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1 Introduction

Within the so-called pentagon approach for null polygonal Wilson loops in conformal gauge

theories, one breaks up a null polygon into much simpler building blocks called pentagon

transitions P (ψ|ψ′). These ones govern the transitions between two eigenstates of the color

flux tube — see figure 1(a) — and provide a representation of the Wilson loop Wn — or

more precisely of the finite ratio of loops [1] depicted in figure 2 — in the form of an infinite

sum over all OPE channels,

Wn =
∑
ψi

P (0|ψ1)P (ψ1|ψ2) . . . P (ψn−6|ψn−5)P (ψn−5|0) e
∑
j(−Ejτj+ipjσj+imjφj) , (1.1)

with {τi, σi, φi} a base of conformal cross ratios, which receive individually meaning of

time, space and angle in the i’th OPE channel [1–3].

What makes this decomposition extremely powerful in planar N = 4 SYM theory is

that all of its building blocks can be computed at any value of the coupling thanks to

the integrability of the underlying theory. Namely, the flux tube spectrum is under total

control [4] and the pentagon transitions can be bootstrapped [1, 5–8] following (a slightly

modified version of) the standard form factor program for integrable theories.
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Figure 1. a) The pentagon transitions are the building blocks of null polygonal Wilson loops. They

represent the transition ψ → ψ′ undergone by the flux-tube state as we move from one square to

the next in the OPE decomposition. This breaking into squares is univocally defined by specifying

the middle (or inner dashed) edge of the pentagon to be Zmiddle ∝ 〈j − 2, j, j + 2, j − 1〉Zj+1− 〈j −
2, j, j + 2, j + 1〉Zj−1. b) In the OPE-friendly labelling of edges, adopted in this paper, the middle

edge of the j-th pentagon ends on the j-th edge. As a result, the very bottom edge is edge −1 while

the very top one is edge n − 2. The map between the OPE index j and the more common cyclic

index jcyc reads jcyc = 3
4 −

1
4 (−1)j(2j + 3) mod n.

Through the celebrated duality between null polygonal Wilson loops and scattering

amplitudes [9–14], the decomposition (1.1) also provides a fully non-perturbative represen-

tation of the so-called Maximal Helicity Violating (MHV) gluon scattering amplitudes in

planar N = 4 SYM theory.

In this paper we will argue that a suitable generalization of the pentagon transitions

into super or charged pentagon transitions allows one to describe all amplitudes, for any

number of external particles with arbitrary helicities and at any value of the ’t Hooft

coupling.

While the key ingredient in having an OPE expansion such as (1.1) is conformal sym-

metry, a central ingredient in the charged pentagon approach will be supersymmetry.

The idea of charging the pentagons is not entirely new, and already appeared in [5]

where certain charged transitions were introduced and successfully compared against

NkMHV amplitudes. More recently, further charged transitions were bootstrapped and

matched with amplitudes in [7, 17, 18].

The aim of this paper is to complete this picture by proposing a simple map between

all possible helicity amplitudes and all the ways charged pentagons can be patched together

into an OPE series like (1.1). An interesting outcome of this charged pentagons analysis is

a simple proposal for how parity acts at the level of the super Wilson loop, which, as far

as we are aware, was not known before.

– 2 –
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2 The charged pentagon program

In the dual Wilson loop picture, NkMHV amplitudes are computed by a super Wilson loop

decorated by adjoint fields inserted on the edges and cusps [15, 16]. It is this super loop

that we want to describe within the pentagon approach.

At first, let us first ask ourselves what would be a natural extension of (1.1) that

allows for some regions of the loop to be charged due to the insertion of these extra fields.

The minimal modification one could envisage is to generalize the pentagon transitions to

super pentagon transitions or charged transitions, in which P (ψ|ψ′) stands as the bottom

component. As for the N = 4 on-shell super field, a pentagon would naturally come in

multiple of five components

P = P + χAPA + χAχBPAB + χAχBχCPABC + χAχBχCχDPABCD , (2.1)

where χ is a Grassmann parameter, A = 1, 2, 3, 4 an R-charge index, and where, for sake

of clarity, we have suppressed the states ψ and ψ′. With these charged transitions at hand,

we could now imagine building up charged polygons such as

PA ◦ PA ≡
∑
ψ1

PA(0|ψ1)PA(ψ1|0)e−E1τ1+... ,

PAB ◦ P ◦ PAB ≡
∑
ψ1,ψ2

PAB(0|ψ1)P (ψ1|ψ2)PAB(ψ2|0)e−E1τ1+... , (2.2)

PAB ◦ PCD ◦ PAB ◦ PCD ≡
∑

ψ1,ψ2,ψ3

PAB(0|ψ1)PCD(ψ1|ψ2)PAB(ψ2|ψ3)PCD(ψ3|0)e−E1τ1+...

and so on. Here, an upper index represents a contraction with an epsilon tensor. Namely,

we use PA = εABCDPBCD, PAB = εABCDPCD and PABC = εABCDPD to compress the

expressions above.

The most obvious change with respect to the MHV case is that R-charge conserva-

tion now forbids some of the processes which were previously allowed and vice-versa. For

instance, in the creation amplitude PAB(0| . . .) we can produce a scalar φAB out of the

vacuum, since this excitation has quantum numbers that match those of the charged pen-

tagon. At the same time, neutral states such as the vacuum or purely gluonic states —

which appeared in the non-charged transitions — can no longer be produced by this charged

pentagon.

What stays the same is that all these charged transitions can be bootstrapped using

integrability — as much as their bosonic counterparts. The scalar charged transition

PAB and the gluon charged transition PABCD, for instance, already received analysis of

this sort in [5, 7].1 The fermonic charged transitions, PA and PABC , were more recently

constructed in [17, 18].

The super pentagon hypothesis (2.1) and its OPE corollary (2.2) are the two main

inputs in the charged pentagon program for helicity amplitudes. In the rest of this section

we present a simple counting argument supporting the equivalence between super OPE

series and super amplitudes.

1Both were denoted by P∗ in these works.

– 3 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
8

The important point is that not all the NkMHV amplitudes are independent. Because

of supersymmetry, many of them get linked together by means of so-called SUSY Ward

identities. At given number n of particles, there is a basis of N (k, n) amplitudes in terms

of which one can linearly express all the remaining ones.

The problem of eliminating this redundancy, such as to count the N (k, n) independent

amplitudes, was beautifully analyzed in [19]. As explained below, the very same counting

applies to inequivalent super OPE series like (2.2).

Counting the number of super OPE series is relatively easy:

At first, one notices that the R-charge of a polygon is always a multiple of four, as a

consequence of SU(4) symmetry. The first two cases in (2.2), for instance, involve charged

pentagons with a total of 4 units, as for NMHV amplitudes, while the last example in (2.2)

has a total of 8 units of charge, and should thus be related to N2MHV amplitudes.

In the NMHV case, the amount of charge in each of the n − 4 pentagons uniquely

specifies the super OPE series and there is clearly (n− 1)(n− 2)(n− 3)(n− 4)/4! ways of

distributing four units of charge between the n− 4 pentagons in our tessellation. Precisely

this number is reported for N (1, n) in [19], see discussion below (3.12) therein.

