action

itself, see e.g., [68–70]), from which the field equation turns out to be (we will drop the

subscript m from now on):

Ei
j = −1

2

1

16π

1

2m
δia1b1...ambm
jc1d1...cmdm

Rc1d1
a1b1

. . . Rcmdm
ambm

=
1

16π

m

2m
δa1b1...ambm
jd1...cmdm

Rid1
a1b1

. . . Rcmdm
ambm

− 1

2
δijL =

1

2
T i
j (3.4)

The equivalence of the two expressions in the first and second line follows from [4, 30]. In

GNC coordinates we will now consider the near null surface behavior of gravitational field

equation in the mth order Lanczos-Lovelock gravity. As in Einstein gravity [71] in this

case as well we will start with a subclass of the GNC parametrization in order to bring

out the physics involved. For that as in the case of Einstein-Hilbert action in Lanczos-

Lovelock gravity as well we will impose two additional requirements, namely βA|r=0 = 0

and hypersurface orthogonality for time-like unit vector ua constructed from ξa. This

immediately leads to ∂Aα|r=0 = 0 (see eq. (A.13a) in appendix A.2). Hence these two

– 7 –
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conditions implies that α should be independent of transverse coordinates. This can be

thought of as an extension of the zeroth law of black hole thermodynamics for an arbitrary

null surface in Lanczos-Lovelock theories of gravity. On using this condition we arrive at

the following expression for T abℓakb (which equals T r
r in the null limit) as (see eq. (A.6) in

appendix A.1):

T r
r =2Er

r =
m

8

1

2m−1

( α

2π

)(

δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

(

qQE∂rqPE

)

− 1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm
(3.5)

− m

8π

1

2m

{

δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE +

1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

]

×RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1
+ 2(m− 1)δ

PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

}

Let us now consider the Einstein-Hilbert limit of the above equation, which can be obtained

by substituting m = 1 in the above equation. This leads to:

T r
r = −δABR

uB
uA − 1

4
δAB
CDR

CD
AB (3.6)

which exactly coincides the expression obtained in [71]. Hence our general result reduces

to the corresponding one in Einstein-Hilbert action under appropriate limit.

Now let us multiply eq. (3.5) with the virtual displacement along ka, which is δλ, and√
q, where q is the determinant of the transverse metric leading to:

T r
r δλ

√
q =

m

8

1

2m−1

√
q
( α

2π

)(

δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

(

qQEδλqPE

)

− δλ
√
q

{

1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm
+

m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

×
[

− 1

2
qQE∂u∂rqPE +

1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

]

RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

+
m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

}

(3.7)

Now α/2π can be interpreted as the temperature associated with the null surface, and

using δλs from eq. (A.10) we can integrate the above equation over (D − 2) dimensional

null surface yielding (the most general expression has been provided in appendix A.1):

∫

dΣT r
r δλ = Tδλ

∫

dD−2x s−
∫

dΣδλ

[(

1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm

)

+

{

m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE +

1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

]

(3.8)

×RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1
+

m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

}]

where dΣ = dD−2x
√
q. To bring out the physics presented in eq. (3.8) we introduce the

concept of transverse metric g⊥ab and a work function [72, 73]. Let us start by considering ua

– 8 –
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to be a normalized timelike vector and another normalized but spacelike vector ra. They

are related to the null vectors (ℓa, ka) by the following relations: ua = (1/2A)ℓa +Aka and

ra = (1/2A)ℓa − Aka, where A is an arbitrary function. Given this setup the transverse

metric is defined as g⊥ab = uaub − rarb = ℓakb + ℓbka. Using this transverse metric the work

function is defined [72, 73] to be P = (1/2)Tabg
ab
⊥

= Tabℓ
akb. In the adapted coordinate

system on the null surface using the null vectors from eqs. (3.2a) and (3.2b) we have

P = T r
r . As an aside we would like to mention that in the case of spherically symmetric

spacetime, P will be the transverse pressure. However, in this work we will not bother to

illustrate the physical meaning of P which can be obtained from [72, 73].

Given this physical input we can rewrite eq. (3.8) in the following form:

F̄ δλ = TδλS − δλE (3.9)

This exactly coincides with the conventional first law of thermodynamics, provided: (i) we

identify the quantity S to be the entropy of the null surface in Lanczos-Lovelock gravity

and this exactly matches with existing expression for entropy in Lanczos-Lovelock grav-

ity [58–60, 74, 75]. (ii) We interpret F̄ to be the average force over the null surface which

is defined as the integral of the work function over the null surface as

F̄ =

∫

dD−2x
√
qP (3.10)

Finally, (iii) we should identify the second term on the right hand side of the eq. (3.9) as

variation of an energy as the null surface is moved by an affine parameter distance δλ. The

energy variation due to motion of the null surface has the following expression:

δλE = δλ

∫

dΣ

{

1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm

+
m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE +

1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

]

(3.11)

×RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1
+

m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

}

In the above expression for energy the λ integral must be done after the above integral

has been performed, which in turn tells us that the detailed form of the expression inside

bracket is required to get E explicitly.

The thermodynamic identity obtained in eq. (3.9) can be better explained if written

in the following fashion:

δλE = TδλS − F̄ δλ (3.12)

This equation in this context can be interpreted as: work done due to infinitesimal virtual

displacement from r = 0 to r = δλ of the null surface, subtracted from the heat energy,

i.e., temperature times entropy change, equals to the energy engulfed during this process.

It is to be noted that in the general relativistic limit the last term in the energy expression

would be absent and the second term in it leads to time rate of change of transverse area.

Hence the energy expression for general relativity can be obtained by taking suitable limit

of the above energy expression.
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4 Applications

In the previous section we have derived the equivalence of gravitational field equations in

Lanczos-Lovelock gravity to the thermodynamic identity PδλV = TδλS − δλE near an

arbitrary null surface. In this section we will illustrate two applications of our general

result: first, the case of an arbitrary static spacetime (see [30]). Second, the spherically

symmetric spacetime (see [29]). The discussion will be brief since the details are sketched

in the references cited above.

4.1 Stationary spacetime

A spacetime will be called stationary, when we impose Killing conditions on the time

evolution vector field. In GNC the most natural time evolution vector field corresponds to:

ξ = ∂/∂u. Imposing Killing condition on this vector demands all the metric components,

namely α, βA and qAB to be independent of the u coordinate (see A.2). Thus imposing

this condition the energy expression as given in eq. (3.11) reduces to the following form:

δλE = δλ

∫

dΣ

{

1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm

}

= δr

∫

dΣ L(D−2) (4.1)

which immediately leads to the following differential equation for energy:

∂E

∂r
=

∫

dΣ L(D−2) (4.2)

This exactly matches with the expression given in [30]. For m = 1 and D = 4 this reduces

to the expression obtained for Einstein’s gravity.

In order to achieve staticity we must impose hypersurface orthogonality on the time

evolution vector ξa (or, equivalently on the four velocity constructed out of it). As men-

tioned in A.2 this requires ∂Aα|r=0 to vanish. However from eq. (4.1) it is evident that this

leads to no modification to our energy expression.

This is an interesting result. It shows that in arriving at this relation we have used

two assumptions, viz, (a) βA = 0 on the null surface and (b) the spacetime is stationary.

Hence the above result does not require spacetime to be static. Thus starting from the

thermodynamic identity TδλS = δλE+PδλV for arbitrary null surface we have shown that

it holds for arbitrary static and stationary spacetimes as well. We will now take up the

case for spherically symmetric but time dependent spacetime.

4.2 Spherically symmetric spacetime

We will finish by considering another application of our result: a spherically symmetric but

not necessarily static spacetime. GNC metric can be expressed in a spherically symmetric

form by choosing the transverse coordinates xA to be the angular coordinates and enforcing

(D − 2)-sphere geometry on the (u, r) = constant surface. Then we have the following
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restrictions on the GNC parameters, namely, ∂Aα = 0, βA = 0 and qAB = f(u, r)dΩ2
(D−2).

When these conditions are imposed the line element takes the following form:

ds2 = −2rα(r, u)du2 + 2dudr + f(u, r)dΩ2
(D−2) (4.3)

We will define the radial coordinate [71] as: R(r, u) =
√

f(r, u). Then making a Taylor

series expansion about r = 0, we get R(r, u) = RH(u) + rg(r, u). Hence the null surface

has a radius RH(u), which can change with u. This clearly shows that we have spherical

symmetry but have retained time dependence. Hence by imposing spherical symmetry the

energy satisfies a partial differential equation with the following form:

∂E

∂λ
=

∫

dΣ

{

1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm

+
m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE +

1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

]

(4.4)

×RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1
+

m(m−1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

}

A much simpler form can be derived in which the 2-sphere line element is just

(r +RH)2dΩ2
(D−2), where the radial coordinate at the null surface RH is a constant. Then

trading off r in favor of R the line element becomes

ds2 = −2 (R−RH)α(R, u)du2 + 2dudR+R2dΩ2
(D−2) (4.5)

Then using the result that ∂uRH = 0, the differential equation for energy can be integrated

leading to,

E(R, u) =

∫

dλ

∫

dΣ L(D−2) +X(u)

=
1

16π
AD−2R

D−(2m+1)
2m
∏

j=2

(D − j) +X(u) (4.6)

where X(u) is an arbitrary function appearing as a “constant” of integration and AD−2

originates from the differential volume element. Having introduced the radial coordinate

R, we can replace λ by R, since R − RH = r, which coincides with the defining equation

for λ. As we move along ingoing radial lines, which are also ingoing radial null geodesic

−∂/∂r, we will gradually hit the center of the (D − 2)-spheres (assuming that it exists).

The affine parameter at the center would be R = 0. Then eq. (4.6) at the center turns

out to be:

E(R = 0, u) = X(u) (4.7)

Since the center is a single point it is natural to associate zero energy with it, which

determines the arbitrary function to be X(u) = 0. Thus substituting this result in eq. (4.6)

and evaluating on the null surface, we obtain the energy associated with the null surface

in a spherically symmetric spacetime to be given by

E =
1

16π
AD−2R

D−(2m+1)
H

2m
∏

j=2

(D − j) (4.8)
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This again matches exactly with the result obtained in [29]. Another important thing to

note is the following: the expression for energy, first obtained for static spherically sym-

metric configuration also holds for time dependent situation with only spherical symmetry

assumed.

5 Various geometrical quantities in Lanczos-Lovelock gravity and their

thermodynamic interpretation

As we have mentioned earlier, in this work we will be dealing exclusively with Lanczos-

Lovelock gravity. For that purpose we have provided in section 2 a short and brief introduc-

tion to the main aspects of the Lanczos-Lovelock gravity. As prescribed in the beginning

we will generalize all the results presented in [54] to Lanczos-Lovelock gravity. Even though

the concepts like Noether charge, Noether current for Lanczos-Lovelock gravity are well

known in the literature and have been discussed at some length in [55] and [51] in the con-

nection with thermodynamic perspectives. Nevertheless we will first present an alternative

derivation of the results related to Noether current. Then we will provide a generalization

of a four vector from Einstein gravity to Lanczos-Lovelock gravity, which will carry the no-

tion of gravitational momentum. Then we will concentrate on variation of this momentum

and its meaning in thermodynamic language. The same steps will be followed for another

momentum defined using only the quadratic part of the Lanczos-Lovelock action. Finally

we discuss the null surfaces in the context of Lanczos-Lovelock gravity.

5.1 The spacetime foliation

We will work in a spacetime which is being foliated by a series of spacelike hypersurfaces.

