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1 Introduction

The heterotic string compactifed on Calabi-Yau manifolds [1] has long been a promising

avenue towards realistic particle physics from string theory and, more recently, systematic

model building tools have been developed and used to construct sizeable sets of heterotic

standard models [2–9].

Moduli stabilisation and supersymmetry breaking in the heterotic string has been

somewhat more problematic, particularly in comparison with IIB string theory. One rea-

son is the absence of RR fluxes in the heterotic string which implies less flexibility for

stabilising moduli through flux. Recently, it has been shown that the heterotic E8 × E8

gauge flux can be used to fill this gap and stabilise many, possibly all, of the complex

structure moduli and all but one of the dilation and the Kähler moduli [10–17]. Neverthe-

less, heterotic (as indeed IIB) moduli stabilization has, traditionally, required the inclusion

of non-perturbative effects, either from string instantons or gaugino condensation. This

appears to remain true even when E8 × E8 gauge flux is used in the context of heterotic

Calabi-Yau compactifications.

In the present paper, we are taking a different approach to heterotic moduli stabilisa-

tion by focusing on perturbative stabilisation of all geometric moduli. We do not explicitly

discuss bundle moduli effects here but will comment on their stabilisation later. Our discus-

sion will be in the context of the heterotic string on certain manifolds with SU(3) structure,
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more specifically half-flat mirror manifolds [18–20]. Mirror symmetry suggest the existence

of a large class of such manifolds although relatively few examples, including a number of

homogeneous coset spaces, are known explicitly [13, 21–27].

For such compactifications, the geometric flux leads to a perturbative superpotential

for the T -moduli. We show that, for this superpotential, supersymmetric vacua do not exist

at a finite value of the dilaton. Further, by adding D-terms associated to anomalous U(1)

symmetries, we find non-supersymmetric AdS vacua, with all T -moduli and the dilation

stabilised in a purely perturbative fashion. (The analogue of complex structure moduli

are absent in at least some of the models but, if present, can be stabilised by additional

NS flux.) For appropriate parameter choices, these vacua are consistent in the sense of

leading to weak coupling, large volume and a relatively small negative cosmological con-

stant. Remarkably, for a certain structure of the D-terms which we refer to as “aligned”,

these vacua can be found analytically. Specifically, the condition on the D-terms is given

by equation (3.27), which has the property that both the F-term and D-term potentials

are extremised separately for our analytic extrema. For more general, non-aligned D-terms

we can show numerically, by deformations starting from the aligned case, that these non-

supersymmetric AdS vacua persist. Related work on non-supersymmetric string vacua can,

for example, be found in refs. [26, 28–31].

The vacua we find in this way are stable in the conventional sense, that is, they have

a positive definite mass matrix rather than merely satisfying the Breitenlohner-Freedman

condition [32]. It is, therefore, conceivable that they can be lifted to stable dS vacua. We

have investigated possible uplift mechanisms, namely the deformation of the D-terms away

from alignment and the addition of perturbative and non-perturbative effect. Unfortu-

nately, we have not been able to find dS vacua with any of these methods.

Our vacua break supersymmetry perturbatively and, given the absence of small expo-

nential factors as would arise from non-perturbative effects, the scale of this breaking is

high and close to the string scale. Hence, models based on this type of breaking do not have

low-energy supersymmetry and, at present, it is not clear to us how the hierarchy problem

might be addressed in a meaningful way. However, such models with a high scale of super-

symmetry breaking may come to be seen as a viable option if low-energy supersymmetry

is not found experimentally.

The paper is organized as follows. In section 2, we begin by describing the general class

of models we are considering, laying out some technical details and discussing an illustrative

example as we go along. Section 3 presents the general analytic non-supersymmetric AdS

vacuum for these models. An explicit example is presented in section 4. The possibilities

of lifting these solutions to dS space are discussed in section 5 and we conclude in section 6.

2 The model

Let us now introduce the relevant class of N = 1 supergravity models. These models

arise as the low energy effective theory of heterotic compactifications on half-flat mirror

manifolds of the kind studied, for example, in refs. [13, 19–22, 24, 25, 33–35, 35–37]. For

simplicity, we will ignore the matter sector of this theory, and focus on the moduli, or
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gravitational sector. We also assume that the analogue of complex structure moduli have

already been fixed either by bundle effects or NS flux or are absent as for half-flat coset

models. We will, therefore, be focusing on the T -moduli and the dilaton S.