This kind of partitions no longer enumerate all cases starting with N2MHV amplitudes.

For instance, there are three independent ways of charging all the four pentagons of an

octagon with two units of charge,

PAB ◦ PCD ◦ PAB ◦ PCD , PAB ◦ PAB ◦ PCD ◦ PCD , PAB ◦ PCD ◦ PCD ◦ PAB , (2.3)

with the last line in (2.2) being one of them. (We can understand this as coming from the

three possible irreducible representations in 6⊗6 or, equivalently, as the three inequivalent

ways of forming singlets in 6⊗6⊗6⊗6.) Therefore, to count the number of N2MHV charged

polygons we have to consider not only the number of ways of distributing eight units of

charge within four pentagons but also to weight that counting by the number of inequivalent

contractions of all the R-charge indices. Remarkably, this counting is identical to the one

found in [19] based on analysis of the SUSY Ward identities. This is particularly obvious

when looking at table 1 in [19] where the number of independent N2MHV components

for 8 and 9 particles is considered.2 In sum, our construction in (2.2) generates precisely

N (2, 8) = 105, N (2, 9) = 490, . . . different N2MHV objects, in perfect agreement with the

number of independent components arising from the study of the SUSY Ward identities.

It is quite amusing that the notation in [19] with a partition vector λ = [λ1, . . . , λn−4]

seems perfectly tailored to describe the charged pentagon approach where we have n − 4

pentagons with charges λi ∈ {0, 1, 2, 3, 4}. It also guarantees that the most general NkMHV

counting works the same for both amplitudes and OPE series, and concludes this analysis.

The next step is to endow the charged pentagon construction with a precise dictionary

between charged polygons and helicity configurations of scattering amplitudes.

2The weight 3 = Sλ=[2,2,2,2] in their table is precisely the one explained in our above discussion.
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3 The map

A compact way of packaging together all helicity amplitudes is through a generating func-

tion, also known as the super Wilson loop [15, 16]

Wsuper = WMHV + η1
i η

2
j η

3
kη

4
l W

(ijkl)
NMHV + η1

i η
2
j η

3
kη

4
l η

1
mη

2
nη

3
oη

4
p W

(ijkl)(mnop)

N2MHV
+ . . . (3.1)

where WNkMHV is the NkMHV amplitude divided by the Parke-Taylor MHV factor. Here,

the η’s are the dual Grassmann variables [20, 21]. They transform in the fundamental of

the SU(4) R-symmetry, as indicated by their upper index A = 1, 2, 3, 4, and are associated

to the edges of the polygon, indicated by the lower index i = −1, 0, 1, . . . , n− 2.

Throughout this paper we shall be using a rather unorthodox labelling of the edges of

the polygon, which is represented in figure 1. Namely, we number the edges from bottom

to top, with even numbers on one side and odd numbers on the other, like door numbers

within a street. Given that we think of the Wilson loop as a sequence of flux-tube states

propagating down this street, this is the most natural labelling from the OPE viewpoint.

It makes it particularly simple to locate the j-th pentagon in the tessellation: it is the

pentagon whose middle edge ends on edge j. The map between this labelling and the

conventional cyclic ordering is explained in the caption of figure 1.

The super loop (3.1) has UV suppression factors associated to its cusps.3 One can

find in the literature several different ways of renormalizing the loop, such as to remove

these factors. The one most commonly used is the ratio function R ≡Wsuper/WMHV, first

introduced in [21]. For our discussion, however, the OPE renormalization is better suited:

it is obtained by dividing the super loop (3.1) by all the pentagons in its decomposition

and by multiplying it by all the middle squares [5]

W ≡Wsuper/w with w ≡

(
n−4∏
i=1

〈Wi’th pentagon〉

)/(n−5∏
i=1

〈Wi’th middle square〉

)
, (3.2)

as shown in figure 2. The ratio function R and the loop W are then easily found to be

related to each other by R =W/WMHV. They are essentially equivalent, being both finite

and conformally invariant functions of the η’s and shape of the loop, but only R is cyclic

invariant.

3.1 The direct map

Our goal in this section is to find the map between the different ways of gluing the charged

transitions together, as in (2.2), and the components of the super loop (3.2). Put differently,

we would like to find a map between the η’s and the χ’s such that W in (3.2) also admits

the expansion

W = P ◦P ◦ · · · ◦P+χ1
1χ

2
1χ

3
1χ

4
1 P1234 ◦P ◦ · · · ◦P+χ1

1χ
2
1χ

3
1χ

4
2 P123 ◦P4 ◦ · · · ◦P+ . . . (3.3)

in terms of the χ’s.

3These UV divergences are T-dual to the IR divergences of the on-shell amplitudes.
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W ≡

Figure 2. We study the conformally invariant and finite ratioW introduced in [1]. It is obtained by

dividing the expectation value of the super Wilson loop by all the pentagons in the decomposition

and by multiplying it by all the middle squares. The twistors that define these smaller pentagons

are either the twistors of the original polygon (an heptagon in this figure) or the middle twistors

described in figure 1(a) (in the above figure there are three distinct middle twistors, for instance).

There are two important properties of the super loop that will be relevant to our

discussion.

First, recall that an η is associated to an edge of the polygon while a χ is associated

to a pentagon. As such, there are many more terms in the η-expansion (3.1) or (3.2) of

the super loop than there are in the χ-expansion (3.3). This is no contradiction, however.

The reason is that the η-components are not all linearly independent, since, as mentioned

before, they are subject to SUSY Ward identities. On the contrary, the χ-components

all have different OPE interpretation and, in line with our previous discussion, should be

viewed as defining a basis of independent components for the amplitudes. In other words,

the map between χ- and η-components is not bijective if not modded out by the SUSY

Ward identities. We can then think of the χ-decomposition as a natural way of getting rid

of SUSY redundancy.

Second, the η-components ofW are not ‘pure numbers’, since they carry weights under

the little group; e.g., upon rescaling of the twistor Z1 → αZ1 the component W1123
NMHV

transforms as W1123
NMHV → W1123

NMHV/α
2. These helicity weights cancel against those of the

η’s, so thatW is weight free in the end. In contrast, the components in (3.3), as well as the

corresponding χ’s, are taken to be weightless. With this choice, the χ-components coincide

with the ones predicted from integrability with no additional weight factors.

We now turn to the construction of the map. The question we should ask ourselves is:

What does it mean to charge a pentagon transition? Said differently, how do we move from

one pentagon-component to another in the χ decomposition of P in (2.1)? To find out, it

helps thinking of the χ’s as fermionic coordinates of sort and recall how usual (meaning

bosonic) variables are dealt within the OPE set up.

The bosonic cross ratios are naturally associated with the symmetries of the middle

squares. Namely, we can think of any middle square as describing a transition between

two flux-tube states, one at its bottom and the other one at its top, as depicted in 3(a).