These hypersurfaces are determined by the constant value of a scalar field t(x). The unit

normal to the t(x) = constant hypersurface is given by ua = −N∇at. If we consider t

as another coordinate then the above four-vector reduces to −Nδ0a. For this spacetime

foliation (which is known as slicing) we have g00 = −1/N2, and the timelike normal being

unit normalized i.e. uaua = −1. Given this foliation, it is possible to introduce a time

evolution vector field ζa by the condition ζa∇at = 1. In this coordinate system with t

as a coordinate it reduces to ζa = δa0 . This suggests the following decomposition: ζa =

−
(

ζbub
)

ua + Na, where we have Naua = 0 and Na = habζ
b. In the above discussion the

object hab = δab + uaub represents the induced metric on the t = constant surface. The

above decomposition also introduces another vector

ξa = Nua → −N2δ0a (5.1)

where the last result holds in the preferred foliation with t as a coordinate. If we further

impose the condition that g0α = 0 this vector reduces to ζa. Also, in static spacetimes ξa

turns out to be the time-like Killing vector field. ξa was shown to play a key role in ref. [54]

to arrive at the thermodynamic interpretation. This vector also provides a rich structure

as far as the Noether current and spacetime dynamics is concerned.
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5.2 Noether current and related aspects

Gravitational dynamics can be very efficiently described by using conserved current, known

as Noether current. In literature this conserved current is shown to originate from the

diffeomorphism invariance of the action. However this pose an immediate conceptual dif-

ficulty. In Electrodynamics for example, the gauge transformation is a symmetry of the

system and thus is connected to a conserved current, which is trivial. Along identical lines

the diffeomorphism invariance of gravitational action is also a gauge symmetry. Thus moti-

vated by the example of electrodynamics it seems natural to expect the Noether current to

originate from some differential geometry identity. This has been achieved recently in [54]

in the context of general relativity and subsequently was shown to hold in Lanczos-Lovelock

gravity as well in [55]. Both these approaches show that the Noether current associated

with a vector field va can be obtained without any use of diffeomorphism invariance of

gravitational action. The proof involves connecting antisymmetric part of ∇ivj with Ri
jv

j .

From which the relation ∇aJ
a(v) = 0 follows just as an identity in differential geometry.

The striking feature of the above result is that a conserved current obtained from differ-

ential geometry turns out to be the one originating from diffeomorphism invariance of the

action. In this work we will try to show the important role played by Noether current from

a thermodynamic perspective, which can possibly shed light on this remarkable feature.

Noether charge and surface heat content. As emphasized earlier the vector ξa =

Nua plays a central role in this work. Thus we start by computing Noether charge for

the vector ξa. Since this has been discussed extensively in [54, 55] we will be brief in

this discussion. However we will point out some peculiarities which have not been noticed

in earlier works. Firstly in all the previous works it has been assumed that the tensor

P bcd
a (see eq. (2.2)) has all the symmetry properties of the curvature tensor. However as

we have shown explicitly in appendix A.3.1 the derivation of the Noether current itself

does not require all the symmetry properties. We only need antisymmetry of P abcd in

the pairs (a, b) and (c, d) along with pair exchange symmetry between them and vanishing

divergence in the first two indices. Hence the same form of Noether current continues to

hold for even general class of Lagrangians for which P abcd does not follow cyclic identity and

is not divergence free in the last two indices. Secondly, in both the previous derivations the

Noether current for ξa has been derived using the property that Ja(v) = 0 where va = ∇aφ.

However in this work we have provided an altogether different derivation of the Noether

current for ξa. In the derivation we have used the bi-normals to N = constant surface

within the t = constant surface. This leads to:

Jab(ξ) = −2NaP abcdǫcd; Jab(u) = −aP abcdǫcd (5.2)

where a is the magnitude of the acceleration four vector obtained as: ai = uj∇ju
i. Also in

the above expressions we have: ǫab = (uaâb − ubâa) to be the bi-normal constructed out of

ua and unit vector along acceleration, i.e., âi. The above two results suggest the following

relation between Noether potential for the vector field ua and ξa:

Jab(ξ) = 2NJab(u) (5.3)
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Then the Noether current for ξa and hence the Noether charge can be obtained in a straight-

forward manner by differentiating the above equation, which leads to (see appendix A.3.1):

uaJ
a(ξ) = NuaJ

a(u) +∇b

(

Nχb
)

= ∇b

(

Nχb
)

+NDαχ
α = 2Dα (Nχα) (5.4)

In arriving at the last line we have used the following results: N∇iχ
i = Dα(Nχα) and

Dαχ
α = ∇iχ

i − aiχ
i. The vector χi is analogue of the acceleration four-vector in general

relativity and has the following expression:

χb = 2P bacduaucad (5.5)

which the properties: uaχ
a = 0 and in the general relativity limit χa → aa. The next

natural object to consider is the total Noether charge, which can be obtained by integrating

eq. (5.4) with integration measure
√
hdD−1x. This leads to:

∫

R

√
hdD−1x uaJ

a(ξ) =

∫

∂R

dD−2x
√
q (2Nraχ

a) (5.6)

where ra represents the unit normal to the N = constant surface within the t = constant

surface. This normal is equal to ǫaa/a, where ǫ = ±1 when the normal is directed towards

the acceleration or vice versa. Then the above relation using eq. (5.5) can be written as:

∫

R

√
hdD−1x uaJ

a(ξ) = ǫ

∫

∂R

dD−2x

(

Na

2π

)

(

8πP abcdraubucrd

)

= ǫ

∫

∂R

Tlocs (5.7)

where s is the entropy density obtained from eq. (2.11) and Tloc corresponds to Tolman

red-shifted local Unruh-Davies temperature as measured by an observer with four-velocity

ua = −Nδ0a. Hence the total Noether charge inside the volume R corresponds to the heat

density Ts integrated over the boundary surface ∂R.

Holographic equipartition. The above result showing the connection between Noether

charge and heat content can be extended and interpreted in a completely different form.

Using eq. (2.10b) the Noether current can be expressed in terms of Lie variation of the

connection and Lovelock Ricci Rab as:

2uaP
jka

i £ξΓ
i
jk = Dα (2Nχα)−NT̄abu

aub (5.8)

where we have used the relation: Rab = (1/2)T̄ab = (1/2) [Tab − (1/(D − 2m))gabT ]. Then

using the definition of Komar energy density as: ρKomar = 2NT̄abu
aub and integrating over

(D − 1) dimensional space R we arrive at [55]:

∫

R

√
hdD−1x 4uaP

jka
i £ξΓ

i
jk = ǫ

(

1

2
Tavg

)

(Nsur −Nbulk) (5.9)

where Tavg corresponds to average of Na/2π, the local Unruh-Davies temperature of the

observer with four-velocity ua over the boundary surface. Nsur encodes the surface degrees
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of freedom which equals temperature average of 4S and Nbulk determines the bulk degrees

of freedom defined as Komar energy modulo (1/2)Tavg. Note that the left hand side differs

from the result obtained in [54, 55] by a factor of 16π. This is due to the fact that the

P abcd in those references differs from our convention by precisely a factor of 1/16π.

The above equation is actually equivalent to the field equation for Lanczos-Lovelock

gravity but provides a ‘holographic’ interpretation.1 The left hand side involving Lie varia-

tion of the connection Γa
bc provides time evolution of the spacetime which is solely dependent

on the difference between suitably defined bulk and surface degrees of freedom. Note that

for static spacetime ξa = δa0 and hence is the Killing vector. Then Lie variation of Γa
bc along

the Killing vector ξa vanishes. This immediately leads to:

Nsur = Nbulk (5.10)

Thus for static spacetime surface degrees of freedom coincides with the bulk degrees of

freedom. This provides the holographic equipartition between surface and bulk degrees of

freedom. When holographic equipartition does not hold the difference between surface and

bulk degrees of freedom is responsible for evolution of the spacetime in Lanczos-Lovelock

gravity.

5.3 Bulk gravitational dynamics and its relation to surface thermodynamics

in Lanczos-Lovelock gravity

In [54] it has been illustrated that, total energy of matter and gravity equals the surface heat

content in the context of general relativity. To prove this a suitably defined gravitational

four-momentum P a has been used such that when integrated over a t = constant surface

with proper integration measure it leads to a notion of gravitational energy. The notion of

energy is quiet ambiguous in the sense of observer dependence. For example, even in special

relativity the energy of a particle with four momentum p as measured by an observer with

four velocity u is: E = −u.p. This immediately suggests that we should use identical trick

to identify the energy by contracting a suitably defined four momentum P a with the four

velocity ua introduced in section 5.1. We will first briefly describe the situation for general

relativity and shall generalize subsequently to Lanczos-Lovelock gravity.

Bulk energy versus surface heat energy. The Einstein-Hilbert action can be writ-

ten explicitly in terms of two canonically conjugate variables, namely, fab =
√−ggab and

N c
ab = Qcp

aqΓ
q
bp + Qcp

bqΓ
q
ap [50]. It turns out that the Einstein-Hilbert action can be inter-

preted as a momentum space action with fab as the coordinate and N c
ab as its conjugate

momentum [50]. Using these two variables a natural definition of gravitational momentum

can be provided as:

P a(q) = gij£qN
a
ij + qaL (5.11)

1In this work the word “holography” has been used in a primitive sense i.e. implying a relation between

surface and bulk properties. This should not be confused with frequent use of this word in the context of

string theory.
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where qa is an arbitrary vector field. This follows from the result that Hamiltonian can

be written as H = qṗ + L with the identification of p as N c
ab and q as gab (or fab if we

consider
√−gP a). However in order to generalize the above result to Lanczos-Lovelock

gravity, we should rewrite the above expression in a slightly modified form, such that:

gij£qN
a
ij = 2gij£q(Q

ap
imΓm

jp) = 2Q jpa
m £qΓ

m
jp. Thus the above action can also be interpreted

with Γm
jp and Q jpa

m as conjugate variables. Surprisingly, this is also a valid pair of conjugate

variables as illustrated in [51] and can be generalized readily to Lanczos-Lovelock gravity.

However in this case we need to interpret Γm
jp as the momenta and Q jpa

m as the coordinate,

which is true since Γm
jp has 40 independent degrees of freedom while Q jpa

m as constructed

out of the metric only has 10 independent degrees of freedom (a detailed discussion has

been presented in [51]). The above setup can be generalized in a natural fashion to Lanczos-

Lovelock gravity following [51] and leads to:2

√−gP a(q) = 2
√−gP qra

p £qΓ
p
qr +

√−gLqa (5.12)

The physical structure of this momentum can be understood in greater detail by using the

Noether current. Writing the corresponding expression for Noether current explicitly in

the case of Lanczos-Lovelock gravity and then simplifying we obtain (see appendix A.3.2):

Ja(q) = ∇bJ
ab(q) = 2Ea

b q
b + P a(q) (5.13)

This leads to another definition for the momentum which will turn out to be quiet useful

and can be given as,

P a(q) = ∇bJ
ab(q)− 2Ea

b q
b (5.14)

Then divergence of the momentum has the following expression:

∇aP
a(q) = −2Ea

b∇aq
b (5.15)

in arriving at the above expression we have used two results, Noether potential Jab being

antisymmetric and Eab satisfying Bianchi identity. From the expression it is evident that if

we enforce equation of motion for pure gravity, which amounts to: Eab = 0, the momentum

becomes divergence free. Also appearance of Noether current explicitly in this expression

shows intimate connection of Noether current with energy in all Lanczos-Lovelock models

of gravity.

So far the results are completely general, holding for any vector field qa. Now we

will specialize to the vector field ξa and will show that it leads to several remarkable

results. First we start with momentum for ξa and its contraction with ua leading to (see

appendix A.3.2):

uaP
a(ξ) = Dα (2Nχα)− 2NEabuaub (5.16)

2We could have also defined -P a to be the gravitational momentum, in which case −uaP
a would have

been the gravitational energy. However this is just a matter of convention, the physical interpretations

would remain the same.
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where the vector χa is defined in eq. (5.5). Now using the equation of motion i.e. 2Eab = Tab

and integrating the above expression on a t = constant surface bounded by N = constant

surface we get the following expression:
∫

R

dD−1x
√
hua

{

P a(ξ) +NT a
b u

b
}

=

∫

∂R

dD−2x Tlocs (5.17)

The expression on the left hand side represents total i.e. matter energy plus gravitational

energy in a bulk region and the right hand side represents the heat content of the bound-

ary surface. The temperature as usual is given by: Na/2π, i.e. the red-shifted Unruh-

Davies temperature and s is the Wald entropy density associated with the boundary sur-

face (eq. (2.11) provides the expression). The right hand side of the above expression can

also be identified as half of the equipartition energy of the boundary surface. Hence the

bulk energy originating from both gravity and matter is equal to the surface heat content.

