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1 Introduction

In our previous paper [1] we have shown that the Kontsevich-Penner model [2–6] is directly

related to the intersections on the moduli spaces. Namely, we claimed that in addition to

the well-known description of the intersections on the moduli spaces of the closed Riemann

surfaces [7–9] it also describes intersection theory on the moduli spaces of the Riemann sur-

faces with boundary. This intersection theory has been recently constructed in genus zero

by R. Pandharipande, J. Solomon, R. Tessler and further investigated by A. Buryak [10–

12] (see also [13, 14]). In particular, a conjectural description of all descendants on the

boundary in higher genera was introduced.

The Kontsevich-Penner matrix model

τN = det(Λ)NC−1

∫
[dΦ] exp

(
−Tr

(
Φ3

3!
− Λ2Φ

2
+N log Φ

))
(1.1)

over M × M Hermitian matrices for N = 0 coincides with the famous Kontsevich ma-

trix model, which is known to describe the intersections on the moduli spaces of closed

Riemann surfaces. In this paper we prove that for N = 1 this integral indeed can be

identified with the generating function of open intersection numbers conjectured by R.

Pandharipande, J. Solomon, R. Tessler, and A. Buryak. For this purpose, in particular,

we prove that Buryak’s residue formula [12], which describes a relation between open and
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closed intersection numbers, follows from the matrix integral representation (1.1). More-

over, we show how a generalization of Buryak’s formula appears in the general context of

the Grassmannian description of the KP/Toda-type integrable hierarchies [15, 16].

In this paper we also draw attention to the properties of the tau-function (1.1) for gen-

eral N . Using the Sato Grassmannian description we derive the full family of the Virasoro

and W-constraints, which completely specify the partition function of the Kontsevich-

Penner model for arbitrary N . In particular, (1.1) satisfies the string equation
(

∞∑

k=3

k tk
∂

∂tk−2
+

t21
2
− ∂

∂t1
+ 2N t2

)
τN = 0, (1.2)

and the dilaton equation
(

∞∑

k=1

k tk
∂

∂tk
− ∂

∂t3
+

1

8
+

3N2

2

)
τN = 0. (1.3)

Contrary to the constraints for the generalized Kontsevich model with the monomial po-

tential [3, 17, 18] our constraints for N 6= 0 in general do not belong to the W1+∞ algebra

of symmetries of the integrable hierarchy. Obtained constraints allowed us to construct the

cut-and-join type operator, which yields an explicit expression for the tau-function (1.1).1

The coefficients of the series expansion of (1.1) depend of the parameter N in a rela-

tively simple way. Namely, they are polynomials in N . This property allows us to consider

N as a continuous parameter. As we have already seen, at least for two values of N the

Kontsevich-Penner matrix integral gives the solutions to interesting problems of enumera-

tive geometry. However, the properties of the generating functions for these two cases are

quite different. The case N = 0, which describes the Kontsevich-Witten tau-function of

the KdV hierarchy, is very well studied. In particular, to completely specify the generating

function in this case we do not need higher W-constraints, and the cut-and-join operator

can be derived from the the Virasoro constraints [19]. It appears that in the case of open

intersection numbers (N = 1) we have a one-parametric family of the Virasoro constraints.

An operator associated with the parameter describes the dependence of the tau-function

on even times

(k − 1)
∂

∂t2k
τ1 =

k−1∑

j=1

∂2

∂t2j∂t2(k−j)
τ1. (1.4)

This relation for the generating function of the open intersection numbers was established

in [12]. We claim that for a positive integer N the tau-function (1.1) is also related to

interesting enumerative geometry and topological string theory models. In this paper we

describe in some details the case N = 2. For this case we have two families of the cubic

W-operators. The difference between them describes a dependence of the even times t2k
for k > 2 and yields an analog of the relation (1.4).

It is well known that there exists a unique KdV tau-function, satisfying the string

equation, namely, the Kontsevich-Witten tau-function [17, 20]. We found an analogous

1Actually, we constructed a family of the cut-and-join type operators. It is not yet clear to us which

representative of this family corresponds to the geometric cut-and-join analysis (if any).
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description for the Kontsevich-Penner model (1.1). Namely, we prove that for arbitrary N

there is a unique tau-function of the KP hierarchy, satisfying both the string equation (1.2)

and dilaton equation (1.3).

The present paper is organized as follows. In section 2 we briefly remind the reader the

action of the w1+∞ algebra of symmetries on Sato’s Grassmannian and show, how one can

describe the acton of some simple operators from the universal enveloping algebra of W1+∞

on the tau-functions. In section 3 we prove that the tau-function (1.1) for N = 1 is given

by Buryak’s formula, thus proving the matrix integral representation of the conjectural

generating function of open intersection numbers. Section 4 contains the derivation of the

finite number of Virasoro and cubic W-constraints for general N , which follow from the

existence of the Kac-Schwars operators and belong to the W1+∞ algebra. In section 5

we derive the complete (infinite) family of the Virasoro and cubic W-constraints (that, in

general do not belong to W1+∞), which allow us to construct the cut-and-join operator

in section 6. Sections 7 and 8 are devoted to the case N = 1, which corresponds to

the open intersection numbers. In section 9 we briefly describe the tau-function (1.1) for

integer N > 1, in particular, we investigate the dependence on the even times for the next

potentially interesting case (N = 2). In appendix A we give the first terms of the series

expansion of the tau-function τN and the corresponding free energy.

2 W1+∞ algebra and the Sato Grassmannian

In this section we give a brief reminder of some important properties of the algebra w1+∞

and its central extension, the algebra W1+∞. They describe the symmetries of the KP

integrable hierarchy and play a central role in our construction. For more details see,

i.e., [15–17, 21] and references therein.

The KP hierarchy can be described by the bilinear identity, satisfied by the tau-function

τ(t), namely ∮

∞

eξ(t−t′,z) τ(t− [z−1]) τ(t′ + [z−1])dz = 0, (2.1)

where ξ(t, z) =
∑∞

k=1 tkz
k and we use the standard notation

t±
[
z−1

]
=

{
t1 ±

1

z
, t2 ±

1

2z2
, t3 ±

1

3z3
, . . .

}
. (2.2)

From the free fermion description of the KP hierarchy it immediately follows that the

operators

Ŵ (m+1)(z) = ∗

∗

(
Ĵ(z) + ∂z

)m
Ĵ(z) ∗

∗
(2.3)

correspond to the bilinear combinations of fermions and span the algebra W1+∞ of sym-

metries of the KP hierarchy.2 Here Ĵ(z) is the so-called bosonic current

Ĵ(z) =
∑

m∈Z

Ĵm
zm+1

, (2.4)

2Omitting some details, one can say that a group element eŴ , where Ŵ ∈ W1+∞, maps a tau function

τ to another tau-function e
Ŵ
τ .
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where

Ĵk =





∂

∂tk
for k > 0,

0 for k = 0,

−kt−k for k < 0.

