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1 Introduction

It is a long standing conjecture that continuous phase transitions are described by conformal

invariant field theories [1]. Under reasonable assumptions this conjecture has been proven

in two dimensions [2, 3] and, recently, in four dimensions [4, 5]. A general proof in three

dimensions has not yet been found. However, assuming the validity of this conjecture it has

been possible to formulate conformal bootstrap equations and find approximate solutions

that predict the Ising critical exponents with high accuracy [6–10]. This success can also

be viewed as strong evidence for conformal invariance of the 3D Ising model at the critical

temperature.

Conformal invariance of the critical 3D Ising model can also be tested directly with

lattice Monte-Carlo simulations. In particular, in this work, we test the predictions of

conformal symmetry for the critical Ising model in a ball with free boundary conditions on

the two dimensional spherical boundary. In two dimensions, the analogous geometry (disk)

was analyzed in [11]. There have been other Monte-Carlo studies of conformal invariance in

the 3D Ising model. Using the standard cubic lattice hamiltonian, [12] showed that some

two point functions in the presence of a line defect have the functional form predicted

by conformal invariance. In [13], the authors used an anisotropic hamiltonian (with a

continuous direction) to simulate the 3D Ising model in several cylindrical geometries and

measured correlation functions compatible with conformal invariance. See also [14, 15] for

an alternative implementation of a 3D cylindrical geometry.

2 Ising model and Conformal Field Theory

The Ising hamiltonian is

H[{s}] = −
∑
<x,y>

s(x)s(y) (2.1)
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where the local spin variables can take two values s(x) = ±1 and the sum is over nearest

neighbours in a cubic lattice. We are interested in correlation functions of local operators

at the critical temperature

〈O1(x1) . . . On(xn)〉 =
1

Z

∑
{s}

e−βcH[{s}]O1(x1) . . . On(xn) , (2.2)

where the partition function is

Z =
∑
{s}

e−βcH[{s}] . (2.3)

The local operators in the Ising model can be classified by their quantum numbers with

respect to the Z2 spin-flip symmetry and the point group symmetry of the cubic lattice.

The simplest local lattice operator that is invariant under the lattice symmetries that

preserve the point x and is odd under spin flip is the local spin field s(x). In the sector of

operators invariant under the spin-flip symmetry and the lattice symmetries the simplest

local operators are the identity I and the energy density

e(x) =
1

6

∑
δ

s(x)s(x+ δ) (2.4)

where x+ δ runs over the 6 nearest neighbours of x.

At the critical temperature, the Ising model has infinite correlation length and its

correlation functions decay as power laws of the distances |xi − xj |. The conjecture we

want to test is that we can define a Conformal Field Theory (CFT) that describes the

correlators for |xi − xj | much greater than the lattice spacing a. In this continuum limit,

the local lattice operators can be written in terms of the operators of the Ising CFT that

have the same symmetry properties. In particular, the spin field can be expanded in terms

of the CFT scalar operators σ, σ′, . . .which are odd under spin-flip1

s(x) = bsσ a
∆σσ(x) + bsσ′ a∆σ′σ′(x) + . . . , ∆σ < ∆σ′ < . . . (2.5)

where ∆O is the scaling dimension of the operator O and the b’s are dimensionless constants

that depend on the normalization convention of the CFT operators. Similarly, the local

energy density operator can be written as

e(x) = beI I + beε a
∆εε(x) + beε′ a

∆ε′ ε′(x) + . . . , ∆ε < ∆ε′ < . . . (2.6)

where I is the identity operator and ε, ε′, . . . are the lowest dimension scalar primary

operators in the Z2-even sector. The best estimates for these scaling dimensions are [7–10]

∆σ = 0.518151(6) , ∆σ′ >∼ 4.5 , ∆ε = 1.41264(6) , ∆ε′ = 3.8303(18) . (2.7)

These have been determined by a variety of methods,2 like direct experimental measure-

ments, Monte-Carlo simulation, high-temperature expansions, ε-expansion and, more re-

cently, conformal bootstrap techniques.