Variation of gravitational energy. From the above paragraph it is clear that the

momentum P a and the corresponding gravitational energy uaP
a(ξ) have very interesting

thermodynamic properties. In this light, it seems natural to consider variation of the

above momentum under various physical processes, e.g., how it changes due to processes

acting on the boundary. We will first work with the arbitrary vector field qa and then

we will specialize to the choice: qa = ξa. To our surprise just as in general relativity

even in Lanczos-Lovelock gravity variation of the gravitational momentum is connected to

symplectic structures [76, 77].

Thus by variation of
√−gP a(q) and manipulating the terms carefully we obtain the

symplectic structure as (see appendix A.3.2)

δ
(√−gP a

)

=
√−gEpqδg

pqqa +
√−gωa + ∂c

(

2
√−gP qr[a

p qc]δΓp
qr

)

(5.18)

where the symplectic form ωa has the following expression:

√−gωa (δ,£q) = δ
(

2
√−gP qra

p

)

£qΓ
p
qr −£q

(

2
√−gP qra

p

)

δΓp
qr (5.19)

This expression is true for any arbitrary vector field qa and involves one arbitrary variation

and another Lie variation along qa.

Having obtained the general result we will now specialize to the vector field ξa. Then

we can use the above formalism in order to obtain the change in gravitational energy of

the system due to its evolution, which is related to Lie derivative along ξa. This can be

achieved using a simple trick. First with the help of eq. (5.19) we can compute the object

δ[
√
huaP

a(ξ)]. The variation has the following expression (see appendix A.3.2):

δ
[√

huaP
a(ξ)

]

+
√−gEpqδg

pq =
√
huaω

a + ∂c
[

2
√−ghcaP

qra
p δΓp

qr

]

(5.20)

This holds for an arbitrary variation, however what we are interested in is when the above

variation is due to a diffeomorphism along ξa. Again from appendix A.3.2 using the field

equation 2Eab = Tab we arrive at:

£ξHgrav = £ξ

(
∫

R

dD−1x
√
huaP

a(ξ)

)

=

∫

∂R

dD−2x
√
qNra

(

T cdξd + 2P qra
p £ξΓ

p
qr

)

(5.21)
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where ra is the unit normal to N = constant surface within the t = constant surface. Hence

change of energy in the bulk is directly related to boundary effects (with the assumption

that T t
cξ

c = 0). Among the two terms present on the right hand side, the first term is due

to flow of matter energy across the boundary and the second term is related to our old

friend P qra
p £ξΓ

p
qr. For pure gravity, i.e., Tab = 0, the above result takes a much simpler

form as:

£ξHgrav =

∫

∂R

dD−2x
√
qNra2P

qra
p £ξΓ

p
qr (5.22)

This can have direct influence on gravity wave propagation, i.e., the energy change in a

bulk region due to gravity waves is related to surface processes and hence to P qra
p £ξΓ

p
qr.

Since the gravitational momentum is intimately connected to Noether current, we

can use the above results for variation of gravitational momentum in order to obtain a

variation of Noether current as well. From appendix A.3.2 on imposing on-shell condition

i.e. Eab = 0, we get:
√
huaω

a (δ,£q) + 2δ
(√

huaE
abqb

)

= ∂b

{

δ
[√

huaJ
ab(q)

]

− 2
√
huaP

qr[a
p qb]δΓp

qr

}

(5.23)

This expression can be related to the usual Hamiltonian formulation where one relates

bulk integral of δ(HN +HαN
α) (with H and Hα correspond to constraints in the gravity

theory) to a bulk and a surface contribution as:

δ

∫

R

dD−1x
√
h(HN +HαN

α) =

∫

R

dD−1xδB +

∫

∂R

dD−2xδS (5.24)

The variation present on the left hand side is equivalent to δ(2
√
huaE

abζb), where ζa =

Nua+Na. Then we can identify the bulk term on the right hand side with the symplectic

current ωa. Thus finally the remaining surface contribution turns out to be:
∫

∂R

dD−2xδS =

∫

∂R

dD−2xrb

{

δ
[√

huaJ
ab(ζ)

]

− 2
√
h
(

NP qra
p + P qr[a

p N b]
)

δΓp
qr

}

(5.25)

This provides an elegant and simple interpretation of the surface term appearing in the

variation of the gravitational action. Thus for Lanczos-Lovelock gravity the Hamiltonian

formulation as well can have thermodynamic counterpart.

The above approach of relating surface quantities with bulk energy has also been stud-

ied earlier, notably in the context of Virasoro algebra and its associated central charge [78].

In [57] the above approach has been used to derive Wald entropy in Lanczos-Lovelock the-

ories of gravity, which subsequently has been generalized in [56] in order to calculate cor-

rection to horizon entropy in higher derivative gravity theories. It has been shown in this

context that surface contribution alone is what will lead to the central charge and hence to

horizon entropy. Our result strengthens the above feature by showing a connection between

total energy and boundary heat energy in all Lanczos-Lovelock theories of gravity.

5.4 Noether current and gravitational dynamics from related Lagrangians in

Lanczos-Lovelock gravity

So far we have been working extensively with the Lanczos-Lovelock Lagrangian and the

vector field ξa. In this section we will generalize the idea for a different class of Lagrangians,
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namely, the quadratic Lagrangian and the Surface Lagrangian. We will first demonstrate

the Noether currents associated with these Lagrangians and then consider the gravitational

momentum and its variation connected to the quadratic Lagrangian.

Noether current. We start our discussion by considering the Noether current associated

with Lquad, which is quadratic in Γ2 and hence is not a tensor density. However even if

it is not a tensor density the variation will turn out to be a tensor density and there will

be a conserved current associated with Lquad. The above calculation can be simplified

significantly by writing
√−gLquad =

√−gL − Lsur. The variation can be evaluated by

carefully defining the Lie derivative of non-tensorial objects, which is discussed in detail in

appendix A.3.3. From which we obtain the following result:

£q

(√−gLquad

)

= ∂a
(√−gLquadq

a
)

− ∂a
(√−gKa

)

(5.26)

where Ka is a non-tensorial object with the following expression

Ka = −2Q qra
p ∂q∂rq

p (5.27)

which in the general relativity limit coincides with the expression provided in [54]. Then

calculating the Lie derivative by treating
√−gLquad as a functional of the metric we arrive

at a conservation law of the form: ∂a(
√−gJa

quad) = 0. From appendix A.3.3 the Noether

current corresponding to
√−gLquad turns out to be:

√−gJa
quad =2

√−gEa
b q

b +
√−gLquadq

a −√−gKa

−£q

(

2
√−gQ qra

p

)

Γp
qr + 2(m− 1)

√−gQ qra
p £qΓ

p
qr (5.28)

which for m = 1, i.e., for general relativity takes the following form:

√−gJa
quad = 2

√−gEa
b q

b +
√−gLquadq

a −√−gKa −£q

(

2
√−gQ qra

p

)

Γp
qr

= 2
√−gEa

b q
b +

√−gLquadq
a −√−gKa −Na

lm£qf
lm (5.29)

This exactly matches with the corresponding expression for general relativity derived

in [54]. Having obtained the Noether current for quadratic Lagrangian, we can use the

expression of Noether current for Lanczos-Lovelock in order to obtain a relation between

them. As shown in appendix A.3.3 this relation exactly mimics the corresponding one for

general relativity and leads to:

Ja
quad = Ja +∇c (q

cV a − qaV c) = Ja +∇c

(

2Γp
qrQ

qr[c
p qa]

)

(5.30)

where in arriving at the second line we have used the relation: V a = −2Γp
qrQ

qra
p . Then

we can introduce a Noether current associated with the surface term as well through the

relation: Ja = Ja
quad + Ja

sur. Then the Noether current Ja
sur associated with Lsur has the

following expression:

Ja
sur = −∇c (q

cV a − qaV c) = ∇b

(

V [bqa]
)

= ∇bJ
ab
sur; Jab

sur = qaV b − qbV a (5.31)
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Finally, variation of the Noether current corresponding to quadratic Lagrangian leads to

(see appendix A.3.3)

δ
(√−gJa

quad

)

=
√−gωa − ∂b

[

Γp
qrδ

(

2
√−gQ qr[a

p

)

qb]
]

+ (m− 1)∂b

[(

2
√−gQ qr[a

p

)

qb]δΓp
qr

]

+ Ea (5.32)

where the equation of motion terms Ea can be given by

Ea =
√−gEpqδg

pqqa + 2qbδ
(√−gEa

b

)

(5.33)

Thus we have derived the Noether current associated with the surface term in the Lanczos-

Lovelock Lagrangian. Now if we use techniques of near horizon symmetry and hence

Virasoro algebra to obtain the central charge it will lead to the correct Wald entropy.

Hence, as we have emphasized earlier, the surface term alone is capable to produce the

Wald entropy following Virasoro algebra and related central charge technique.

Quadratic Hamiltonian and its variation. Just as we have derived the gravitational

momentum corresponding to the Lanczos-Lovelock Lagrangian we can use the quadratic

Lagrangian Lquad to define another momentum as well. This momentum defined using

quadratic Lagrangian has the following expression in general relativity:

P a
quad = Na

lm£qf
lm −√−gLquadq

a (5.34)

Just as we have done in the context of Einstein-Hilbert action in this case as well we will

write Na
lm£qf

lm = 2Γp
qr£q (

√−gQ qra
p ). Since Γp

qr involves 40 independent components

while Q qra
p has only metric degrees of freedom it is natural to set Γp

qr as momenta and

Q qra
p as coordinate. Then on being generalized to Lanczos-Lovelock gravity we obtain

P a
quad = Γp

qr£q

(

2
√−gP qra

p

)

− qa
√−gLquad (5.35)

This object is less important than P a, which we have discussed earlier, since this is a non-

covariant object. This non-covariance is due to presence of Γa
bc and Lquad in its expression.

In spite of these non-attractive features we will discuss properties of this momentum as

well for completeness. Following appendix A.3.3 we can write P a
quad explicitly in terms of

P a leading to

P a
quad = −√−gP a −m

[

∂c

(

q[cVa]
)

+
√−gKa

]

− (m− 1)qa∂cVc (5.36)

where Ka is defined through eq. (5.27). Then variation leads to the following on-shell result

(see appendix A.3.3)

δP a
quad =−√−gωa −mδ

(√−gKa
)

+m∂c

[

δ
(

2
√−gQ qr[a

p

)

qc]Γp
qr

]

+ (m− 1)qa∂c
[

δ
(

2
√−gQ qrc

p

)

Γp
qr +

(

2
√−gQ qrc

p

)

δΓp
qr

]

(5.37)

In this case as well for m = 1 we obtain the result derived for general relativity and

matches exactly with the one obtained in [54]. The term δ(
√−gKa) shows explicitly the

non-tensorial character of δP a
quad. This term can be eliminated by requiring a background

subtraction. We have illustrated all these results for the sake of completeness. We will not

pursue this further due to non-covariance nature of the results which leads to additional

complications.
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5.5 Heat density of the null surfaces

In this final section we will discuss heat density associated with a null surface in Lanczos-

Lovelock gravity. Any null surface will be defined using a congruence of null vector ℓa,

which are tangent as well as normal to the null surface. We will also assume that the null

vector ℓa satisfies the relation ℓ2 = 0, everywhere. The null congruence will be taken to be

non-affinely parametrized, such that, ℓa = A(x)∇aB(x). Then the non-affinity parameter

κ can be obtained from the relation:

ℓj∇jℓ
i = κℓi; κ = ℓi∂i lnA (5.38)

Since the null vector is both tangent and orthogonal in order to define a projection we

need an auxiliary null vector ka [67] with the following properties k2 = 0 and kaℓ
a = −1.

Then we can introduce a projection tensor qab = δab + ℓakb + ℓbk
a and define an associated

covariant derivative Da.