(2.5)

The normal ordering for bosonic operators ∗

∗
. . . ∗

∗
puts all operators Ĵk with positive k to

the right of all Ĵk with negative k.

The Virasoro subalgebra of W1+∞ is generated by the operators, bilinear in Ĵk

1

2
∗

∗
Ĵ(z)2 ∗

∗
=

∑

m∈Z

L̂m

zm+2
, (2.6)

namely it is spanned by the operators

L̂m =
1

2

∑

a+b=−m

abtatb +

∞∑

k=1

ktk
∂

∂tk+m
+

1

2

∑

a+b=m

∂2

∂ta∂tb
. (2.7)

The operators from the W (3) algebra,

M̂k =
1

3

∑

a+b+c=k

∗

∗
ĴaĴbĴc ∗

∗
=

1

3

∑

a+b+c=−k

a b c ta tb tc +
∑

c−a−b=k

a b ta tb
∂

∂tc

+
∑

b+c−a=k

a ta
∂2

∂tb∂tc
+

1

3

∑

a+b+c=k

∂3

∂ta∂tb∂tc
, (2.8)

are generated by

1

3
∗

∗
Ĵ(z)3 ∗

∗
=

∑

m∈Z

M̂m

zm+3
. (2.9)

The operators Ĵk, L̂k, and M̂k satisfy the following commutation relations

[
Ĵk, Ĵm

]
= k δk,−m,

[
Ĵk, L̂m

]
= kĴk+m,

[
L̂k, L̂m

]
= (k −m)L̂k+m +

1

12
k(k2 − 1)δk,−m,

[
L̂k, M̂m

]
= (2k −m)M̂k+m +

1

6
k(k2 − 1)Ĵk+m,

[
Ĵk, M̂m

]
= 2k L̂k+m.

(2.10)

A commutator of two operators from W (3) contains the terms of fourth power of the current

components Ĵm, so it can not be represented as a linear combination of Ĵk, L̂k, and M̂k.

The description of the integrable hierarchies in terms of the Grassmannian [15, 16]

allows us to work with the operators from the algebra w1+∞ (the differential operators

in one variable, which describe diffeomorphisms of the circle) instead of the operators

from W1+∞. This significantly simplifies the calculations in some cases. In this paper we
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consider the tau-functions, given by matrix models of the Kontsevich type. Thus, we use

the following Miwa parametrization

tk =
1

k
TrZ−k (2.11)

for a diagonal matrix Z = diag (z1, z2, . . . , zM ). A tau-function of the KP hierarchy in this

parametrization is given by

τ
([
Z−1

])
=

detMi,j=1Φi(zj)

∆(z)
, (2.12)

where ∆(z) is the Vandermonde determinant and we use a natural generalization of the

notation (2.2),
[
Z−1

]
=

[
z−1
1

]
+
[
z−1
2

]
+ · · ·+

[
z−1
M

]
.3 Here

Φi(z) = zi−1 +
i−2∑

k=−∞

Φikz
k (2.13)

are known as the basis vectors and define a point of the Sato Grassmannian. Let us denote

{Φ} = {Φ1,Φ2,Φ3, . . . }. We call an operator a ∈ w1+∞ the Kac-Schwarz (KS) operator

for the tau-function τ if for the corresponding point of the Sato Grassmannian we have

a {Φ} ⊂ {Φ} . (2.14)

For the parametrization (2.11) a relation between the algebras w1+∞ and W1+∞ is as

follows. With any operator a ∈ w1+∞ we identify an operator Ŷa ∈ W1+∞ such that the

operators (−∂z)
m z−k (which span the algebra w1+∞) are identified [21] with:

Ŷ(−∂z)
mz−k = resz

(
z−k ∗

∗

(Ĵ(z) + ∂z)
m

m+ 1
Ĵ(z) ∗

∗

)
. (2.15)

When the size M of the auxiliary matrix Z in (2.12) tends to infinity, we have an

infinite number of Miwa parameters:

τ
([
Z−1

])
=

det∞i,j=1Φi(zj)

∆(z)
. (2.16)

Then, for any operator b ∈ w1+∞ and the corresponding operator Ŷb ∈ W1+∞ we have a

family of the group elements:

eǫŶb τ (t)
∣∣∣
tk=

1

k
TrZ−k

=
det∞i,j=1 e

ǫbΦi(zj)

∆(z)
. (2.17)

Here ǫ is an arbitrary parameter and it is assumed that in the jth row the operator b

acts on the variable zj . Let us introduce a notation for the determinant in the numerator

of (2.16):
∞

det
i,j=1

Φi(zj) = |Φ1, Φ2, Φ3, . . . | , (2.18)

3In [1] the same Miwa parametrization was denoted by [Z].
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where Φi is an infinite column

Φi =




Φi(z1)

Φi(z2)

Φi(z3)
...



. (2.19)

Then, the family of the group elements, corresponding to the Ŷb ∈ W1+∞ acts as follows:

eǫŶb τ (t)
∣∣∣
tk=

1

k
TrZ−k

=
1

∆(z)

∣∣∣eǫbΦ1, e
ǫbΦ2, e

ǫbΦ3, . . .
∣∣∣ . (2.20)

The first two terms of expansion of this identity in ǫ give respectively

Ŷb τ =
1

∆(z)

∞∑

l=1

|Φ1, Φ2, . . . , Φl−1, bΦl, Φl+1, . . . | , (2.21)

and

Ŷ 2
b τ =

1

∆(z)

(
∞∑

l=1

∣∣Φ1, Φ2, . . . , Φl−1, b
2Φl, Φl+1, . . .

∣∣

+2
∞∑

k<l

|Φ1, Φ2, . . . , Φk−1, bΦk, Φk+1, . . . , Φl−1, bΦl, Φl+1, . . . |
)
.

(2.22)

3 Buryak’s residue formula

In this section we prove that the tau-function τ1 indeed coincides with the conjectural

generating function of open intersection numbers of [12]. In particular, we show that the

residue formula for the generation function, proved in [12], follows from the determinant

expression (2.12) for the tau-functions of the KP hierarchy. Moreover, this type of relations

appears to be universal for tau-functions.

Any KP tau-function can be expanded in the Schur polynomials

τ(t) =
∑

λ

cλsλ(t). (3.1)

Then, the sum restricted to Young diagrams with at most n non-zero lines

τ (n)(t) =
∑

l(λ)≤n

cλsλ(t) (3.2)

is also a KP tau-function for all n > 0. This type of tau-functions often appears in matrix

integrals [22, 23].