2.1 Basic set-up

As mentioned above, the relevant field content consists of the T -moduli T i and the dilation

S which reside in chiral multiplets and whose scalar components are broken up into real

and imaginary parts as

T i = ti + iτ i , S = s+ iσ , (2.1)

where i, j, · · · = 1, . . . , n. Here, τ i and σ are axions and ti are the geometric moduli. It is

notationally useful to combine these fields into a single entity by defining T 0 = S, t0 = s,

τ0 = σ and by writing

T I = tI + iτ I , (2.2)

where I, J, · · · = 0, 1, . . . , n. In this way, for much of our general set-up, the dilaton and

the T -moduli can be treated on the same footing.

In this language, the Kähler potential [19] can be written as

K = − lnκ , κ = dIJKLt
ItJ tKtL , (2.3)

where κ is a quartic pre-potential and dIJKL are numbers whose only non-zero components

are d0ijk = dijk and symmetric permutations thereof. The numbers dijk are determined

by the underlying half-flat manifold and can be thought of as the analogue of intersection

numbers. We use the standard notation κI = dIJKLt
J tKtL, κIJ = dIJKLt

KtL etc. for the

derivatives of the pre-potential as well as KI = ∂K/∂T I , KIJ = ∂2K/∂T I∂T J etc. for the

derivatives of the Kähler potential. It is also useful to introduce the “lower-index” fields

tI ≡ KIJ t
J =

κI
κ

,

which satisfy tItI = 1. Further, it follows that

KI = −
2κI
κ

, KIJ = −3

(

κIJ
κ

−
4κIκJ
3κ2

)

. (2.4)

The superpotential for this class of models [13, 19] is given by

W = w + eIT
I , (2.5)

where w and eI are real constants. In fact, e0 = 0 since the superpotential needs to

be dilaton-independent at the perturbative level. The remaining numbers ei encode the

geometric flux of the underlying half-flat manifold. The constant w can result either from

harmonic NS flux (in which case it should eventually be thought of as complex-structure

dependent) or α′ corrections induced by the heterotic Bianchi identity [13].

In addition, we assume the existence of anomalous U(1) symmetries (which can origi-

nate from internal line bundles) under which the moduli transform non-linearly as

δT I = iǫacIa ,
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where ǫa are the U(1) group parameteres with the index a = 1, . . . ,m labeling the various

U(1) symmetries and cIa are constants. For the superpotential (2.5) to be invariant under

those symmetries we require that

eIc
I
a = 0 (2.6)

for all a. The associated D-terms (assuming the absence of U(1) charged matter fields for

simplicity) are given by

Da = −cIaKI = 2cIatI . (2.7)

Finally, we require the gauge kinetic function which we write as

fab = βIT
Iδab + κIJKγIcJac

k
b , (2.8)

where (βI) = (1, βi) and γ0 is the only non-zero component of γI . For practical calculations

later on we will neglect the corrections to this gauge kinetic function and simply use the

leading expression fab = Sδab. For consistent heterotic compactifications the validity of the

strong coupling expansion [43] is required which implies that ti ≪ s. In this case, the thresh-

old correction to the gauge kinetic function (2.8) are small and can indeed be neglected.

2.2 The scalar potential

The F-terms for the above class of models are given by

FI = WI +KIW = eI − 2tIW . (2.9)

The F-terms equations, FI = 0, can easily be solved and, provided w 6= 0, result in

tI = −
1

2w
eI , eIτ

I = 0 , (2.10)

with W = −w at this solution. Note, by inserting into eq. (2.7) and using eq. (2.6), that

the D-term equations, Da = 0, are automatically satisfied for this solution as it should

be the case. In principle, this is a perfectly good supersymmetric anti-de Sitter vacuum.

