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1 Introduction and summary

The warped conifold geometries [1–4] are very important supergravity backgrounds in

the AdS/CFT correspondence. The singular conifold is a Calabi-Yau cone over the five-

dimensional T 1,1 space with the S2 × S3 topology. Placing D3-branes at the singular tip

of the cone leads to a smooth 10d solution which is dual to an N = 1 4d quiver gauge

theory [1]. The solution has been since generalized to far more complicated Sasaki-Einstein

spaces. The conic singularity can be smoothed out by blowing up of either the 3-sphere or

an even-dimensional cycle (S2 or S2 × S2). The former option is called deformation and

the latter is known as resolution of the conifold [5]. The resolved geometries with D3-brane

sources describe mesonic branches of the dual gauge theory [6, 7]. On the other hand,

when D5 branes wrap the collapsing 2-sphere of the deformed conifold, the gauge theory

becomes non-conformal and cascades down to the confining N = 1 YM in the deep IR [4].1

The Ansatz for the six-dimensional metric including both the deformed and the re-

solved conifold solutions was written down by Papadopoulos and Tseytlin (PT) in [9]. It

was also shown there that for the two solutions the Ricci-flatness equations might be solved

using the superpotential method. In [10] a new one-parameter family of regular IIB super-

symmetric solutions was found based on the PT Ansatz. Importantly, the six-dimensional

space of these 10d backgrounds becomes Ricci-flat only when it approaches the deformed

conifold solution. The type IIB backgrounds describe the baryonic branch of the Klebanov-

Strassler (KS) cascading gauge theory, along the line of the earlier works [11, 12]. One may

also solve the second-order Ricci-flatness equations for the interpolating PT Ansatz, end-

ing up with a non-Calabi-Yau metric [13]. The corresponding 10d solution describes the

KS gauge theory perturbed by certain combinations of relevant single trace and marginal

double trace operators.

1Having “left-over” D3 sources on the deformed conifold corresponds to the mesonic branch of the gauge

theory [8].
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The goal of this paper is to find Einstein-flat solutions based on the PT Ansatz. To

be more precise, we focus on the deformed conifold part of the Ansatz, which apart from

the SU(2)×SU(2) preserves an additional Z2 symmetry. Using the superpotential method

we find a new solution parametrized by the (positive) cosmological constant. The 6d space

is everywhere regular and, as expected, compact. For one limiting value of the (former)

radial coordinate the space asymptotes to the deformed conifold solution, while in the other

limit one finds a regular resolution with the blown up S2×S2 four-cycle. Remarkably, the

regularity at either end requires no orbifolding of the 5d base. The sizes of the 3-sphere

and the 4-cycle are related and both are determined by the cosmological constant Λ. The

metric has a singular limit, where (at least) one corner of the space has a conic singularity.

The singular solution preserves the U(1)ψ symmetry associated with the Reeb angle of

the T 1,1 base. Although our space is compact, we will still refer to the regions with the

deformed and the resolved spaces as the IR and the UV respectively. The reason for these

notations will be clarified later in the paper.

The Ansatz we consider involves three independent functions of the radial coordinate,

and in general requires solving a set of three second-order coupled non-linear ordinary

differential equations (ODEs), similar to [13]. However, the superpotential we found greatly

simplifies the task, since it leads to first-order ODEs. Out of the three equations, one can

be solved analytically and the other two combine into a single second-order equation that

can be treated numerically. This allows us to find a relation between the “UV” resolution

and the “IR” deformation parameters. Importantly, the superpotential approach is futile

for the full PT Ansatz, and this is the main reason we imposed the Z2 symmetry. As a

result, we have to exclude the 2-cycle resolution from the discussion, since it does not fit

into the Z2-symmetric Ansatz.

