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ABSTRACT: The deep connection between gravitational dynamics and horizon thermo-
dynamics leads to several intriguing features both in general relativity and in Lanczos-
Lovelock theories of gravity. Recently in arXiv:1312.3253 several additional results
strengthening the above connection have been established within the framework of general
relativity. In this work we provide a generalization of the above setup to Lanczos-Lovelock
gravity as well. To our expectation it turns out that most of the results obtained in the
context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward
but non-trivial manner. First, we provide an alternative and more general derivation of
the connection between Noether charge for a specific time evolution vector field and grav-
itational heat density of the boundary surface. This will lead to holographic equipartition
for static spacetimes in Lanczos-Lovelock gravity as well. Taking a cue from this, we have
introduced naturally defined four-momentum current associated with gravity and matter
energy momentum tensor for both Lanczos-Lovelock Lagrangian and its quadratic part.
Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock
gravity by providing a direct generalization of previous results derived in the context of
general relativity.

Another very interesting feature for gravity is that gravitational field equations for
arbitrary static and spherically symmetric spacetimes with horizon can be written as a
thermodynamic identity in the near horizon limit. This result holds in both general rela-
tivity and in Lanczos-Lovelock gravity as well. In a previous work [arXiv:1505.05297] we
have shown that, for an arbitrary spacetime, the gravitational field equations near any null
surface generically leads to a thermodynamic identity. In this work, we have also general-
ized this result to Lanczos-Lovelock gravity by showing that gravitational field equations for
Lanczos-Lovelock gravity near an arbitrary null surface can be written as a thermodynamic
identity. Our general expressions under appropriate limits reproduce previously derived re-
sults for both the static and spherically symmetric spacetimes in Lanczos-Lovelock gravity.
Also by taking appropriate limit to general relativity we can reproduce the results presented
in arXiv:1312.3253 and arXiv:1505.05297.
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1 Introduction

In recent years, several interesting features have been derived for gravitational theories in
which the field equations do not contain more than second order derivatives of the dy-
namical variable. This general class of gravity theories are known as Lanczos-Lovelock



theories of gravity which includes general relativity as a special case [1-4]. All these fea-
tures are shown to stem from the deep connection between gravitational dynamics and
horizon thermodynamics. Even though they first emerged in the context of general rel-
ativity showing that Einstein’s field equations near a horizon become a thermodynamic
identity [5-28], this result transcends general relativity and extends naturally to horizons
in spherically symmetric and static spacetimes within Lanczos-Lovelock theories of grav-
ity [29, 30]. Horizons in general (and black holes in particular) possess thermodynamic
attributes like entropy [31, 32] and temperature [33-36]. Also any null surface can act as a
local Rindler horizon for some observer [7]. The above framework allows one to introduce
observer-dependent thermodynamic variables near any arbitrary event in the spacetime.
From all these evidences it seems natural to think of gravitational dynamics as a long
wavelength thermodynamic limit of some microscopic degrees of freedom [37-42]. This
emergent gravity paradigm has received significant amount of support from later investi-
gations, especially from the following results:

e The action functional for gravity is expressible as a sum of a bulk term and a surface
term with a “holographic” relation between them. This result holds both in Einstein
gravity and in all Lanczos-Lovelock theories of gravity [43-45].

e Gravitational field equations when projected on an arbitrary null surface, reduces to
the Navier-Stokes equation of fluid dynamics in any spacetime [46-48].

e Gravitational field equations in all Lanczos-Lovelock models can be obtained from
thermodynamic extremum principles [40, 49] involving the heat density of null sur-
faces in the spacetime.

e In [50] a pair of conjugate variables f% = /—gg® and NG = -T¢, + (1/2)(F1‘fd6§ +
Ffdég) have been introduced in terms of which the gravitational action can be inter-
preted as a momentum space action. Also variation of these variables has very natural
thermodynamic interpretation, ¢ f® is related to variation of entropy and 6N, o 1s Te-
lated to variation of temperature when evaluated on an arbitrary null surface. This
idea has been generalized to Lanczos-Lovelock gravity in [51] by introducing a new
set of variables with identical thermodynamic interpretation.

e This paradigm also offers a possible solution to the cosmological constant problem.
In this paradigm (a) the field equations are invariant under addition of a constant
to the matter Lagrangian, (b) the cosmological constant appears as an integration
constant and finally (c) its value can be determined by postulating a dimensionless
number (known as CosMIn) to have a value 47 [52, 53]. This dimensionless number
counts the number of modes that cross the Hubble volume at the end of inflation and
re-enters the Hubble volume at the beginning of late-time acceleration phase [53].

Recently in [54] the connection between gravity and thermodynamics has been explored
further in the context of general relativity. It has been demonstrated in [54] that, in the
context of general relativity, the following results hold:



e The total Noether charge contained in a 3-volume R, evaluated for a specific time
evolution vector field, can be interpreted as the surface heat density of the boundary
OR of the volume.

e The time evolution of the spacetime itself can be described by the difference between
surface and bulk degrees of freedom. Here the surface degrees of freedom, Ngy is
equal to the area of the boundary and Ny, is the Komar energy modulo average
Unruh-Davies temperature of the boundary surface. For static spacetime this will
lead to holographic equipartition: Ngy = Npuik-

e For suitably defined gravitational momentum related to a specific time evolution
vector, total energy (gravity+matter) in a bulk volume R turns out to be the heat
density of the surface IR.

e For a bulk region bounded by null surfaces, the total Noether charge within that
region is related to ‘heating’ of the boundary surface.

In the past, virtually every result related to thermodynamic structure of gravity in the
context of general relativity has been generalized to Lanczos-Lovelock models of gravity.
In this case as well it is worth investigating whether the above description can also be
generalized to Lanczos-Lovelock gravity. This is very important since the expression for
horizon entropy in general relativity is just a quarter of the horizon area, while in Lanczos-
Lovelock models, the corresponding expression is much more complex. Given this fact it is
not clear a priori whether our results — interpretation of Noether charge for both timelike
and null surfaces along with gravitational momentum — will generalize to Lanczos-Lovelock
gravity. We will show in this work that, all these results possess a natural generalization
to Lanczos-Lovelock gravity.

There is another very important and curious connection between gravitational dynam-
ics and horizon thermodynamics. This originates from the fact that field equations for
gravity near a horizon in both static [30] and spherically symmetric spacetime [29] can
be written as a thermodynamics identity. In this work, we will try to generalize this re-
sult for an arbitrary spacetime with a null surface, which is neither static nor spherically
symmetric. As we have mentioned earlier — by introducing local Rindler horizon it is
possible to attribute thermodynamical entities like temperature and entropy to the null
surface. Also components of energy momentum tensor has physical interpretation, e.g.,
the T component (where r is like the radial coordinate) can be taken as a measure of
radial pressure in spherically symmetric spacetime. Then we can consider an infinitesimal
displacement of the null surface along the outgoing null geodesic k* with affine parameter
A. From the above virtual displacement we can ask the physical meaning of the following
object T'§,S — P§,V. In both static and spherically symmetric spacetimes the above object
is 0, F, for some suitably defined energy E. Thus through this exercise it would be possible
to identify the energy (the relation of this object with standard notions of energy will be
discussed elsewhere) for an arbitrary null surface through its appearance in the thermo-
dynamic identity. Starting from this thermodynamic identity in an arbitrary spacetime



with a null surface, taking suitable limits we can arrive at both the static and spherically
symmetric results respectively. Thereby verifying previous results along this direction in
the literature explicitly from our general formulation.

The paper is organized as follows: first in section 2 we have provided a brief introduc-
tion to Lanczos-Lovelock gravity to make the reader familiar with notations and conven-
tions. Next in section 3 we will derive the equivalence of gravitational Field equation with
a thermodynamic identity for an arbitrary null surface, which then is applied in section 4
to static spacetime and spherically symmetric spacetime to retrieve the respective result in
those cases as well. Furthermore, in section 5 we have presented all the results generalized
to Lanczos-Lovelock gravity, which involves Noether charge, gravitational momentum and
null surfaces. Finally, we have concluded with a discussion on our results. All the relevant
derivations are summarized in appendix A.1, appendix A.2 and appendix A.3.

Throughout this paper, we work in a D dimensional spacetime where we use metric
signature (—, +, 4, +, .. .) with all the fundamental constants G, i and ¢ being set to unity.
All the Latin indices a,b,... run from 0 to (D — 1), Greek indices y, v, ... run from 1 to
(D — 1) and capitalized Latin indices A,B,. .. stand for transverse coordinates.

2 A brief introduction to Lanczos-Lovelock gravity

In this paper, we will work exclusively within the framework of Lanczos-Lovelock gravity.
Thus before going to the main body of this work it is advantageous to introduce some
definitions and notations that we will follow throughout [4]. For that purpose we will
provide a brief introduction to the Lanczos-Lovelock gravity itself.