In the previous sections we have calculated Noether current for ξa and its contraction

with ua yielding Noether charge. In the context of null surfaces we will discuss Noether

current for ℓa and its contraction with ℓa itself. This leads to (see appendix A.3.4)

ℓaJ
a(ℓ) = ∇a (Kℓa)− κK (5.39)

where we have introduced the object K = −2P abcdℓakbℓd∇c lnA. This in the general

relativity limit coincides with κ. Note the formal similarity of the expression on the right

hand side, i.e., ∇a (Kℓa) − κK for null surface to the expression Dαχ
α = ∇iχ

i − ajχ
j

obtained for spacelike surface. Also the expression for χa is quiet similar to the expression

for K with ℓa and ka identified with ua and ra respectively. Then introducing the covariant

derivative Da on the surface the above expression can be written as (see appendix A.3.4)

ℓaJ
a(ℓ) = 2Rabℓ

aℓb + 2ℓaP
qra

p £ℓΓ
p
qr = Da (Kℓa) +

dK
dλ

(5.40)

Integrating the above expression over the null surface with integration measure dλdD−2x
√
q

and ignoring the boundary contribution we arrive at:

∫

dλdD−2x
√
qℓaJ

a(ℓ) =

∫

dλdD−2x
√
q
dK
dλ

(5.41)

This result at the face value shows that for the null surface contraction of the Noether

current along ℓa is related to heating of the boundary surface, with K being taken as

temperature in the Lanczos-Lovelock gravity.

This result is also important from the point of view of variational principle for null

surfaces. Such a variational principle based on null surfaces has been carefully investigated

in [49]. There it was shown that given a null surface with null congruence ℓa we can

construct the functional

Q =

∫ λ2

λ1

dλdD−2x
√
q (−2Rab + Tab) ℓ

aℓb (5.42)
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Then varying the above action functional with respect to all ℓa with the constraint ℓ2 = 0,

we will arrive at: Ra
b − (1/2)T a

b = f(x)δab . This on using Bianchi identity, ∇aE
ab = 0 =

∇aT
ab leads to Einstein’s equation with an undetermined cosmological constant originating

from integration constant.

Then from eq. (5.40) we can write Rabℓ
aℓb in terms of Lie derivative of the connection

and change of K along the null geodesics such that

−2Rabℓ
aℓb = 2ℓaP

qra
p £ℓΓ

p
qr −

[

Da (Kℓa) +
dK
dλ

]

(5.43)

Then substitution of −2Rabℓ
aℓb on the right hand side of eq. (5.42) leads to the follow-

ing modified variational principle for Lanczos-Lovelock gravity when boundary terms are

neglected as

Q =

∫ λ2

λ1

dλdD−2x
√
q

[(

2ℓaP
qra

p £ℓΓ
p
qr −

dK
dλ

)

+ Tabℓ
aℓb

]

(5.44)

Hence varying this Lagrangian with respect to ℓa with ℓ2 = 0, we can obtain the field

equation for gravity with an arbitrary cosmological constant. In the above expression

Tabℓ
aℓb can be taken as matter heat density Ts, while the rest of the terms represent heat

density of the null surface itself.

We can always choose the parameter λ such that the null vector ℓa is affinely

parametrized. In which case K = 0 and the variational principle can be based on the

following integral:

Q̄ =

∫ λ2

λ1

dλdD−2x
√
q
[

2ℓaP
qra

p £ℓΓ
p
qr + Tabℓ

aℓb
]

(5.45)

Again showing explicitly the importance of the Lie derivative term in the derivation of the

field equation from an alternative action principle. When there is no matter present the

variational principle simplifies considerably leading to

Q̄ =

∫ λ2

λ1

dλdD−2x
√
q
[

2ℓaP
qra

p £ℓΓ
p
qr

]

(5.46)

This leads to vacuum field equation when varied over all null surfaces simultaneously. Also

integral of this object has an interpretation of heat content over the boundary surface.

Thus we observe that at least for affinely parametrized null congruences the variational

principle over the null surface acquire a thermodynamic interpretation.

6 Discussion

In this work our aim was to generalize various results derived in the context of general

relativity to all Lanczos-Lovelock theories of gravity. This is a non-trivial task since the

Lanczos-Lovelock Lagrangian contains higher order terms constructed out of the curvature

tensor. Also validity of some result in general relativity does not guarantee its validity

in these higher order theories, e.g., the expression for entropy in general relativity does
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not hold in Lanczos-Lovelock gravity. Thus this exercise is extremely important since

the Lanczos-Lovelock Lagrangian encompasses a great variety of Lagrangians all of them

yielding second order equation of motion.

Let us now summarize the key results obtained through this exercise:

• In section 3 we have shown that the field equation for Lanczos-Lovelock gravity

near an arbitrary null surface is equivalent to a thermodynamic identity. Using a

parametrization (known as GNC) for the arbitrary null surface we have shown that

the field equation for Lanczos-Lovelock gravity can be used to relate energy momen-

tum tensor with thermodynamic features. The energy-momentum tensor appears in

a particular combination and can be related to the work function. Temperature re-

lated to the null surface can be obtained by invoking null geodesics and entropy can

be given by the Wald entropy. This exercise also provides us a definition of energy

in an arbitrary spacetime in Lanczos-Lovelock gravity, which in the static case and

spherically symmetric case reduces to standard energy definitions. This energy ex-

pression in general involves (D − 2) dimensional Lanczos-Lovelock Lagrangian, time

derivatives of the (D−2)-metric on the null surface. This generalizes all the previous

works and demonstrates that the field equation in all Lanczos-Lovelock theories of

gravity can be interpreted as a thermodynamic identity.

• In section 5.2 we have shown that the evolution of the spacetime in Lanczos-Lovelock

gravity can be described nicely in terms of the difference Nsur − Nbulk. Here Nsur

represents suitably defined surface degrees of freedom and Nbulk represents the bulk

degrees of freedom. For static spacetimes, which can be thought of as equilibrium

configurations we have Nsur = Nbulk, i.e., holographic equipartition holds. Thus

for static spacetime degrees of freedom in the surface and in the bulk are identical.

While departure from this equality is what drives the spacetime evolution in Lanczos-

Lovelock gravity.

• Next, in section 5.3 we have introduced a gravitational momentum starting from its

expression in general relativity. We have shown that it is intimately connected to

Noether current and total gravitational plus matter energy in a bulk volume equals

the heat density associated with the boundary surface. Also variation of the grav-

itational Hamiltonian is directly related to a symplectic structure such that time

evolution of this gravitational Hamiltonian in a bulk region can be related to surface

effects especially with P qra
p £ξΓ

p
qr. Also using this formalism it is possible to connect

standard Hamiltonian formalism with the thermodynamic features discussed here.

• In the subsequent section 5.4 we have discussed Lie variation of non-tensorial objects

and hence Noether currents associated with the quadratic and surface Lagrangians

respectively. We have also introduced another momentum connected to the quadratic

Lagrangian and its variation. However due to non-tensorial nature of this object, we

have not pursued it further.
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• Finally, in section 5.5 we have discussed an alternative variational principle for the

null surfaces in Lanczos-Lovelock gravity. It turns out that the variational principle

has a nice separation into matter heat density and gravitational heat density asso-

ciated with the null surface. In this case as well for affine parametrization of null

vectors and in vacuum spacetime, i.e., with no matter, the action functional is simply

2
√−gP qra

p £ξΓ
p
qr. This provides yet again thermodynamic interpretation for this Lie

variation term.

All these results suggest the importance of Noether current in any Lanczos-Lovelock

theories of gravity and its relation to the thermodynamic features.
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A Detailed derivations

A.1 Detailed expressions regarding first law

Let us start with evaluating the following expression in GNC coordinates introduced in the

main text, which leads to

1

2
(Eu

u + Er
r ) = Eu

u = Er
r

= −1

2

1

16π

1

2m
δra1b1...ambm
rc1d1...cmdm

Rc1d1
a1b1

. . . Rcmdm
ambm

= − m

16π

1

2m−1
δ
ruPA1B1...Am−1Bm−1

ruQC1D1...Cm−1Dm−1
RuQ

uPR
C1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− m(m− 1)

16π

1

2m−1
δ
ruPA1B1...Am−1Bm−1

ruQC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− 1

16π

1

2m+1
δrA1B1...AmBm

rC1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm
(A.1)

Then we obtain:

T r
r =2Er

r = −m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RuQ

uPR
C1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− 1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm
(A.2)
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Now we have the following expression for components of Riemann tensor as:

RuQ
uP = −1

2
qQE∂u∂rqPE − 1

2
qQE∂PβE − 1

2
αqQE∂rqPE − 1

4
βQβP

+
1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

+
1

2
qQEβAΓ̂

A
EP (A.3a)

RAM
CD = R̂AM

CD − 1

4
qAEqMB

{

∂uqCE∂rqBD + ∂rqCE∂uqBD − (C ↔ D)
}

(A.3b)

RuN
CD = −1

2
qMN∂r∂CqMD − 1

4
βCq

MN∂rqMD − 1

2

(

qMN∂rqCE

)

Γ̂E
MD − (C ↔ D) (A.3c)

RAB
uC = qBD

[

∂uΓ̂
A
DC − 1

2
qAE∂C∂uqDE − 1

2
∂Cq

AE∂uqDE +
1

4
βA∂uqCD

+
1

2
qAF∂uqEF Γ̂

E
CD − 1

4
βDq

AE∂uqEC − 1

2
qEF∂uqFDΓ̂

A
CE

]

(A.3d)

where Â denotes an object A constructed solely from the transverse metric qAB. Note that

for ∂ugAB = 0, we have:

RuQ
uP = −1

2
qQE∂PβE − 1

2
αqQE∂rqPE − 1

4
βQβP +

1

2
qQEβAΓ̂

A
EP (A.4a)

RAM
CD = R̂AM

CD (A.4b)

RuN
CD = −1

2
qMN∂r∂CqMD − 1

4
βCq

MN∂rqMD − 1

2

(

qMN∂rqCE

)

Γ̂E
MD − (C ↔ D) (A.4c)

RAB
uC = 0 (A.4d)

Thus we finally arrive at the following expression:

T r
r =− m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

(

−1

2
αqQE∂rqPE

)

RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE − 1

2
qQE∂PβE − 1

4
βQβP

+
1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

+
1

2
qQEβAΓ̂

A
EP

]

RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− 1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm
(A.5)

which can be simplified and finally leads to the following expression:

T r
r =2Er

r = (Eu
u + Er

r )

=
m

8

1

2m−1

( α

2π

)(

δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

(

qQE∂rqPE

)

− m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE − 1

2
qQE∂PβE − 1

4
βQβP

+
1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

+
1

2
qQEβAΓ̂

A
EP

]

RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

− 1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm
(A.6)
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This is the expression used in the text. We also have entropy density to be:

s = 4πm
√
qL(D−2)

m−1

= 4πm
√
q

(

1

16π

1

2m−1
δ
A1B1...Am−1Bm−1

C1D1...Cm−1Dm−1
RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

(A.7)

Then under variation along the radial coordinate i.e. along ka parametrized by λ we have:

δλs = 4πm

(

1

2
qABδλqAB

)√
qL(D−2)

m−1

− 4πm
√
q

(

m− 1

16π

1

2m−1
δ
A1B1...Am−1Bm−1

C1D1...Cm−1Dm−1
RC1A

A1B1
qD1BδλqAB . . . R

Cm−1Dm−1

Am−1Bm−1

)

= −4πm
√
qδλqAB

(

− 1

2
qABL(D−2)

m−1

+
m− 1

16π

1

2m−1
qBD1δ

A1B1...Am−1Bm−1

D1C1...Cm−1Dm−1
RAC1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

= −4πm
√
qEABδλqAB (A.8)

where we have:

EA
B = −1

2
δABL

(D−2)
m−1 +

m− 1

16π

1

2(m−1)
δ
A1B1...Am−1Bm−1

BC1...Cm−1Dm−1
RAC1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

= −1

2

1

16π

1

2m−1
δ
AA1B1...Am−1Bm−1

BC1D1...Cm−1Dm−1
RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1
(A.9)

Hence we obtain:

δλs = −4πm
√
qδλqAB

(

− 1

2

1

16π

1

2m−1
δ
AA1B1...Am−1Bm−1

BC1D1...Cm−1Dm−1

×RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

=
m

82m−1

√
q
(

δ
AA1B1...Am−1Bm−1

BC1D1...Cm−1Dm−1
RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

)

qBCδλqAC (A.10)

Finally using eq. (A.10) in eq. (A.6) we obtain the most general expression for energy as

δλE = δλ

∫

dΣ

{

m

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1

[

− 1

2
qQE∂u∂rqPE − 1

2
qQE∂PβE − 1

4
βQβP

+
1

4

(

qQE∂rqPF

) (

qFL∂uqEL

)

+
1

2
qQEβAΓ̂

A
EP

]

RC1D1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

+
m(m− 1)

8π

1

2m−1
δ
PA1B1...Am−1Bm−1

QC1D1...Cm−1Dm−1
RQC1

uP RuD1

A1B1
. . . R

Cm−1Dm−1

Am−1Bm−1

+
1

16π

1

2m
δA1B1...AmBm

C1D1...CmDm
RC1D1

A1B1
. . . RCmDm

AmBm

}

(A.11)

where dΣ = dD−2x
√
q is the integration measure on the null surface.