There are three primary motivations for this work. First, it provides a natural exten-

sion of the well-known old results. The so-called Eguchi-Hanson-de Sitter space was found

more than 30 years ago in [14, 15]. It is the compact version of the Eguchi-Hanson (EH)

geometry [16], which solves Einstein equations with a positive cosmological constant. At

both “corners” of the space the C2/Z2 singularity is resolved by blown-up two-spheres of

the same size. This size is, in turn, fixed by the cosmological constant. This is very similar

in spirit to the results of this paper, though we find cycles of different dimensions in the

IR and the UV. This should be of no surprise, since the 2-cycle resolution/deformation is

the only option in four dimensions.2

Second, consistent Kaluza-Klein reductions of type IIB supergravity on the compact

six-dimensional space may lead to interesting four-dimensional gauged supergravity theo-

ries. The truncation will be probably easier for the singular version of the solution due to

the preserved U(1)ψ symmetry factor. The reductions (if exist) will share many features

with the one constructed in [17, 18].3

Third, our solution can be used to build a new KS-like background in type IIB super-

gravity with AdS4 and our compact 6d geometry replacing Mink4 and the non-compact

2Recall that the 2-cycle resolution is not included in our Ansatz for reasons explained above.
3See also [19] for a possible interpretation of the new solutions as curved domain walls in the truncated

supergravity theories.
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deformed conifold respectively. Solutions with 3-form imaginary self-dual (ISD) fluxes4

on compact Einstein-flat transversal spaces have recently attracted a great deal of atten-

tion (see [21] for the most recent developments). The 5-form tadpole cancellation on the

compact 6d space necessitates the introduction of either anti-D3 brane sources or orien-

tifolds. Supergravity solutions with anti-branes placed in backgrounds that contain op-

posite charges dissolved in the fluxes are known to have certain singularities (see [20] for

the extended list of references). For example, anti-D3 branes smeared over the tip of the

warped deformed conifold induce a 3-form flux singularity, as was proven in [22]. It was

furthermore argued in [23] that this singularity cannot be cured by Polchinksi-Strassler po-

larization [24] of D5-branes warping the shrinking 2-sphere. The situation may, however,

change once the deformed conifold is made compact. As a toy model capturing some of the

physics, one may consider the anti-D6 singularity in massive type IIA supergravity [25].

This is the (three times) T-dual of the anti-D3’s we discussed above, but now smeared

over a 3-torus rather than over the S3 at tip of the KS geometry. According to [26], for

flat Minkowskian world-volume, the singularity cannot be resolved by D8-brane polariza-

tion independently of the parameters of the fully backreacted anti-D6 solution. When the

D6’s have AdS7 world-volume, however, the polarization fate depends on the values of

the cosmological constant and other parameters of the fully backreacted anti-D6 solution.5

Hence, it will be exciting to see whether our “compact deformed conifold” space leads to a

3-form flux singularity that can be smoothed out by the 5-brane polarization. To answer

this question one will have to understand first whether the cosmological constant is a free

parameter in the fully backreacted solution or it is rather determined by the fluxes, as it

happens for completely smeared sources [28]. The method presented in [29] might appear

useful to answer this question without constructing the full solution.

The fact that our solution follows from a superpotential strongly suggests that once

embedded in the type IIB supergravity background it will preserve some amount of su-

persymmetry which will be further broken by the anti-branes. We leave this interesting

question for the future research.

The paper is organized as follows. In section 2 we present the metric Ansatz, the one-

dimensional effective action, the superpotential equation solution and the corresponding

first-order equations of motion. We also briefly review the known non-compact solution

with zero cosmological constant. In section 3 we write down the new compact solutions,

both singular and regular. In the appendix we give the 1-forms definitions and summarize

the relation to the conventions of [9].

2 The Ansatz for the metric and the equations of motion

Our Ansatz for the six-dimensional metric has the same isometries as the deformed conifold

space of [5], which in turn is a particular example of the Papadopoulos-Tseytlin (PT) metric

4We follow the conventions of [20], with D3- and D3-branes being mutually supersymmetric with ISD

and IASD fluxes respectively.
5The AdS7 solution was later found in [27].
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Ansatz [9]:

ds26 =
2

3
e−2z+w

(
dτ2 + g25

)
+ ez

(
ey

(
g21 + g22

)
+ e−y

(
g23 + g24

) )
. (2.1)

Here the functions z(τ), w(τ) and y(τ) depend only on the radial coordinate τ , and the

definitions of the angular one forms gi are given in appendix A. Apart from the SU(2) ×
SU(2) isometry, for y = 0 the metric enjoys an additional U(1)ψ symmetry associated

with the Reeb angle ψ. For a non-zero y(τ) the U(1)ψ is broken down to Z2. An extra

Z2 symmetry preserved by (2.1) acts on the angles as g1,2 → −g1,2 with the other three

1-forms being invariant. In terms of the angles in (A.2) it is merely (θ1, φ1) ↔ (θ2, φ2).