However, since we have set e0 = 0 in order to have a dilaton-independent superpotential it

follows that t0 = 1/(4s) = 0 and, hence, that we are at zero coupling. We conclude that

the above class of models does not have supersymmetric vacua for finite field values.1

For the scalar potential we find

V = VF + VD (2.11)

VF =
1

κ

[

KIJeIeJ − 3(eIt
I)2 + w2 + 2weIt

I + (eIτ
I)2

]

(2.12)

VD = 4
∑

a,b

fab
R cIac

J
b tItJ . (2.13)

1In ref. [13] a non-perturbative potential from gaugino condensation has been added to the superpoten-

tial (2.5). In this case, it is possible to obtain a supersymmetric AdS vacuum. As the purpose of this paper

is to study perturbative solutions, we shall not pursue this route here.
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It is relatively easy to discuss the fate of the axions, τ I . Provided that at least one of the

geometric fluxes eI is non-zero, which we assume, the above scalar potential is minimized

in the axion directions iff

eIτ
I = 0 ,

and, in this case, only the axion combination eIτ
I is stabilized while the other axions

remain flat directions. Some of these axions will be “eaten” by the U(1) gauge bosons

which are massive. To see how this works consider the mass matrix

Mab = cIac
J
bKIJ

for these gauge bosons which follows from the kinetic terms of the τ I . If the rank of this

matrix is maximal all U(1) gauge bosons are massive. In general, however, this does not

need to be the case. Since the Kähler metric is positive definite, we have rk(M) = rk(C)

heavy U(1) gauge bosons, where C is the matrix C = (cIa). Hence, we start with n + 1

axions τ I , one of which is stabilized, rk(C) will are absorbed by the U(1) gauge bosons and

n− rk(C)

remain as flat directions. This number may be zero but even if it is not there is no real

problem for moduli stabilization since axions have a compact field space and will, almost

inevitably, be stabilized.

2.3 A simple example

In order to get a feel for the models, let us consider a very simple example with three fields,

S = s+ iσ, T = t+ iτ and U = u+ iν, a pre-potential2

κ = st2u , (2.14)

a superpotential taking the assumed form coming from string-compactifications on torsional

half-flat manifolds

W = w + eT ,

and a single U(1) symmetry under which T is invariant and S and U transform. The

D-term has the structure

D =
c

u
+

b

s
,

with real constants c and b. For the scalar potential we find

V =
1

st2u

[

w2 − 2ewt− e2t2 + e2τ2
]

+
1

s

[

c

u
+

b

s

]2

,

where, for simplicity, we have only considered the leading term, f = S, of the gauge

kinetic function in the D-term part of the potential. A quick algebraic calculation using

2The pre-potential we consider here is significantly simpler than the ones usually arising from compact-

ifications, even for simple coset constructions [13], but it is sufficient for the points we wish to make.
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the Stringvacua package [38] shows that this potential has three stationary points. Two of

these arise at unphysical field values and the third is given by

s =
4bc

e2
, t =

w

e
, u =

4c2

3e2
, τ = 0 . (2.15)

The two other axions, σ and ν, remain flat directions but one combination of these fields

is absorbed by the U(1) vector boson. In order for all field values to be positive we have

to require that bc > 0 and we > 0. Furthermore, all field values should be large compared

to one so that the model is at weak coupling and the supergravity approximation is valid.

This can clearly be achieved for suitable choices of the parameters.

We define the two constants

k =
3e8

8bc3w2
, r =

3e2w2

64bc3
,

which are both positive provided the aforementioned condition bc > 0 is satisfied. In terms

of these constants, the Hessian can be written as

H = k



















cr
b
0 r 0 0 0

0 1 0 0 0 0

r 0 9br
c

0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0



















,

where the ordering of fields is (s, t, u, σ, τ, ν). Obviously, there are two zero eigenvalues,

corresponding to the axions σ and τ , two eigenvalues with size k and two further eigenvalues

kr

2bc

(

9b2 + c2 ±
√

81b4 − 14b2c2 + c4
)

.

For bc > 0 these eigenvalues are positive so we have a minimum. The cosmological constant

Vmin = −
e6

8bc3
.

is always negative while the F-terms at the minimum are given by

(FS , FT , FU ) = −e

(

ew

4bc
, 1,

3ew

4c2

)

= −e

(

t

s
, 1,

u

t

)

,

so that supersymmetry is broken. Hence, we have found a perturbative, non supersym-

metric AdS vacuum. As the above expression shows, FS and FU can be made small by a

suitable hierarchy of values for the moduli. However, FT = −e is more problematic. From

a supergravity point of view the parameter e can, of course, chosen to be small. However,

in a string context, e corresponds to the intrinsic torsion of the compactification manifold

and is quantised. Therefore, separation of scales between the fundamental and the super-

symmetry breaking scales is difficult to achieve in this model. Our general analysis later

on shows that this is not a general property of our class but that separation of scales is

possible in some cases.
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3 General analytic minimum

Does the vacuum for the simple three-field model we have just found represent a special

case which arises for a small number of fields or does it indicate a property of the entire

class of models? Commutative algebra and numerical methods quickly run into the ground

for a larger number of fields, so in order to answer this question we should search for a

general analytical solution.