We will start by consider the most general setup of a D-dimensional spacetime in which
the action functional for gravity is described by an arbitrary function of metric ¢% and
curvature R% ;. Thus the action functional takes the following form:

A= / dPx\/—gL (g“b,R“bcd) (2.1)
v

It should be emphasized that the gravitational Lagrangian introduced above depends both
on the curvature and the metric but not on the derivatives of the curvature i.e., the La-
grangian contains terms only up to second order derivatives of the metric. The most
important quantity, which will be extremely helpful for our later purpose, derived from the
Lagrangian, is the following tensor:

oL
abed __
pabed — <8Rab6d>% (2.2)

This tensor has all the algebraic symmetry properties of the curvature tensor, namely: (a)

antisymmetry in first two and last two indices, (b) symmetry under pair exchange and
finally (c) cyclic identity. Using this tensor an analogue of the Ricci tensor in general
relativity can be constructed by the following definition

R = PIFRY . (2.3)



This tensor is indeed symmetric under interchange of the indices (a,b) alike the Ricci
tensor; but the result is nontrivial to prove (for this result and other properties of these
tensors, see [46]). Having defined the action functional the next obvious task is to consider
a variation of the action functional to get the field equations. The variation of the action
presented in eq. (2.1) leads to the result:

5A:/dD:U\/—gEabég“b—|—/dD:U\/—ngdvj (2.4)
1% 1%

where F;, represents the field equation term resulting from the variation of the bulk part
of the action and dv® is the boundary term which we generally set to zero at the boundaries
(if the boundary term contains normal derivatives then we need to add a counter term to
the action). Both the field equation term and the boundary term are given by the following
expressions:

1
Ep=Ra — §gabL —2V"'V" Pumnb (2.5a)
ov) = 2P%IN 5945 — 2694V P (2.5b)

The quantity P*°? involves second order derivatives of the metric which in turn implies that
the term V™V"P,,np in E? contains fourth order derivatives of the metric. Therefore, in
order to get field equation containing only second order derivatives of the metric we must
impose an extra condition on P such that

VP4 = 0. (2.6)

Hence the problem of obtaining field equation having up to second order derivatives of the
metric from an action functional reduces to that of finding scalar functions of curvature and
metric such that eq. (2.6) is satisfied. It turns out that such a scalar indeed exists and is
unique; it is given by the Lanczos-Lovelock Lagrangian [3, 4, 29, 38, 43] in D dimensions, as

Cm Ol Cm rabed
L= ; cmLm = ; EmRade = Z Ep(m) Raped (2-7)

m

The Lagrangian L,, is a homogeneous function of Rg,p.q of order m which can be written
as L, = Q?SfflRabcd. This can be used to identify P(‘;bf)d = mQ‘(lﬁf)d. From now on we shall
work with this mth order Lagrangian since any result obtained for L,, can be generalized
to most general Lagrangian in eq. (2.7) in a straightforward manner. Henceforth we shall
drop the m index. For this mth order Lanczos-Lovelock Lagrangian we have the following
explicit expression for PC“C? in terms of the curvature tensor:

Pa‘b 8Lm m 1

o _ =+ gabazba...ambm peado Cmdm — ab
ed = 3RC% N 16T 2m cdeadz...cmdm = “az2bz * T T tambm chd (2'8)
a

6aba2 ba...ambm
cdeads...Comdm

relation will be used extensively later.

where we have to be completely antisymmetric determinant tensor. This



Diffeomorphism invariance is a property that any generally covariant theory shares,
including the Lanczos-Lovelock theories of gravity. This has serious implications; the invari-
ance of action functional under an infinitesimal coordinate transformation, 2% — x®+£%(x)
lead to conservation of a current, usually called the Noether current. From variation of
action functional we can get the Noether current having the following expression [4, 38]:

Jo = (2E“b§b e+ 5511@) (2.9)

(However in a recent work [54] it has been shown that the conservation of Noether cur-
rent follows from identities in differential geometry alone; which has been generalized for
Lanczos-Lovelock gravity in [55].) In the above expression the last term, d¢v® represents
the boundary term of the Lanczos-Lovelock Lagrangian. From the conservation property
of the Noether current i.e., V,J% = 0, we can define an antisymmetric tensor known as
Noether Potential as, J* = V,J%. General expressions for these quantities can be found
in [38]. In the context of Lanczos-Lovelock theories, we have V,P%? = 0, and the Noether
current and Noether potential simplifies to (for most general case see [56])

Jb = g pabedyy ¢, (2.10a)
J* = 2P,V gy = 2R%g, + 2P, 7 £ T, (2.10D)

where I'}_ is the metric compatible connection.

A direct thermodynamic interpretation can be presented for the Noether current. For
that one requires to associate Wald entropy with horizons in all Lanczos-Lovelock models.
The corresponding entropy density (which, integrated over the horizon gives the entropy)
is given by [7, 57-64]

s = _27r\/apab6d:uab,ucd (211)

where [, is the bi-normal to the (D — 2)-dimensional surface and ¢ is the respective
determinant. The best way to see that this is indeed the entropy density is to consider
the Einstein-Hilbert limit. In which case we have P% = (1/327)(620% — 646¢) and piqp =
(uqrp — Tqup) with u? = —1 and r? = +1 leading to s = \/g/4.

3 Equivalence of gravitational field equation near an arbitrary null sur-
face to thermodynamic identity

An arbitrary spacetime with a null surface can always be parametrized using Gaussian Null
Coordinates (henceforth refereed to as GNC). This coordinate system can be constructed in
analogy with Gaussian normal coordinates. In the non-null case the construction proceeds
by invoking geodesics normal to the desired surface. While for a null surface characterized
by null normal ¢, the normal geodesics are on the surface. Then construction of coordinates
off the surface can be achieved by introducing an auxiliary null vector k% satisfying ¢,k =
—1 and moving away from the null surface along the null geodesics of k*. The construction
of such a coordinate system for an arbitrary spacetime with a null surface has been detailed



in [65-67] and the line element in this D-dimensional spacetime turns out to have the
following form:

ds? = —2radu® + 2dudr — QTBAdudxA + qAdeAd:rB (3.1)

where 24s are the (D—2) transverse coordinates. Note that the above line element contains
(D —2)(D —1)/2 independent parameters in g45, (D — 2) independent parameters in 54
and finally one independent parameter «. All of them are dependent on the coordinates
(u, T, :UA). The surface r = 0 is the null surface under our consideration. The null normal
¢, and the auxiliary vector k, has the following expressions [67]:

l, = (0,1,0,0), 0" = (1,2ra+ 8%, —rp?) (3.2a)
ka = (_1707050) ) ka = (0,—1,0,0) (32b)

It turns out that, for the » = 0 surface the non-affinity parameter corresponding to the
null normal ¢ is obtained from (°V¢* = k¢®. This yields the non-affinity parameter to
be: k = a. While the vector k, = —V,u, is tangent to the ingoing null geodesic and is
affinely parametrized, with affine parameter . Hence on the null surface we denote A\ to
be the value of the affine parameter. Also in the remaining discussion we will work with A
being identified as: A — Ay = .

The mth order Lanczos-Lovelock Lagrangian in D dimension is given by (throughout
this paper we will follow the notation of [4, 26, 30]):

Lo 1 i5a1b1---ammeC1d1 . .Rcmdm (3'3)

= 167t 2m  c1di-.cmdm ™ a1by ambm

A general Lanczos-Lovelock Lagrangian consists of a linear combination of various m terms
with different coefficients. However a result if true for a given order m, will hold for the
most general linear combination, follows immediately. Thus we will restrict ourselves by
considering a mth order Lanczos-Lovelock Lagrangian (in the literature it has often been
argued that pure Lovelock is more fundamental than the total Lanczos-Lovelock action
itself, see e.g., [68-70]), from which the field equation turns out to be (we will drop the
subscript m from now on):

11 1

i~~~ giarbi..ambm pcidy o
Ej N 2 167‘( om jcldl"'cmdmRalbl Ce Rambm
1 m . ) 1. -
= Ta_am ! 1'”ambm Zdl Cmdm - l e l
- 167 2m 5jd1---cmdm R,y - B 25]£ _ 2T7 (3.4

The equivalence of the two expressions in the first and second line follows from [4, 30]. In
GNC coordinates we will now consider the near null surface behavior of gravitational field
equation in the mth order Lanczos-Lovelock gravity. As in Einstein gravity [71] in this
case as well we will start with a subclass of the GNC parametrization in order to bring
out the physics involved. For that as in the case of Einstein-Hilbert action in Lanczos-
Lovelock gravity as well we will impose two additional requirements, namely S4|,—o = 0
and hypersurface orthogonality for time-like unit vector u, constructed from &,. This
immediately leads to dqal,—9 = 0 (see eq. (A.13a) in appendix A.2). Hence these two



conditions implies that « should be independent of transverse coordinates. This can be
thought of as an extension of the zeroth law of black hole thermodynamics for an arbitrary
null surface in Lanczos-Lovelock theories of gravity. On using this condition we arrive at
the following expression for T%¢,k; (which equals 77 in the null limit) as (see eq. (A.6) in
appendix A.1):

m 1 a PA1Bi..Am—1Bm_1 ,C1D Ch1 Dy B
TP =2E = gomn (g) <5Q011D1.‘.cmiDmiRAiBi : --RAmiBWD (4%*Orqr)

1D1...AmDm 171 mim

m 1 PALBy...Ayy—1 B L or 1 E FL

ClDl Cmlemfl PAIBI---Amlemfl QCl uD1 Cmlemfl
X RA1B1 e 'RAmlemfl + 2(m B 1)6QC’1D1---C’m71Dm71RuP RAIBI e .RAmlemfl

Let us now consider the Einstein-Hilbert limit of the above equation, which can be obtained
by substituting m = 1 in the above equation. This leads to:

r

1
17 = —opRef — Lo RGE (3.6)

which exactly coincides the expression obtained in [71]. Hence our general result reduces
to the corresponding one in Einstein-Hilbert action under appropriate limit.