Attached to this square are three conformal symmetries that preserve its two sides (left and

– 6 –
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ψtop

left right

ψbottom

ψtop

j

j − 1

j + 1

(a) (b)

Figure 3. a) Any square in the OPE decomposition stands for a transition from the state at

its bottom (ψbottom) to the state at its top (ψtop). This transition is generated by a conformal

symmetry of the right and left edges of that square (conjugate to the flux time τ). b) Similarly, the

super pentagon P represents a transition from the state at its bottom to the state at its top. In the

fermionic χ-directions, this transition is generated by a super-conformal symmetry of the (j−1)-th,

j-th and (j + 1)-th edges in this figure.

right). To move in the space of corresponding cross ratios (τ, σ, φ) we act on the bottom

state with these symmetries

ψbottom −→ e−Hτ+iPσ+iJφ ψbottom . (3.4)

Equivalently, we could act with the inverse transformations on the state at the top (ψtop),

since these are symmetries of the left and right sides sourcing the flux. In other words, the

OPE family of Wilson loops is obtained by acting on all the twistors below each middle

square with the conformal symmetries of that square.

Similarly, to move in the space of ‘fermionic coordinates’ we should act with a su-

percharge. In contrast to the previous case, these are now associated to the pentagons

in the OPE decomposition. A pentagon transition represents the transition between two

flux-tube states, one on the bottom square and the other on the top square — the transi-

tion being induced from the shape of the pentagon. So what we should do is to find the

supercharge that preserves the three sides of the pentagon sourcing the two fluxes, i.e., the

sides j−1, j and j+1 in figure 3(b), and act with it on the state at its bottom (ψbottom) or,

equivalently, with the inverse symmetry on the state at its top (ψtop). There is precisely

one chiral supercharge that does the job, as we now describe.

Recall that we have 16 chiral supercharges at our disposal, that is, QaA where A is an

R-charge index and a is an SL(4) twistor index. By construction they annihilate the super

loop W on which they act as [23]

QaA =

n−2∑
i=−1

Zai
∂

∂ηAi
with QaAW = 0 . (3.5)

By definition, for a given supercharge not to act on, say, the i-th side of the super loop,

we need the coefficient of ∂/∂ηAi to vanish. This can be achieved by contracting the SL(4)

– 7 –
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index a with a co-twistor Y such that Y · Zi = 0. In our case, since we want Q to be a

symmetry of the three sides of a pentagon, the co-twistor should be orthogonal to Zj−1,

Zj and Zj+1. There is exactly one such co-twistor:

Yj ≡ Zj−1 ∧ Zj ∧ Zj+1 . (3.6)

It is then straightforward to define the operator ∂/∂χAj that charges the j-th pentagon.

It acts as Yj · QA on the state ψbottom entering the j-th pentagon from the bottom or,

equivalently, on what have created this state. In other words, ∂/∂χAj is defined as Yj · QA

in (3.5) but with the summation restricted to edges lying below the j-th pentagon:

∂

∂χAj
≡ 1

(j− 1)j (j)j (j + 1)j

j−2∑
i=−1

Yj · Zi
∂

∂ηAi
. (3.7)

Alternatively we could act on the state ψtop at the top of the pentagon by restricting the

summation to edges lying above the j-th pentagon and flipping the overall sign. These two

prescriptions yield the same result since the two actions differ by Yj · QA where QA is the

full supercharge annihilating the super loop.

The normalization factor multiplying the sum in (3.7) needs some explanation. It is

introduced to make ∂/∂χAj weight free. In other words, it is defined such as to remove the

weight of the co-twistor Yj used to define our supercharge. In our notation, (i)j extracts

the weight of the twistor Zi in the j-th pentagon. This operation is unambiguous once we

require it to be local with respect to the j-th pentagon, meaning that it should only make

use of the five twistors of this pentagon. Indeed, given a pentagon p with five twistors

Za, . . . , Ze, the unique conformally invariant combination carrying weight with respect to

a is given by

(a)p
4 =
〈abcd〉〈cdea〉〈deab〉〈eabc〉

〈bcde〉3
. (3.8)

Uniqueness is very simple to understand. If another such expression existed, its ratio

with (3.8) would be a conformal cross-ratio, which of course does not exist for a pentagon.

A nice equivalent way of thinking of the weight (3.8) is as the NMHV tree level amplitude

for the corresponding pentagon, that is

(i)−4
j = W

(iiii) tree
j-th D . (3.9)

(Stated like this, the idea of dividing out by such weights is not new, see discussion around

(132) in [5].) Multiplying three such weights to make the normalization factor in (3.7), we

would get

((j−1)j (j)j (j+1)j)
4 =

〈
Zj−1, Zj+1, Zt|j , Zj

〉
3
〈
Zj , Zb|j , Zj−1, Zj+1

〉
3〈

Zj+1, Zt|j , Zj , Zb|j
〉 〈
Zb|j , Zj−1, Zj+1, Zt|j

〉 〈
Zt|j , Zj , Zb|j , Zj−1

〉 ,
(3.10)

where Zt|j/Zb|j refer to the top/bottom twistors of the j-th pentagon respectively. Equiv-

alently, Zt|j/Zb|j are the middle twistors of the (j+1)-th/(j−1)-th pentagons, see figure 1.

For further discussion of these weights and their rewriting see appendix A.2.

– 8 –
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Finally, there are two minor ambiguities in the above construction on which we should

comment. One is the overall normalization of (3.8) or (3.9) which is not fixed by the

symmetry argument above. The convention chosen here is equivalent to setting

〈P1234〉 =

[
〈Z0, Z1, Z2, Z−1〉

(0)1(1)1(2)1

]4

W(−1,−1,−1,−1)
pentagon NMHV = 1 . (3.11)

A second minor ambiguity comes from the fourth power in (3.8) or (3.9). Due to its

presence, to extract any weight we need to compute a fourth root, giving rise to a Z4

ambiguity. In practice we start from a point where the right hand side of (3.10) is real and

positive for any j and pick the positive fourth root when extracting the weight on the left.

Then everything is real and can be nicely matched against the integrability predictions.

This seems reminiscent of the sort of positivity regions of [24–26]. It would be interesting

to study the Z4 ambiguity further, and possibly establish a connection to the positivity

constraints of [24–26].

3.2 Interlude: sanity check

As a check of our map (3.7) we consider an eight-leg scattering amplitude, i.e., an octagon

or, equivalently, a sequence of four pentagons. For concreteness, we focus on the example

of P1◦P2◦P3◦P4 = ∂
∂χ1

1

∂
∂χ2

2

∂
∂χ3

3

∂
∂χ4

4
W at tree level and evaluate it in terms of the nine OPE

variables {τi, σi, φi}. At this order, the OPE ratio W coincides with the ratio function R
and we can easily extract components of the latter from the package [40]. For large OPE

times we find that

P1 ◦ P2 ◦ P3 ◦ P4 = e−τ1−iφ1/2 × e−τ2 × e−τ3+iφ3/2 × f(σi) + . . . (3.12)

which is actually already a non-trivial check of our construction. Indeed, we have four

charged pentagons each of which injects one unit of R-charge and one unit of fermion

number. As such, the lightest states that will flow in the three middle squares are a

fermion ψ̄1 (with helicity −1/2) in the first square, a scalar φ12 (with no helicity) in the

second square and the conjugate fermion ψ123 = ψ4 (with helicity +1/2) in the last middle

square. In short, the leading process contributing to this amplitude should correspond to

the sequence of transitions

vacuum
P1−→ ψ̄1

P2−→ φ12
P3−→ ψ123

P4−→ vacuum , (3.13)

as represented in figure 4. The three exponential factors in (3.12) are in perfect agreement

with this expectation.