Assume we have an expression for the tau-function in the Miwa parametrization

τ
([
Z−1

])
for Z = diag (z1, z2, . . . , zM ). Then, the orthogonality of the Schur functions

allows us to find an expression for this tau-function, dependent on an infinite number

of times:

τ (M)(t) =
1

M !

∮
. . .

∮
∆(z)∆(z−1) exp

(
∞∑

k=1

M∑

l=1

tkz
k
l

)
τ
([
Z−1

]) M∏

j=1

dzj
2πizj

. (3.3)

– 6 –



J
H
E
P
0
8
(
2
0
1
5
)
0
2
8

On substitution of the determinant representation (2.12) we obtain

τ (M)(t) =

∮
. . .

∮
∆(z−1) exp

(
∞∑

k=1

M∑

l=1

tkz
k
l

)
M∏

j=1

Φj(zj)
dzj
2πizj

. (3.4)

Here we use the antisymmetry of the Vandermonde determinant. Let us extract the integral

over z1:

τ (M)(t) =

∮
exp

(
∞∑

k=1

tkz
k
1

)
Z(t; z1) Φ1(z1)

dz1
2πiz1

, (3.5)

where

Z(t; z1) =

∮
. . .

∮
∆(z−1) exp

(
∞∑

k=1

M∑

l=2

tkz
k
l

)
M∏

j=2

Φj(zj)
dzj
2πizj

=

∮
. . .

∮
∆̃(z−1) exp

(
∞∑

k=1

M∑

l=2

tkz
k
l

)
M∏

j=2

(
1

zj
− 1

z1

)
Φj(zj)

dzj
2πizj

=

∮
. . .

∮
∆̃(z−1) exp

(
∞∑

k=1

M∑

l=2

(
tk −

1

kzk1

)
zkl

)
M∏

j=2

Φj(zj)

zj

dzj
2πizj

.

(3.6)

Here

∆̃(z−1) =
∏

i<j; i,j=2...N

(zi − zj) (3.7)

is a determinant of the (M−1)×(M−1) Vandermonde matrix. Comparing (3.4) and (3.6)

we see that Z(t; z1) can be identified with the tau-function τ̃ (M−1)(t−
[
z−1
1

]
) which corre-

sponds to the point of the Grassmannian
{
z−1Φ2, z

−1Φ3, z
−1Φ4, . . .

}
:

τ (M)(t) =

∮
exp

(
∞∑

k=1

tkz
k
1

)
τ̃ (M−1)

(
t−

[
z−1
1

])
Φ1(z1)

dz1
2π i z1

. (3.8)

When M tends to infinity we get a relation

τ(t) =

∮
exp

(
∞∑

k=1

tkz
k

)
τ̃
(
t−

[
z−1

])
Φ1(z)

dz

2πi z
. (3.9)

Thus, we proved the following statement: for any tau-function τ̃ and arbitrary series

Φ1(z) = 1+O(z−1) the residue (3.9) gives a tau-function of the KP hierarchy, corresponding

to the point of the Sato Grassmannian

{
Φ1, zΦ̃1, zΦ̃2, zΦ̃3, . . .

}
. (3.10)

Moreover, it is easy to see that the resulting tau-function satisfies the MKP hierarchy

equation ∮

∞

eξ(t−t′,z) z τ(t− [z−1]) τ̃(t′ + [z−1])dz = 0. (3.11)

– 7 –
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The relation (3.9) is a particular case of a more general relation between tau-functions.

Namely, in the same way it is easy to show that for any tau-functions τ̃ and τ∗ the function

τ defined by

τ(t) =
1

M !

∮
. . .

∮
∆(z)∆(z−1)τ̃

(
t−

[
Z−1

])
τ∗

([
Z−1

])
exp

(
∞∑

k=1

M∑

l=1

tkz
k
l

)
M∏

j=1

dzj
2πizj

(3.12)

is a tau-function. The corresponding point of the Sato Grassmannian is given by
{
Φ∗
1,Φ

∗
2, . . . ,Φ

∗
M , zM Φ̃1, z

M Φ̃2, z
M Φ̃3, . . .

}
. (3.13)

For the tau-function τN of the Kontsevich-Penner model considered in section 4 rela-

tion (3.9) reduces to

τN (t) =

∮
exp

(
∞∑

k=1

tkz
k

)
τN−1

(
t−

[
z−1

])
ΦN
1 (z)

dz

2πiz
. (3.14)

In particular, for N = 1 we have

τ1(t) =

∮
exp

(
∞∑

k=1

tkz
k

)
τ0

(
t−

[
z−1

])
Φ1
1(z)

dz

2πiz
. (3.15)

Since τ0 = τKW, the r.h.s. coincides with the expression for the generating function of

the open intersection numbers, derived by A. Buryak in [12]. Thus, we proved that the

conjectural generating function of open intersection numbers is given by the Kontsevich-

Penner model for N = 1

τo = τ1. (3.16)

4 Kac-Schwarz operators and corresponding constraints for general N

As we have established in our previous work [1], an operator

aN =
1

z

∂

∂z
−
(
N +

1

2

)
1

z2
+ z (4.1)

is the KS operator for the tau-function, corresponding to the Kontsevich-Penner model

τN =

∫
[dΦ] det

(
1 +

Φ

Λ

)−N

exp

(
−Tr

(
Φ3

3!
+

ΛΦ2

2

))

∫
[dΦ] exp

(
−Tr

ΛΦ2

2

)

= det(Λ)NC−1

∫
[dΦ] exp

(
−Tr

(
Φ3

3!
− Λ2Φ

2
+N log Φ

))
.

(4.2)

Namely, the basis vectors

ΦN
k = zNΦ0

k−N =
zN+1/2

√
2π

e−
z
3

3

∫

C
d y yk−N−1 exp

(
−y3

3!
+

yz2

2

)
, (4.3)

– 8 –



J
H
E
P
0
8
(
2
0
1
5
)
0
2
8

with a properly chosen contour C, satisfy a relation

aNΦN
i = ΦN

i+1. (4.4)

These basis vectors have an expansion

ΦN
k = zk−1 +

12(2− p)2 − 7

24
zk−4 +

(
1

8
p4 − 5

3
p3 +

365

48
p2 − 55

4
p+

9241

1152

)
zk−7 (4.5)

+

(
1

48
p6− 7

12
p5+

1225

192
p4− 2485

72
p3 +

221137

2304
p2− 73409

576
p+

5075225

82944

)
zk−10+O(zk−13),

where p = k−N . Using the integral representation (4.3) it is easy to see that the operator

of multiplication by z2 acts as follows:

z2ΦN
k = ΦN

k+2 − 2(k −N − 1)ΦN
k−1. (4.6)

This operator is not the KS operator for N 6= 0, because

z2ΦN
1 = ΦN

3 + 2NΦN
0 /∈

{
ΦN

}
, for N 6= 0. (4.7)

However, it is straightforward to check that the operators

l−1 = −aN ,

l0 = −z2aN +N − 1,

l1 = −z4aN + 2(N − 1)z2,

(4.8)

are the KS operators for any N [1]. For example, from (4.6) we see that for l1 it is enough

to check the condition (2.14) only for ΦN
1 . A constant term in the operator l0 is chosen in

such a way that the following commutation relations hold:

[li, lj ] = 2(i− j)li+j k = −1, 0, 1. (4.9)

The algebra sl(2) generated by operators (4.8) can be extended to the full semi-infinite

Virasoro algebra of the KS operators lk = z2k+2aN + . . . with k ≥ −1 only for N = 0 (the

KW tau-function, both a0 and z2 are the KS operators, so that any of their combinations

is also the KS operator) and for N = 1 (the open intersection numbers of [10–12], any

operator z2ka1 for k ≥ 0 is the KS operator).