A starting point is suggested by the structure of the supersymmetric vacuum (2.10)

which led to lower-index fields tI being proportional to the geometric flux parameters

eI . This failed to provide a vacuum for a finite dilaton value since e0 = 0 implies

t0 = 1/(4s) = 0. The obvious course of action is to slightly weaken this Ansatz and

demand that only the T -moduli satisfy

ti = αei , (3.1)

where α is a constant to be determined, while the dilation s remains arbitrary for now.

3.1 Some useful very special geometry relations

Before we explore the implications of this Ansatz it is useful to collect a few very special

geometry results for the cubic pre-potential K which is defined by

κ = 4sK , K = dijkt
itjtk , (3.2)

where we recall that κ is the quartic pre-potential introduced in eq. (2.3). As usual, we

denote the derivatives of K by Ki = dijkt
jtk, Kij = dijkt

k and Kijk = dijk. With this

notation, the first derivative of the Kähler potential K = − lnκ and the Kähler metric can

be written as

K0 = −
1

2s
Ki = −

3Ki

2K

K00 =
1

4s2
K0i = 0 Kij = −

3

2

(

Kij

K
−

3

2

KiKj

K2

)

.
(3.3)

The lower-index fields tI = KIJ t
J , explicitly given by

t0 = K00t
0 =

1

4s
, ti = Kijt

i =
3Ki

4K
, (3.4)

then satisfy the useful relations

tit
i =

3

4
,

∂ti
∂tj

= −Kij . (3.5)

It will also be convenient to introduce the notation

Ki1...ip =
∂

∂T i1
. . .

∂

∂T ip
K =

1

2p
∂

∂ti1
. . .

∂

∂tip
K (3.6)

for the pth derivatives of the Kähler potential. These tensors are obviously completely

symmetric and indices will be lowered and raised by the Kähler metric Kij and its inverse.

These tensors satisfy a number of relations which include

Kit
i = −

3

2
, Kijt

j = −
1

2
Ki , Kijkt

k = −Kij , Kijklt
l = −

3

2
Kijk . (3.7)
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3.2 The scalar potential

We now come back to our supergravity theory and recall that the superpotential is given by

W = w + eit
i (3.8)

For the F- and D-terms we find

F0 = K0W = −
1

2s
W , Fi = Wi +KiW = ei − 2tiW , Da = 2ciati +

c0a
2s

, (3.9)

while the scalar potential is given by

V = VF + VD (3.10)

VF =
1

4sK

[

Kklekel − 3(ekt
k)2 + w2 − 2wekt

k
]

(3.11)

VD =
4

s

∑

a

(

ca0

4s
+ caktk

)2

. (3.12)

Here we have already set eiτ
i = 0 for the minimum in the axion directions and, for sim-

plicity, we have also used the lowest order gauge kinetic function f = S in the D-term

potential. For the various derivatives of the scalar potential we find

∂VF

∂s
= −

1

s
VF (3.13)

∂VD

∂s
= −

4

s2

∑

a

(

c0a
4s

+ ckatk

)2

−
2

s3

∑

a

ca0
(

c0a
4s

+ ckatk

)

(3.14)

∂VF

∂ti
=

1

4sK

[

−2
(

Kkl
i + 2tiK

kl
)

ekel + 4
(

3(ekt
k)2 − w2 + 2wekt

k
)

ti

−6(ekt
k)ei − 2wei

]

(3.15)

∂VD

∂ti
= −

8

s
Kik

∑

a

cka

(

c0a
4s

+ clatl

)

(3.16)

3.3 The vacua

After this preparation, we are now ready to come back to the Ansatz (3.1) which we write as

ti =
3Ki

4K
= αei , (3.17)

where α is a real constant to be fixed later. Note, that eq. (3.17) represents a set of, gener-

ally complicated, algebraic equations for the actual fields ti with upper indices which can

be explicitly solved for any given model once the “intersection numbers” dijk are known.