A.2 GNC metric in static form

Conversion of GNC metric to static coordinates has been performed explicitly in [71]. In

this appendix, we will present a short discussion of this transformation from GNC to static
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coordinates (for detailed discussion see [71]). First converting GNC coordinates to Rindler

coordinates one can identify the timelike Killing vector ξa with the following components:

ξa = (1, 0, 0, 0) ; ξa = (−2rα, 1,−rβA) (A.12)

Imposing hypersurface orthogonality on ξa, i.e. ξ[a∇bξc] = 0 leads to two conditions that

the metric elements need to satisfy everywhere:

rβA∂rα− rα∂rβA + ∂Aα− 1

2
∂uβA = 0 (A.13a)

r (βA∂rβB − βB∂rβA)− (∂BβA − ∂AβB) = 0 (A.13b)

Next we need to impose Killing condition, which amounts to set∇aξb+∇bξa = 0 everywhere

in the spacetime region under our consideration. This implies [71]:

∂uα = 0; ∂uβA = 0; ∂uqAB = 0; (A.14)

If a spacetime satisfies the Killing conditions then it is called a stationary spacetime. Like

in this case if the GNC parameters α, βA and qAB are independent of the u coordinate

then the GNC parametrization would lead to a stationary spacetime. When a spacetime is

stationary if we further impose hypersurface orthogonality condition, then the spacetime is

called static. In this case if we use both the Killing condition and hypersurface orthogonality

for ξa then from eq. (A.13b) we obtain:

∂Aα|r=0 = 0 (A.15)

Thus imposing staticity condition on the GNC metric with the time evolution vector field

ξa, we arrive at zeroth low of black hole thermodynamics generalized to an arbitrary null

surface in Lanczos-Lovelock gravity. This condition we will use frequently in the main text.

A.3 Various identities used in the text regarding Lanczos-Lovelock gravity

In this subsection we will collect derivation of important identities used in the text while

describing the generalization to Lanczos-Lovelock gravity. We will order the derivations as

in text.

A.3.1 Alternative derivation of Noether current

In Einstein-Hilbert action the Noether potential derived from diffeomorphism is:

16πJab(v) = ∇avb −∇bva

=
(

δai δ
b
j − δaj δ

b
i

)

∇ivj

= 32πQab
ij∇ivj (A.16)

We can use this result to motivate the Noether current for LL gravity as:

Jab = 2P ab
cd∇cvd = 2P abcd∇cvd (A.17)
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where P abcd is assumed to be antisymmetric in (a, b) and (c, d). However to get the standard

expressions for Noether current we also assume that ∇bP
abcd = 0, which by antisymmetry

automatically imply: ∇aP
abcd = 0. Note that we have not assumed anything regarding

cyclic identity or vanishing of divergence in the last two indices. Then from the relation:

£vΓ
a
bc = ∇b∇cv

a +Ra
cmbv

m (A.18)

we can write the Noether current in the usual way as:

Ja = ∇bJ
ab = 2P abcd∇b∇cvd

= 2P abcd
[

gpd£vΓ
p
bc −Rdcmbv

m
]

= −2P abcdRdcmbv
m + 2gpdP

abcd£vΓ
p
bc

= 2P abcdRmbcdv
m + 2gpdP

abcd£vΓ
p
bc

= 2Ra
mvm + 2P cba

p £vΓ
p
bc (A.19)

In the last line we have used the fact that P abcd is symmetric in the pair exchange (a, b)

and (c, d). Then the connection between Noether currents of two vectors va = f(x)qa and

qa itself has been obtained in an earlier work and can be derived depending on only the

above mentioned properties of the tensor P abcd.

However we will now present an alternative derivation. Let us start with the following

identity:

∇aξb = ∇a (Nub) = N∇aub + ub∇aN

= N∇aub + ub
(

Naa − uau
i∇iN

)

= −N (Kab + uaab) +Naaub −
(

ui∇iN
)

uaub (A.20)

Then the Noether potential corresponding to the vector field ξa turns out to be:

Jab(ξ) = 2P abcd∇cξd

= 2P abcd
[

−N (Kab + uaab) +Naaub −
(

ui∇iN
)

uaub
]

= −2NaP abcd (ucâd − âcud)

= −2NaP abcdǫcd (A.21)

where ǫcd is the bi-normal to the N = constant surface within t = constant surface. The

same for Noether potential of the four velocity vector leads to:

Jab(u) = 2P abcd∇cud

= −2P abcd (Kcd + ucad)

= −aP abcdǫcd (A.22)
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These are the expressions used in the text. From the above expressions the Noether current

for ξa turns out to be:

uaJ
a(ξ) = ua∇bJ

ab(ξ) = ua∇b

[

2NJab(u)
]

= 2NuaJ
a(u) + 2ua∇bNJab(u)

= 2NuaJ
a(u) + 2ua

(

Nab − ubu
i∇iN

)

Jab(u)

= 2NuaJ
a(u) + 2NuaabJ

ab(u) (A.23)

Now we have the following relations:

uaJ
ab(u) = −2P abcduaucad = χb (A.24)

NuaJ
a(u) = Nua∇bJ

ab(u)

= ∇b

(

NuaJ
ab(u)

)

− Jab(u) (ua∇bN +N∇bua) (A.25)

On using these relations we arrive at the following expression for uaJ
a(ξ) as:

uaJ
a(ξ) = NuaJ

a(u) + 2NuaabJ
ab(u) +∇b

(

Nχb
)

− Jab(u)
[

ua
(

Nab − ubu
i∇iN

)

−N (Kba + ubaa)
]

= NuaJ
a(u) + 2NuaabJ

ab(u) +∇b

(

Nχb
)

−NJab(u) (uaab − ubaa)

= NuaJ
a(u) +∇b

(

Nχb
)

(A.26)

Now we need to evaluate the quantity uaJ
a(u). This quantity has the following expression:

uaJ
a(u) = ua∇bJ

ab(u)

= −2P abcdua∇b (ucad)

= ∇b

(

−2P abcduaucad

)

+ 2P abcducad∇bua

= ∇b

(

−2P abcduaucad

)

− 2P abcducad (Kba + ubaa)

= ∇bχ
b − χiai = Dαχ

α (A.27)

This is the result used to obtain eq. (5.4).

A.3.2 Gravitational momentum and related derivations for Einstein-Hilbert

action

In this section we provide derivation to various identities used in section 5.3. We start by

giving the result for variation of Lanczos-Lovelock Lagrangian:

δ
(√−gL

)

=
√−gEabδg

ab − ∂c
(

2
√−gP qrc

p δΓp
qr

)

(A.28)

The Noether current can be written as:

Ja(q) = 2Ra
bq

b + 2P qra
p £qΓ

p
qr

= 2Ea
b q

b + 2P qra
p £qΓ

p
qr + Lqa

= 2Ea
b q

b + P a(q) (A.29)
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Then multiplying both sides by the four velocity ua and taking qa = ξa we readily obtain:

uaP
a(ξ) = uaJ

a(ξ)− 2Eabξaub

= Dα (2Nχα)− 2NEabuaub (A.30)

Let us now consider the variation of the gravitational momentum corresponding to qa. This

has the following expression:

δ
(√−gP a

)

= qaδ
(√−gL

)

+ δ
(

2
√−gP qra

p £qΓ
p
qr

)

= qa
(√−gEpqδg

pq
)

− qa∂c
(

2
√−gP qrc

p δΓp
qr

)

+£q

(

2
√−gP qra

p δΓp
qr

)

+ δ
(

2
√−gP qra

p

)

£qΓ
p
qr −£q

(

2
√−gP qra

p

)

δΓp
qr

=
√−gEpqδg

pqqa +
√−gωa + ∂c

(

2
√−gP qr[a

p qc]δΓp
qr

)

(A.31)

where in arriving at the last line we have used the following relation:

£qQ
a − qa∂cQ

c = ∂c

(

q[cQa]
)

(A.32)

for the tensor density Qc = 2
√−gP qrc

p δΓp
qr. Also since qa is a constant vector δ and £q

are assumed to commute. Also the object ωa is defined as,

√−gωa (δ,£q) = δ
(

2
√−gP qra

p

)

£qΓ
p
qr −£q

(

2
√−gP qra

p

)

δΓp
qr (A.33)

This is the result used in eq. (5.19). Then we can write the above relation in terms of the

Noether current as:

δ
(√−gJa − 2

√−gEa
b qb

)

=
√−gEpqδg

pqqa +
√−gωa + ∂c

(

2
√−gP qr[a

p qc]δΓp
qr

)

(A.34)

The above relation can also be written using the Noether potential as:

∂b

{

δ
(√−gJab

)

− 2
√−gP qr[a

p qb]δΓp
qr

}

=
√−gEpqδg

pqqa +
√−gωa + 2δ

(√−gEabqb

)

(A.35)

While for on-shell (i.e., when Eab = 0) we have the following relations:

δ
(√−gP a

)

=
√−gωa + ∂c

(

2
√−gP qr[a

p qc]δΓp
qr

)

(A.36)

∂b

{

δ
(√−gJab

)

− 2
√−gP qr[a

p qb]δΓp
qr

}

=
√−gωa + 2δ

(√−gEabqb

)

(A.37)

Then integrating the second equation over volume R with dD−1x
√
h as integration measure

and qa = ζa = Nua +Na we arrive at:

δ

∫

R

dD−1x
√
h
(

2uaE
abζb

)

=

∫

R

dD−1x∂b

{

δ
[√

huaJ
ab(ζ)

]

− 2
√
hua

(

NP qr[a
p ub]+P qr[a

p N b]
)

δΓp
qr

}

−
∫

R

dD−1x
√
huaω

a (δ,£q)

=

∫

R

dD−1x∂b

{

δ
[√

huaJ
ab(ζ)

]

− 2
√
h
(

Nhb
aP

qra
p + P qr[a

p N b]
)

δΓp
qr

}

−
∫

R

dD−1x
√
huaω

a (δ,£q) (A.38)
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Then we want the variation of the Hamiltonian obtained by contracting the momentum

along the four velocity ua, such that:
√
huaP

a(ξ) = −ta
√−gP a(ξ) (A.39)

where the vector ta = −ua/N in the coordinate system under consideration. Then varying

the above expression (noting that variation of ta vanishes) we obtain

δ
[√

huaP
a(ξ)

]

= −taδ
[√−gP a(ξ)

]

= −ta

[√−gEpqδg
pqξa +

√−gωa + ∂c

(

2
√−gP qr[a

p ξc]δΓp
qr

)]

=
√
huaω

a −√−gEpqδg
pq + ∂c

[

2
√−guaP

qr[a
p uc]δΓp

qr

]

=
√
huaω

a −√−gEpqδg
pq + ∂c

[

2
√−ghcaP

qra
p δΓp

qr

]

(A.40)

where in the second line we have used the standard trick in order to get ua and in the last

line we have used the relation:

uaP
qr[a

p uc] = hcaP
qra

p (A.41)

Defining the gravitational Hamiltonian as:

Hgrav =

∫

dD−1x
√
huaP

a(ξ) (A.42)

its variation can be obtained readily from eq. (A.40) as:

δHgrav =

∫

dD−1x
√
huaω

a −
∫

dD−1x
√−gEpqδg

pq +

∫

dD−2x 2rc
√
qP qrc

p δΓp
qr (A.43)

where in order to obtain the last term we have used the result that rch
c
a = ra and

√−g =

N
√
h. The above results are true for arbitrary variations. Applying it to Lie variation

along ξa we arrive at the following form for eq. (A.40) as:

£ξ

[√
huaP

a(ξ)
]

= 2
√−gEpq∇pξq + ∂c

[

2
√−ghcaP

qra
p £ξΓ

p
qr

]

(A.44)

In arriving at the above result we have used the relations: £ξg
ab = −(∇aξb +∇bξa) and

ωa(£ξ,£ξ) = 0. Now using Bianchi identity ∇aE
ab = 0 we arrive at:

£ξ

[√
huaP

a(ξ)
]

= ∂c

[

2
√−g

(

Ecdξd + hcaP
qra

p £ξΓ
p
qr

)]

(A.45)

This is the relation used to arrive at the results in the main text.