Most importantly, the function f(σi) should be given by the multiple Fourier transform

of the sequence of pentagon transitions. It beautifully is. This and other similar checks

— at tree level and at loop level — will be the subject of a separate longer publication [8]

whose main goal will be to precisely confront the program advocated here against the

available perturbative data for non-MHV amplitudes.
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ψ̄

φ

ψ

vac

χ1

χ3

χ2

χ4

Figure 4. Leading OPE contribution to the NMHV octagon component P1 ◦ P2 ◦ P3 ◦ P4 =
∂
∂χ1

1

∂
∂χ2

2

∂
∂χ3

3

∂
∂χ4

4
W. For this component, each of the four pentagons in the octagon decomposition

carries one unit of R-charge and fermion number. From the flux tube point of view, this corresponds

to the sequence of transitions in equation (3.13).

3.3 The inverse map

It is rather straightforward to invert the map (3.7) such as to obtain the ∂/∂η’s in terms

of the ∂/∂χ’s. For that aim, it is convenient to put back the weights in (3.7) and define

D(j)
A ≡ (j− 1)j (j)j (j + 1)j

∂

∂χAj
= Yj ·

j−2∑
i=−1

Zi
∂

∂ηAi
. (3.14)

Given the triangular nature of this map, charging the first few edges at the bottom is as easy

as writting the first few D’s explicitly. For the bottom edge, for instance, we immediately

find that

D(1)
A = Y1 · Z−1

∂

∂ηA−1

⇒ ∂

∂ηA−1

=
D(1)
A

Y1 · Z−1
, (3.15)

while taking this into account and moving to the following edge yields

∂

∂ηA0
=

(Y1 · Z−1)D(2)
A − (Y2 · Z−1)D(1)

A

(Y1 · Z−1)(Y2 · Z0)
, (3.16)

and so on.

By following this recursive procedure we will eventually find that ∂/∂ηj is given as a

linear combination of D(j+2) , D(j+1) , . . . , D(1). In plain words, it means that charging

the edge j entails charging the entire sequence of pentagons lying all the way from that

specific edge to the bottom of the polygon. The drawback is that it has be so even for

an edge standing arbitrarily far away from the bottom of the polygon. This, however, is

at odds with the locality of the OPE construction, in which a random pentagon in the

– 10 –
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j

j−1

j+1

j+2j+3

j−2

j−3

Figure 5. A remarkable feature of our construction is that the inverse map turns out to be local.

Namely, charging edge j is done by charging the five pentagons touching this edge and these five

pentagons alone. We notice in particular that the two outermost pentagons in this neighbourhood,

which are shown in green above, are touching the endpoints of edge j only.

decomposition only talks to its neighbours (through the flux-tube state that they share)

and has little knowledge of how far it stands from the bottom. Besides, it introduces an

artificial discrimination between bottom and top, despite the fact that our analysis could,

at no cost, be run from the top. The way out is easy to find: the bottom tail of the inverse

map is pure mathematical illusion, or, put differently, the inverse map beautifully truncates

such as to become manifestly top/bottom symmetric.

In sum, instead of a sum over j+ 2 D’s, what we find is that (for 3 ≤ j ≤ n− 2) ∂/∂ηj
is given by the linear combination of the five neighboring pentagons only (see figure 5)

∂

∂ηAj
=
〈Yj−2, Yj−1, Yj , Yj+1〉D(j+2)

A + . . . + 〈Yj−1, Yj , Yj+1, Yj+2〉D(j−2)
A

(Yj−1 · Zj+1) (Yj+1 · Zj−1) (Yj−2 · Zj) (Yj+2 · Zj)
. (3.17)

Mathematically, this relation originates from the five-term identity

〈Yj−2, Yj−1, Yj , Yj+1〉Yj+2 + . . . + 〈Yj−1, Yj , Yj+1, Yj+2〉Yj−2 = 0 , (3.18)

which holds for any choice of five (co-)twistors and which simply follows from them having

four components. Once we plug the definition (3.14) into the right hand side of (3.17),

most terms cancel out because of this identity. Those that survive are boundary terms and

it is straightforward to work them out in detail. They precisely lead to the single term in

the left hand side of (3.17).4

4To see that only the term proportional to ∂/∂ηj survives it is useful to note that the orthogonality

relations Yj−2 · Zj−1 = Yj−1 · Zj−1 = Yj · Zj−1 = 0 allow us to freely extend slightly the summation range

of some of the five terms in (3.17). In turn, these relations follow trivially from the definition (3.6) of the

co-twistors. Finally, to check the overall normalization of both sides in (3.17), it is convenient to use the

identity 〈Yj−2, Yj−1, Yj , Yj+1〉 = (Yj−1 · Zj+1) (Yj+1 · Zj−1) (Yj−2 · Zj).

– 11 –
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Actually, it is possible to interpret the inverse map (3.17) such that it also applies to

the very first edges of the polygon, like in (3.15) and (3.16), provided that we properly

understand what we mean by Y0, Y−1, Y−2 and Y−3. (These co-twistors will show up when

using (3.17) for ∂/∂η2, ∂/∂η1, ∂/∂η0 and ∂/∂η−1.) For this we can pretend that there

are extra edges at the bottom of the polygon and the previous derivation would still go

through.5 Of course, for these bottom (or top) cases, it is easier to proceed recursively as

in (3.15) and (3.16).

This concludes our general discussion of the map. The proposals (3.17) and (3.7) are

the main results of this paper.

3.4 Easy components and the hexagon

A polygon with n edges has a top pentagon and a bottom pentagon, plus n− 6 pentagons

which are neither top nor bottom and referred to as middle ones. Charging the bottom

or the top pentagons is considerably simpler than charging any middle one. Let us focus

on the bottom since the top is treated analogously. According to our general map (3.7),

we see that the differential operator that charges the bottom pentagon, ∂/∂χ1, is simply

proportional to ∂/∂η−1,
∂

∂χ1
=

Y1 · Z−1

(0)1(1)1(2)1
× ∂

∂η−1
(3.19)

which we can further simplify to (see e.g. (A.17) in the appendix for a thorough explanation)

∂

∂χ1
= (−1)1 ×

∂

∂η−1
. (3.20)

In other words, up to a trivial factor which absorbs the weight in ∂/∂η−1, charging a bottom

pentagon is the same as extracting components with η’s at the very bottom of our polygon.

Similarly, charging the top-most pentagon is equivalent to putting η’s on the topmost edge.