1In general this expansion also includes descendant scalar operators, which we did not write to avoid

cluttering. In particular, the operator ∂2σ is also present and has lower dimension than σ′.
2See [16] for a review.
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We normalize the CFT operators imposing the following correlation functions in the

infinite system without boundaries

〈Oi(x)Oj(y)〉 =
δij

(x− y)2∆i
, 〈O(x)〉 = 0 , ∀ O 6= I . (2.8)

This can be used to fix the coefficients in (2.5) and (2.6). The recent Monte Carlo simula-

tions of [17] found

bsσ = 0.550(4) , beI = 0.330213(12) , beε = 0.237(3) . (2.9)

3 CFT inside a sphere

Let us consider the three dimensional critical Ising model in a ball with free boundary

conditions on the two dimensional spherical boundary. We would like to test if, in the

continuum limit, this system is described by a Boundary Conformal Field Theory (BCFT).

In order to do this, we start by discussing what are the implications of conformal symmetry

for correlation functions in this geometry.

Consider first the one-point function 〈O(r)〉 of a scalar operator placed at distance

r from the centre of a sphere of radius R. Without conformal invariance, this one point

function would take the general form

〈O(r)〉 =
1

R∆
f
( r
R

)
(3.1)

for an arbitrary function f . Imposing conformal symmetry leads to

f(z) =
aO

(1− z2)∆
, (3.2)

for some constant aO.

In order to see how this comes about, we define the ball

(x1)2 + (x2)2 + (x3)2 < R2 , xµ ∈ R3 , (3.3)

and introduce new coordinates yµ via3

xµ = (R2 − r2)
R2yµ + y2rµ

R4 + 2R2y · r + r2y2
+ rµ , (3.4)

where rµ is a constant vector with norm smaller than R. This coordinate transformation

has several nice properties. The first is that it preserves the spherical boundary. In other

words, the ball (3.3) corresponds exactly to the same region in the y-coordinates

(y1)2 + (y2)2 + (y3)2 < R2 , yµ ∈ R3 . (3.5)

3It might be helpful to understand this change of coordinates as a sequence of simpler steps. Start by

doing a translation to bring the point xµ = rµ to the origin and then perform an inversion. More precisely,

defining wµ = (R2 − r2)(xµ − rµ)/(xµ − rµ)2 maps the ball x2 < R2 to the exterior of a sphere of radius

R centred at wµ = rµ. Moreover, the point xµ = rµ is mapped to wµ = ∞. Then, we just translate the

sphere in the w coordinates to the origin and perform another inversion, wµ − rµ = R2yµ/y2.

– 3 –
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The second nice property is that the origin in the y-coordinates is mapped to the point

xµ = rµ inside the sphere, which we are free to choose. The third nice property is that the

original flat metric becomes

ds2 = dxµdxµ =
R4(R2 − r2)2

(R4 + 2R2y · r + r2y2)2
dyµdyµ ≡ Ω2(y)dyµdyµ , (3.6)

in the y-coordinates, i.e. it is a conformal transformation.

Correlation functions inside a sphere with a flat metric are equal to correlation func-

tions inside the same sphere but with metric ds2 = Ω2(y)dyµdyµ,

〈O1(x1) . . .On(xn)〉dxµdxµ = 〈O1(y1) . . .On(yn)〉Ω2(y)dyµdyµ . (3.7)

Notice that this is true in any theory because it follows just from a relabelling of points

without changing the physical geometry. Remarkably, correlation functions of scalar pri-

mary operators in CFTs also satisfy

〈O1(y1) . . .On(yn)〉Ω2(y)dyµdyµ = Ω−∆1(y1) . . .Ω−∆n(yn)〈O1(y1) . . .On(yn)〉dyµdyµ . (3.8)

In other words, CFT correlation functions transform in a simple way under Weyl transfor-

mations (or local rescalings) of the metric. Equations (3.7) and (3.8) together lead to4

〈O1(x1) . . .On(xn)〉 = Ω−∆1(y1) . . .Ω−∆n(yn)〈O1(y1) . . .On(yn)〉 , (3.9)

for any parameter rµ in (3.4). In the case of the one-point function, one finds

〈O(x = r)〉 = Ω−∆(0)〈O(y = 0)〉 =

(
R2

R2 − r2

)∆
aO
R∆

, (3.10)

as anticipated in (3.2).