Now let us multiply eq. (3.5) with the virtual displacement along k%, which is d\, and
\/4, where ¢ is the determinant of the transverse metric leading to:

m 1 o PAYBy... Ay 1Bm_1 15C1D Con—1 Dy B
TroMNG =3 51 Va (g) (%CllDi..cm_iDm_iRAiBi '--RAm_iBm_i) (4" 0rape)
1 1 ABy..AwBy pCiD CoDw . M 1 PABI A1 B
- 5)\\/6{ 167T 27m§cllD; mLm AiBi e RAmBm + 877-‘-2m71 chDlmcmlemfl
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m(m—1) 1 paBi..Ap 1Bmt
87 om—1"QC1D1...Cm 1 Dm—1

1 1 Cim—1Dpm—
X [ - §qQEauaTQPE + (qQEarlJPF) (" 0uqpr) } Rﬁi’};; N .

m—le—l

RESREPL ij—le—l} (3.7)

Now /271 can be interpreted as the temperature associated with the null surface, and
using dys from eq. (A.10) we can integrate the above equation over (D — 2) dimensional
null surface yielding (the most general expression has been provided in appendix A.1):

_ 1 1
/ dST A = T6), / APz s — / dZd)\[ (1%%55‘;3;;;;3;5;323; ...Ri{;g@g)
m 1 pPAB..Am_1Bm_ 1 1
+ {87r gm—1 0QCy Dy Con—y Do [ - §QQE3u3r(JPE +3 (¢?F0rapr) (¢" " OuapL) ] (3.8)

XRClDl Rcmlemfl + m(m — 1) 1 5PA1B1-~~Am—le71 RQClRuD1 Rcmlemfl
A1By TP A—1 B 87T om—1"QC1D1..Cry 1 D1 uP “"A1B1 """ " Am 1 Bm1

where d¥ = dP _23:\/@ To bring out the physics presented in eq. (3.8) we introduce the
concept of transverse metric gcﬁ, and a work function [72, 73]. Let us start by considering u,



to be a normalized timelike vector and another normalized but spacelike vector r,. They
are related to the null vectors (¢, kq) by the following relations: u, = (1/2A)¢, + Ak, and
re = (1/2A)¢, — Ak,, where A is an arbitrary function. Given this setup the transverse
metric is defined as gi‘b = ugUp — a7y = Lakp + lpk,. Using this transverse metric the work
function is defined [72, 73] to be P = (1/2)Tug%® = Tupt?k®. In the adapted coordinate
system on the null surface using the null vectors from eqgs. (3.2a) and (3.2b) we have
P =1T]. As an aside we would like to mention that in the case of spherically symmetric
spacetime, P will be the transverse pressure. However, in this work we will not bother to
illustrate the physical meaning of P which can be obtained from [72, 73].
Given this physical input we can rewrite eq. (3.8) in the following form:

FOXN=T6\S — 0\F (3.9)

This exactly coincides with the conventional first law of thermodynamics, provided: (i) we
identify the quantity S to be the entropy of the null surface in Lanczos-Lovelock gravity
and this ezactly matches with existing expression for entropy in Lanczos-Lovelock grav-
ity [58-60, 74, 75]. (ii) We interpret F' to be the average force over the null surface which
is defined as the integral of the work function over the null surface as

F= / dP=2x./qP (3.10)

Finally, (iii) we should identify the second term on the right hand side of the eq. (3.9) as
variation of an energy as the null surface is moved by an affine parameter distance . The
energy variation due to motion of the null surface has the following expression:

L 1 CABy. ApBy pCID Con D

m 1 PAB..Apm_1Bm_ 1 1
+ g gt Socipom it [ — tiE(‘)u&rqsz +3 (¢°F0,qpr) (" Ouqrr) } (3.11)

X RC1D1 RCmlemfl + m(m B 1) 1 PAlBl'nAmlemfl QCIRuDl Cmle'mfl
A1By T A 1B 87 om—1"QC1D1..Crn 1 D 1" uP “"A1By """ A1 Bm1

In the above expression for energy the A integral must be done after the above integral
has been performed, which in turn tells us that the detailed form of the expression inside
bracket is required to get E explicitly.

The thermodynamic identity obtained in eq. (3.9) can be better explained if written
in the following fashion:

S\E = T5\S — FéA (3.12)

This equation in this context can be interpreted as: work done due to infinitesimal virtual
displacement from r» = 0 to r = §\ of the null surface, subtracted from the heat energy,
i.e., temperature times entropy change, equals to the energy engulfed during this process.
It is to be noted that in the general relativistic limit the last term in the energy expression
would be absent and the second term in it leads to time rate of change of transverse area.
Hence the energy expression for general relativity can be obtained by taking suitable limit
of the above energy expression.



4 Applications

In the previous section we have derived the equivalence of gravitational field equations in
Lanczos-Lovelock gravity to the thermodynamic identity PdyV = TS — dyF near an
arbitrary null surface. In this section we will illustrate two applications of our general
result: first, the case of an arbitrary static spacetime (see [30]). Second, the spherically
symmetric spacetime (see [29]). The discussion will be brief since the details are sketched
in the references cited above.

4.1 Stationary spacetime

A spacetime will be called stationary, when we impose Killing conditions on the time
evolution vector field. In GNC the most natural time evolution vector field corresponds to:
& = 0/0u. Imposing Killing condition on this vector demands all the metric components,
namely «, 84 and gap to be independent of the u coordinate (see A.2). Thus imposing
this condition the energy expression as given in eq. (3.11) reduces to the following form:

1 1 ABy..AmBm pCiD Con D
5>\E = 5)\/d2{16,]I-2m,6011D1---CmDmRAiBi PN R mBm

= or / dx £P=2) (4.1)

which immediately leads to the following differential equation for energy:

oFE

5. = [ 4= £P=2 (4.2)

This exactly matches with the expression given in [30]. For m = 1 and D = 4 this reduces
to the expression obtained for Einstein’s gravity.

In order to achieve staticity we must impose hypersurface orthogonality on the time
evolution vector £% (or, equivalently on the four velocity constructed out of it). As men-
tioned in A.2 this requires 04 a,—¢ to vanish. However from eq. (4.1) it is evident that this
leads to no modification to our energy expression.

This is an interesting result. It shows that in arriving at this relation we have used
two assumptions, viz, (a) S4 = 0 on the null surface and (b) the spacetime is stationary.
Hence the above result does not require spacetime to be static. Thus starting from the
thermodynamic identity 70,5 = §\FE + PJ,\V for arbitrary null surface we have shown that
it holds for arbitrary static and stationary spacetimes as well. We will now take up the
case for spherically symmetric but time dependent spacetime.

4.2 Spherically symmetric spacetime

We will finish by considering another application of our result: a spherically symmetric but
not necessarily static spacetime. GNC metric can be expressed in a spherically symmetric
form by choosing the transverse coordinates z4 to be the angular coordinates and enforcing
(D — 2)-sphere geometry on the (u,r) = constant surface. Then we have the following

,10,



restrictions on the GNC parameters, namely, dqa =0, 54 = 0 and gap = f(u, T)dQ%D_Q).
When these conditions are imposed the line element takes the following form:

ds* = —2ra(r,u)du® + 2dudr + f(u, r)dQ%D_Q) (4.3)

We will define the radial coordinate [71] as: R(r,u) = /f(r,u). Then making a Taylor
series expansion about r = 0, we get R(r,u) = Ry(u) + rg(r,u). Hence the null surface
has a radius Ry (u), which can change with u. This clearly shows that we have spherical
symmetry but have retained time dependence. Hence by imposing spherical symmetry the
energy satisfies a partial differential equation with the following form:

or dE{ 1 1 §A1 B AnBn pCID1 pConDin

N 167 2m °C1D1..Cru D " YA By * 1Y A0 By
m 1 PABi.Ap 1B 1 1
+ 5 Gm=T0QCi Dy Cn 1 D [_ 507 0u0nape + 7 (a“F0,apr) (4" Ougrr) (4.4)
oD Cm1Dm—r , M(m—=1) 1 pABi. Am_1Bm_1 pQC1 pub Crn—1Dm—
xRg - Ra g+ TQW—I5QC11D1...Cm—iDm—1RuP1RZ\11§1 R B

A much simpler form can be derived in which the 2-sphere line element is just
(r+ RH)QdQ%DQ), where the radial coordinate at the null surface Ry is a constant. Then
trading off 7 in favor of R the line element becomes

ds® = —2(R — Ryz) o(R,u)du® + 2dudR + R*dQY;, ) (4.5)

Then using the result that 9, Ry = 0, the differential equation for energy can be integrated
leading to,

E(R,u) = / d\ / d L= 4 X (u)

2m
_ 1 D—(2m+1) .
= {5 Ap—2R ]HQ(D 7))+ X (u) (4.6)

where X (u) is an arbitrary function appearing as a “constant” of integration and Ap_o
originates from the differential volume element. Having introduced the radial coordinate
R, we can replace A by R, since R — Ry = r, which coincides with the defining equation
for A. As we move along ingoing radial lines, which are also ingoing radial null geodesic
—0/0r, we will gradually hit the center of the (D — 2)-spheres (assuming that it exists).
The affine parameter at the center would be R = 0. Then eq. (4.6) at the center turns
out to be:

E(R=0,u) = X(u) (4.7)

Since the center is a single point it is natural to associate zero energy with it, which
determines the arbitrary function to be X (u) = 0. Thus substituting this result in eq. (4.6)
and evaluating on the null surface, we obtain the energy associated with the null surface
in a spherically symmetric spacetime to be given by

1 D—(2m+1) T .
E = 167AD72RH H(D —J) (4.8)
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This again matches exactly with the result obtained in [29]. Another important thing to
note is the following: the expression for energy, first obtained for static spherically sym-
metric configuration also holds for time dependent situation with only spherical symmetry
assumed.

5 Various geometrical quantities in Lanczos-Lovelock gravity and their
thermodynamic interpretation

As we have mentioned earlier, in this work we will be dealing exclusively with Lanczos-
Lovelock gravity. For that purpose we have provided in section 2 a short and brief introduc-
tion to the main aspects of the Lanczos-Lovelock gravity. As prescribed in the beginning
we will generalize all the results presented in [54] to Lanczos-Lovelock gravity. Even though
the concepts like Noether charge, Noether current for Lanczos-Lovelock gravity are well
known in the literature and have been discussed at some length in [55] and [51] in the con-
nection with thermodynamic perspectives. Nevertheless we will first present an alternative
derivation of the results related to Noether current. Then we will provide a generalization
of a four vector from Einstein gravity to Lanczos-Lovelock gravity, which will carry the no-
tion of gravitational momentum. Then we will concentrate on variation of this momentum
and its meaning in thermodynamic language. The same steps will be followed for another
momentum defined using only the quadratic part of the Lanczos-Lovelock action. Finally
we discuss the null surfaces in the context of Lanczos-Lovelock gravity.