The dilaton value will be determined later. Let us first evaluate the potential and its

first derivates for the Ansatz (3.17). All quantities evaluated for the field values fixed by

eq. (3.17) are denoted by a subscript 0. We find

VF |0 = −
v

s
, v =

1

4K0

(

15

16α2
+

3w

2α
− w2

)

(3.18)

– 8 –



J
H
E
P
0
8
(
2
0
1
5
)
0
2
0

VD|0 =
c2

4s3
, c2 =

∑

a

(

ca0
)2

(3.19)

∂VF

∂s

∣

∣

∣

∣

0

=
v

s2
(3.20)

∂VD

∂s

∣

∣

∣

∣

0

= −
3c2

4s4
(3.21)

∂VF

∂ti

∣

∣

∣

∣

0

=
1

4sK0

(

5

4α
+ 4w − 4w2α

)

ei (3.22)

∂VD

∂ti

∣

∣

∣

∣

0

= −
2

s2
Kik|0

∑

a

c0ac
k
a (3.23)

There are two features of this result which are remarkable. First, the derivatives of the

D-term simplify considerably by virtue of the condition caktk = αcakek = 0 which fol-

lows from gauge invariance of the superpotential. Secondly, for our Ansatz the derivatives

∂VF /∂t
i become proportional to the geometric fluxes ei and, therefore, effectively reduce to

one equation. One obvious problem is that the derivatives ∂VD/∂t
i of the D-term potential

have a different, more complicated structure and, in particular, are not proportional to ei.

However, as we will now show, for our Ansatz to work, the ti derivatives of VF and VD have

to vanish independently. To see this contract both eq. (3.22) and (3.23) with ti = αKijej .

From the gauge invariance condition (2.6) it follows that

ti
∂VD

∂ti
= −

2

s
ek

∑

a

c0ac
k
a = 0 , (3.24)

and, therefore, for a stationary point of V we require that

ti
∂VF

∂ti
=

1

4sK0

(

5

4α
+ 4w − 4w2α

)

eiK
il|0el

!
= 0 . (3.25)

Since the Kähler metric Kij is positive definite this can only be satisfied provided

5

4α
+ 4w − 4w2α = 0 . (3.26)

which, in turn, implies that ∂VF /∂t
i|0 = 0. A stationary point of the potential then requires

that ∂VD/∂t
i|0

!
= 0 and this can only be achieved provided the D-terms satisfy the condition

∑

a

c0ac
k
a = 0 . (3.27)

We will refer to D-terms satisfying this equation as “aligned” and for now we assume this

property.

Then, there is a stationary point of V with

ti = αei , s2 =
3c2

4v
, eiτ

i = 0 , (3.28)

where v and c2 have been defined in eqs. (3.18), (3.19) and eq. (3.26) leads to the two α

values

α =

{

− 1

4w
case 1

5

4w
case 2

⇒ v =

{

2w2

K0
case 1

w2

5K0
case 2

(3.29)
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Here, K0 is the cubic pre-potential evaluated on the above solution for the moduli ti. Of

course, there are some restrictions on the moduli ti which must reside in the “Kähler” cone

of the underlying manifold. The low-energy test for this is that K0 > 0 (so that the internal

volume is positive) and that the Kähler metric Kij |0 is positive definite (so that the kinetic

terms are well-defined). The fluxes ei and w have to be chosen such that this is indeed the

case, but there is no general reason why this should not be possible. However, it is clear that

the moduli ti can only be in the Kähler cone for at most one of the two cases in eq. (3.29), de-

pending on the signs of w and ei. We will discuss an explicit example later on and show that

there is no general obstruction to a consistent choice of parameters. Provided such a choice

has been made, both values for v are positive and, hence, the dilaton equation in (3.28)

leads to a physically sensible value for the dilaton. The potential value at this solution

V |0 = −
2v

3s
< 0 (3.30)

is always negative.