For a connected two-point function inside the sphere, choosing r = x1, we obtain

〈O(x1)O(x2)〉c ≡ 〈O(x1)O(x2)〉 − 〈O(x1)〉〈O(x2)〉 = [Ω(0)Ω(y)]−∆ 〈O(0)O(y)〉c (3.11)

where

yµ = R2 (R2 − x2
1)xµ2 − (R2 − 2x1 · x2 + x2

2)xµ1
R4 − 2R2 x1 · x2 + x2

1x
2
2

. (3.12)

In this way we relate a generic two point function inside the sphere to a two point function

where one of the points is at the centre of the sphere. From spherical and scaling symmetry,

it follows that

〈O(0)O(y)〉c =
f(ζ)

(R2 − y2)∆
, ζ =

R2 − y2

y2
. (3.13)

Therefore, we conclude that the two point function of scalar primary operators inside a

sphere is given by

〈O(x1)O(x2)〉c =
R2∆

(R2 − x2
1)∆(R2 − x2

2)∆
fOO(ζ) (3.14)

4From now on, we drop the subscript indicating the metric when it is the standard flat Cartesian metric.
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where

ζ =
(R2 − x2

1)(R2 − x2
2)

R2(x1 − x2)2
. (3.15)

The ζ → ∞ limit corresponds to the two points approaching each other (x1 → x2)

and it is controlled by the same singularity as the two point function (2.8) of the infinite

system. This gives

fOO(ζ) ≈ ζ∆ , ζ →∞ . (3.16)

The ζ → 0 limit corresponds to one point approaching the spherical boundary. This limit

is controlled the boundary Operator Product Expansion (OPE) [18–21]

O(z, ~z) =
aO

(2z)∆
+

aOÕ

(2z)∆−∆̃
Õ(~z ) + . . . (3.17)

where we considered a flat boundary, and used coordinates ~z along the boundary and the

distance to the boundary z. Normalizing the boundary operators Õ to have unit two point

function, 〈Õ(~z1)Õ(~z2)〉 = |~z1 − ~z2|−2∆̃, we obtain

fOO(ζ) ≈ a2
OÕ ζ

∆̃ , ζ → 0 , (3.18)

where Õ is the boundary operator with lowest dimension that appears in the boundary

OPE of O (excluding the identity).

We will consider the Ising model with free boundary conditions which is known to be

described by a BCFT usually called the ordinary transition [18, 22]. This BCFT can be

defined by the property that it only has one relevant boundary operator σ̃. This operator

is Z2 odd and has ∆σ̃ ≈ 1.27 [23–26]. The recent conformal bootstrap study [26] also

obtained5

∆σ̃ = 1.276(2) , a2
σσ̃ = 0.755(13) , aε = −0.751(4) . (3.19)

The lowest dimension boundary operator in the Z2 even sector is the displacement opera-

tor [27]. The displacement operator D̃ has protected dimension ∆
D̃

= 3 and its correlation

functions obey Ward identities. In particular,∫
d~w〈D̃(~w)O(z, ~z)〉 = − ∂

∂z
〈O(z, ~z)〉 . (3.20)

The two point function of a bulk and a boundary operator is fixed by conformal symmetry.

In particular,

〈D̃(~w)ε(z, ~z)〉 = a
εD̃
C
D̃

(2z)3−∆ε

[z2 + (~z − ~w)2]3
, (3.21)

where C
D̃

is the normalization of the two-point function of the displacement operator

〈D̃(~w)D̃(~z)〉 =
C
D̃

|~z − ~w|3
. (3.22)

Using (3.21) and the Ward identity (3.20), we conclude that 4πa
εD̃
C
D̃

= ∆εaε. Finally, we

conclude that

fεε(ζ) ≈ C
D̃
a2
εD̃
ζ3 =

1

C
D̃

(
∆εaε
4π

)2

ζ3 , ζ → 0 . (3.23)

5To estimate aε we used the value of the bulk OPE coefficient λσσε reported in [8].
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Figure 1. Binder cumulant for several system sizes. We used βc = 0.22165463 and 1/ν = 3−∆ε =

1.58736. The good collapse of the curves shows that βc is sufficiently precise for the large systems

we simulated.