A.3.3 Noether current and gravitational momentum for related Lagrangians

We first consider Lie derivative of various expressions which also involve non-tensorial

objects. Since throughout we mostly have £qΓ
a
bc appearing in most of the expressions we

will evaluate it explicitly. The Lie derivative has the following expression:

£qΓ
a
bc = ∇b∇cq

a +Ra
cmbq

m

= qd∂dΓ
a
bc − Γd

bc∂dq
a + qd∂dΓ

a
bc + Γa

dc∂bq
d + qd∂dΓ

a
bc + Γa

bd∂cq
d + ∂b∂cq

a

= [£qΓ
a
bc]std + ∂b∂cq

a (A.46)
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In this and all other expressions, the object (£q . . .)std represents the Lie variation computed

using the . . . object as tensorial. For ease of notation in the later part of the calculation

we will define the following objects:

Va = −2
√−gQ qra

p Γp
qr (A.47)

V a = −2Q qra
p Γp

qr =
1√−g

Va (A.48)

Note that both of them are non-tensorial due to presence of the connection Γa
bc. Following

the above procedure the Lie variation of the object Va takes the following form:

£qVa = £q

(

−2
√−gQ qra

p

)

Γp
qr − 2

√−gQ qra
p £qΓ

p
qr

= (£qVa)std +
√−gKa (A.49)

where we have defined the non-tensorial part Ka as:

Ka = −2Q qra
p ∂q∂rq

p (A.50)

In the Einstein-Hilbert limit the above non-tensorial object goes to:

16πKa → −
(

δrpg
qa − δapg

rq
)

∂q∂rq
p = gpq∂p∂qq

a − gaq∂q∂pq
p (A.51)

which matches exactly with the result obtained in [54]. Applying the above result for the

surface term in the Lanczos-Lovelock Lagrangian we obtain:

£qLsur = £q∂a
(√−gV a

)

=
(

£q∂a
[√−gV a

])

std
+ ∂a

(√−gKa
)

(A.52)

Since we have obtained Lie derivative of the surface term in the Lanczos-Lovelock La-

grangian we can compute Lie variation for the quadratic part. This leads to

£q

(√−gLquad

)

= £q

(√−gL− Lsur

)

= £q

(√−gL
)

− (£qLsur)std − ∂a
(√−gKa

)

= ∂a
(√−gLquadq

a
)

− ∂a
(√−gKa

)

(A.53)

Also we have another useful identity which will appear frequently in this calculation

given by

£qVa − qa∂cVc = (£qVa)std − qa∂cVc +
√−gKa

= ∂c (q
cVa − qaVc) +

√−gKa (A.54)

Note that even though £q and δ commutes for Γa
bc (since δ commutes with partial deriva-

tives) they do not commute for Va, since

δ (£qVa) = δ (£qVa)std + δ
(√−gKa

)

(A.55)

Let us now try to obtain the Noether current corresponding to the quadratic Lagrangian.

For that we start with the following decomposition:

£q

(√−gLquad

)

= £q

[√−gL− Lsur

]

(A.56)

=
√−gEpq£qg

pq −m∂c
(

2
√−gQ qrc

p £qΓ
p
qr

)

+ ∂c
[

2
√−gQ qrc

p £qΓ
p
qr + Γp

qr£q

(

2
√−gQ qrc

p

)]

= ∂a

[

−2
√−gEa

b q
b + Γp

qr£q

(

2
√−gQ qra

p

)

− 2(m− 1)
√−gQ qra

p £qΓ
p
qr

]
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Then from eq. (A.53) we arrive at the following conserved current:

√−gJa
quad = 2

√−gEa
b q

b +
√−gLquadq

a −√−gKa

−£q

(

2
√−gQ qra

p

)

Γp
qr + 2(m− 1)

√−gQ qra
p £qΓ

p
qr

=
√−gJa − 2m

√−gQ qra
p £qΓ

p
qr − qa

√−gL+
√−gLquadq

a −√−gKa

−£q

(

2
√−gQ qra

p

)

Γp
qr + 2(m− 1)

√−gQ qra
p £qΓ

p
qr

=
√−gJa − qaLsur −

√−gKa −£q

(

2
√−gQ qra

p Γp
qr

)

=
√−gJa − qa∂c

(√−gV c
)

−√−gKa +£q

(√−gV a
)

=
√−gJa + ∂c

(√−gqcV a −√−gqaV c
)

(A.57)

This ultimately leads to the following expression on using eq. (A.54)

Ja
quad = Ja − 2∇b

(

Γp
qrQ

qr[a
p qb]

)

(A.58)

This automatically shows that the Noether current and associated Noether potential cor-

responding to the surface Lagrangian is,

Ja
sur = ∇b

(

qaV b − qbV a
)

; Jab
sur = qaV b − qbV a = 2

(

qbQ qra
p Γp

qr − qaQ qrb
p Γp

qr

)

(A.59)

Thus variation of the Noether current for the quadratic term leads to:

δ
(√−gJa

quad

)

= δ
(√−gJa

)

− ∂b

[

δΓp
qr

(

2
√−gQ qr[a

p

)

qb] + Γp
qrδ

(

2
√−gQ qr[a

p

)

qb]
]

=
√−gEpqδg

pqqa +
√−gωa +m∂b

[(

2
√−gQ qr[a

p

)

qb]δΓp
qr

]

+ 2qbδ
(√−gEa

b

)

− ∂b

[

δΓp
qr

(

2
√−gQ qr[a

p

)

qb] + Γp
qrδ

(

2
√−gQ qr[a

p

)

qb]
]

=
√−gωa−∂b

[

Γp
qrδ

(

2
√−gQ qr[a

p

)

qb]
]

+(m−1)∂b

[(

2
√−gQ qr[a

p

)

qb]δΓp
qr

]

+Ea

(A.60)

where the equation of motion terms Ea can be given by

Ea =
√−gEpqδg

pqqa + 2qbδ
(√−gEa

b

)

(A.61)

Let us start with the definition for gravitational momentum in Lanczos-Lovelock gravity,

which can be presented as follows:

√−gP a = 2
√−gP qra

p £qΓ
p
qr +

√−gLqa

= £q

(

2
√−gP qra

p Γp
qr

)

−mΓp
qr£q

(

2
√−gQ qra

p

)

+ qa
√−gLquad − qa∂c

(

2
√−gQ qrc

p Γp
qr

)

= −P a
quad +£q

(

2
√−gP qra

p Γp
qr

)

− qa∂c
(

2
√−gQ qrc

p Γp
qr

)

(A.62)

where we have defined the quadratic momentum as:

P a
quad = Γp

qr£q

(

2
√−gP qra

p

)

− qa
√−gLquad (A.63)
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Then we can write the quadratic momentum using Va as:

P a
quad = −√−gP a −m£qVa + qa∂cVc (A.64)

Then using the result for Lie variation of Va the quadratic momentum can be written as:

P a
quad = −√−gP a −m

[

∂c (q
cVa − qaVc) +

√−gKa + qa∂cVc
]

+ qa∂cVc

= −√−gP a −m∂c (q
cVa − qaVc)−m

√−gKa − (m− 1)qa∂cVc (A.65)

Then under variations we obtain on-shell:

δP a
quad =− δ

(√−gP a
)

−mδ
(√−gKa

)

+m∂c

[

δ
(

2
√−gQ qr[a

p

)

qc]Γp
qr

+
(

2
√−gQ qr[a

p

)

qc]δΓp
qr

]

+ (m− 1)qa∂c
[

δ
(

2
√−gQ qrc

p

)

Γp
qr+

(

2
√−gQ qrc

p

)

δΓp
qr

]

=−√−gωa −mδ
(√−gKa

)

−m∂c

[(

2
√−gQ qr[a

p

)

qc]δΓp
qr

]

+m∂c

[

δ
(

2
√−gQ qr[a

p

)

qc]Γp
qr +

(

2
√−gQ qr[a

p

)

qc]δΓp
qr

]

+ (m− 1)qa∂c
[

δ
(

2
√−gQ qrc

p

)

Γp
qr +

(

2
√−gQ qrc

p

)

δΓp
qr

]

=−√−gωa −mδ
(√−gKa

)

+m∂c

[

δ
(

2
√−gQ qr[a

p

)

qc]Γp
qr

]

+ (m− 1)qa∂c
[

δ
(

2
√−gQ qrc

p

)

Γp
qr +

(

2
√−gQ qrc

p

)

δΓp
qr

]

(A.66)

These are the expressions used in the main text.

A.3.4 Characterizing null surfaces

Let us now try to generalize the result for null surfaces to Lovelock gravity with the null

vector ℓa such that ℓ2 = 0 everywhere. For that purpose, we start with the combination:

Rabℓ
aℓb = RapqrP

pqr
b ℓaℓb

= P bpqrℓb (Rapqrℓ
a)

= −P bpqrℓb (∇q∇rℓp −∇r∇qℓp)

= −2P bpqrℓb∇q∇rℓp

= ∇q

(

−2P bpqrℓb∇rℓp

)

− S (A.67)

where we have defined, the entropy density as:

S = −2P bpqr∇qℓb∇rℓp (A.68)

The Einstein-Hilbert limit can be obtained easily leading to:

16πS = −
(

gbqgpr − gbrgpq
)

∇qℓb∇rℓp

= ∇aℓ
b∇bℓ

a −
(

∇iℓ
i
)2

(A.69)
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as well as,

32πP bpqrℓb∇rℓp =
(

gbqgpr − gbrgpq
)

ℓb∇rℓp

= ℓq∇rℓ
r − ℓr∇rℓ

q

= Θℓq (A.70)

However in Lanczos-Lovelock gravity, the combination, 2P bpqrℓb∇rℓp cannot be written as,

φℓq, for arbitrary φ, since 2P bpqrℓqℓb∇rℓp 6= 0. Next let us consider the object, ℓaJ
a (ℓ),

for which we define, ℓa = A∇aB. Then in Lanczos-Lovelock gravity, we arrive at:

1

A
ℓaJ

a (ℓ) = ∇b

[

2P abcdℓaℓd∇cA
1

A2

]

=
1

A
∇b

[

2P abcdℓaℓd∇c lnA
]

− 1

A

[

2P abcdℓaℓd∇c lnA∇b lnA
]

(A.71)

Let us now expand ∇c lnA in canonical null basis, such that we obtain,

∇c lnA = −κkc +Aℓc +BAe
A
c (A.72)

Note that we obtain, ℓc∇c lnA = κ. In a similar fashion, we can expand, 2P abcdℓaℓd∇c lnA

in the following manner,

2P abcdℓaℓd∇c lnA = Pℓb +Qkb +RAebA (A.73)

It is evident that Q = −2P abcdℓaℓdℓb∇c lnA = 0, due to antisymmetry of P abcd in the first

two indices. Then it turns out that,

P = −2P abcdℓakbℓd∇c lnA ≡ K (A.74)

It is obvious from the Einstein-Hilbert limit, that

16πK = −
(

gacgbd − gadgbc
)

ℓakbℓd∇c lnA

= −
(

gacgbd − gadgbc
)

ℓakbℓd
(

−κkc +BAe
A
c

)

= κ (A.75)

Also in the expansion for, ∇c lnA, we obtain, BA is completely arbitrary. Then we can use

BA such that the following relation: BQP
abcdℓaℓde

A
b e

Q
c = κP abcdℓakcℓde

A
b is satisfied, such

that, RA vanishes. Thus we obtain,

2P abcdℓaℓd∇c lnA = Kℓb (A.76)

Again, we get,

2P abcdℓaℓd∇c lnA∇b lnA = Kℓb∇b lnA = κK (A.77)

Thus, finally we arrive at the following result:

ℓaJ
a (ℓ) = ∇a (Kℓa)− κK (A.78)
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Again by considering derivative on the null surface, we obtain,

Da (Kℓa) =
(

gab + ℓakb + ℓbka
)

∇a (Kℓb)

= ∇a (Kℓa) + kbℓa∇a (Kℓb)

= ∇a (Kℓa)− κK − ℓa∇aK (A.79)

Thus the Noether current contraction can also be written as:

ℓaJ
a (ℓ) = Da (Kℓa) +

dK
dλ

(A.80)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Lanczos, Electromagnetism as a natural Property of Riemannian Geometry, Z. Phys. 73

(1932) 147.