This symmetry reduces by one the number of functions in the most general PT Ansatz.6

We relegated to appendix B the relations between our functions and those of [9].

The most general regular Ricci-flat solutions of the form (2.1) are the deformed conifold

metric [5] and the 4-cycle resolution of the T 1,1/Z2 singularity, and we will review both

solutions in the next section. We are, however, interested in an Einstein-flat solution.

To obtain the one-dimensional effective action for the three scalar functions one has to

plug (2.1) into the Einstein-Hilbert action and integrate over the five angles. The output is:

−1

2
Gab(φ)φa′φb

′ − V (φ) = −3

4
e2z

(
z′

2 − 2z′w′ + y′
2
)

(2.2)

−
(

1

3
e−4z+2w − 2e−z+w cosh y +

3

4
e2z sinh2 y +

ew

R2

)
,

where the last terms comes from the cosmological term
√
g6Λ in the action with:

Λ =
6

R2
, (2.3)

and the remaining terms can be found in [9]. Let us stress again that in our quest for a

compact solution we need a positive cosmological constant as it appears in 2.3. By the end

of the last section we will comment on the non-compact solution for the negative Λ.

Surprisingly the inclusion of the new term still allows for a simple solution of the

superpotential equation for (2.2):7

W (z, w, y) = −2e−z+w − 3e2z cosh y +
e3z

R2
. (2.5)

Let us stress that (2.5) is not the most general solution of the superpotential equation.

Typically (2.5) should be a special case of a solution depending on (maximum) two free

parameters, but we were not able to find it.

The superpotential (2.5) leads to the following equations of motion:

z′ =
2

3
e−3z+w w′ = 2 cosh y − ez

R2
y′ = − sinh y . (2.6)

6The 2-cycle resolved conifold with the blown-up S2 breaks the latter Z2, but preserves the U(1)ψ [5].
7We follow the following conventions for the superpotential equation and the first-order equations of

motion:

V =
1

8
Gab

∂W

∂φa
∂W

∂φb
, φa′ =

1

2
Gab

∂W

∂φb
. (2.4)
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Remarkably, the equation for y(τ) has no R in it and so has exactly the same solutions as

for the Ricci-flat metric [5, 9]:

y = 0 and ey = tanh
τ

2
. (2.7)

The first solution preserves the U(1)ψ, while the second one breaks it down to Z2 (see the

comment below (2.1)). In what follows we will consider both options for Λ = 0 as well as

for Λ > 0. We will see that the U(1)ψ-breaking choice of y(τ) yields a regular (deformed)

solution both for the non-compact and the compact solutions.

The first two equations in (2.6) can be recast in the following form:(
e3z

)′′ − 2 cosh y
(
e3z

)′
+

3

4R2

(
e4z

)′
= 0 (2.8)

ew =
1

2

(
e3z

)′
. (2.9)

We see that the superpotential method leads to a single second-order equation of motion.

Solving (2.8) for z(τ) determines w(τ) directly from the remaining equation, while the

third function solution is given in (2.7).

Before proceeding to the new solution with a non-zero cosmological constant, let us

briefly review the known Ricci-flat solutions arising from (2.8) for R→∞. For the U(1)ψ-

symmetric choice, y(τ) = 0, one easily finds that:

ez =
r2

6
, ew =

1

216

(
r6 − r60

)
for e2τ =

(
r

r0

)6

− 1 . (2.10)

The 6-dimensional metric is then:

ds26 =

(
1−

(r0
r

)6
)−1

dr2 +
r2

9

(
1−

(r0
r

)6
)
g25 +

r2

6

(
g21 + g22 + g23 + g24

)
. (2.11)

For r0 = 0 this reduces to the singular conifold metric, while for a non-zero r0 it describes

a geometry with a blown up 4-cycle, which is just the product of the spheres, S2 × S2,

spanned by (θ1, φ1) and (θ2, φ2). Zooming near r = r0 one finds that in order to avoid a

singularity, the Reeb angle ψ (see the definition of g5 in (A.2)) has to be 2π-periodic. Since

for the singular conifold the period is 4π, the five-dimensional base is then T 1,1/Z2. Similar

solutions exist also for the Y p,q and La,b,c Sasaki-Einstein spaces. In all these examples the

blowing up of the 4-cycle resolves the conic singularity at the tip provided the Reeb angle

has the right periodicity.