We should also discuss if weak coupling and large radii can be achieved by suitable

parameter choices. If we denote a typical geometric flux by e and a typical ti modulus by

t then we have the following rough scaling relations:

s2 ∼
c2w

e3
, t ∼

w

e
, V |0 ∼ −

w2

st3
. (3.31)

This shows that weak coupling and large volume can indeed be arranged, the latter of

course being essential for the validity of the supergravity approximation and that we can

achieve t ≪ s so that the strong-coupling expansion is valid. In this case, since the

threshold corrections to the gauge kinetic function are negligible, the gauge couplings are

proportional to 1/s and are, hence, in the perturbative regime. Moreover, provided s and

t are large the absolute value of the cosmological constant is suppressed and somewhat

below the fundamental scale.

3.4 Stability

Crucially, of course, stability has to be checked for this solution and this leads to a somewhat

tedious calculation of the second derivatives of V . However, this calculation can be much

simplified by using the very special geometry relations listed previously. We find

∂2VF

∂ti∂tj

∣

∣

∣

∣

0

=
1

4sK0

(AKij +Btitj)
∂2VD

∂ti∂tj

∣

∣

∣

∣

0

=
8

s
Kik|0Kjl|0

∑

a

cakcal

∂2VF

∂s2

∣

∣

∣

∣

0

= −
2v

s3
∂2VD

∂s2

∣

∣

∣

∣

0

=
3c2

s5

∂2VF

∂s∂tj

∣

∣

∣

∣

0

= 0
∂2VD

∂s∂tj

∣

∣

∣

∣

0

= 0

(3.32)

where

A = −
7

4α2
+ 4w2 −

6w

α
, B = 16w2 −

8w

α
−

1

α2
. (3.33)
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First of all, we note that the Hesse matrix does not mix the dilaton and the t moduli.

Inserting the dilaton solution from eq. (3.28) we find

∂2V

∂s2

∣

∣

∣

∣

0

=
3c2

2s5
. (3.34)

so that the dilation is stable. Combining the above results, and introducing the notation

C = (cak), G = (Kij), t = (ti) and s = (ti) we find in the t directions

vT ∂2V

∂t2

∣

∣

∣

∣

0

v =
1

s

[

1

4K0

(

AvTGv +B|sTv|2
)

+ 8|CGv|2
]

, (3.35)

for any vector v = (vi). Note that the last term is positive and the signs of the other two

terms are given by the signs of A and B, respectively. Inserting the solutions (3.29) for α

into the definition (3.33) of A and B we find

α =

{

− 1

4w
case 1

5

4w
case 2

⇒ (A,B) =

{

(0, 32w2) case 1
(

−48w2

25
, 224w

2

25

)

case 2
(3.36)

Hence, in case 1 the Hesse matrix is always positive definite and we have a stable AdS

vacuum. Case 2 this is not quite so straightforward since A is negative. However, the

numerical values are such that it seems likely the second and third term in (3.35) which

are positive will overcome the negative contribution of the first term. Also, the last term

in (3.35) depends on C = (cak) which does not enter the solution anywhere else, so by

increasing its value it should be possible to obtain a positive definite Hesse matrix. To be

sure, this has to be explicitly checked and we will do this for our simple example below

which indeed leads to a stable vacuum for both cases.

Finally, we should discuss supersymmetry breaking for our vacua. For our vacua we find

Da =
ca0

2s
, (3.37)

F0 = −
1

2s

(

w +
3

4α

)

=

{

w
s

case 1

−4w
5s

case 2
(3.38)

Fi = −
1

2
(1 + 4αw)ei =

{

0 case 1

−3ei case 2
. (3.39)

Evidently, these patterns are very different for the two cases. In case 1, F-term supersym-

metry breaking arises only in the dilaton direction and all non-zero terms are proportional

to 1/s. Hence, in this case the supersymmetry breaking scale can be below the fundamental

scale, a consistency condition for starting with a supersymmetric field theory in the first

place. It should however be noted that for typical physical values of s this separation is

only by an order of magnitude or so. In case 2, on the other hand, all F-terms are non-zero

and the F-terms in the T -directions are proportional to ei. In a string theory context, these

quantities are quantised and a supersymmetry breaking scale below the fundamental scale

seems difficult to achieve.
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In summary, we have found generic, non-supersymmetric AdS vacua at weak coupling

and sufficiently large volume for our class of models. These arise in two cases, depending

on the signs of the superpotential parameters. In the first case, these vacua are guaranteed

to be minima and the supersymmetry breaking scale and the fundamental scale can be

separated. In the second case, it is likely that minima can be achieved for suitable parameter

choices but scale separation seems difficult to realise.