5.1 The spacetime foliation

We will work in a spacetime which is being foliated by a series of spacelike hypersurfaces.
These hypersurfaces are determined by the constant value of a scalar field ¢(x). The unit
normal to the t(z) = constant hypersurface is given by u, = —NV,t. If we consider ¢
as another coordinate then the above four-vector reduces to —N§Y. For this spacetime
foliation (which is known as slicing) we have ¢° = —1/N?2, and the timelike normal being
unit normalized i.e. u®u, = —1. Given this foliation, it is possible to introduce a time
evolution vector field {* by the condition (*V,t = 1. In this coordinate system with ¢
as a coordinate it reduces to ¢ = d§. This suggests the following decomposition: (¢ =
— (Cbub) u® + N® where we have N%u, = 0 and N* = hg(b. In the above discussion the
object hj = oy + u®uy represents the induced metric on the ¢ = constant surface. The
above decomposition also introduces another vector

€a = Nug — —N>6) (5.1)

where the last result holds in the preferred foliation with ¢ as a coordinate. If we further
impose the condition that gop, = 0 this vector reduces to (*. Also, in static spacetimes &*
turns out to be the time-like Killing vector field. £* was shown to play a key role in ref. [54]
to arrive at the thermodynamic interpretation. This vector also provides a rich structure
as far as the Noether current and spacetime dynamics is concerned.

— 12 —



5.2 Noether current and related aspects

Gravitational dynamics can be very efficiently described by using conserved current, known
as Noether current. In literature this conserved current is shown to originate from the
diffeomorphism invariance of the action. However this pose an immediate conceptual dif-
ficulty. In Electrodynamics for example, the gauge transformation is a symmetry of the
system and thus is connected to a conserved current, which is trivial. Along identical lines
the diffeomorphism invariance of gravitational action is also a gauge symmetry. Thus moti-
vated by the example of electrodynamics it seems natural to expect the Noether current to
originate from some differential geometry identity. This has been achieved recently in [54]
in the context of general relativity and subsequently was shown to hold in Lanczos-Lovelock
gravity as well in [55]. Both these approaches show that the Noether current associated
with a vector field v® can be obtained without any use of diffeomorphism invariance of
gravitational action. The proof involves connecting antisymmetric part of V;v; with Révj .
From which the relation V,J%(v) = 0 follows just as an identity in differential geometry.

The striking feature of the above result is that a conserved current obtained from differ-
ential geometry turns out to be the one originating from diffeomorphism invariance of the
action. In this work we will try to show the important role played by Noether current from
a thermodynamic perspective, which can possibly shed light on this remarkable feature.

Noether charge and surface heat content. As emphasized earlier the vector £* =
Nu® plays a central role in this work. Thus we start by computing Noether charge for
the vector £?. Since this has been discussed extensively in [54, 55] we will be brief in
this discussion. However we will point out some peculiarities which have not been noticed
in earlier works. Firstly in all the previous works it has been assumed that the tensor
Pt (see eq. (2.2)) has all the symmetry properties of the curvature tensor. However as
we have shown explicitly in appendix A.3.1 the derivation of the Noether current itself
does not require all the symmetry properties. We only need antisymmetry of P in
the pairs (a, b) and (¢, d) along with pair exchange symmetry between them and vanishing
divergence in the first two indices. Hence the same form of Noether current continues to
hold for even general class of Lagrangians for which P*“? does not follow cyclic identity and
is not divergence free in the last two indices. Secondly, in both the previous derivations the
Noether current for £* has been derived using the property that J%(v) = 0 where v, = V,¢.
However in this work we have provided an altogether different derivation of the Noether
current for £%. In the derivation we have used the bi-normals to N = constant surface

within the ¢ = constant surface. This leads to:
Jab(f) — —2NCLPade68d; Jab(u) — —aPadeecd (52)

where a is the magnitude of the acceleration four vector obtained as: a’ = u/ Vjui. Also in
the above expressions we have: €., = (uqGp — Upd,) to be the bi-normal constructed out of
u, and unit vector along acceleration, i.e., a;. The above two results suggest the following
relation between Noether potential for the vector field u, and &,:

J®(€) = 2N J®(u) (5.3)
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Then the Noether current for £* and hence the Noether charge can be obtained in a straight-
forward manner by differentiating the above equation, which leads to (see appendix A.3.1):

UaJUE) = NugJ®(u) + V, <Nxb>

=V, (Nxb> 4+ NDox® = 2D, (Nx%) (5.4)

In arriving at the last line we have used the following results: NV;x’ = Do(Nx®) and
Daox® = Vix! — a;x'. The vector x’ is analogue of the acceleration four-vector in general
relativity and has the following expression:

x* = 2Py ucay (5.5)

which the properties: u,x® = 0 and in the general relativity limit y* — a®. The next
natural object to consider is the total Noether charge, which can be obtained by integrating
eq. (5.4) with integration measure vhd”~'z. This leads to:

/ VhdP " u, J(€) = / dP2z \/q (2Nr.x) (5.6)
R OR

where 7, represents the unit normal to the N = constant surface within the ¢ = constant
surface. This normal is equal to €a,/a, where ¢ = £1 when the normal is directed towards
the acceleration or vice versa. Then the above relation using eq. (5.5) can be written as:

N
/ VhdP ug J (&) = e/ dP=2y <2a) <87rPaderaubucrd) = e/ Tiocs  (5.7)
R IR Q IR

where s is the entropy density obtained from eq. (2.11) and Tj,. corresponds to Tolman
red-shifted local Unruh-Davies temperature as measured by an observer with four-velocity
ug = —N3°. Hence the total Noether charge inside the volume R corresponds to the heat
density T's integrated over the boundary surface OR.

Holographic equipartition. The above result showing the connection between Noether
charge and heat content can be extended and interpreted in a completely different form.
Using eq. (2.10b) the Noether current can be expressed in terms of Lie variation of the
connection and Lovelock Ricci Ry as:

2u,P,7" £eT% = Do (2NX®) — NTpuu’ (5.8)

where we have used the relation: Rgp = (1/2)Top = (1/2) [Tap — (1/(D — 2m))gapT]. Then
using the definition of Komar energy density as: promar = 2NTpuub and integrating over
(D — 1) dimensional space R we arrive at [55]:

. . 1
/R \/Edelx 4UaPZ‘ Jkafgl_‘;.k =€ (2Tavg> (Nsur — Nbulk) (59)

where 7.y, corresponds to average of Na/2w, the local Unruh-Davies temperature of the
observer with four-velocity u, over the boundary surface. Ny, encodes the surface degrees
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of freedom which equals temperature average of 45 and Ny, determines the bulk degrees
of freedom defined as Komar energy modulo (1/2)7T,ys. Note that the left hand side differs
from the result obtained in [54, 55] by a factor of 16m. This is due to the fact that the
Pabed in those references differs from our convention by precisely a factor of 1/167.

The above equation is actually equivalent to the field equation for Lanczos-Lovelock
gravity but provides a ‘holographic’ interpretation.! The left hand side involving Lie varia-
tion of the connection I'}, provides time evolution of the spacetime which is solely dependent
on the difference between suitably defined bulk and surface degrees of freedom. Note that
for static spacetime {* = 4§ and hence is the Killing vector. Then Lie variation of I'}, along
the Killing vector £* vanishes. This immediately leads to:

Nsur = Nbulk (510)

Thus for static spacetime surface degrees of freedom coincides with the bulk degrees of
freedom. This provides the holographic equipartition between surface and bulk degrees of
freedom. When holographic equipartition does not hold the difference between surface and
bulk degrees of freedom is responsible for evolution of the spacetime in Lanczos-Lovelock
gravity.

5.3 Bulk gravitational dynamics and its relation to surface thermodynamics
in Lanczos-Lovelock gravity

In [54] it has been illustrated that, total energy of matter and gravity equals the surface heat
content in the context of general relativity. To prove this a suitably defined gravitational
four-momentum P® has been used such that when integrated over a t = constant surface
with proper integration measure it leads to a notion of gravitational energy. The notion of
energy is quiet ambiguous in the sense of observer dependence. For example, even in special
relativity the energy of a particle with four momentum p as measured by an observer with
four velocity u is: E = —u.p. This immediately suggests that we should use identical trick
to identify the energy by contracting a suitably defined four momentum P with the four
velocity u, introduced in section 5.1. We will first briefly describe the situation for general
relativity and shall generalize subsequently to Lanczos-Lovelock gravity.

Bulk energy versus surface heat energy. The Einstein-Hilbert action can be writ-
ten explicitly in terms of two canonically conjugate variables, namely, f% = \/—gg® and
N, = Qagly, + QuTép [50]. Tt turns out that the Einstein-Hilbert action can be inter-
preted as a momentum space action with f% as the coordinate and NG, as its conjugate
momentum [50]. Using these two variables a natural definition of gravitational momentum
can be provided as:

P%(q) = g" £4Nf +q"L (5.11)

'In this work the word “holography” has been used in a primitive sense i.e. implying a relation between
surface and bulk properties. This should not be confused with frequent use of this word in the context of
string theory.

,15,



where ¢% is an arbitrary vector field. This follows from the result that Hamiltonian can
be written as H = gp + L with the identification of p as N, and q as g® (or f if we
consider /—gP®). However in order to generalize the above result to Lanczos-Lovelock
gravity, we should rewrite the above expression in a slightly modified form, such that:

g £4N, &= 2¢4 £ q(Q%F%) =2Q:"" £ ¢I'j;- Thus the above action can also be interpreted
with I} and Qn{p “ as conjugate variables. Surprisingly, this is also a valid pair of conjugate
variables as illustrated in [51] and can be generalized readily to Lanczos-Lovelock gravity.

However in this case we need to interpret I'7 as the momenta and Q" as the coordinate,

which is true since T} 2P as constructed

out of the metric only has 10 independent degrees of freedom (a detailed discussion has

has 40 independent degrees of freedom while Q)

been presented in [51]). The above setup can be generalized in a natural fashion to Lanczos-
Lovelock gravity following [51] and leads to:?

V—9P%(q) = 2v/—gBP, " LI+ /—gLq" (5.12)

The physical structure of this momentum can be understood in greater detail by using the
Noether current. Writing the corresponding expression for Noether current explicitly in
the case of Lanczos-Lovelock gravity and then simplifying we obtain (see appendix A.3.2):

J(q) = V" (q) = 2Ejq" + P*(q) (5.13)

This leads to another definition for the momentum which will turn out to be quiet useful
and can be given as,

P%(q) = VJ®(q) — 2E}¢" (5.14)
Then divergence of the momentum has the following expression:
VaoP%(q) = —2E8V g (5.15)

in arriving at the above expression we have used two results, Noether potential J% being
antisymmetric and Eg;, satisfying Bianchi identity. From the expression it is evident that if
we enforce equation of motion for pure gravity, which amounts to: F,;, = 0, the momentum
becomes divergence free. Also appearance of Noether current explicitly in this expression
shows intimate connection of Noether current with energy in all Lanczos-Lovelock models
of gravity.