The relation (2.15) allows us to find the operators from the W1+∞ algebra, which

correspond to the operators (4.8):

L̂−1 = L̂−2 −
∂

∂t1
+ 2Nt2,

L̂0 = L̂0 −
∂

∂t3
+

1

8
+

3N2

2
,

L̂1 = L̂2 −
∂

∂t5
+ 3N

∂

∂t2
.

(4.10)
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The operators L̂i also satisfy the commutation relations of the sl(2) subalgebra of the

Virasoro algebra [
L̂i, L̂j

]
= 2(i− j) L̂i+j , i, j = −1, 0, 1, (4.11)

so that the constrains

L̂kτN = 0, k = −1, 0, 1 (4.12)

are satisfied. In what follows we call the equations with k = −1 and k = 0 the string

equation and the dilaton equations.4

Let us show that the string and dilaton equations uniquely specify the solution of the

KP hierarchy (in the same way as the string equation specifies the KW tau-function of

the KdV hierarchy [17, 20]). We follow the approach of [24], namely, we prove that the

corresponding KS operators l−1 and l0 completely specify a point of the Sato Grassmannian

(let us note that these operators, however, do not generate the KS algebra for τN ). Indeed,

the operator l−1 = aN allows us to find all higher (k > 1) basis vectors ΦN
k via (4.4) if the

first basis vector is known. Thus, it remains to show that the first basis vector is completely

defined by the KS operators l−1 and l0. Indeed, from the definition of the KS operators, it

follows that the series l0Φ
N
1 = z3 + . . . should be a combination of the basis vectors:

l0Φ
N
1 =

(
3∑

k=1

αka
k
N

)
ΦN
1 . (4.13)

for some constant αk. On substitution of the anzats

ΦN
1 = 1 +

∞∑

k=1

bkz
−k (4.14)

into this equation, we immediately obtain an expression for the coefficients αk:

(
a3N − z2aN + 2(N − 1)

)
ΦN
1 = 0. (4.15)

This equation has a unique solution of the form (4.14):

ΦN
1 = 1 +

(
5

24
+N+

1

2
N2

)
z−3+

(
385

1152
+

73

24
N +

161

48
N2 +

7

6
N3 +

1

8
N4

)
z−6 (4.16)

+

(
85085

82944
+
6259

384
N+

58057

2304
N2+

2075

144
N3+

725

192
N4+

11

24
N5+

1

48
N6

)
z−9+O(z−12).

Thus, there is a unique KP tau-function, satisfying the string (1.2) and dilaton (1.3) equa-

tions. Equation (4.15) can be considered as a version of the quantum spectral curve for

the Kontsevich-Penner model.

4The string equation was derived by E. Brezin and S. Hikami in [2]. They also found a constraint, similar

to our dilaton equation (but their equation is essentially different and we claim that it contains a misprint)

and a constraint M̂−2 (see below).
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For arbitrary N the operators

m−2 = a2N ,

m−1 = z2a2N − (N − 2)aN ,

m0 = z4a2N − 2(N − 2)z2aN +
2

3
(N − 1)(N − 2),

m1 = z6a2N − 3(N − 2)z4aN + 2(N − 1)(N − 2)z2,

m2 = z8a2N − 4(N − 2)z6aN + 4(N − 1)(N − 2)z4,

(4.17)

are the KS operators. Of course, these operators are not unique KS operators with the

leading terms z2k−4a2N . Namely, one can add to them a combination of the operators (4.8)

and a constant. Our choice corresponds to the commutation relations

[lj ,mk] = 2 (2j − k)mj+k. (4.18)

The correspondence (2.15) for the operators (4.17) yields

M̂−2 = M̂−4 − 2L̂−1 + 2N
(
L̂−4 − t1

)
+

∂

∂t2
+
(
4N2 + 1

)
t4,

M̂−1 = M̂−2 − 2L̂1 + 3N

(
L̂−2 −

∂

∂t1

)
+

∂

∂t4
+

(
4N2 +

1

2

)
t2,

M̂06 = M̂0 − 2L̂3 + 4N

(
L̂0 −

∂

∂t3

)
+

∂

∂t6
+ 2

(
N2 +

1

4

)
N,

M̂1 = M̂2 − 2L̂5 + 5N

(
L̂2 −

∂

∂t5

)
+

∂

∂t8
+

(
6N2 +

1

4

)
∂

∂t2
,

M̂2 = M̂4 − 2L̂7 + 6N

(
L̂4 −

∂

∂t7

)
+

∂

∂t10
+

(
9N2 +

1

4

)
∂

∂t4
,

(4.19)

so that in general we can write

M̂k = M̂2k − 2L̂2k+3 + Ĵ2k+6 +

(
3(k + 1)N2 +

1

4

)
Ĵ2k

+ (k + 4)N
(
L̂2k − Ĵ2k+3

)
+

(
N2 +

1

4

)
Nδk,0 + 4N2t2δk,−1 + 16N2t4δk,−2.

(4.20)

For k = −1, 0, 1 and m = −2,−1, 0, 1, 2 we have the following commutation relations
[
L̂k, M̂l

]
= 2 (2k − l)M̂k+l, (4.21)

thus

M̂k τN = 0, k = −2,−1, 0, 1, 2. (4.22)

However, equations (4.12) and (4.22) without referring to the integrability have more then

one solution. In the next section we will construct an infinite family of constraints, which

completely specify partition function of the Kontsevich-Penner model. These operators, in

general, do not correspond to any KS operators, thus, they do not belong to the algebra

W1+∞. However, it is possible to construct an infinite number of the independent con-

straints given by the operators from W1+∞, which would correspond to the operators from

w1+∞ with higher powers of aN and would completely specify the generating function.
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5 Higher constraints for general N

The Virasoro and W-constraints for the generalized Kontsevich model can be obtained by

standard matrix model techniques, namely, by variation of the matrix integral.5 For the

Kontsevich-Penner model (4.2) with arbitrary N 6= 0 the calculations are rather cumber-

some. The reason is that for general N the partition function satisfies the third order

equation [2, 3]

((
1

Λ

∂

∂Λtr

)3

− Λ2

(
1

Λ

∂

∂Λtr

)
+ 2(N −M)

)
det(Λ)N

C τN
([
Λ−1

])
= 0, (5.1)

while for N = 0 it can be reduced to the second order equation

((
1

Λ

∂

∂Λtr

)2

− Λ2

)
C−1 τKW

([
Λ−1

])
= 0. (5.2)

In this sense the derivation of the constraints for the Kontsevich-Penner model (4.2) is of

the same level of complexity as the calculations for the generalized Kontsevich model with

the quartic potential, performed in [25].