4 An example with aligned D-terms

For illustration and to show that all constraints can indeed be satisfied let us discuss a very

simple model with aligned D-terms. Consider the simple field content (T I) = (S, T, U) with

S = s+ σ, T = t+ iτ and U = u+ iν and a Kähler potential

K = t2u ,

as before. This means the lower index fields are given by

t0 =
1

4s
, t1 =

1

2t
, t2 =

1

4u
.

We use a flux vector e = (0, e, ǫ) so that the superpotential reads

W = w + eT + ǫU .

Further, we introduce two D-terms with c1 = 2(b, c/e,−c/ǫ) and c2 = 2(−b, c/e,−cǫ) where

the three entries refer to (s, t, u). Note that indeed c1 · e = c2 · e = 0, as required for gauge

invariance of the superpotential. In addition, we have

c01c
k
1 + c02c

k
2 = 0

so that eq. (3.27) is satisfied and the two D-terms are aligned. From eq. (2.7) the two

D-terms read explicitly

D1 =
2c

et
−

c

ǫu
+

b

s
, D2 =

2c

et
−

c

ǫu
−

b

s
.

The scalar potential V = VF + VD is then given by

VF =
1

st2u

(

ǫ2u2 − e2t2 − 6eǫtu− 2wǫu− 2wet+ w2
)

, VD =
1

s

(

D2
1 +D2

2

)

, (4.1)

where the axions have already been removed by integrating out the massive axion direction

eτ + ǫν = 0. The two other axions are absorbed by the gauge bosons of the two U(1)

symmetries so for this example there are no massless axion directions left over.

From the general expression eq. (3.28), the solution is given by

s2 =
3b2

2v
, t =

1

2eα
, u =

1

4ǫα
,
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where α and v have two values

α =

{

− 1

4w
case 1

5

4w
case 2

⇒ v =

{

− e2ǫ
2w

case 1 for ǫ
w
< 0

25e2ǫ
4w

case 2 for ǫ
w
> 0

. (4.2)

Note the requirement on the sign of ǫ/w in order to ensure that v is positive, so that the

value of the dilaton is real. It can be checked by direct calculation that the derivatives

of the potential (4.1) indeed vanish for those field values. The value of the volume at the

minimum is given by

K0 =

{

−4w3

e2ǫ
case 1

4w3

125e2ǫ
case 2

(4.3)

while the Kähler metric is given by

G|0 =







1

4
diag

(

− e2ǫ
3b2w

, e2

2w2 ,
e2

w2

)

case 1

25

4
diag

(

e2ǫ
6b2w

, e2

2w2 ,
e2

w2

)

case 2
. (4.4)

For the correct choice of the sign of ǫ/w, as above, the volume is indeed positive and

the Kähler metric is positive definite for both cases. The Hesse matrix is somewhat more

complicated but again turns out to be positive definite in both cases for the right sign of ǫ/w.

5 Searching for dS vacua

In this section, we would like to discuss generalisations and extensions and, in particular,

address the problem of lifting the AdS vacua we have found to dS vacua. In principle, a

number of possibilities come to mind. These include the deformation of the D-terms away

from the aligned configuration, the addition of radiative corrections to the scalar potential

and non-perturbative effects.

It is useful to begin with a general discussion of the dilaton effective potential. After

integrating out the T -moduli this potential has the general form

Veff(s) =
C1

s
+

C2

s2
+

C3

s3
, (5.1)

where the first term results from the F-term potential and the second and third term from

the D-terms. It is straightforward to show that a potential of this general form only has

stable dS vacua if C1 > 0, C2 < 0 and C3 > 0. If any of these conditions is violated the

stationary points are either AdS or unstable. As can be seen from eqs. (3.18) and (3.19),

the analytic vacuum leads to C1 = −v < 0 and C2 = 0 which violates the above conditions

for a dS vacuum. It seems difficult to change the sign of C1, the coefficient of the term

with the lowest suppression by inverse powers of s, using a small correction and this points

to the main source of the problem.