It could hardly be simpler. Explicitly, for any polygon, there are five NMHV components

which are easy to construct:

P1234 ◦ P ◦ · · · ◦ P ◦ P = w[4]W(−1,−1,−1,−1) ,

P123 ◦ P ◦ · · · ◦ P ◦ P4 = w[3]W(−1,−1,−1,n−2) ,

P12 ◦ P ◦ · · · ◦ P ◦ P34 = w[2]W(−1,−1,n−2,n−2) , (3.21)

P1 ◦ P ◦ · · · ◦ P ◦ P234 = w[1]W(−1,n−2,n−2,n−2) ,

P ◦ P ◦ · · · ◦ P ◦ P1234 = w[0]W(n−2,n−2,n−2,n−2) .

where w[m] ≡ ((−1)1)m ((n− 2)n−4)4−m.

These are what we call the easy components. Morally speaking, from the first to the

last line, we can think of the easy components as inserting an F , ψ, φ, ψ̄, F̄ excitation and

their conjugate at the very bottom and top of our polygon.

5We can simply define (Y0, Y−1, Y−2, Y−3) ≡
(
Y{0,−1,1}, Y{∗,0,−1}, Y{−1,∗,∗}, Y{∗,∗,∗}

)
, with Y{i,j,k} ≡

Zi ∧Zj ∧Zk and Z∗ being arbitrary twistors, which drop out of the final result. At the same time, we also

set (D0W, D−1W, D−2W, D−3W) = (0, 0, 0, 0) .
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1
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3
4

5

6

−1

1

3

0

2

4

P1234 ◦ P

(a) (b)

P123 ◦ P4 P12 ◦ P34 P1 ◦ P234 P ◦ P1234

Figure 6. (a) OPE friendly edge labelling used in this paper (big black outer numbers) versus the

more conventional cyclic labelling (small red inner numbers) for the hexagon. (b) The five easy

components of the NMHV hexagon. Each black square represents a dual Grassmann variable η.

For the hexagon these five components provide a complete base for all NMHV amplitudes.

For an hexagon we have only two pentagons and thus the easy components in (3.21)

with n = 6 suffice to describe the NMHV hexagon, see figure 6. All other components can

be trivially obtained by Ward identities. For example, we can use invariance under

Y2 · Q =
∑
k

Y2 · Zk
∂

∂ηk
= Y2 · Z−1

∂

∂η−1
+ Y2 · Z0

∂

∂η0
+ Y2 · Z4

∂

∂η4
(3.22)

to replace any component with an index associated to the edge 0 to a linear combination of

components with η’s associated to the top and bottom edges −1 and 4. Those, in turn, are

the components which we can neatly compute from the OPE construction. For example,

it immediately follows that

W(−1,−1,−1,0) = αP1234 ◦ P + β P123 ◦ P4 , (3.23)

with

α = − Y2 · Z−1

Y2 · Z0 ((−1)1)4 , β = − Y2 · Z4

Y2 · Z0 ((−1)1)3 (42)1 . (3.24)

Similarly, we can easily write down any other hexagon NMHV component in terms of the

OPE basis. Of course, this is equivalent to using the general inverse map (3.17), worked

out in the previous section.

There are other components whose OPE expansions closely resemble those of the nice

components (3.21). A notable example is the so-called cusp-to-cusp hexagon scalar compo-

nent Rhex
−1,0,3,4 and its heptagon counterpart Rhep

−1,0,4,5. Such components were extensively

analyzed in the past using the OPE [5, 17, 28, 29].6 What is nicest about them is their

utter simplicity at tree level, being described by a simple scalar propagator from the bot-

tom cusp (−1, 0) to the top cusp (n − 3, n − 2). Based on the OPE intuition, one would

therefore imagine that this component should not behave that differently from the one in

the middle line in (3.21). Indeed one observes that the expansion of this component and of

6Recall once again that we are using here a slightly unconventional labelling of the edges as indicated in

figure 1(b); these same cusp-to-cusp component were denoted R6134 and R7145 in [5] and R2356 in [28].
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the cusp-to-cusp components are exactly the same to leading order at large τ and to any

loop order. Both are described by a single scalar flux tube excitation. However, as soon as

two-particle contributions kick in — in the sub-leading collinear terms — these components

start differing. A similar story is present for all other components in the family (3.21). For

example, gluonic components were intensively studied in [7]. A simple tree-level gluonic

example of this universality for the leading terms in the OPE was considered in detail

in [30]. The hexagon fermonic component W(−1,−1,−1, 4) was recently studied in [27].7

Finally let us note that the weight factors showing up in (3.21) are not a novelty.

Already in [5] it was explained that to properly deal with weight free quantities we better

remove the weight of each pentagon by dividing out by the corresponding charged counter-

part, see (132) and surrounding discussion in [5]. Nevertheless, in practice, in all previous

OPE studies of super amplitudes, the weights (−1)1 and (n− 2)n−5 of the bottom and

top twistors with respect to the corresponding pentagons were, for the most part, ignored.

Sometimes this is fine. For instance, if we are interested in amplitudes at loop level we

can always divide the ratio function by its tree level expression obtaining a weight free

function of cross-ratios which we can unambiguously match with the OPE. Said differ-

ently, we can always normalize the tree level result by hand such that it agrees with the

leading terms in the OPE. In particular, for the purpose of comparing with the hexagon

function program [31–34] and using the OPE to generate high loop order predictions, it is

overkilling to carry these weights around. Moreover, with the choice of twistors in [5], such

weights actually evaluate to 1 which is one further reason why we never needed to take

them into account.

Having said all that, of course, to be mathematically rigorous, weight free quanti-

ties (3.21) are what we should always manipulate. In particular, for higher n-gons, and as

soon as we also charge middle pentagons, it is important to keep track of these weights to

properly make contact with the OPE predictions [8].

3.5 Parity

The charged pentagon construction provides us with a novel intuition about how to under-

stand parity at the Wilson loop level.

Recall that the action of parity on a scattering amplitude is very simple. It is a symme-

try of the amplitude under which a positive helicity gluon transforms into a negative helicity

one, a positive helicity fermion transforms into its negative helicity conjugate counterpart

and finally a scalar excitation is trivially conjugated. All in all, this can be summarized in

the following nice relation [35]

∫ n−2∏
i=−1

d4η̃i e
∑n−2
i=−1

¯̃ηiη̃iA[η̃, λ, λ̃] = A[¯̃η, λ̃, λ] . (3.25)

However, the relation between amplitudes and super Wilson loops involves stripping out

the MHV tree-level factor along with going from the original amplitude η̃’s to the Wilson

7This component was denoted W(1114) in the cyclic labelling in [27].
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loop dual Grassman variables η’s.8 Together, these operations obscure the action of parity

for this stripped object. How is parity symmetry realized on the super Wilson loop? Put

differently, how does parity relate different ratio function components? To our knowledge

this question has not been answered before. Here we propose that — once decomposed

using the OPE χ-components — parity at the Wilson loop level is no more complicated

than in the original amplitude language. Precisely, we claim that our variables allow for a

straightforward analogue of (3.25) in the Wilson loop picture as∫ n−4∏
i=1

d4χi e
∑n−4
i=1 χ̄iχiR[χ,Z] = R[χ̄,W ] , (3.26)

where Wj are Hodge’s dual momentum twistors [37]. The latter can be thought of as parity

conjugate of the Z’s and, up to an overall factor which drops out in (3.26), are given by9

Wj ≡ Zj−2 ∧ Zj ∧ Zj+2 . (3.27)

Note that this is nothing but the conventional definition of the dual twistor involving three

consecutive edges; the shifts of 2 in the index are just an outcome or our labelling, see

figure 1.