For the U(1)ψ-breaking choice in (2.7) the only regular solution is the deformed coni-

fold [5]:

ez = 2−
11
6 3

1
4 ε4/3 (sinh(2τ)− 2τ)1/3 , ew = 2−

9
2 3

3
4 ε4 sinh2 τ . (2.12)

Out of the two integration constants the first one is the deformation parameter ε, which

measures the S3 size at the tip, and the second constant has to be fixed to avoid a singularity

at τ = 0.

Before closing up this section it is worth noticing here that for Λ = 0 (or equivalently

infinite R) the EOMs (2.6) are invariant under (z, w)→ (z + 2λ,w + 6λ). For the singular

– 5 –
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conifold solution this rescaling can be absorbed in the radial coordinate redefinition, while

for the two non-conic solutions it changes the physical size of the corresponding blown-up

cycles. We will return to this issue at the end of the next section.

3 New compact solutions, singular and regular

In this section we will consider solutions with finite R. Until the very end of this section

we will focus on compact solutions corresponding to the positive cosmological constant

(see (2.3) and below). The negative choice of Λ produces non-compact geometries as we

will discuss soon.

For y = 0 (unbroken U(1)ψ) the z(τ) equation (2.8) can be solved analytically:8

ez = 8R2 e
2
3
(τ−τ0)

1 + 3e
2
3
(τ−τ0)

, ew = 512R6 e2(τ−τ0)(
1 + 3e

2
3
(τ−τ0)

)4 . (3.1)

Upon the redefinition

e
1
3
(τ−τ0) =

1√
3

tan
(α

4

)
, (3.2)

the metric takes the following form:

ds26 = R2 ·
[
dα2 +

4

9
sin2

(α
2

)
· g25 +

8

3
sin2

(α
4

)
·
(
g21 + g22 + g23 + g24

)]
(3.3)

with α ∈ [0, 2π]. Near α = 0 the T 1,1 part of the metric shrinks and the space looks

like the singular conifold geometry. On the other hand, the four cycle has a finite size at

α = π. Expanding near this point we find that the g5 part has no conical deficit provided

ψ is 2
3π-periodic, implying that we have to quotient T 1,1 by Z6 in order to end up with a

regular space at α = π. The geometry will, however, be still singular at α = 0.

We will now study the main subject of this paper: the U(1)ψ-breaking solution with

ey = tanh
τ

2
and a non-zero cosmological constant. The regular solution for small τ is:

ez = CIR · τ +
CIR

30

(
2− 3

CIR

R2

)
· τ3 +O

(
τ5
)
. (3.4)

At leading order it coincides with the deformed conifold solution (2.12) with CIR ∼ ε4/3.

The constant CIR is a free IR parameter that has to be properly adjusted by the large-τ

boundary conditions,9 since for a generic CIR the solution will be singular for large τ . Note

that according to (2.6) ez and ew are both monotonic increasing functions. This means

that the 4-cycle spanned by g1,2,3,4 acquires a non-zero size for large τ . At the same time,

the equations of motion imply that the ψ 1-cycle shrinks there. In other words, for large

8The z(τ) equation (2.8) reduces to
(
e3z

)′ − 2e3z + 3
R2 e

4z = const, but the constant has to be set to

zero in order to avoid a singularity at τ = 0. This leaves only one integration constant, τ0.
9We will refer to the small and the large τ regions as the IR and the UV even though the space is now

compact. The main reason for that is (2.7), which is the same as for the non-compact solution, where large

τ corresponds to the UV region.

– 6 –
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Figure 1. The graph shows the numerical solution of (2.8) for R = 1. For small and large τ the

solution matches (3.4) and (3.5) respectively. The results for the constants CIR and CUV are given

below (3.5).

τ the geometry is that of (2.11) with a non-zero r0. Since the periodicity of ψ is already

fixed in τ = 0 to be 4π, the space is regular if and only if the g5 part of the metric (2.1)

looks asymptotically as e−τ
(
dτ2 + g25

)
.10 This is, in turn, possible only if (ez)′ behaves at

infinity as e−τ . Such a solution indeed exists and its asymptotic expansion for large τ is:

ez = 3R2

(
1 + CUVe

−τ +
1

2
C2

UVe
−2τ

)
+O

(
e−3τ

)
. (3.5)

We finally conclude that the IR integration constant CIR has to be chosen such that in the

UV the function ez(τ) approaches the value 3R2. This will guaranty that the S1
ψ shrinks

there smoothly.