So far the results are completely general, holding for any vector field ¢*. Now we
will specialize to the vector field £* and will show that it leads to several remarkable
results. First we start with momentum for £* and its contraction with u, leading to (see
appendix A.3.2):

uaP*(€) = Do (2NX*) = 2N E®uquy (5.16)

2We could have also defined -P* to be the gravitational momentum, in which case —uq, P* would have
been the gravitational energy. However this is just a matter of convention, the physical interpretations
would remain the same.
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where the vector x“ is defined in eq. (5.5). Now using the equation of motion i.e. 2E,, = Ty
and integrating the above expression on a t = constant surface bounded by N = constant
surface we get the following expression:

/Rlex\/Hua {Pa(f) + NTbaub} = / dP72x Tiges (5.17)

OR

The expression on the left hand side represents total i.e. matter energy plus gravitational
energy in a bulk region and the right hand side represents the heat content of the bound-
ary surface. The temperature as usual is given by: Na/2m, i.e. the red-shifted Unruh-
Davies temperature and s is the Wald entropy density associated with the boundary sur-
face (eq. (2.11) provides the expression). The right hand side of the above expression can
also be identified as half of the equipartition energy of the boundary surface. Hence the
bulk energy originating from both gravity and matter is equal to the surface heat content.

Variation of gravitational energy. From the above paragraph it is clear that the
momentum P? and the corresponding gravitational energy u,P?(§) have very interesting
thermodynamic properties. In this light, it seems natural to consider variation of the
above momentum under various physical processes, e.g., how it changes due to processes
acting on the boundary. We will first work with the arbitrary vector field ¢* and then
we will specialize to the choice: ¢% = £% To our surprise just as in general relativity
even in Lanczos-Lovelock gravity variation of the gravitational momentum is connected to
symplectic structures [76, 77].

Thus by variation of \/—gP%(q) and manipulating the terms carefully we obtain the
symplectic structure as (see appendix A.3.2)

5 (V=gP") = /=g Epgdg™q" + v/—gu® + s (2\/—gquT[aq45rgr> (5.18)
where the symplectic form w® has the following expression:
V=gw® (6, £y) = 6 (2y/—gP, ) £,IF, — £4 (2¢/—gB, ") 6Th, (5.19)

This expression is true for any arbitrary vector field ¢* and involves one arbitrary variation
and another Lie variation along ¢“.

Having obtained the general result we will now specialize to the vector field £*. Then
we can use the above formalism in order to obtain the change in gravitational energy of
the system due to its evolution, which is related to Lie derivative along &£*. This can be
achieved using a simple trick. First with the help of eq. (5.19) we can compute the object
5[V hua P*(€)]. The variation has the following expression (see appendix A.3.2):

6 [V P(©)] + V=g Epdg" = Viuaw® + 9, [2/=gh B, 0T, ] (5.20)
This holds for an arbitrary variation, however what we are interested in is when the above
variation is due to a diffeomorphism along £*. Again from appendix A.3.2 using the field
equation 2F,;, = T,, we arrive at:

£eHgray = L£¢ ( /72 dD—lx\/EuaPa(g)> - /8 a2 JgN T, (T + 2P, £eT5, ) (5.21)

R
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where r, is the unit normal to N = constant surface within the ¢ = constant surface. Hence
change of energy in the bulk is directly related to boundary effects (with the assumption
that T!¢¢ = 0). Among the two terms present on the right hand side, the first term is due
to flow of matter energy across the boundary and the second term is related to our old
friend Py?" £¢I'},. For pure gravity, i.e., T,, = 0, the above result takes a much simpler
form as:

LeHgray = /8 . dP 22\ JqNT2P, 7 £,TP, (5.22)

This can have direct influence on gravity wave propagation, i.e., the energy change in a
bulk region due to gravity waves is related to surface processes and hence to P, £¢I%,.

Since the gravitational momentum is intimately connected to Noether current, we
can use the above results for variation of gravitational momentum in order to obtain a
variation of Noether current as well. From appendix A.3.2 on imposing on-shell condition
i.e. B =0, we get:

Vhuaw® (8, £4) + 26 (\/ﬁuaEabqb) =0 {5 [\/EuaJab(q)} - Qﬁuaqur[“qb] 5I’§r} (5.23)

This expression can be related to the usual Hamiltonian formulation where one relates
bulk integral of 6(HN + H,N%) (with H and H® correspond to constraints in the gravity
theory) to a bulk and a surface contribution as:

5 / AP aVh(HN + HoN®) = / d" 6B + / d"~?z55 (5.24)
R R IR
The variation present on the left hand side is equivalent to 5(2\/EuaEabe), where (¢ =
Nu®+ N Then we can identify the bulk term on the right hand side with the symplectic
current w®. Thus finally the remaining surface contribution turns out to be:

/a RdD_Q:v(SS - mdD—?m {5 [\FhuaJ“b(g)] —2Vh (Nqum + PPQ’“[“N"}) 5Pg,4} (5.25)

This provides an elegant and simple interpretation of the surface term appearing in the
variation of the gravitational action. Thus for Lanczos-Lovelock gravity the Hamiltonian
formulation as well can have thermodynamic counterpart.

The above approach of relating surface quantities with bulk energy has also been stud-
ied earlier, notably in the context of Virasoro algebra and its associated central charge [78].
In [57] the above approach has been used to derive Wald entropy in Lanczos-Lovelock the-
ories of gravity, which subsequently has been generalized in [56] in order to calculate cor-
rection to horizon entropy in higher derivative gravity theories. It has been shown in this
context that surface contribution alone is what will lead to the central charge and hence to
horizon entropy. Our result strengthens the above feature by showing a connection between
total energy and boundary heat energy in all Lanczos-Lovelock theories of gravity.

5.4 Noether current and gravitational dynamics from related Lagrangians in
Lanczos-Lovelock gravity

So far we have been working extensively with the Lanczos-Lovelock Lagrangian and the
vector field €. In this section we will generalize the idea for a different class of Lagrangians,
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namely, the quadratic Lagrangian and the Surface Lagrangian. We will first demonstrate
the Noether currents associated with these Lagrangians and then consider the gravitational
momentum and its variation connected to the quadratic Lagrangian.

Noether current. We start our discussion by considering the Noether current associated
with Lguad, which is quadratic in I'? and hence is not a tensor density. However even if
it is not a tensor density the variation will turn out to be a tensor density and there will
be a conserved current associated with Lgu.q. The above calculation can be simplified
significantly by writing «/—¢Lquad = vV—9L — Leur. The variation can be evaluated by
carefully defining the Lie derivative of non-tensorial objects, which is discussed in detail in
appendix A.3.3. From which we obtain the following result:

£q (\/ _quuad) =0y (\/ _quuadqa) — 0a (\/ _gKa) (5'26)
where K% is a non-tensorial object with the following expression
K" = =2Q,""0,0-q" (5.27)

which in the general relativity limit coincides with the expression provided in [54]. Then
calculating the Lie derivative by treating \/—gLquad as a functional of the metric we arrive
at a conservation law of the form: 9u(y/—gJg,,q) = 0. From appendix A.3.3 the Noether
current corresponding to \/—gLquad turns out to be:

V=97 0a =2V —9E3 " + vV =9Lquaaq” — vV—9K*
— £, (2v=9Q,T*) TE 4+ 2(m — 1)/—gQ, " £,I'". (5.28)

which for m =1, i.e., for general relativity takes the following form:

V _g‘]guad - 2\/ngng + v _quuadqa - \/nga - "Eq (2 \ _ngqTa) F{]Jr
= 2\/ngng + V _quuadqa - \/nga - Nl(in"gqflm (5'29)

This exactly matches with the corresponding expression for general relativity derived
in [54]. Having obtained the Noether current for quadratic Lagrangian, we can use the
expression of Noether current for Lanczos-Lovelock in order to obtain a relation between
them. As shown in appendix A.3.3 this relation exactly mimics the corresponding one for
general relativity and leads to:

TR P R e )

where in arriving at the second line we have used the relation: V* = —2I'7,Q,""“. Then
we can introduce a Noether current associated with the surface term as well through the
relation: J* = Jg 4 + Jg,. Then the Noether current Jg,,
following expression:

associated with Lg, has the

Jo =V, (¢°VO — ¢®V®) = V, (V[bq“]) —VyJeb.  gab _ eyt gbye (531
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Finally, variation of the Noether current corresponding to quadratic Lagrangian leads to
(see appendix A.3.3)

6 (V=9 uaa) =V =g = 0 [T%,8 (2v=9Q,71) ']

+(m—1)dy [(2\/—ng‘F[“) qb]éng} + E° (5.32)
where the equation of motion terms E% can be given by
E* = \/=gEp09"q" + 24" (V—9E}) (5.33)

Thus we have derived the Noether current associated with the surface term in the Lanczos-
Lovelock Lagrangian. Now if we use techniques of near horizon symmetry and hence
Virasoro algebra to obtain the central charge it will lead to the correct Wald entropy.
Hence, as we have emphasized earlier, the surface term alone is capable to produce the
Wald entropy following Virasoro algebra and related central charge technique.