[2] C. Lanczos, A Remarkable property of the Riemann-Christoffel tensor in four dimensions,

Annals Math. 39 (1938) 842 [INSPIRE].

[3] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498

[INSPIRE].

[4] T. Padmanabhan and D. Kothawala, Lanczos-Lovelock models of gravity,

Phys. Rept. 531 (2013) 115 [arXiv:1302.2151] [INSPIRE].

[5] T. Padmanabhan, Classical and Quantum Thermodynamics of horizons in spherically

symmetric spacetimes, Class. Quant. Grav. 19 (2002) 5387 [gr-qc/0204019] [INSPIRE]

[6] T. Padmanabhan, Gravity and the thermodynamics of horizons, Phys. Rept. 406 (2005) 49

[gr-qc/0311036] [INSPIRE].

[7] T. Padmanabhan, Thermodynamical Aspects of Gravity: New insights,

Rept. Prog. Phys. 73 (2010) 046901 [arXiv:0911.5004] [INSPIRE].

[8] R.-G. Cai and S.P. Kim, First law of thermodynamics and Friedmann equations of

Friedmann-Robertson-Walker universe, JHEP 02 (2005) 050 [hep-th/0501055] [INSPIRE].

[9] M. Akbar and R.-G. Cai, Friedmann equations of FRW universe in scalar-tensor gravity,

f(R) gravity and first law of thermodynamics, Phys. Lett. B 635 (2006) 7 [hep-th/0602156]

[INSPIRE].

[10] M. Akbar and M. Jamil, Wormhole Thermodynamics at Apparent Horizons,

arXiv:0911.2556.

[11] M. Akbar, Thermodynamic interpretation of field equations at horizon of BTZ black hole,

Chin. Phys. Lett. 24 (2007) 1158 [hep-th/0702029] [INSPIRE].

[12] M. Akbar and A.A. Siddiqui, Charged rotating BTZ black hole and thermodynamic behavior

of field equations at its horizon, Phys. Lett. B 656 (2007) 217 [arXiv:1009.3749] [INSPIRE].

[13] R.G. Cai, L.M. Cao and Y.P. Hu, Corrected entropy-area relation and modified Friedmann

equations, JHEP 08 (2008) 090 [arXiv:0807.1232] [INSPIRE].

– 36 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.2307/1968467
http://inspirehep.net/search?p=find+J+Ann.ofMath.,39,842
http://dx.doi.org/10.1063/1.1665613
http://inspirehep.net/search?p=find+J+J.Math.Phys.,12,498
http://dx.doi.org/10.1016/j.physrep.2013.05.007
http://arxiv.org/abs/1302.2151
http://inspirehep.net/search?p=find+J+Phys.Rept.,531,115
http://dx.doi.org/10.1088/0264-9381/19/21/306
http://arxiv.org/abs/gr-qc/0204019
http://inspirehep.net/search?p=find+EPRINT+GR-QC/0204019
http://dx.doi.org/10.1016/j.physrep.2004.10.003
http://arxiv.org/abs/gr-qc/0311036
http://inspirehep.net/search?p=find+J+Phys.Rept.,406,49
http://dx.doi.org/10.1088/0034-4885/73/4/046901
http://arxiv.org/abs/0911.5004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5004
http://dx.doi.org/10.1088/1126-6708/2005/02/050
http://arxiv.org/abs/hep-th/0501055
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501055
http://dx.doi.org/10.1016/j.physletb.2006.02.035
http://arxiv.org/abs/hep-th/0602156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602156
http://arxiv.org/abs/0911.2556
http://dx.doi.org/10.1088/0256-307X/24/5/009
http://arxiv.org/abs/hep-th/0702029
http://inspirehep.net/search?p=find+Phys.Lett.,24,1158
http://dx.doi.org/10.1016/j.physletb.2007.09.053
http://arxiv.org/abs/1009.3749
http://inspirehep.net/search?p=find+J+Phys.Lett.,B656,217
http://dx.doi.org/10.1088/1126-6708/2008/08/090
http://arxiv.org/abs/0807.1232
http://inspirehep.net/search?p=find+EPRINT+0807.1232


J
H
E
P
0
8
(
2
0
1
5
)
0
2
9

[14] M. Akbar and R.-G. Cai, Thermodynamic Behavior of Friedmann Equations at Apparent

Horizon of FRW Universe, Phys. Rev. D 75 (2007) 084003 [hep-th/0609128] [INSPIRE].

[15] R.-G. Cai and L.-M. Cao, Thermodynamics of Apparent Horizon in Brane World Scenario,

Nucl. Phys. B 785 (2007) 135 [hep-th/0612144] [INSPIRE].

[16] A. Sheykhi, B. Wang and R.-G. Cai, Thermodynamical properties of apparent horizon in

warped DGP braneworld, Nucl. Phys. B 779 (2007) 1 [hep-th/0701198] [INSPIRE].

[17] A. Sheykhi, B. Wang and R.-G. Cai, Deep Connection Between Thermodynamics and Gravity

in Gauss-Bonnet Braneworld, Phys. Rev. D 76 (2007) 023515 [hep-th/0701261] [INSPIRE].

[18] R.-G. Cai, Thermodynamics of apparent horizon in brane world scenarios,

Prog. Theor. Phys. Suppl. 172 (2008) 100 [arXiv:0712.2142] [INSPIRE].

[19] X.-H. Ge, First law of thermodynamics and Friedmann-like equations in braneworld

cosmology, Phys. Lett. B 651 (2007) 49 [hep-th/0703253] [INSPIRE].

[20] Y. Gong and A. Wang, The Friedmann equations and thermodynamics of apparent horizons,

Phys. Rev. Lett. 99 (2007) 211301 [arXiv:0704.0793] [INSPIRE].

[21] S.-F. Wu, G.-H. Yang and P.-M. Zhang, Cosmological equations and Thermodynamics on

Apparent Horizon in Thick Braneworld, Gen. Rel. Grav. 42 (2010) 1601 [arXiv:0710.5394]

[INSPIRE].

[22] S.-F. Wu, B. Wang and G.-H. Yang, Thermodynamics on the apparent horizon in generalized

gravity theories, Nucl. Phys. B 799 (2008) 330 [arXiv:0711.1209] [INSPIRE].

[23] S.F. Wu et al., The generalized second law of thermodynamics in generalized gravity theories,

Class. Quant. Grav. 25 (2008) 235018 [arXiv:0801.2688] [INSPIRE].

[24] T. Zhu, J.-R. Ren and S.-F. Mo, Thermodynamics of Friedmann Equation and Masslike

Function in Generalized Braneworlds, Int. J. Mod. Phys. A 24 (2009) 5877

[arXiv:0805.1162] [INSPIRE].

[25] M. Akbar, Viscous Cosmology and Thermodynamics of Apparent Horizon,

Chin. Phys. Lett. 25 (2008) 4199 [arXiv:0808.0169] [INSPIRE].

[26] D. Kothawala, S. Sarkar and T. Padmanabhan, Einstein’s equations as a thermodynamic

identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric

horizons, Phys. Lett. B 652 (2007) 338 [gr-qc/0701002] [INSPIRE].

[27] S. Chakraborty, R. Biswas and N. Mazumder, Unified First Law and Some Comments,

Nuovo Cim. B 125 (2011) 1209 [arXiv:1006.1169] [INSPIRE].

[28] N. Mazumder and S. Chakraborty, Does the validity of the first law of thermodynamics imply

that the generalized second law of thermodynamics of the universe is bounded by the event

horizon?, Class. Quant. Grav. 26 (2009) 195016 [INSPIRE].

[29] A. Paranjape, S. Sarkar and T. Padmanabhan, Thermodynamic route to field equations in

Lancos-Lovelock gravity, Phys. Rev. D 74 (2006) 104015 [hep-th/0607240] [INSPIRE].

[30] D. Kothawala and T. Padmanabhan, Thermodynamic structure of Lanczos-Lovelock field

equations from near-horizon symmetries, Phys. Rev. D 79 (2009) 104020 [arXiv:0904.0215]

[INSPIRE].

[31] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[32] J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics,

Phys. Rev. D 9 (1974) 3292 [INSPIRE].

– 37 –

http://dx.doi.org/10.1103/PhysRevD.75.084003
http://arxiv.org/abs/hep-th/0609128
http://inspirehep.net/search?p=find+J+Phys.Rev.,D75,084003
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.016
http://arxiv.org/abs/hep-th/0612144
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B785,135
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.028
http://arxiv.org/abs/hep-th/0701198
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B779,1
http://dx.doi.org/10.1103/PhysRevD.76.023515
http://arxiv.org/abs/hep-th/0701261
http://inspirehep.net/search?p=find+J+Phys.Rev.,D76,023515
http://dx.doi.org/10.1143/PTPS.172.100
http://arxiv.org/abs/0712.2142
http://inspirehep.net/search?p=find+J+Prog.Theor.Phys.Suppl.,172,100
http://dx.doi.org/10.1016/j.physletb.2007.05.055
http://arxiv.org/abs/hep-th/0703253
http://inspirehep.net/search?p=find+J+Phys.Lett.,B651,49
http://dx.doi.org/10.1103/PhysRevLett.99.211301
http://arxiv.org/abs/0704.0793
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,99,211301
http://dx.doi.org/10.1007/s10714-010-0932-5
http://arxiv.org/abs/0710.5394
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.5394
http://dx.doi.org/10.1016/j.nuclphysb.2008.01.013
http://arxiv.org/abs/0711.1209
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B799,330
http://dx.doi.org/10.1088/0264-9381/25/23/235018
http://arxiv.org/abs/0801.2688
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2688
http://dx.doi.org/10.1142/S0217751X09046357
http://arxiv.org/abs/0805.1162
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1162
http://dx.doi.org/10.1088/0256-307X/25/12/004
http://arxiv.org/abs/0808.0169
http://inspirehep.net/search?p=find+Phys.Lett.,25,4199
http://dx.doi.org/10.1016/j.physletb.2007.07.021
http://arxiv.org/abs/gr-qc/0701002
http://inspirehep.net/search?p=find+J+Phys.Lett.,B652,338
http://dx.doi.org/10.1393/ncb/i2010-10912-5
http://arxiv.org/abs/1006.1169
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1169
http://dx.doi.org/10.1088/0264-9381/26/19/195016
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,26,195016
http://dx.doi.org/10.1103/PhysRevD.74.104015
http://arxiv.org/abs/hep-th/0607240
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607240
http://dx.doi.org/10.1103/PhysRevD.79.104020
http://arxiv.org/abs/0904.0215
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.0215
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://inspirehep.net/search?p=find+J+Phys.Rev.,D7,2333
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://inspirehep.net/search?p=find+J+Phys.Rev.,D9,3292


J
H
E
P
0
8
(
2
0
1
5
)
0
2
9

[33] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206] [INSPIRE].

[34] P.C.W. Davies, S.A. Fulling and W.G. Unruh, Energy Momentum Tensor Near an

Evaporating Black Hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].

[35] W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

[36] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum

Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

[37] T. Jacobson, Thermodynamics of space-time: The Einstein equation of state,

Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].

[38] T. Padmanabhan, Gravitation: Foundation and Frontiers, Cambridge University Press,

Cambridge U.K. (2010).

[39] R.M. Wald, The Thermodynamics of Black Holes, Liv. Rev. Relt. 4 (2001) 6

[gr-qc/9912119].

[40] T. Padmanabhan, Dark energy and gravity, Gen. Rel. Grav. 40 (2008) 529

[arXiv:0705.2533] [INSPIRE].

[41] T. Padmanabhan, Is gravity an intrinsically quantum phenomenon? Dynamics of gravity

from the entropy of space-time and the principle of equivalence,

Mod. Phys. Lett. A 17 (2002) 1147 [hep-th/0205278] [INSPIRE].