As the equation (2.8) does not allow for an analytic solution for the U(1)ψ-breaking

choice of y, see (2.7), we have to use numerics to solve this equation. The output for the

ez(τ) function is shown on figure 1. For R = 1 the right “UV” solution is obtained for

CIR = 1.5(0). Moreover, matching the numerical solution to the subleading terms of (3.5)

we find that CUV = 1.9(6).

To summarize, we have found a new regular solution of Einstein’s equations with a

non-zero cosmological constant having the isometries of the deformed conifold. The space is

schematically presented on figure 2. At the minimal value of the (former) radial coordinate

the geometry looks asymptotically like the deformed conifold with the blown 3-sphere and

(regularly) shrinking 2-sphere. On the other side, the Reeb vector cycle shrinks instead

and the 4-cycle, S2 × S2, has a finite size. The size of the blown up S3 at one corner of

the space and the 4-cycle size at the other one are related, and both are uniquely fixed by

the cosmological constant, Λ = 6R−2.

In fact, the constant CIR, the τ = 0 deformation parameter, behaves as CIR ∼ R2.

This immediately follows from (3.4) either by using the dimensional analysis of (2.1) or by

10Upon the definition r = e
τ
2 one gets 4dr2 + r2g2s implying that ψ is indeed 4π-periodic.
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Figure 2. The solution on figure 1 describes a compact regular space. The “radial” coordinate τ

is positive, τ ∈
[
0,∞

)
. Near τ = 0 the 3-sphere is blown up, while the 2-sphere smoothly shrinks.

For large τ , on the other hand, the geometry caps off with the finite size S2×S2 four cycle and the

regularly shrinking Reeb vector S1.

.

noting that for finite R the scaling symmetry mentioned at the end of the previous section

modifies to:

(z, w,R)→
(
z + 2λ,w + 6λ, eλR

)
. (3.6)

Together with the numerical result for R = 1 it implies that

CIR = 1.5(0) ·R2 . (3.7)

Similar analysis reveals also that CUV does not scale with R or, in other words, the R = 1

result, CUV = 1.9(6), holds actually for any R.

It is worth to emphasize again that (2.5) is supposedly not the most general solution

of the superpotential equation. It is reasonable to believe that there exists a solution for

which the sizes of the blown-up cycles depend on additional free parameter(s) and not

only on R. Playing with these parameters it should be (presumably) possible to obtain

the singular metric (3.3) as a special limit of the regular solution. It remains to be seen

whether such a general solution does exist, and if yes, whether it follows from a certain

superpotential.

Let us finally comment on the Λ < 0 possibility. The z and y equations are not

modified, while for the w-equation one has to change the sign in front of the second (R-

dependent) term in (2.6). For y = 0 the solution is the one in (3.3) with sin’s being

replaced by sinh’s and α ranging from 0 to infinity. For small α the space then has the

same conic singularity as for the Λ > 0 choice, but for large α one finds an exponentially

divergent geometry. For the broken U(1)ψ case (non-zero y(τ)) the non-compact solution

interpolates in turn between the divergent geometry and the deformed conifold region.
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A Angular one-forms

In this appendix we summarize the definitions of the metric 1-forms in terms of the angular

coordinates θ1,2, φ1,2 and ψ.

g1 =
e2 − ε2√

2
, g2 =

e1 − ε1√
2

, g3 =
e2 + ε2√

2
, g4 =

e1 + ε1√
2

, g5 = ε̃3 , (A.1)

where:

e1 = dθ1 e2 = − sin θ1dφ1

ε1 = sinψ sin θ2dφ2 + cosψdθ2 ε2 = cosψ sin θ2dφ2 − sinψdθ2

ε̃3 = ε3 + cos θ2dφ2 = (dψ + cos θ1dφ1) + cos θ2dφ2 . (A.2)

B Relation to other conventions in the literature

Here we present the connection between the functions of the Ansatz (2.1) and the metric

functions used in [9]:(
ex, e6p, e6A

)
PT

=
(

2−
1
2 3−

1
4 ez, 3

3
2 ez−w, 2−

3
2 3−

9
4 e2z+w

)
here

,

eg =
1

cosh(y)
, a = tanh(y) . (B.1)

Notice that the relation between a and g is required by the Z2 symmetry we discussed

below (2.1).
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