This is why we take a different route and develop here a new approach based on the

correspondence (2.15) between the operators from W1+∞ and w1+∞. Let us show that the

operator

L̂2 = L̂4 −
∂

∂t7
+ 3N

∂

∂t4
+

∂2

∂t22
(5.3)

annihilates the tau-function (4.2). This operator, because of the term ∂2

∂t2
2

, does not belong

to the W1+∞ algebra, thus, it does not directly correspond to any KS operator.

First of all, let us consider an operator

p = −z6aN + (2N − 3)z4, (5.4)

which, via the identification (2.15), corresponds to the operator

Ŷp = L̂4 −
∂

∂t7
+ 3N

∂

∂t4
. (5.5)

This operator belongs to the W1+∞ algebra, thus, its action can be easily considered on

the level of the basis vectors. Indeed, from (4.4) and (4.6) it immediately follows that only

two terms in the r.h.s. of (2.21) survives:

Ŷp τN =
1

∆(z)

(∣∣pΦN
1 , ΦN

2 , ΦN
3 , . . .

∣∣+
∣∣ΦN

1 , pΦN
2 , ΦN

3 , . . .
∣∣)

=
1

∆(z)

(
−4N(N+1)

∣∣ΦN
−1, Φ

N
2 , ΦN

3 , . . .
∣∣+4N(N−1)

∣∣ΦN
1 , ΦN

0 , ΦN
3 , . . .

∣∣) .
(5.6)

5Part of the corresponding calculation, which, however, is not enough to find the full algebra of con-

straints, is given in [2].
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For the operator q = z2 the corresponding operator from the algebra W1+∞ is Ŷq = ∂
∂t2

and from (2.22) it follows that

∂2

∂t22
τN =

1

∆(z)

(
∞∑

l=1

∣∣ΦN
1 , ΦN

2 , . . . , ΦN
l−1, z

4ΦN
l , ΦN

l+1, . . .
∣∣

+2
∞∑

k<l

∣∣ΦN
1 , ΦN

2 , . . . , ΦN
k−1, z

2ΦN
k , ΦN

k+1, . . . , Φ
N
l−1, z

2ΦN
l , ΦN

l+1, . . .
∣∣
)
.

(5.7)

Again, in the first sum only terms with l = 1 and l = 2 survive

∞∑

l=1

∣∣ΦN
1 , ΦN

2 , . . . , ΦN
l−1, z

4ΦN
l , ΦN

l+1, . . .
∣∣

= 4N(N + 1)
∣∣ΦN

−1, Φ
N
2 , ΦN

3 , . . .
∣∣+ 4N(N − 1)

∣∣ΦN
1 , ΦN

0 , ΦN
3 , . . .

∣∣ ,
(5.8)

while in the double sum only a term with k = 1 and l = 2 survives

2
∞∑

k<l

∣∣ΦN
1 , ΦN

2 , . . . , ΦN
k−1, z

2ΦN
k , ΦN

k+1, . . . , Φ
N
l−1, z

2ΦN
l , ΦN

l+1, . . .
∣∣

= 8N(N − 1)
∣∣ΦN

0 , ΦN
1 , ΦN

3 , . . .
∣∣ .

(5.9)

Combining (5.6)–(5.9) and an expression for the Virasoro operator L̂2 = Ŷp+
∂2

∂t2
2

, we obtain

L̂2 τN = 0. (5.10)

To find a full algebra of the Virasoro constraints it is enough to consider nested com-

mutators of the operators L̂2 with L̂−1. The resulting operators

L̂k = L̂2k −
∂

∂t2k+3
+ 3N

∂

∂t2k
+

k−1∑

j=1

∂2

∂t2j∂t2k−2j
+

(
1

8
+

3N2

2

)
δk,0 + 2Nt2δk,−1, k ≥ −1

(5.11)

constitute an extension of the algebra (4.10) to an infinite subalgebra of the Virasoro

algebra [
L̂k, L̂m

]
= 2(k −m)L̂k+m, (5.12)

and annihilate the tau-function

L̂kτN = 0, k ≥ −1. (5.13)

Let us now construct the operators M̂k for k > 2. One can find all higher M̂k operators

assuming that the commutation relation (4.21) holds for k = −1, 0, 1 and arbitrary l. Then,

a commutation relation [
L̂−1, M̂3

]
= −10M̂2 (5.14)

allows us to find

M̂3 = M̂6 − 2L̂9 +
∂

∂t12
+

(
12N2+

1

4

)
∂

∂t6
+7N

(
L̂6 −

∂

∂t9

)
+2N

∂2

∂t2∂t4
− 4

3

∂3

∂t32
. (5.15)
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Then, a commutation relation between the Virasoro and W-operators
[
L̂1, M̂l

]
= 2 (2− l)M̂l+1 (5.16)

yields all operators M̂k for k ≥ −2

M̂k = M̂2k − 2L̂2k+3 + Ĵ2k+6 +

(
3(k + 1)N2 +

1

4

)
Ĵ2k

+ (k + 4)N
(
L̂2k−Ĵ2k+3

)
+

(
N2+

1

4

)
Nδk,0+4N2t2δk,−1+16N2t4δk,−2

+ (k − 2)N
k−1∑

j=1

∂2

∂t2j∂t2k−2j
− 4

3

∑

i+j+l=k

∂3

∂t2i∂t2j∂t2l
.