4 Results from Monte-Carlo simulation

In order to perform a Monte-Carlo simulation of the critical Ising model, we need to know

the critical temperature with high precision.6 We used Wolff’s cluster algorithm [28] to

reduce critical slowing down and used the value

βc = 0.22165463(8) (4.1)

of the critical temperature from [29]. To check that this is a good estimate of the critical

temperature we measured the Binder cumulant

UB = 1− 〈m4〉
3〈m2〉2 , (4.2)

where m = 1
N

∑
x s(x) is the magnetization per spin, with N = (L/a)3 the total number

of spins in a system with periodic boundary conditions. In figure 1, we plot the Binder

cumulant for several system sizes.

We also used these simulations with periodic boundary conditions to determine the

expectation value 〈e(x)〉 = beI of the energy density operator in the infinite system at

β = βc. In figure 2, we show the measured values of 〈e(x)〉L for several system sizes and

fit them to the theoretical expectation from equation (2.6)7

〈e(x)〉L = beI + cε

( a
L

)∆ε
[
1 + d

( a
L

)∆ε′−3
+ . . .

]
+ . . . (4.3)

Using the values (2.7) for ∆ε and ∆ε′ , the fit gave beI = 0.330200(3), cε = 0.7440(4) and

d = −0.084(3), in agreement with (2.9) and [30].

6We need to be sufficient close to the critical temperature so that the correlation length is much larger

than the size of the system.
7The correction proportional to d comes from the leading irrelevant operator in the effective action

description of the lattice model.
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Figure 2. Expectation values of the energy density operator e(x) at the critical temperature of

the 3D Ising model with periodic boundary conditions for several linear sizes L of the system. The

fitting curve is given by the 3-parameter function in equation (4.3) using the values (2.7) for ∆ε

and ∆ε′ .

Figure 3. Two dimensional cut of a sphere of radius R = 7a embedded in a cubic lattice of linear

size L = 16. All spins that are outside the sphere are dropped together with their interaction

bounds (in light grey).

We are now ready to compare our results from the Monte-Carlo simulation with the

predictions from conformal invariance. We consider the critical Ising model (2.3) in a

three dimensional cubic lattice excluding all spins outside a sphere of radius R as shown

in figure 3. The interaction bounds connecting spins inside the sphere with spins outside

the sphere are also dropped.

In figure 4 we show the one-point function of the energy density operator inside the

sphere, for various radii R = 7a, 15a, 31a, 63a, 127a. Combining (2.6) with the predic-

tion (3.1)–(3.2) from conformal invariance, we conclude that

(R/a)∆ε
[
〈e(r)〉R − beI

]
=

beε aε

(1− r2/R2)∆ε
+ . . . (4.4)

– 7 –
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Figure 4. Expectation value of the energy density operator (minus its value in the infinite system)

for several values of the radial coordinate r and of the sphere radius R. The collapse of all points

into a single straight line confirms the prediction (4.4) of conformal symmetry. There are deviations

due to finite size effects and due to statistical uncertainty, specially in the larger systems.

R = 127a

R = 63a

R = 31a
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Figure 5. The same as in figure 4 but with the points grouped into 100 bins with approximately

the same value of r. The statistical error bars are smaller than the size of the dots. The black

straight line is given by equation (4.4) with ∆ε from (2.7) and beε from (2.9) and aε from (3.19).

where the dots stand for terms that vanish in the continuum limit a/R → 0 with r/R

fixed. The plot in figure 5 confirms this prediction and the values of beε and aε given in 2.9

and 3.19. In figures 4 and 5 one can notice deviations from spherical symmetry due to the

underlying cubic lattice, specially for points close to the spherical boundary. For large R we
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Fss

ζ

R = 127a

R = 63a

R = 31a

R = 15a

R = 7a

Figure 6. The combination (4.6) involving the spin-spin two-point function inside a sphere against

the conformal invariant ratio ζ defined in (3.15). Conformal invariance predicts that all points

should fall into a single curve up to statistical uncertainties and finite size effects.

have bigger statistical error due to the smaller number of independent samples harvested

and because the correlation function is multiplied by a large number (R/a)∆ε . This is our

first direct verification of a non-trivial prediction of conformal invariance. Our second test

is related to the two-point function inside the sphere.