The general relation (3.26) is a generating function for all parity relations between

NkNMHV components and Nn−4−kMHV components, such as the relation

P1234 ◦ P = P ◦ P1234|Z→W (3.28)

between two NMHV hexagon components, for instance, or the relation

P123 ◦ P14 ◦ P234 = P4 ◦ P23 ◦ P1|Z→W (3.29)

relating NMHV and N2MHV seven-point amplitudes. More precisely, to convert such

identity into a relation for ratio function components, it is suffices to divide both sides by

W = P ◦ P ◦ P.10 After doing so, the same relation in (3.29) reads

∂

∂χ1
1

∂

∂χ2
1

∂

∂χ3
1

∂

∂χ1
2

∂

∂χ4
2

∂

∂χ2
3

∂

∂χ3
3

∂

∂χ4
3

Rheptagon N2MHV

=
∂

∂χ4
1

∂

∂χ2
2

∂

∂χ3
2

∂

∂χ1
3

Rheptagon NMHV

∣∣∣∣
Z→W

(3.30)

where the χ derivatives are given in terms of conventional η derivatives in (3.7). Another

more extreme example following from (3.26) is the relation

P1234 ◦ P1234 ◦ P1234 = P ◦ P ◦ P|Z→W (3.31)

8The convention for the labelling of the η’s and η̃’s varies quite a lot in the literature. Our notation here

is in line with [16] and [24–26] for example (modulo the non-cyclic labelling of the edges of course).
9Dual momentum twistors (as well as usual momentum twistors) are reviewed in some detail in ap-

pendix A.1, see formula (A.4) for an explicit expression relating them to the original momentum twistors,

including all factors. Here we are dealing with weight free quantities and as a result, we can always safely

drop any normalization from either Z’s or W ’s on the left or right hand sides in (3.26).
10The latter is symmetric under Z →W so we can evaluate it with either twistors Z or dual twistors W .

– 15 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
8

which encodes the fact that for seven points N3MHV is the same as MHV. It is straight-

forward to generate more such relations by picking different components in (3.26).

Note that relations such (3.30) are quite unconventional. We are not entitled to com-

pare different η-components of the ratio function simply because they do not carry the

same helicity weights. Equating different η-components would be tantamount to compar-

ing apples and oranges. In contrast, when extracting the χ-components as in (3.30) we

generate weight free quantities since the χ’s — contrary to the η’s — carry no weight. This

is what allows us to write parity relations at the level of the Wilson loop in terms of simple

relations such as (3.29)–(3.30) or, simply, in terms of the master relation (3.26), without

the need of dressing the components by additional weight factors.

Having decoded in detail the notation behind our main claim (3.26), let us now explain

how the relations (3.29)–(3.30) are nicely suggested by the pentagon approach. Then, we

will explain what sort of checks/derivations we have performed.

Parity, first and foremost, is a symmetry that swaps the helicity of the external particles

in the N = 4 supermultiplet that are being scattered, see (3.25). Similarly, parity also flips

the helicity of the flux-tube excitations. Flipping the helicity of a flux-tube excitation is

trivial: it can be accomplished by simply flipping the signs of all angles φj ’s, while keeping

the times τj and distances σj invariant [1–3, 5]. This is precisely what the transformation

Z ↔W accomplishes!11

This explains the substitution rule in the right hand side of (3.28)–(3.31). To complete

the picture we also have to act with parity on the pentagon transitions. Naturally, it

is expected to swap the several super pentagon components in (2.1) in exactly the same

way that it acts on the usual super-field multiplet expansion (replacing the positive helicity

gluon with no η̃’s with the negative helicity gluon with 4 η̃’s and so on.). This translates into

P1234 ↔ P , P123 ↔ P4 etc, (3.32)

which is precisely what is encoded in (3.29)–(3.30) or, more generally, in (3.26). In partic-

ular, these prescriptions neatly relate NkMHV and Nn−k−4MHV amplitudes, as expected

for parity.

While (3.26) is what the OPE naturally suggests, the previous paragraph is obviously

not a proof. In any case, (3.26) is a concrete conjecture for the realization of parity at the

Wilson loop level that we should be able to establish (or disprove) rather straightforwardly

starting from (3.25), without any reference whatsoever to the OPE. It would be interesting

if a simple and elegant derivation of (3.26) existed, perhaps following the same sort of

manipulations as in [36]. This would elucidate further the origin of the (weight free) super

OPE Grassmann variables χ.

What we did was less thorough. To convince ourselves of the validity of (3.26) we did

two simpler exercises: on the one hand, using the very convenient package by Bourjaily,

Caron-Huot and Trnka [40] we extensively tested (3.26) for a very large number of ratio

11More precisely, it is a very instructive exercise to observe that under Zj → Wj the cross-ratios in

formula (160) in [5] precisely transform as (τj , σj , φj) → (τj , σj ,−φj). When preforming such check it is

important to take into account the conversion between the edge labelling used here and there, see caption

of figure 1.
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functions from NMHV hexagons to N3MHV decagons, both at tree and at one loop level.12

On the other hand, we also looked for an analytic derivation of (3.26) from (3.25). We did

not find a particularly illuminating proof that establishes this in full generality but we did

manage to prove several sub-examples. In appendix A.3, for instance, we illustrate how

one can rigorously establish the relation

P1234 ◦ · · · ◦ P1234︸ ︷︷ ︸
j

◦P ◦ P︸ ︷︷ ︸
n−4−j

= P ◦ · · · ◦ P︸ ︷︷ ︸
j

◦P1234 ◦ P1234︸ ︷︷ ︸
n−4−j

|Z→W . (3.33)

4 Discussion

In this paper we have constructed a simple map between NkMHV amplitudes and so-

called charged pentagon transitions. This map allows one to OPE expand amplitudes with

arbitrary helicity configurations at any value of the coupling.

In the dual super-loop description of the amplitude, the charged transitions are oper-

ators that act on the color flux tube. They can be realized as combinations of a properly

chosen supercharge Q and the more standard bosonic pentagon operator P, and collected

into a super pentagon

P = P
4∏

A=1

(
11 + χAQA

)
, (4.1)

where the χ’s are new (weight-free) Grassmann variables associated to the pentagons in the

tessellation of the n-gon. The full super loop is then obtained by merging these pentagons

together,

Wn = 〈P1 ◦ P2 ◦ · · · ◦ Pn−4〉 , (4.2)

as previously done in (2.2). The χ-components of the super transition P can be boot-

strapped using the underlying flux-tube integrability, in pretty much the same way as their

bosonic counterparts [5, 7, 17, 18]. In this paper we proposed a map between these χ-

components of the super Wilson loopWn and its more conventional η-components [15, 16].

This map, given in (3.7) and (3.17), therefore provides the key missing ingredient in the

finite coupling OPE expansion of any helicity amplitude.