(5.17)

A straightforward calculation shows that the following commutation relations between the

Virasoro and W-operators hold

[
L̂k, M̂l

]
= 2 (2k − l)M̂k+l − 4 (k(k − 1)− 2δk,−1) N L̂k+l + 8

k−1∑

j=1

j
∂

∂t2k−j
L̂l+j (5.18)

for k ≥ −1 and l ≥ −2, so that

M̂kτN = 0, k ≥ −2. (5.19)

Of course, one can choose another basis in the space of constraints. Let us consider

the operators

M̂
′
−2 = M̂−2,

M̂
′
k = M̂k − (k − 2)N L̂k, k > −2,

(5.20)

which also annihilate the tau-function

M̂
′
kτN = 0, k ≥ −2. (5.21)

These operators satisfy the commutation relations

[
L̂k, M̂

′
l

]
= 2 (2k − l)M̂′

k+l + ckl N L̂k+l + 8
k−1∑

j=1

j
∂

∂t2k−j
L̂l+j k ≥ −1, l ≥ −2. (5.22)

Here a combination of the Kronecker symbols ckl=8(δk,−1(1− δl,−1)−(k+2)δl,−2(1−δk,0))

guarantees that in the r.s.h. there appear operators L̂k only with k ≥ −1. In particular,

we have

M̂
′
−1 = M̂−2 − 2L̂1 + 6N

(
L̂−2 −

∂

∂t1

)
+

∂

∂t4
+

(
10N2 +

1

2

)
t2,

M̂
′
0 = M̂0 − 2L̂3 + 6N

(
L̂0 −

∂

∂t3

)
+

∂

∂t6
+

(
3

4
+ 5N2

)
N,

M̂
′
k = M̂2k − 2L̂2k+3 + 6N

(
L̂2k − Ĵ2k+3

)
+ Ĵ2k+6 +

(
9N2 +

1

4

)
Ĵ2k

− 4

3

∑

i+j+l=k

∂3

∂t2i∂t2j∂t2l
k > 0.

(5.23)
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At the end of this section let us describe a simple Sugawara construction of the Virasoro

constraints (5.11). For this purpose we introduce the bosonic operators

Ĵk =





∂

∂tk
for odd k > 0,

√
3

∂

∂tk
for even k > 0,

√
3N for k = 0,

−kt−k for odd k < 0,

− k√
3
t−k for even k < 0,

(5.24)

and the corresponding bosonic current

Ĵ(z) =
∞∑

k=−∞

(
Ĵk − δk,−3

)
z−k−1 (5.25)

with the dilaton shift t̃k = tk − 1
3δk,3.

6 Then

1

2
∗

∗
Ĵ(z)2 ∗

∗
=

∑

k∈Z/2

L̂k

z2k+2
− δk,0

8z2
. (5.26)

6 Cut-and-join operator for general N

Following the idea of [26] in this section we construct the cut-and-join operator represen-

tation for the tau-function τN . Let us introduce the gradation deg tk = k
3 such, that

deg Ĵk = deg L̂k = deg M̂k = −k

3
, (6.1)

and the degree operator

D̂ =
1

3

∞∑

k=1

ktk
∂

∂tk
. (6.2)

Then, the operators

L̂
∗
k = L̂k +

∂

∂t2k+3
, k ≥ −1, (6.3)

have the degree −2k/3, and the operators

M̂
∗
k = M̂

′
k −

∂

∂t2k+6
, k ≥ −2, (6.4)

consist of the terms with degree −2k/3 and −(2k/3 + 1). From the Virasoro and W-

constraints (5.13) and (5.21) it immediately follows that

D̂ τN =
1

3

∞∑

k=0

(
(2k + 1)t2k+1L̂

∗
k−1 − (2k + 2)t2k+2M̂

∗
k−2

)
τN . (6.5)

6Let us stress that the only difference between the standard bosonic current and (5.25) is the normal-

ization of the even components. Thus, the current (5.25) can be reduced to the standard one by the change

of even times t2k 7→
√
3t2k.
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An operator in the r.h.s. is a sum of the operators Ŵ1 and Ŵ2:

Ŵ1 =
1

3




∞∑

k=0

ktk
3 + (−1)k

2

(
L̂k−3 + 3N

∂

∂tk−3

)

+
∞∑

k=3

(2k + 1)(k + 1)t2k+1

k−2∑

j=1

∂2

∂t2j∂t2(k−j−1)
+ 3

(
3N2

2
+

1

8

)
t3 + 6Nt1t2


 ,

Ŵ2 = −2

3




∞∑

k=0

(k + 1)t2k+2

(
M̂2k−4 + 6NL̂2k−4

)
− 4Nt2L̂−4

+
∞∑

k=3

(k + 1)t2k+2



(
9N2 +

1

2

)
∂

∂t2k−4
− 4

3

∑

i+j+l=k−1

∂3

∂t2i∂t2j∂t2l




+ 2(12N2 + 1)t2t4 +

(
9

4
+ 15N2

)
t6




(6.6)

such that

deg Ŵ1 = 1, deg Ŵ2 = 2. (6.7)

From (6.5) it is clear that τN is a sum of components with integer degree:

τN = 1 +
∞∑

k=1

τ
(k)
N , (6.8)

where deg τ
(k)
N = k. Let us introduce a variable q which counts the degree:

τN (q) = 1 +
∞∑

k=1

τ
(k)
N qk. (6.9)

Then the operator D̂ acts as a derivative q ∂
∂q , so that τN (q) satisfies the cut-and-join type

equation

q
∂

∂q
τN (q) =

(
qŴ1 + q2Ŵ2

)
τN (q). (6.10)

For the commuting operators Ŵ1 and Ŵ2 the solution would be

exp

(
qŴ1 +

q2

2
Ŵ2

)
· 1, (6.11)

but it is easy to check that [
Ŵ1, Ŵ2

]
6= 0. (6.12)

Thus, the solution can be represented in terms of an ordered exponential, and the opera-

tors (6.6) define a recursion

τ
(k)
N =

1

k

(
Ŵ1 τ

(k−1)
N + Ŵ2 τ

(k−2)
N

)
, (6.13)
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with the initial conditions τ
(0)
N = 1, τ

(−1)
N = 0. In particular

τ
(1)
N = Ŵ1 · 1,

τ
(2)
N =

1

2

(
Ŵ

2
1 + Ŵ2

)
· 1,

τ
(3)
N =

1

3!

(
Ŵ

3
1 + Ŵ1Ŵ2 + 2Ŵ2Ŵ1

)
· 1.

(6.14)

Explicit expression for these three terms can be found in appendix A.

From our construction it is clear that the operators Ŵ1,2 are not unique. In particular,

if one substitutes the operator M̂∗
k in (6.5) with an operator M̂∗

k+βkLk for arbitrary constant

βk’s the equation remains valid. This gives the following change in the operators:

∆Ŵ1 =
2

3

∞∑

k=2

k βk−3 t2k
∂

∂t2k−3
,

∆Ŵ2 = −2

3

∞∑

k=2

k βk−3 t2kL̂
∗
k−3.

(6.15)

However, it is easy to see that this freedom is not enough to make the operators Ŵ1 and

Ŵ2 commuting with each other. However, one can consider more general transformations,

generated by the operators
∑∞

j=−1 βk,j Ĵk−j L̂j with some constant matrix βk,j . It is not

clear if this is enough to make the operators commutative.