Quadratic Hamiltonian and its variation. Just as we have derived the gravitational
momentum corresponding to the Lanczos-Lovelock Lagrangian we can use the quadratic
Lagrangian Lguyaq to define another momentum as well. This momentum defined using
quadratic Lagrangian has the following expression in general relativity:

Pc;luad = Nlc;m‘qulm Y _quuadqa (5.34)
Just as we have done in the context of Einstein-Hilbert action in this case as well we will
write NP £,f™ = 20, £, (v/—9Qp""). Since I'}, involves 40 independent components

while @, has only metric degrees of freedom it is natural to set '}, as momenta and
Q,"" as coordinate. Then on being generalized to Lanczos-Lovelock gravity we obtain

c;luad = FZT"EQ (2\/jgppqra) - qa\/ngquad (5.35)
This object is less important than P?, which we have discussed earlier, since this is a non-
covariant object. This non-covariance is due to presence of I'}, and Lquaq in its expression.
In spite of these non-attractive features we will discuss properties of this momentum as

well for completeness. Following appendix A.3.3 we can write Puaa explicitly in terms of
P® leading to

Plyaa = —V=gP" = m [0 (¢V) + v=gK*| = (m — 1)g"0.V* (5.36)

where K is defined through eq. (5.27). Then variation leads to the following on-shell result
(see appendix A.3.3)

0Pt = — V=g = md (V=gK*) +md, [ (2v/=9Q, ) ¢’IT% |
+ (m —1)q"0. [6 (2v/—=9Q,7) IV, + (2/—9Q,7°) 0T ] (5.37)
In this case as well for m = 1 we obtain the result derived for general relativity and
matches exactly with the one obtained in [54]. The term §(,/—gK®) shows explicitly the
non-tensorial character of 5P§uad. This term can be eliminated by requiring a background
subtraction. We have illustrated all these results for the sake of completeness. We will not

pursue this further due to non-covariance nature of the results which leads to additional
complications.
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5.5 Heat density of the null surfaces

In this final section we will discuss heat density associated with a null surface in Lanczos-
Lovelock gravity. Any null surface will be defined using a congruence of null vector ¢,
which are tangent as well as normal to the null surface. We will also assume that the null
vector (¢ satisfies the relation ¢? = 0, everywhere. The null congruence will be taken to be
non-affinely parametrized, such that, ¢, = A(x)V,B(x). Then the non-affinity parameter
k can be obtained from the relation:

OVl = Kl k=/(0;InA (5.38)

Since the null vector is both tangent and orthogonal in order to define a projection we
need an auxiliary null vector k% [67] with the following properties k? = 0 and k,¢* = —1.
Then we can introduce a projection tensor gy = d; + £%ky + £pk* and define an associated
covariant derivative D,,.

In the previous sections we have calculated Noether current for £€* and its contraction
with u, yielding Noether charge. In the context of null surfaces we will discuss Noether
current for ¢* and its contraction with ¢, itself. This leads to (see appendix A.3.4)

0 (0) = Vo (KL% — KK (5.39)

where we have introduced the object K = —2P%, 04V, In A. This in the general
relativity limit coincides with . Note the formal similarity of the expression on the right
hand side, i.e., V, (K¢*) — kK for null surface to the expression Dox® = VX' — ajxj
obtained for spacelike surface. Also the expression for y“ is quiet similar to the expression
for K with ¢, and k, identified with u, and r, respectively. Then introducing the covariant
derivative D, on the surface the above expression can be written as (see appendix A.3.4)
CaJ(€) = 2Ry 00" + 20, P, 7" £, = D, (K£*) + dr (5.40)
dA
Integrating the above expression over the null surface with integration measure dAd” _zx\/@
and ignoring the boundary contribution we arrive at:

/ d\dP 22\ /ql, T () = / d)\dD_Qx\/g% (5.41)

This result at the face value shows that for the null surface contraction of the Noether
current along ¢, is related to heating of the boundary surface, with K being taken as
temperature in the Lanczos-Lovelock gravity.

This result is also important from the point of view of variational principle for null
surfaces. Such a variational principle based on null surfaces has been carefully investigated
in [49]. There it was shown that given a null surface with null congruence ¢, we can
construct the functional

A2
Q= [ d\dP22/q(—2Rap + Tup) £24° (5.42)
A1
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Then varying the above action functional with respect to all £, with the constraint /2 = 0,
we will arrive at: RY — (1/2)T¢ = f(x)6¢. This on using Bianchi identity, V,F%® = 0 =
VT leads to Einstein’s equation with an undetermined cosmological constant originating
from integration constant.

Then from eq. (5.40) we can write Rapl%0® in terms of Lie derivative of the connection
and change of I along the null geodesics such that

d’c} (5.43)

— IR0 = 20, P, 7L, — [Da (Ke*) 4+ a
Then substitution of —2R.,¢** on the right hand side of eq. (5.42) leads to the follow-
ing modified variational principle for Lanczos-Lovelock gravity when boundary terms are

neglected as

A2
Q= 5 d\dP%x.\/q Kzeappqmpefrgr — ‘;’i) + Tabzaeb] (5.44)
Hence varying this Lagrangian with respect to ¢¢ with > = 0, we can obtain the field
equation for gravity with an arbitrary cosmological constant. In the above expression
Topl™0? can be taken as matter heat density T's, while the rest of the terms represent heat
density of the null surface itself.

We can always choose the parameter A such that the null vector ¢, is affinely
parametrized. In which case K = 0 and the variational principle can be based on the
following integral:

— )\2
= [ d\dP2ayq [20,P, £, +Tab£“£b] (5.45)
A1
Again showing explicitly the importance of the Lie derivative term in the derivation of the
field equation from an alternative action principle. When there is no matter present the
variational principle simplifies considerably leading to

0= AP 22\ /q [20,P, 7 £,T0 ] (5.46)
A1
This leads to vacuum field equation when varied over all null surfaces simultaneously. Also
integral of this object has an interpretation of heat content over the boundary surface.
Thus we observe that at least for affinely parametrized null congruences the variational
principle over the null surface acquire a thermodynamic interpretation.

6 Discussion

In this work our aim was to generalize various results derived in the context of general
relativity to all Lanczos-Lovelock theories of gravity. This is a non-trivial task since the
Lanczos-Lovelock Lagrangian contains higher order terms constructed out of the curvature
tensor. Also validity of some result in general relativity does not guarantee its validity
in these higher order theories, e.g., the expression for entropy in general relativity does
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not hold in Lanczos-Lovelock gravity. Thus this exercise is extremely important since
the Lanczos-Lovelock Lagrangian encompasses a great variety of Lagrangians all of them
yielding second order equation of motion.

Let us now summarize the key results obtained through this exercise:

e In section 3 we have shown that the field equation for Lanczos-Lovelock gravity
near an arbitrary null surface is equivalent to a thermodynamic identity. Using a
parametrization (known as GNC) for the arbitrary null surface we have shown that
the field equation for Lanczos-Lovelock gravity can be used to relate energy momen-
tum tensor with thermodynamic features. The energy-momentum tensor appears in
a particular combination and can be related to the work function. Temperature re-
lated to the null surface can be obtained by invoking null geodesics and entropy can
be given by the Wald entropy. This exercise also provides us a definition of energy
in an arbitrary spacetime in Lanczos-Lovelock gravity, which in the static case and
spherically symmetric case reduces to standard energy definitions. This energy ex-
pression in general involves (D — 2) dimensional Lanczos-Lovelock Lagrangian, time
derivatives of the (D — 2)-metric on the null surface. This generalizes all the previous
works and demonstrates that the field equation in all Lanczos-Lovelock theories of
gravity can be interpreted as a thermodynamic identity.

e In section 5.2 we have shown that the evolution of the spacetime in Lanczos-Lovelock
gravity can be described nicely in terms of the difference Ngy, — Npuk. Here Ngur
represents suitably defined surface degrees of freedom and Ny, represents the bulk
degrees of freedom. For static spacetimes, which can be thought of as equilibrium
configurations we have Ngy = Npuik, i-e., holographic equipartition holds. Thus
for static spacetime degrees of freedom in the surface and in the bulk are identical.
While departure from this equality is what drives the spacetime evolution in Lanczos-
Lovelock gravity.

e Next, in section 5.3 we have introduced a gravitational momentum starting from its
expression in general relativity. We have shown that it is intimately connected to
Noether current and total gravitational plus matter energy in a bulk volume equals
the heat density associated with the boundary surface. Also variation of the grav-
itational Hamiltonian is directly related to a symplectic structure such that time
evolution of this gravitational Hamiltonian in a bulk region can be related to surface
effects especially with P,"*£¢I'},. Also using this formalism it is possible to connect
standard Hamiltonian formalism with the thermodynamic features discussed here.

e In the subsequent section 5.4 we have discussed Lie variation of non-tensorial objects
and hence Noether currents associated with the quadratic and surface Lagrangians
respectively. We have also introduced another momentum connected to the quadratic
Lagrangian and its variation. However due to non-tensorial nature of this object, we
have not pursued it further.
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e Finally, in section 5.5 we have discussed an alternative variational principle for the

null surfaces in Lanczos-Lovelock gravity. It turns out that the variational principle

has a nice separation into matter heat density and gravitational heat density asso-

ciated with the null surface. In this case as well for affine parametrization of null

vectors and in vacuum spacetime, i.e., with no matter, the action functional is simply
2y/—gP,""" £, This provides yet again thermodynamic interpretation for this Lie

variation term.

All these results suggest the importance of Noether current in any Lanczos-Lovelock

theories of gravity and its relation to the thermodynamic features.
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A Detailed derivations

A.1 Detailed expressions regarding first law

Let us start with evaluating the following expression in GNC coordinates introduced in the

main text, which leads to
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Now we have the following expression for components of Riemann tensor as:

1 1 1 1
RIS = _tiEauarQPE - §QQE8P/8E - §anEar(IPE - ZﬁQﬁP

1 1 .
+t1 (a%F0rqpr) (¢" 0uqrr) + tiEBAFéP (A.3a)
S 1
Rp = REH — ZqAEqMB{au(ICE&"QBD + OrqcEOugsp — (C <> D) } (A.3Db)
1 1 1 .
RE} = —§QMN5T<90QMD - EﬁchN@QMD ~ 3 ("N 0rqcE) THyp — (C <+ D) (A.3¢)

~ 1 1 1
RoE = "7 0.0 = 30" 0c0uans — 500 duape + 16 Dugcn

1 N 1 1 R
+ iqAF Ouqerl %y — ZﬁDqAE OuqEc — inF auQFDFACE} (A.3d)

where A denotes an object A constructed solely from the transverse metric g4p. Note that
for y,gap = 0, we have:

R = 4% 0ppr — 5000, — 15p + 30?7y )
REY = R )
RE} = _%QMNarac’QMD — %BC(]MN8TQMD — % ("N 0,q9cp) T5yp — (C <> D) (Adc)
RyE =0 (A.4d)

Thus we finally arrive at the following expression:
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which can be simplified and finally leads to the following expression:
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This is the expression used in the text. We also have entropy density to be:
s = 4mm,/q E (D~ 2)

I cA1Bi..Apm—1Bm—1 pC1D Crm—1Dm
—4wmf(16 B et et O (A7)

Then under variation along the radial coordinate i.e. along k® parametrized by A we have:

1 _
d\s = 4mm <2qAB(5>\qAB) \fﬁ( 2)

-1 1 A1B1...Ap—1Bm-1 pC1 A
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2
m—1 1 BDl(SAlBlmAm—le—l ACq RCm—le—l
160 2m—1 q D1C1..C—1Dp—1""A1B1 " TP A1 B
= —4rmy/qEB5\qan (A.8)

where we have:
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Hence we obtain:
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Finally using eq. (A.10) in eq. (A.6) we obtain the most general expression for energy as
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where d¥ = dP~2z,/q is the integration measure on the null surface.