From (2.5) and (3.14), we obtain

(R/a)2∆σ 〈s(x1)s(x2)〉R =
b2sσfσσ(ζ)

(1− x2
1/R

2)∆σ(1− x2
2/R

2)∆σ
+ . . . (4.5)

where ζ is the conformal invariant ratio introduced in (3.15) and we neglect terms that

vanish in the continuum limit. In other words, conformal invariance predicts that the

dimensionless function

Fss(x1, x2) =
R2∆σ

a2∆σ

〈s(x1)s(x2)〉R
(1− x2

1/R
2)−∆σ(1− x2

2/R
2)−∆σ

(4.6)

only depends on x1 and x2 trough the combination ζ. In figures 6 and 7, we plot Fss against

ζ for many different choices of x1 and x2 and for several sphere radii. As expected, the

points collapse in a single smooth curve up to the statistical error bars and finite system

size effects. Moreover, using

lim
a→0

Fss(x1, x2) = b2sσfσσ(ζ) (4.7)

and the results (3.16) and (3.18) for the asymptotic behaviour of f(ζ) together with the val-

ues (2.7), (2.9) and (3.19), we can verify that fσσ(ζ) has the expected asymptotic bahaviour.

– 9 –



J
H
E
P
0
8
(
2
0
1
5
)
0
2
2

R = 127a

R = 63a

R = 31a

R = 15a

R = 7a

Fss

ζ

R = 127a

R = 63a

R = 31a

R = 15a

R = 7a

!"!!# !"!# !"# # #! #!! #!!! #!!!!

#!
!!

#!
!"

#!
!#

#!
!$

#!
!%

#!
!&

#!
'

#!
&

#!
%

Figure 7. The same as in figure 6 but with the points grouped into 100 bins for each system size.

This reduces the statistical errors and shows better convergence to a single curve. The two straight

lines are fits to the asymptotic behaviour using the values (2.7), (2.9) and (3.19).

We also preformed a similar analysis for the two point function of the energy density

operator inside the sphere. In figures 8 and 9, we plot

Fee(x1, x2) =
R2∆ε

a2∆ε

〈e(x1)e(x2)〉R − 〈e(x1)〉R〈e(x2)〉R
(1− x2

1/R
2)−∆ε(1− x2

2/R
2)−∆ε

(4.8)

against the conformal invariant ζ. Using the bulk scaling dimensions 2.7 and the fact that

the lowest dimension Z2-even surface operator is the displacement operator with ∆
D̃

= 3,

we can fit the asymptotic behaviour of the curve to conclude that C
D̃
≈ 0.012. The last

value is a very crude estimate because Fee has very large statistical uncertainty in the

region of small ζ. The main reason for this is that in this region the correlation function

is very small and it takes a long time to simulate the large systems required to explore the

ζ → 0 limit.

5 Conclusion

We gave strong evidence confirming the non-trivial predictions of conformal symmetry

for correlation functions of the critical Ising model in a ball geometry. We hope our

work strengths the confidence in the conformal bootstrap methods that assume conformal

symmetry from the start.

It would be nice to obtain more precise measurements of scaling dimensions and OPE

coefficients of several boundary operators. However, the cubic lattice discretization of the

ball geometry we used is not ideal for this purpose because it introduces large finite size

and boundary effects. It would also be interesting to study other BCFT of the critical

Ising model, like the special and the extraordinary transition (see [31] for a Monte-Carlo
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Figure 8. The combination (4.8) involving the connected two-point function of the energy

density operator inside a sphere against the conformal invariant ratio ζ defined in (3.15). Conformal

invariance predicts that all points should fall into a single curve up to statistical uncertainties and

finite size effects. The statistical uncertainty looks biased because we are using a logarithmic scale

and therefore we can not plot the points with Fee < 0.

study of the special transition). These can be implemented introducing another coupling

between the boundary spins. Unfortunately, it is not obvious how to do this in an elegant

fashion in our ball geometry.

In the absence of boundaries, a fundamental prediction of conformal symmetry is the

functional form of three-point correlation functions. We plan to verify this prediction with

Monte-Carlo simulations, in the same spirit of this paper. Such study would also be able

to check several conformal bootstrap predictions for OPE coefficients of the Ising CFT. It

is curious that in two dimensions this was done 20 years ago [32].
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Figure 9. The same as in figure 8 but with the points grouped into 100 bins for each system

size. This reduces the statistical errors and shows better convergence to a single curve, although

the errors are still large for small values of ζ. The two straight lines are the expected asymptotic

behaviour using the values (2.7), (2.9), (3.19) and CD̃ = 0.012.
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