The map (3.7) can also be regarded as a definition of the charged transitions. In

this construction, we charge a pentagon by acting with the corresponding super-symmetry

generators on all the edges at its bottom (top). This is the same as acting on the flux-

tube state entering the pentagon from the bottom (top) — via the flux operator-state

correspondence — and is therefore equivalent to (4.1).13

This point of view is useful in providing a nice connection between the charged transi-

tions and their non-charged counterparts. To illustrate this, consider a standard pentagon

transition between a fermion and some other state, P (ψ̄A(p)| . . . ) = 〈. . . |P|ψ̄A(p)〉. As

12When checking such identities for a very large number of edges, the package becomes unpractically

slow. The trick is to open the package and do a “find/replace operation” to eliminate several Simplify and

FullSimplify throughout. For analytical checks of relations such as (3.29)–(3.30), these simplifications are

superfluous.
13This is pretty much the way the super loop was generated in [15, 16].
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the momentum of this excitation, p, goes to zero, the fermion effectively becomes a super-

symmetry generator QA [4, 41]. Therefore, we expect that in this limit this bosonic tran-

sition can be related to the charged transition PA(0| . . . ) = 〈. . . |P · QA|0〉. Indeed, while

bootstrapping these transitions we have recently observed curious relations of the sort,

PA(0| . . . ) ∝
∮
p=0

dp

2π
µ̂ψ(p)P (ψ̄A(p)| . . . ) (4.3)

which seems to embody this idea in a rather sharp way.

We are currently exploring such directions and their generalizations and will present

our findings elsewhere. Here we would like to briefly mention two interesting implications:

First, in the same way that we considered fermions ψ̄ with zero momentum, we could

also consider adding their conjugate ψ, which effectively becomes the conjugate super-

symmetry generator Q̄. This would naively define a non-chiral super pentagon admitting

an expansion both in χ’s and in χ̄’s. It is tempting to muse that it should be related to

the non-chiral super loop proposed in [22] and further studied in [42].

Second, the relation (4.3) between Q and ψ̄ can be regarded as a local OPE definition

of a charged edge or, equivalently, of the action of ∂/∂η on the super loop. Under such

definition, our map (3.7) translates into a set of relations that includes the SUSY Ward

identities, notably, and that begs to be interpreted directly from the flux tube. Naively,

we expect them to encode certain discontinuities of the OPE series upon edge-crossing of

the fermions. It would be fascinating to clarify this point and instructive to see if some

simple OPE contour manipulation could provide a derivation of supersymmetry from the

flux tube theory.

Let us end with further outlook. There is by now a very large reservoir of knowledge

on perturbative scattering amplitudes in planar N = 4 SYM theory, tightly related to the

large amount of symmetries they are subject to (originating from both the original and dual

Wilson loop descriptions). On the other hand, we have the pentagon approach, fully non-

perturbative and valid all the way from weak to strong coupling. This approach sacrifices

some of the most basic symmetries of the amplitudes, such as supersymmetry, parity and

cyclicity. In return, it renders the most non-trivial symmetry of all — integrability —

both manifest and practical. We think this is a worthy trade off, especially if the more

conventional symmetries can be recovered in the end. Our map (3.7) is one realization of

this philosophy, where different amplitudes that are related by supersymmetry are being

assigned to the same OPE series. Moreover, as discussed above, we now start to understand

that supersymmetry and parity also have, after all, a rather natural OPE incarnation. In

our quest for the ultimate solution to the scattering amplitude problem, the next symmetry

to attack is probably cyclicity. Hopefully it will also turn out to be easier than we now think!
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A More on geometry, pentagons and parity

In this appendix we review some known facts about the geometry of amplitudes and in

particular, pentagons. These facts are then used in section A.3 to prove the parity rela-

tion (3.33).

A.1 Variables

Scattering Amplitudes and null polygonal Wilson loops are conventionally parametrized by

a plethora of very useful variables. Amongst them, we have momentum twistors Z, spinor

helicity variables λ and their parity conjugate λ̃, and dual momentum twistors W . Let us

introduce them in our notation following [37] closely. We shall start by the momentum

twistors Z and construct all other variables from them.

A momentum twistor is a four dimensional projective vector Zj ∼ λZj . It is associated

to each edge of the null polygon, see figure 1. Momentum twistors allow us to parametrize

the shape of the polygon in an unconstrained way, this being one of their main virtues.

Moreover, they transform linearly under conformal transformations and are therefore very

useful when dealing with a conformal theory such as N = 4 SYM.

Note the labelling of edges we are using in this paper is tailored from an OPE analy-

sis and is not the conventional cyclic labelling commonly used to describing color ordered

partial amplitudes. In particular, in our convention, Zj and Zj+1 (or Zj−1) are not neigh-

bours; instead they nicely face each other in the polygon tessellation, see figure 1. The

trivial conversion between our labelling and a more conventional numbering of the edges

is presented in the caption of figure 1.

Out of four momentum twistors we can build conformal invariant angle brackets

〈ijkl〉 ≡ εabcdZai ZbjZckZdl or 〈ijkl〉 ≡ Zi ∧ Zj ∧ Zk ∧ Zl . (A.1)

We construct spinor helicity variables λ by extracting the first two components of each
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four dimensional momentum twistors14

λi ≡

(
1 0 0 0

0 1 0 0

)
· Zi . (A.2)

With these spinor helicity variables we can construct Lorentz invariant two dimensional

angle brackets

〈i, j〉 ≡ εαβλi,αλj,β or 〈i, j〉 ≡ Zi · I · Zj (A.3)

where Iab is the usual infinite twistor which one can read off from the first definition.

Next we introduce the dual momentum twistors W which can be thought of as the parity

conjugate of the Z’s. The dual momentum twistors are defined by using three neighbouring

standard momentum twistors as

Wj,a ≡ εabcd
Zbj−2Z

c
jZ

d
j+2

〈j − 2, j〉〈j, j + 2〉
or Wj ≡

Zj−2 ∧ Zj ∧ Zj+2

〈j − 2, j〉〈j, j + 2〉
. (A.4)

Note that with this convenient normalization the dual momentum twistor Wj has the

opposite helicity weight as the momentum twistor Zj . For the very bottom and top we

need to tweak the definition (A.4) due to the non-cyclic labelling we are using.15

With the dual momentum twistors we can now construct four brackets once more, now

denoted with square brackets

[ijkl] ≡ εabcdWi,aWj,bWk,cWl,d or [ijkl] ≡Wi ∧Wj ∧Wk ∧Wl . (A.5)

Finally, we come to the parity conjugate spinor helicity variables λ̃.16 They can be

now defined as the last two components of the dual twistors,

λ̃i =

(
0 0 1 0

0 0 0 1

)
·Wi . (A.6)

Out of two such twistors we can construct the Lorentz invariant square brackets

[ij] ≡ εα̇β̇λ̃i,α̇λ̃j,β̇ or [ij] = Wi · Ĩ ·Wj (A.7)

where the dual infinity twistor Ĩab can once gain be read off from the first definition.