7 Open intersection numbers: Virasoro and W-constraints

In this section we consider the case N = 1 which, as we proved in section 3, describes open

intersection numbers of [10–12].

As we have established in [1], an operator

a1 = z aKW z−1 =
1

z

∂

∂z
− 3

2

1

z2
+ z (7.1)

is the KS operator for the tau-function τ1. Moreover, in this case we have a family of the

KS operators

lok = −z2k+2a1, k ≥ −1, (7.2)

which constitute a subalgebra of the Virasoro algebra and guarantee [1] that the tau-

function satisfies the Virasoro constraints

L̂o
k τ1 = 0, k > −1. (7.3)

Here

L̂o
k = L̂2k + (k + 2)Ĵ2k − Ĵ2k+3 + δk,0

(
1

8
+

3

2

)
. (7.4)

Thus, for N = 1 we have two sets of the Virasoro constraints, namely (5.10) and (7.3),

which do not coincide for k > 1. The difference is

Ôk = L̂o
k − L̂k

∣∣∣
N=1

= (k − 1)
∂

∂t2k
−

k−1∑

j=1

∂2

∂t2j∂t2(k−j)
. (7.5)
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From the constraints

Ôkτ1 = 0, k > 1, (7.6)

we obtain the relations, which describe the dependence of the tau-function on even times

t2k for k > 1,7

∂

∂t2k
τ1 =

∂k

∂tk2
τ1. (7.7)

This property of the generating function of open intersection numbers has been established

in [12]. This equation allows us to describe a dynamics with respect to the times t2k
for k > 1:

τ1(t) = exp

(
∞∑

k=2

t2k
∂k

∂tk2

)
τ1(t1, t2, t3, 0, t5, 0, t7, 0, . . . ). (7.8)

Thus, there is a one-parametric family of the constraints

L̂o
k(α) = L̂o

k + αÔk, (7.9)

where we assume that Ôk = 0 for k = −1, 0, 1. These operators satisfy the Virasoro

commutation relations
[
L̂o
k(α), L̂

o
m(α)

]
= (k −m)L̂o

k+m(α), (7.10)

and annihilate the tau-function τ1. The Virasoro constraints obtained in [12] correspond

to α = 1/2.

In addition to the Virasoro constraints we have infinitely many higher W-constraints.

Let us consider the KS operators

wo
k = z2k+4a21, k ≥ −2. (7.11)

They satisfy the following commutation relations

[wo
k, l

o
m] = 2(k − 2m)wo

k+m + 4m(m+ 1)lom+k, (7.12)

while commutators [wk, wl] contain terms with an operator a31. Using the correspon-

dence (2.15) we construct the following operators from W1+∞:

M̂o
−2 = M̂−4 + 2L̂−4 − 2L̂−1 + 5t4 − 2t1 +

∂

∂t2
,

M̂o
−1 = M̂−2 + 4L̂−2 − 2L̂1 +

13

2
t2 − 4

∂

∂t1
+

∂

∂t4
,

M̂o
0 = M̂0 + 6L̂0 − 2L̂3 − 6

∂

∂t3
+

∂

∂t6
+

23

4
,

M̂o
k = M̂2k + 2(k + 3)L̂2k − 2L̂2k+3 +

(
95

12
+ 6k +

4

3
k2
)

∂

∂t2k

− 2(k + 3)
∂

∂t2k+3
+

∂

∂t2k+6
, k ≥ 1,

(7.13)

7These constraints immediately follow from the residue formula (3.15). Let us note that the same

relations are true for the tau-function τ given by (3.9), for any Φ1 if τ̃ is an arbitrary tau-function of the

KdV hierarchy.
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or

M̂o
k = M̂2k + 2(k + 3)L̂2k − 2L̂2k+3 − 2(k + 3)Ĵ2k+3

+

(
95

12
+ 6k +

4

3
k2
)
Ĵ2k + Ĵ2k+6 +

23 δk,0
3

.
(7.14)

The constant term in M̂
o
0 is chosen in such a way that the following commutation rela-

tions hold

[
M̂o

k , L̂
o
m

]
= 2(k − 2m)M̂o

k+m + 4m(m+ 1)L̂o
k+m, k ≥ −2,m ≥ −1. (7.15)

These commutation relations guarantee that

M̂o
k τ1 = 0 k ≥ −2. (7.16)

8 Cut-and-join operator for open intersection numbers

In section 6 we have already obtained the cut-ant-join operator description of the

Kontsevich-Penner model, which is valid for arbitrary N . In particular, it is valid for

the case N = 1, corresponding to open intersection numbers. However, as we have seen in

the previous section, for this case the Virasoro and W-constraints have additional param-

eters, thus, there is a vast family of the cut-and-join type operators. Here we construct a

representative of this family. We will directly follow the construction of section 6. Let us

introduce the shifted operators

L̂∗
k = L̂o

k +
∂

∂t2k+3
, k ≥ −1, (8.1)

and

M̂∗
−2 = −M̂o

−2 +
∂

∂t2
,

M̂∗
k = −M̂o

k + 2(k + 3)L̂o
k +

∂

∂t2k+6

= −M̂2k + 2L̂2k+3 +

(
49

12
+ 4k +

2

3
k2
)
Ĵ2k + 4δk,0, k ≥ −1

(8.2)

so that

L̂∗
k τ1 =

∂

∂t2k+3
τ1, k ≥ −1,

M̂∗
k τ1 =

∂

∂t2k+6
τ1, k ≥ −2.

(8.3)

Then

D̂ τ1 =
1

3

∞∑

k=0

(
(2k + 1)t2k+1L̂

∗
k−1 + (2k + 2)t2k+2M̂

∗
k−2

)
τ1. (8.4)
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Again, the operator in the r.h.s. of (8.4) is a sum of two operators

Ŵ o
1 =

1

3

(
∞∑

k=0

ktk
3+(−1)k

2
L̂k−3+

∞∑

k=2

(2k+1)(k+1)t2k+1
∂

∂t2k−2
+
39

8
t3+6t1t2

)
,

Ŵ o
2 =

2

3

(
−

∞∑

k=0

(k + 1)t2k+2M̂2k−4 − 2t2L̂−4

+
∞∑

k=3

(k + 1)

(
2

3
k2 +

4

3
k − 5

4

)
t2k+2

∂

∂t2k−4
− 2t2t4 + 12t6

)
,

(8.5)

such that

deg Ŵ o
1 = 1, deg Ŵ o

2 = 2. (8.6)

For the expansion of the tau-function

τ1 = 1 +
∞∑

k=1

τ
(k)
1 , (8.7)

where deg τ
(k)
1 = k, we have a recursion

τ
(k)
1 =

1

k

(
Ŵ o

1 τ
(k−1)
1 + Ŵ o

2 τ
(k−2)
1

)
(8.8)

such that

τ
(1)
1 = Ŵ o

1 · 1,

τ
(2)
1 =

1

2

((
Ŵ o

1

)2
+ Ŵ o

2

)
· 1,

τ
(3)
1 =

1

3!