A.2 GNC metric in static form

Conversion of GNC metric to static coordinates has been performed explicitly in [71]. In
this appendix, we will present a short discussion of this transformation from GNC to static
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coordinates (for detailed discussion see [71]). First converting GNC coordinates to Rindler
coordinates one can identify the timelike Killing vector £* with the following components:

§*=(1,0,0,0); &= (-2ra,1,—rBa) (A.12)

Imposing hypersurface orthogonality on &%, i.e. {[,Vi§ = 0 leads to two conditions that
the metric elements need to satisfy everywhere:
1
rBA0ra — rad, B4 + 0acr — 5(%@4 =0 (A.13a)
7 (Ba0,Bp — BpOrBa) — (0pBa — 0aBp) =0 (A.13Db)

Next we need to impose Killing condition, which amounts to set V,&,+V3é, = 0 everywhere
in the spacetime region under our consideration. This implies [71]:

Oy = 0; Oufa = 0; OuqaB = 0; (A14)

If a spacetime satisfies the Killing conditions then it is called a stationary spacetime. Like
in this case if the GNC parameters «, 54 and gap are independent of the u coordinate
then the GNC parametrization would lead to a stationary spacetime. When a spacetime is
stationary if we further impose hypersurface orthogonality condition, then the spacetime is
called static. In this case if we use both the Killing condition and hypersurface orthogonality
for £€* then from eq. (A.13b) we obtain:

daalr=o =0 (A.15)

Thus imposing staticity condition on the GNC metric with the time evolution vector field
&% we arrive at zeroth low of black hole thermodynamics generalized to an arbitrary null
surface in Lanczos-Lovelock gravity. This condition we will use frequently in the main text.

A.3 Various identities used in the text regarding Lanczos-Lovelock gravity

In this subsection we will collect derivation of important identities used in the text while
describing the generalization to Lanczos-Lovelock gravity. We will order the derivations as
in text.

A.3.1 Alternative derivation of Noether current

In Einstein-Hilbert action the Noether potential derived from diffeomorphism is:
16m.J% (v) = Ve’ — Vbo?
- (535;? - 5;53) Vivd
= 32mQIYViv (A.16)
We can use this result to motivate the Noether current for LL gravity as:

J% = 2piyeyd = 2pibedy (A.17)
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where P%°? is assumed to be antisymmetric in (a, b) and (¢, d). However to get the standard
expressions for Noether current we also assume that V;,P%° = 0, which by antisymmetry
automatically imply: V,P%® = 0. Note that we have not assumed anything regarding
cyclic identity or vanishing of divergence in the last two indices. Then from the relation:

£,0%. = VyVu® + R%, o™ (A.18)

C

we can write the Noether current in the usual way as:

J¢ =V, J%® = 2piedyy, v oy
= 2P (g0 £,T0 — Riermpv™]
_ _gpabcd Raomp?™ + 20pa pabed &;Fi’c
= 2P Rypeav”™ + 2gpa P £,T,
= 2R4 V™ + 2P, £, T, (A.19)

In the last line we have used the fact that P®°? is symmetric in the pair exchange (a,b)
and (¢,d). Then the connection between Noether currents of two vectors v* = f(x)¢® and
qa
above mentioned properties of the tensor P*e?,

itself has been obtained in an earlier work and can be derived depending on only the

However we will now present an alternative derivation. Let us start with the following
identity:

Viép =V, (Nub) = NV, up + upVo N
= NV up + uy (Naa — uauiViN)
= =N (Kgu + ugap) + Nagup — (uiViN) UgUp (A.20)

Then the Noether potential corresponding to the vector field £* turns out to be:

Jab(g) _ 2Pab6dvc§d
= gpabed [—N (Kap + uqap) + Nagup — (uiViN) uaub]
= —2NaPY (uuig — Geug)

= —2NaP%e_, (A.21)

where €.4 1s the bi-normal to the N = constant surface within ¢ = constant surface. The
same for Noether potential of the four velocity vector leads to:

J (u) = 2PV cug
= —QPGde (ch + ucad)
= —aPadeecd (A22)
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These are the expressions used in the text. From the above expressions the Noether current

for £ turns out to be:

Ug JU(€) = ug V™
= 2Nu,J*
=2Nug,J*
=2Nug,J?

—

€) = uaVy [2NJ(u)|
u) + 2u, VyNJ% (1)
) + 2uq (Nay — wpu' V;N) J ()
u) + 2N uqapJ® (u) (A.23)

u

/\/‘\/\

Now we have the following relations:

U JP (1) = —2P"Yyucag = X° (A.24)
NugJ(u) = Nug Vi J(u)
~- v, (NuaJ“b(u)) — J () (ugVoN + NVipug) (A.25)

On using these relations we arrive at the following expression for u,J*(§) as:
UaJY(€) = NugJ® (1) + 2NugapJ®(u) + V, (Nxb)
— Jab(u) [ua (Nab — ubuiViN) — N (Kpq + ubaa)]
= Nu,J(u) + 2NuaabJab(u) + V, (Nxb) — NJab(u) (ugap — upaq)
= NugJ*(u) + ¥y (NY") (A.26)
Now we need to evaluate the quantity u,J*(u). This quantity has the following expression:
U (1) = uqViJ % (u)
—2P%y 7y, (ueaq)
=V, (—QPQdeuaucad> + 2Py 0y Viyu,
=V, (—2P“b6duaucad> — 2pedy a, (Kpq + upaq)
= Vix" — X'a; = Do (A.27)
This is the result used to obtain eq. (5.4).

A.3.2 Gravitational momentum and related derivations for Einstein-Hilbert
action

In this section we provide derivation to various identities used in section 5.3. We start by
giving the result for variation of Lanczos-Lovelock Lagrangian:

5 (v/=gL) = /=gE.69™ — 0. (2y/=gP,7°6TP) (A.28)
The Noether current can be written as:
J%(q) = 2Ry q" + 2P, £,
= 2Ejq" + 2P, £,TP + L¢"
=2E¢" + P*(q) (A.29)
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Then multiplying both sides by the four velocity u, and taking g, = £, we readily obtain:
ug P (&) = ug J*(§) — 2Eab§aub
= D, (2Nx%) — 2N E%u,uy, (A.30)

Let us now consider the variation of the gravitational momentum corresponding to ¢®. This
has the following expression:

5 (VTGP) = 4% (VGL) + 6 (2GR 7" LT
" (V=GEbg) — 0. (2GR, TOTY,) + £, (2P, T6TY,)
43 (2GR, £,15, — £, (2/=GPF) 1%,

= V=9Ep8g"g" + V=g + 0. (2 =g P, " laT,) (A.31)
where in arriving at the last line we have used the following relation:
£,Q% — ¢°0.Q° = 0. (q[CQ“]) (A.32)

for the tensor density Q° = 2,/—gP,%“0I'},. Also since ¢® is a constant vector § and £,
are assumed to commute. Also the object w® is defined as,

V=gw® (8, £4) = 6 (2v/—=gB, ") £,Ih, — £ (2v/—gB, ") 6T%, (A.33)

This is the result used in eq. (5.19). Then we can write the above relation in terms of the
Noether current as:

5 (V=gJ* = 2/=gEiay) = V—gEpgdgPq* + /—gw® + 0. (2\/—gquT[aq45rgr> (A.34)
The above relation can also be written using the Noether potential as:
00 {8 (V=g7) = 2v/=g P, oTh, | = V=g Epdg™q" + V=g + 20 (V=9E"q,)
(A.35)

While for on-shell (i.e., when E,; = 0) we have the following relations:
5 (V=gP") = V=gu" + 0. (2\/—gqur[“q45rgr) (A.36)
8, {5 (N/—gJa"> . 2«/—gqur[aqb]5Ff1’r} = V/gw® + 26 («/—gEabqb> (A.37)

dD—l

Then integrating the second equation over volume R with xvV h as integration measure

and ¢¢ = (* = Nu® + N we arrive at:

5/RdD—1x\/E (2ua B G) :/

R

—/ AP v hu,w® (6, £,)
R

a0 {8 [Viua I Q)| = 2vhua (N P70l 4B rle N ) o7

- /R a? 0 {6 [ Vi, J(Q)| = 2vh (NBE B, + P rleN" ) 6T )

- / AP eV huw® (6, £4) (A.38)
R
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Then we want the variation of the Hamiltonian obtained by contracting the momentum
along the four velocity u,, such that:

ViuaP(€) = —tur/=gP"(€) (A.39)

where the vector t, = —u,/N in the coordinate system under consideration. Then varying
the above expression (noting that variation of ¢, vanishes) we obtain

6 [V P(€)] = —tad [V=gP(9)]
= —ta [VZGEpdgME" + v/ =gut + 0, (2v/=gP, "¢ oT, |
= Vhuaw® — V—=9Epg0g"" + 0. {2\/—guaqur[“ud(5Fé’r}
= Vhuaw® — /=gEp6g"" + 0. [24/—ght P, TP | (A.40)

where in the second line we have used the standard trick in order to get u, and in the last

line we have used the relation:
ua B, u = hg P A (A.41)
Defining the gravitational Hamiltonian as:
Horay = / dP v hua P2(€) (A.42)

its variation can be obtained readily from eq. (A.40) as:

OHgray = /dD_lw\/ﬁuawa — /dD_lm\/—ngqégpq—i—/dD_Qx 2rc\/§qu”5I‘gr (A.43)

where in order to obtain the last term we have used the result that r.h = r, and /—g =
N+vh. The above results are true for arbitrary variations. Applying it to Lie variation
along £% we arrive at the following form for eq. (A.40) as:

£e [x/ﬁuapa(g)] = 2/ =GBy VPET + 0, [2/—ghSP, T £T7, ] (A.44)
In arriving at the above result we have used the relations: ,,Egg“b = (V% + V%) and
w®(£Le, £¢) = 0. Now using Bianchi identity V,E% = 0 we arrive at:
£¢ [VhuaP(8)] = 0. [2v/=g (B + ngP, 7 £c1%, )| (A.45)
This is the relation used to arrive at the results in the main text.