[42] T. Padmanabhan, The Holography of gravity encoded in a relation between entropy, horizon

area and action for gravity, Gen. Rel. Grav. 34 (2002) 2029 [gr-qc/0205090] [INSPIRE].

[43] A. Mukhopadhyay and T. Padmanabhan, Holography of gravitational action functionals,

Phys. Rev. D 74 (2006) 124023 [hep-th/0608120] [INSPIRE].

[44] S. Kolekar and T. Padmanabhan, Holography in Action, Phys. Rev. D 82 (2010) 024036

[arXiv:1005.0619] [INSPIRE].

[45] S. Kolekar, D. Kothawala and T. Padmanabhan, Two Aspects of Black Hole Entropy in

Lanczos-Lovelock Models of Gravity, Phys. Rev. D 85 (2012) 064031 [arXiv:1111.0973]

[INSPIRE].

[46] T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null

surfaces, Phys. Rev. D 83 (2011) 044048 [arXiv:1012.0119] [INSPIRE].

[47] S. Kolekar and T. Padmanabhan, Action Principle for the Fluid-Gravity Correspondence and

Emergent Gravity, Phys. Rev. D 85 (2012) 024004 [arXiv:1109.5353] [INSPIRE].

[48] T. Damour, Surface Effects in Black Hole Physics, in Proceedings of the second Marcel

Grossmann Meeting on General Relativity, Trieste Italy (1979).

[49] T. Padmanabhan and A. Paranjape, Entropy of null surfaces and dynamics of spacetime,

Phys. Rev. D 75 (2007) 064004 [gr-qc/0701003] [INSPIRE].

[50] K. Parattu, B.R. Majhi and T. Padmanabhan, Structure of the gravitational action and its

relation with horizon thermodynamics and emergent gravity paradigm,

Phys. Rev. D 87 (2013) 124011 [arXiv:1303.1535] [INSPIRE].

[51] S. Chakraborty and T. Padmanabhan, Geometrical variables with direct thermodynamic

significance in Lanczos-Lovelock gravity, Phys. Rev. D 90 (2014) 084021 [arXiv:1408.4791]

[INSPIRE].

– 38 –

http://dx.doi.org/10.1007/BF02345020
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,43,199
http://dx.doi.org/10.1103/PhysRevD.13.2720
http://inspirehep.net/search?p=find+J+Phys.Rev.,D13,2720
http://dx.doi.org/10.1103/PhysRevD.14.870
http://inspirehep.net/search?p=find+J+Phys.Rev.,D14,870
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://inspirehep.net/search?p=find+J+Phys.Rev.,D15,2752
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://arxiv.org/abs/gr-qc/9504004
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,75,1260
http://arxiv.org/abs/gr-qc/9912119
http://dx.doi.org/10.1007/s10714-007-0555-7
http://arxiv.org/abs/0705.2533
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2533
http://dx.doi.org/10.1142/S0217732302007260
http://arxiv.org/abs/hep-th/0205278
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205278
http://dx.doi.org/10.1023/A:1021171015146
http://arxiv.org/abs/gr-qc/0205090
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0205090
http://dx.doi.org/10.1103/PhysRevD.74.124023
http://arxiv.org/abs/hep-th/0608120
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608120
http://dx.doi.org/10.1103/PhysRevD.82.024036
http://arxiv.org/abs/1005.0619
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.0619
http://dx.doi.org/10.1103/PhysRevD.85.064031
http://arxiv.org/abs/1111.0973
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0973
http://dx.doi.org/10.1103/PhysRevD.83.044048
http://arxiv.org/abs/1012.0119
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.0119
http://dx.doi.org/10.1103/PhysRevD.85.024004
http://arxiv.org/abs/1109.5353
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5353
http://dx.doi.org/10.1103/PhysRevD.75.064004
http://arxiv.org/abs/gr-qc/0701003
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0701003
http://dx.doi.org/10.1103/PhysRevD.87.124011
http://arxiv.org/abs/1303.1535
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1535
http://dx.doi.org/10.1103/PhysRevD.90.084021
http://arxiv.org/abs/1408.4791
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4791


J
H
E
P
0
8
(
2
0
1
5
)
0
2
9

[52] T. Padmanabhan and H. Padmanabhan, CosMIn: The Solution to the Cosmological

Constant Problem, Int. J. Mod. Phys. D 22 (2013) 1342001 [arXiv:1302.3226] [INSPIRE].

[53] T. Padmanabhan and H. Padmanabhan, Cosmological constant from the emergent gravity

perspective, Int. J. Mod. Phys. D23 (2014) 1430011 [arXiv:1404.2284] [INSPIRE].

[54] T. Padmanabhan, General Relativity from a Thermodynamic Perspective,

Gen. Rel. Grav. 46 (2014) 1673 [arXiv:1312.3253] [INSPIRE].

[55] S. Chakraborty and T. Padmanabhan, Evolution of Spacetime arises due to the departure

from Holographic Equipartition in all Lanczos-Lovelock Theories of Gravity,

Phys. Rev. D 90 (2014) 124017 [arXiv:1408.4679] [INSPIRE].

[56] B.R. Majhi and S. Chakraborty, Anomalous effective action, Noether current, Virasoro

algebra and Horizon entropy, Eur. Phys. J. C 74 (2014) 2867 [arXiv:1311.1324] [INSPIRE].

[57] B.R. Majhi and T. Padmanabhan, Noether Current, Horizon Virasoro Algebra and Entropy,

Phys. Rev. D 85 (2012) 084040 [arXiv:1111.1809] [INSPIRE].

[58] R.M. Wald, Black Hole Entropy is Noether Charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038] [INSPIRE].

[59] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[60] R.M. Wald and A. Zoupas, A General definition of ’conserved quantities’ in general relativity

and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

[61] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[62] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole entropy,

Phys. Rev. Lett. 80 (1998) 904 [gr-qc/9710007] [INSPIRE].

[63] J.M. Garcia-Islas, BTZ Black Hole Entropy: A Spin foam model description,

Class. Quant. Grav. 25 (2008) 245001 [arXiv:0804.2082] [INSPIRE].

[64] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black

Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

[65] V. Moncrief and J. Isenberg, Symmetries of cosmological Cauchy horizons,

Commun. Math. Phys. 89 (1983) 387 [INSPIRE].

[66] E.M. Morales, On a Second Law of Black Hole Mechanics in a Higher Derivative Theory of

Gravity Ph.D Thesis, Göttingen University, Göttingen Germany (2008).

[67] K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, Null Surfaces: Counter-term

for the Action Principle and the Characterization of the Gravitational Degrees of Freedom,

arXiv:1501.01053 [INSPIRE].

[68] N. Dadhich and J.M. Pons, Static pure Lovelock black hole solutions with horizon topology

S(n) × S(n), JHEP 05 (2015) 067 [arXiv:1503.00974] [INSPIRE].

[69] N. Dadhich and J.M. Pons, Probing pure Lovelock gravity by Nariai and Bertotti-Robinson

solutions, J. Math. Phys. 54 (2013) 102501 [arXiv:1210.1109] [INSPIRE].

[70] N. Dadhich, Characterization of the Lovelock gravity by Bianchi derivative,

Pramana 74 (2010) 875 [arXiv:0802.3034] [INSPIRE].

– 39 –

http://dx.doi.org/10.1142/S0218271813420017
http://arxiv.org/abs/1302.3226
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3226
http://dx.doi.org/10.1142/S0218271814300110
http://arxiv.org/abs/1404.2284
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2284
http://dx.doi.org/10.1007/s10714-014-1673-7
http://arxiv.org/abs/1312.3253
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3253
http://dx.doi.org/10.1103/PhysRevD.90.124017
http://arxiv.org/abs/1408.4679
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4679
http://dx.doi.org/10.1140/epjc/s10052-014-2867-6
http://arxiv.org/abs/1311.1324
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1324
http://dx.doi.org/10.1103/PhysRevD.85.084040
http://arxiv.org/abs/1111.1809
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1809
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://inspirehep.net/search?p=find+EPRINT+GR-QC/9307038
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://inspirehep.net/search?p=find+J+Phys.Rev.,D50,846
http://dx.doi.org/10.1103/PhysRevD.61.084027
http://arxiv.org/abs/gr-qc/9911095
http://inspirehep.net/search?p=find+J+Phys.Rev.,D61,084027
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://inspirehep.net/search?p=find+J+Phys.Lett.,B379,99
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://arxiv.org/abs/gr-qc/9710007
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,80,904
http://dx.doi.org/10.1088/0264-9381/25/24/245001
http://arxiv.org/abs/0804.2082
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,25,245001
http://dx.doi.org/10.1103/PhysRevD.34.373
http://inspirehep.net/search?p=find+J+Phys.Rev.,D34,373
http://dx.doi.org/10.1007/BF01214662
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,89,387
http://arxiv.org/abs/1501.01053
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.01053
http://dx.doi.org/10.1007/JHEP05(2015)067
http://arxiv.org/abs/1503.00974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00974
http://dx.doi.org/10.1063/1.4825115
http://arxiv.org/abs/1210.1109
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.1109
http://dx.doi.org/10.1007/s12043-010-0080-1
http://arxiv.org/abs/0802.3034
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3034


J
H
E
P
0
8
(
2
0
1
5
)
0
2
9

[71] S. Chakraborty, K. Parattu and T. Padmanabhan, Gravitational Field equations near an

Arbitrary Null Surface expressed as a Thermodynamic Identity, arXiv:1505.05297

[INSPIRE].

[72] D. Kothawala, The thermodynamic structure of Einstein tensor,

Phys. Rev. D 83 (2011) 024026 [arXiv:1010.2207] [INSPIRE].

[73] S.A. Hayward, Unified first law of black hole dynamics and relativistic thermodynamics,

Class. Quant. Grav. 15 (1998) 3147 [gr-qc/9710089] [INSPIRE].

[74] T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions,

Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

[75] T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy,

Class. Quant. Grav. 21 (2004) 3447 [gr-qc/0402044] [INSPIRE].

[76] B. Julia and S. Silva, Currents and superpotentials in classical gauge invariant theories. 1.

Local results with applications to perfect fluids and general relativity,

Class. Quant. Grav. 15 (1998) 2173 [gr-qc/9804029] [INSPIRE].

[77] T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of

General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

[78] S. Carlip, Entropy from conformal field theory at Killing horizons,

Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [INSPIRE].

– 40 –

http://arxiv.org/abs/1505.05297
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05297
http://dx.doi.org/10.1103/PhysRevD.83.024026
http://arxiv.org/abs/1010.2207
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.2207
http://dx.doi.org/10.1088/0264-9381/15/10/017
http://arxiv.org/abs/gr-qc/9710089
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9710089
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://arxiv.org/abs/hep-th/9305016
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,70,3684
http://dx.doi.org/10.1088/0264-9381/21/14/009
http://arxiv.org/abs/gr-qc/0402044
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,21,3447
http://dx.doi.org/10.1088/0264-9381/15/8/006
http://arxiv.org/abs/gr-qc/9804029
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9804029
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://inspirehep.net/search?p=find+J+Ann.Phys.,88,286
http://dx.doi.org/10.1088/0264-9381/16/10/322
http://arxiv.org/abs/gr-qc/9906126
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9906126

	Introduction
	A brief introduction to Lanczos-Lovelock gravity
	Equivalence of gravitational field equation near an arbitrary null surface to thermodynamic identity
	Applications
	Stationary spacetime
	Spherically symmetric spacetime

	Various geometrical quantities in Lanczos-Lovelock gravity and their thermodynamic interpretation
	The spacetime foliation
	Noether current and related aspects
	Bulk gravitational dynamics and its relation to surface thermodynamics in Lanczos-Lovelock gravity
	Noether current and gravitational dynamics from related Lagrangians in Lanczos-Lovelock gravity
	Heat density of the null surfaces

	Discussion
	Detailed derivations
	Detailed expressions regarding first law
	GNC metric in static form
	Various identities used in the text regarding Lanczos-Lovelock gravity
	Alternative derivation of Noether current
	Gravitational momentum and related derivations for Einstein-Hilbert action
	Noether current and gravitational momentum for related Lagrangians
	Characterizing null surfaces