((
Ŵ o

1

)3
+ Ŵ o

1 Ŵ o
2 + 2Ŵ o

2 Ŵ o
1

)
· 1.

(8.9)

These three terms give the expansion of τo, presented in [1].

9 Other interesting values of N

In general, for integer N > 0, operators z2k(aN )N+m with non-negative m and k are the KS

operators for the tau-function τN . Indeed, an operator (aN )N maps the basis vectors (4.3)

into the set, proportional to the basis vectors of the KW model

(aN )N
{
ΦN

}
= zN

{
ΦKW

}
(9.1)

and, on this space, operators z2 and aN are the KS operators. Thus, for integer N > 1

we have additional constraints, which follow from the existence of two different families

of the W (N+1) constraints. These constraints allow us to restore the dependence of the

tau-function on the even times t2k for k > N from the dependence of the times t2, . . . , t2N .
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For example, for N = 2 the operators z4+2ka2N for k ≥ −2 are the KS operators. Thus,

for N = 2 in addition to the constraints (5.19) we have the operators

M̂ ′′
k = M̂2k + 2(k + 4)

(
L̂2k − 2Ĵ2k+3

)
+ Ĵ2k+6

+

(
4

3
k2 + 8k +

179

12

)
Ĵ2k − L̂2k+3 + 17 δk,0, k ≥ −2,

(9.2)

which annihilate the tau-function

M̂ ′′
k τ2 = 0. (9.3)

The simplest equation, which follows from the existence of two different families of the

constraints, is
∂

∂t6
τ2(t) = P̂3 τ2(t), (9.4)

where

P̂3 =
3

2

∂2

∂t2∂t4
− 1

2

∂3

∂t32
. (9.5)

This equation describes a dynamics with respect to the time t6:

τ2(t1, t2, t3, t4, t5, t6, t7, . . . ) = exp
(
t6P̂1

)
τ2(t1, t2, t3, t4, t5, 0, t7, . . . ). (9.6)

In general, for k > 2 we have
∂

∂t2k
τ2(t) = P̂kτ2(t), (9.7)

where

P̂k =
3

2(k − 1)

k−1∑

j=1

∂2

∂t2j∂t2k−2j
− 1

(k − 1)(k − 2)

∑

i+j+l=k

∂3

∂t2i∂t2j∂t2l
(9.8)

describes the dependence on the time t2k (and, for arbitrary k > 2, the operator P̂k can

be reduced to the operator, acting only on the times t2 and t4). This dependence follows

from the integral representation

τ2(t) =

∮ ∮ (
1

z2
− 1

z1

)
e
∑

∞

k=1
tk(z

k
1
+zk

2
)τKW

(
t−

[
z−1
1

]
−
[
z−1
2

])
Φ2
1(z1)Φ

2
2(z2)

dz1
2πiz1

dz2
2πiz2
(9.9)

which is a particular case of (3.12).
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A Explicit formulas for τN and log(τN)

τN = 1+

(
1

8
+
3

2
N2

)
t3+

1

6
t1

3+2N t1t2+

(
3N3+

25

4
N

)
t1t3t2+4N

(
1+N2

)
t6

+
4

3
Nt2

3+

(
9

8
N4+

39

16
N2+

25

128

)
t3

2+
1

72
t1

6+
1

3
Nt1

4t2+

(
1

4
N2+

25

48

)
t3t1

3+8N2t2t4

+4Nt1
2t4+2N2t1

2t2
2+

(
15

2
N2+

5

8

)
t1t5+

28

3
N2t1

3t2t4+32 t1N
2t4

2+20N
(
1+2N2

)
t5t4

+32N
(
1+N2

)
t1t8+

(
35

16
+
105

4
N2

)
t1

2t7+35N

(
3

4
+N2

)
t2t7+

(
2

9
N+

4

3
N3

)
t1

3t2
3

+

(
49

6
N+2N3

)
t2

3t3+

(
5

4
N2+

35

48

)
t1

4t5+

(
3

16
N4+

1225

768
+
37

32
N2

)
t1

3t3
2

+

(
26

3
N+

2

3
N3

)
t1

3t6+

(
6N5+

61

2
N3+

49

2
N

)
t6t3+

1

48

(
N2+

49

12

)
t1

6t3

+

(
105

8
N4+

735

16
N2+

105

128

)
t9+

(
1225

3072
+

9

16
N6+

1299

256
N2+

225

64
N4

)
t3

3+
1

1296
t1

9

+
1

36
Nt1

7t2+
2

3
Nt1

5t4+
8

3
N2t1t2

4+

(
245

64
+
375

8
N2+

45

4
N4

)
t1t3t5

+

(
49

2
N+6N3

)
t1

2t3t4+
(
49N2+12N4

)
t2t3t4+

(
111

8
N3+

9

4
N5+

1225

64
N

)
t2t1t3

2

+
(
56N2+8N4

)
t2t1t6+

(
1

2
N3+

49

24
N

)
t2t1

4t3+16N
(
1+N2

)
t1t2

2t4

+

(
3N4+

49

4
N2

)
t1

2t2
2t3+

(
65

4
N+15N3

)
t2t1

2t5+30N2t2
2t5+

1

3
N2t1

5t2
2+. . . (A.1)

log(τN ) =

(
1

8
+
3

2
N2

)
t3+

1

6
t1

3+2N t1t2+6Nt1t2t3+4N
(
1+N2

)
t6

+
4

3
Nt2

3+

(
9

4
N2+

3

16

)
t3

2+
1

2
t3t1

3+8N2t2t4+4 t1
2Nt4+

(
15

2
N2+

5

8

)
t1t5

+8Nt2
3t3+15

(
3N2+

1

4

)
t1t3t5+24Nt1

2t3t4+30N2t2
2t5+

105

8

(
1

16
+
7

2
N2+N4

)
t9

+35

(
N3+

3

4
N

)
t7t2+35

(
1

16
+
3

4
N2

)
t7t1

2+32N
(
N2+1

)
t8t1+32N2 t1t4

2

+48N2t2t3t4+18Nt1t2t3
2+20N

(
1+2N2

)
t5t4+24N

(
N2+1

)
t6t3+8Nt1

3t6

+
3

2
t1

3t3
2+48N2t1t2t6+16Nt1t2

2t4+
5

8
t1

4t5+

(
9

2
N2+

3

8

)
t3

3+15Nt1
2t2t5+. . . (A.2)
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