A.3.3 Noether current and gravitational momentum for related Lagrangians

We first consider Lie derivative of various expressions which also involve non-tensorial
objects. Since throughout we mostly have £,I'}, appearing in most of the expressions we
will evaluate it explicitly. The Lie derivative has the following expression:
"Eqrgc = VipVeq" + Racmqu
= q"04T'f, — T0aq" + "0l + T5.050" + q°0aT 5. + Tiy0cq” + Op0eq”
= [£,05)q + 0v0:q" (A.46)
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In this and all other expressions, the object (£ . ..),,, represents the Lie variation computed
using the ... object as tensorial. For ease of notation in the later part of the calculation
we will define the following objects:

V= —2¢/—gQ,"TT, (A.47)
1

Va - —2qura1_‘g7,. - ﬁva (A48)

Note that both of them are non-tensorial due to presence of the connection I'}.. Following

the above procedure the Lie variation of the object V* takes the following form:

LV = £, (—2\/—ng““) b —2y/=gQ, 7 £,17,

= (£V")yq +V—9K" (A.49)
where we have defined the non-tensorial part K as:
K* = -2Q,""0,0-q" (A.50)

In the Einstein-Hilbert limit the above non-tensorial object goes to:
16m K — — ((5;gqa — (5ggrq) 0q0rq" = gP10p04q" — g*10,0pq” (A.51)

which matches exactly with the result obtained in [54]. Applying the above result for the
surface term in the Lanczos-Lovelock Lagrangian we obtain:

LoLaw = £400 (V=9V) = (£400 [V=3V])..s + 0a (V=9K?)  (A52)

Since we have obtained Lie derivative of the surface term in the Lanczos-Lovelock La-
grangian we can compute Lie variation for the quadratic part. This leads to

°£q (\/ _quuad) = f£q (\/ _gL - Lsur) = °£q (\/ _gL> - (£quur)Std - aa (\/ _gKa)

=0, (\/—quuadqa) — 0, (\/—gKa) (A.53)
Also we have another useful identity which will appear frequently in this calculation
given by

LV = @0V = (£ V") g — 1“0V + V/—gK*“

= 0. (¢°V* — q¢"V°) + V/—gK*“ (A.54)

Note that even though £, and ¢ commutes for I'}, (since § commutes with partial deriva-
tives) they do not commute for V¢, since

5 (L£V") =6 (£V")yq + 0 (V—9K?) (A.55)

Let us now try to obtain the Noether current corresponding to the quadratic Lagrangian.
For that we start with the following decomposition:

"Eq (\/ngquad) = £q [\/ng - Lsur} (A56)
= \/ngpqogquq —md, (2\/ngquC£ngT)
+ ac [2\/ngpqu£ngr + Fg’r"{:q (2\/ngquC)]
= 00 [~2V/ =GB + T, £, (2V/9@,7) — 20m ~ 1)V =g@,7 £,
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Then from eq. (A.53) we arrive at the following conserved current:

V=97 0a = 2V —9E5¢" + V=9 Lquaaq” — vV—gK*
£q(2v/=9Q, ) TP+ 2(m — 1)y/—gQ, I £,
= V/—gJ" = 2my/—=gQ, " £,1h, — q"/—=9gL + V/=9Lquaaq” — vV —9gK*
— £y (2\/ngqu“) FZT +2(m — 1)Hqura£ngr
= V=9 — " Lsuw — V—9gK" — £, (2y/=9Q,"°T%,)
= V=gJ* = q"0 (\ﬁvc) —V=gK®* + Ly (V=gV*)
= V=9J" 4+ 0: (V=94V* = V/=94"V*) (A.57)

This ultimately leads to the following expression on using eq. (A.54)

quad -

— J7 -2V, (rp Qe bl) (A.58)

This automatically shows that the Noether current and associated Noether potential cor-
responding to the surface Lagrangian is,

Joor =V (q“Vb — qbV") D ="V =tV = (q QI Tk, — q“querZr) (A.59)
Thus variation of the Noether current for the quadratic term leads to:
8 (V=9uma) = 8 (V=9) = 0 [oT%, (2v=9Q,7™) o + 10,0 (2v=9Q,) ]
= V=9Epbg"a" + V=g + mdy | (2v=9Q, ") lors, |
+2¢° (V=gE;) - 9 |oT%, (2v=9Q,7) ¢ + 14,5 (2v=9Q,") ¢/

=/ —gw®—, [rgra(wfgcgqu a>q ] +(m—1)d, [(2\/—7,@;’“@) qblargr} S ES
(A.60)

where the equation of motion terms E* can be given by
= V=9Ep,09"q" + 2¢"5 (/—gE}) (A.61)

Let us start with the definition for gravitational momentum in Lanczos-Lovelock gravity,
which can be presented as follows:

V=gP" = 2v/=g B, " £, + V—gLq"
= £4(2/=gP,7T?) —mIb £, (2¢/=9Q, )
+ ¢*V=9Lquaa — ¢*9c (2v/=9Q,"Th,)
— P oa+ £4(2v/=gP, T ) — "0 (2v/—9Q,7°T%,) (A.62)

where we have defined the quadratic momentum as:

((lluad = FI(;'I“’E(] (2\/jgppqra) - qa V _quuad (A63)
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Then we can write the quadratic momentum using V¢ as:
quad = —V—gP* —mL V" + ¢*0.V* (A.64)
Then using the result for Lie variation of V* the quadratic momentum can be written as:

C(fuad = —/—gP*—m [8c @V — q"V°) + /—gK* + q“@cvc] +q*0.V°
= —/—gP* —md. (¢V* — ¢"V°) — m\/—gK* — (m — 1)¢*0.V° (A.65)

Then under variations we obtain on-shell:

O Piaa = — 0 (V=9P") = md (V=gK*) + md. |3 (2v=9Q, ") ¢’IT}
+ (2v=9Q,71) IoTh, |+ (m = 1)g", [6 (2/=9Q,) T+ (24/=9Q, ) 0T%,]
() o[ (v
+ md, [5 (2\/—7@ W) ¢Ir? + <2F Q W) 5T }
+ (m —1)q"0, [0 (2v/—9Q,7) b, + (2v/—9Q,°) oT%,]
= — V=g —md (V=gK®) +ma. [ (2v/=9Q, ") ¢° F”r}
+ (m —1)q"0, [0 (2v/=9Q,) b, + (2v/—9Q,¢) oT%, ] (A.66)

These are the expressions used in the main text.

A.3.4 Characterizing null surfaces

Let us now try to generalize the result for null surfaces to Lovelock gravity with the null
vector ¢, such that > = 0 everywhere. For that purpose, we start with the combination:

Rapl™0* = Ropgr P, 04

= Pbpqrﬁb (Rapqrt®)
= — P10, (V Vol — Y,V ylp)
—2P%U (7 V4,
=V, (“2P"0V,0,) - S (A.67)

where we have defined, the entropy density as:
S = —2PY"I"Y 4,V .0, (A.68)
The Einstein-Hilbert limit can be obtained easily leading to:

1678 = — (gbqu’" - gb’"gpq> VoVt
= VOV, — (V1) (A.69)
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as well as,

327erpqr€er€p = (gbqur — gbrgpq) 4V L,

= (N0 — ("0
— o (A.70)

However in Lanczos-Lovelock gravity, the combination, 2Pbp‘1’"£bvrﬁp cannot be written as,
¢¢9, for arbitrary ¢, since 2P0,V £, # 0. Next let us consider the object, £,J% (¢),
for which we define, ¢, = AV,B. Then in Lanczos-Lovelock gravity, we arrive at:

1 a _ abed i
ZEQJ (£) =V, {2P fadecAA2]
1 1
= 2V, [QPabcdzaedvc In A} -5 [2P“bcdza£dvc In AV, In A (A.71)
Let us now expand V.In A in canonical null basis, such that we obtain,

VelnA = —kke. + Al + BAej;4 (A.72)

Note that we obtain, £°V.In A = . In a similar fashion, we can expand, 2P%°¢, ¢,V .1n A

in the following manner,
2P 1,V . In A = Pl + Qk? + R¢Y (A.73)

It is evident that Q = —2P% 0,0,V .In A = 0, due to antisymmetry of P in the first
two indices. Then it turns out that,

P =—2P% j 0V, InA =K (A.74)
It is obvious from the Einstein-Hilbert limit, that
167K = — <gacgbd — gadgbc> LakplgV e In A
= - (g“gbd - gadgbc) Cokpla (—kke + Bael) = & (A.75)

Also in the expansion for, V.In A, we obtain, By is completely arbitrary. Then we can use
B4 such that the following relation: BQP“deﬁaﬁdefeg = HPadeZak:Cﬁdef is satisfied, such
that, R“ vanishes. Thus we obtain,

2Py 1,V . In A = Kf° (A.76)
Again, we get,
2P 1,V . In AVyIn A = KV, In A = kK (A.77)
Thus, finally we arrive at the following result:

LaJ® (€) = Vq (K0) — kK (A.78)
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Again by considering derivative on the null surface, we obtain,
D, (K%)= (g“b kb 4 ebka) V. (K6)

= Vo (K4) + kb 00V, (K0)
=V, (K%)= kK — (VK (A.79)

Thus the Noether current contraction can also be written as:
Lo (£) = Dy (KEY) + — (A.80)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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