We begin with de-aligning the D-terms. This has to be done in the context of a specific

case and we consider the example presented in the previous section. For this model, we

modify the second D-term to

D2 =
2c

et
−

c

ǫu
−

δb

s
(5.2)
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where δ is a real parameter and δ = 1 corresponds to the aligned case. All other features

of the model are kept unchanged. Starting with the analytic vacuum available for δ = 1,

we can now gradually change δ away from 1 and minimise the potential numerically at

each step. In this way we find that AdS minima exist for up to order one changes of δ.

This works starting from vacua for both case 1 and case 2. Hence, the existence of AdS

minima is not an artefact of aligned D-terms but persists more generally, although analytic

solutions are hard to find if the D-terms are not aligned. However, we have not been able

to lift the AdS vacua to dS ones in this way - the cosmological constant remains negative

when the D-terms are de-aligned.

Another option is to consider perturbative quantum corrections to the above theory.

The one-loop corrections to a four-dimensional N = 1 supergravity theory have been

worked out in refs. [39–42], and turn out to be rather complicated. Indeed, including the

full one-loop correction will generate terms in the scalar potential up to O(s−10). However,

for phenomenological reasons we are interested in a vacuum with weak coupling, where

s ≫ 1. We therefore focus on the corrections to the Ci, where i ≤ 3 assuming that

the higher order corrections can be neglected. Unfortunately, the first order quantum

corrections still appear to give the wrong sign for C2, and a search for dS vacua induced

by the one-look corrected effective potential has so far been unsuccessful.

Finally, we might consider non-perturbative corrections by modifying the superpoten-

tial to

W = w + eIT
I + k e−pIT

I

, (5.3)

while keeping all other features of the model unchanged. Of course, the combination pIT
I

has to be invariant under the U(1) symmetries, so pIc
I
a = 0 for all a. It is worth mentioning

that for a purely dilaton-dependent non-perturbative term, that is, pIT
I = pS (should this

be gauge invariant) an analytic solution can still be found by the same Ansatz ti = αei,

although the equations for α and the dilaton are now more complicated. A detailed analysis

of this case shows that the AdS vacua persist and remains stable in the presence of the

non-perturbative term but they cannot be lifted to dS vacua.

It may be worth discussing the possible fate of non-geometrical moduli such as bundle

moduli. In this context, it is worth noting that the quantity k in eq. (5.3) is in general a

function of complex structure and bundle moduli [44]. While the perturbative vacua for the

T I are not destabilised by the presence of the non-perturbative terms, these contributions

do, therefore, generate a potential for the bundle moduli. This potential may stabilise the

bundle moduli but a detailed investigation of this issue is beyond the scope of the present

paper.

In summary, while the existence of AdS vacua is fairly robust it seems difficult to lift

these to dS vacua.

6 Conclusion

In this paper we have studied four-dimensional N = 1 supergravity theories which arise

in heterotic compactifications on half-flat manifolds. These models give rise to a superpo-

tential linear in the Kähler moduli. In addition, anomalous U(1) symmetries induced from

internal split bundles can lead to dilaton and T -moduli dependent D-terms. For this class
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of models, plus an additional technical condition of “aligned” D-terms, we have found ana-

lytic, supersymmetry breaking AdS minima. For suitable parameter choices, these minima

are at weak coupling, at sufficiently large radii for the supergravity approximation to be

valid and with the scale of supersymmetry breaking separated from the fundamental scale.

Given that complex structure moduli may be absent in some cases or else be stabilised by

NS flux these minima stabilise all geometric moduli of heterotic compactifications pertur-

batively. We have also verified, in the context of a specific example, that these minima are

robust under deformations of the D-terms away from the aligned configuration.

Since these minima are purely perturbative there are no exponential factors which

might lead to a small supersymmetry breaking scale. Although the supersymmetry break-

ing scale can be suppressed, relative to the fundamental scale, it is not sufficiently small

to be consistent with low-energy supersymmetry. Hence, for these models, supersymmetry

is broken at a high scale and superpartner masses are far removed from the range which

is currently accessible by experiment. However, they may well be of phenomenological

interest if low-energy supersymmetry is not found.

Unfortunately, we have not been able to find a way to lift to dS minima. Neither de-

aligning the D-terms nor adding perturbative or non-perturbative corrections to the scalar

potential leads to a positive cosmological constant. We leave this as a problem for future

work.
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