14More precisely, we can always apply a global GL(4) rotation U to all the twistors (before extracting

the first two components) plus a residual GL(2) transformation V to all the spinors (after extracting them

from the first two components) such that in total λi ≡ V ·

(
1 0 0 0

0 1 0 0

)
·U ·Zi. Henceforth we set U and V

to be the identity matrices. Nevertherless, it is worth keeping in mind that sometimes such transformations

can be quite convenient. For instance, the twistors in previous OPE studies — see e.g. appendix of [5]

— contain several zero components and will lead to singular λ’s if extracted blindly. In those cases, it is

quite convenient to preform such generic conformal transformations when constructing the spinor helicity

variables.
15Explicitly, the only tricky definitions are W0 ≡ Z2∧Z0∧Z−1

〈2,0〉〈0,−1〉 , W−1 ≡ Z0∧Z−1∧Z1

〈0,−1〉〈−1,1〉 at the bottom and

Wn−2 ≡ Zn−4∧Zn−2∧Zn−3

〈n−4,n−2〉〈n−2,n−3〉 and Wn−3 ≡ Zn−2∧Zn−3∧Zn−5

〈n−2,n−3〉〈n−3,n−5〉 at the top, see figure 1.
16Literally, the transformation

(
λ, λ̄

)
→
(
λ̄, λ

)
acts on the momentum pµσ

µ
αα̇ = λαλ̃α̇ as a reflection of

p2 since the corresponding Pauli matrix is antisymmetric while all others are symmetric. Once combined

with an 180◦ rotation in the 1-3 plane, we get what is conventionally denoted by parity. In sum, since

rotation symmetries are an obvious symmetry, one often slightly abuses notation to denote as parity any

transformation whose determinant is −1.
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A beautiful outcome of the construction above is that momentum conservation

0 =
∑
i

λi,αλ̃i,α̇ for α = 1, 2 and α̇ = 1̇, 2̇ (A.8)

automatically follows from the definitions above. In other words, as is well known, the use

of twistors trivializes momentum conservation.

To summarize: at this point, each edge of our polygon is endowed with a momentum

twistor Zj , a dual momentum twistor Wj and a pair of spinors λj and λ̃j . There are also

other null segments which play a critical role in our construction: the middle edges that

define our tessellation which are represented by the red dashed lines in figure 1 and whose

corresponding momentum twistors are given in the caption of that same figure. We quote

here for convenience:

Zmiddle = 〈j − 2, j, j + 2, j − 1〉Zj+1 − 〈j − 2, j, j + 2, j + 1〉Zj−1 . (A.9)

Let us briefly explain how this equation can be established. This simple exercise beautifully

illustrates the power of Hodges’ momentum twistors when dealing with the geometry of

null lines. First, since Zmiddle ∧ Zj−1, Zmiddle ∧ Zj+1 and Zj−1 ∧ Zj+1 all correspond to

the same right cusp in figure 1(a), we immediately have that Zmiddle = αZj+1 + βZj−1.

At the same time the point Zmiddle ∧ Zj — where the middle line intercepts the left edge

in figure 1(a) — lies on the line Zj+2 ∧ Zj + tZj−2 ∧ Zj between the two left cusps. As

such, the middle twistor is also a linear combination of the twistors Zj , Zj−2 and Zj+2 and

thus 〈j, j − 2, j + 2, Zmiddle〉 = 0. This condition immediately fixes the ratio β/α to be as

in (A.9). The normalization of the projective twistor can be fixed arbitrarily with (A.9)

being one such choice. Following the logic above, we can now also associate to each middle

edge a dual twistor Wmiddle and a pair of spinors λmiddle and λ̃middle. They will indeed

show up below.

We close this section with two useful identities which we shall use latter. The first is

〈îijĵ〉
[îijĵ]

=
〈îi〉〈jĵ〉
[îi][jĵ]

(A.10)

where î and i are neighbouring edges and so are ĵ and j. The second is

〈abcd〉 = 〈ab〉〈bc〉〈cd〉[bc] and [abcd] = [ab][bc][cd]〈bc〉 (A.11)

which holds for any four consecutive twistors (starting with a followed by b, then c and

then d at the end). Note that the second equality in (A.11) follows from the first equality

there together with (A.10). It also follows trivially from the first equality in (A.11) under

parity which simply interchanges square and angle brackets.

A.2 Pentagons and weights

In a tessellation of an n-sided polygon, each two consecutive null squares form a pentagon.

As depicted in figure 1, each such pentagon shares some edges with the larger polygon while

some (either one or two) edges are middle edges defined by the tessellation, see also (A.9).
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These pentagons play a prominent role in our construction. In particular, here we

want to describe their importance in defining the weight of a given edge with respect to

a given pentagon. To simplify our discussion we label the edges of a generic pentagon as

a, b, c, d, e.17

Pentagons have no cross-ratios. Nevertheless, they are not totally trivial. For instance,

they allow us to read of the weight of an edge of the pentagon (with respect to that

pentagon) through the pentagon NMHV ratio function components as

R(abcd) =
1

abcd
, R(aabc) =

1

a2bc
, R(aaaa) =

1

a4
, (A.12)

and so on. All such components can be extracted from a single R-invariant beautifully

written using momentum twistors in [36, 37],

RNMHV pentagon =

4∏
A=1

(〈abcd〉ηAe + 〈bcde〉ηAa + 〈cdea〉ηAb + 〈deab〉ηAc + 〈eabc〉ηAd )

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (A.13)

From the relations (A.12) we read

a4 =
〈abcd〉〈cdea〉〈deab〉〈eabc〉

〈bcde〉3
. (A.14)

We can also re-write this relation using (A.11) as

a4 =
〈ab〉4〈ea〉4

〈ab〉〈bc〉〈de〉〈ea〉〈cd〉
/

[cd]4

[ab][bc][cd][de][ea]
(A.15)

where the familiar Parke-Taylor chains nicely show up.

Furthermore, note that a product of three weights with respect to the same pentagon

can be traded by the weight of any of the other two twistors of the pentagon using the first

relation in (A.12) with R(abcd) = 1/〈abcd〉. In particular, it follows that

1

bce
=

a

〈abce〉
=

d

〈dbce〉
. (A.16)

This allows us to massage slightly some of the formulae in the main text. For example, (3.7)

can be written a bit more economically using

1

(j− 1)j (j)j (j + 1)j
=

(tj)j
Wj · Ztj

or
1

(j− 1)j (j)j (j + 1)j
=

(bj)j
Wj · Zbj

(A.17)

where tj and bj indicate the top or bottom twistors of pentagon j respectively, see figure 7.

Note that it is irrelevant that we do not fix the normalizations of these top and bottom

twistors: they drop out in the ratios here constructed.

17For example, this pentagon could be the first pentagon in the tessellation in figure 1(b). In this case

we would set a = Z2, b = Z0, c = Z−1, d = Z1 and e = Zmiddle line ending on edge 2.
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j

j−1

j+1

j+2
j+3

j−2

j−3

tj

bj

Figure 7. The weight factor (j− 1)j(j)j(j + 1)j associated to the j-th pentagon can be expressed

in terms of the twistors of the larger polygon. It involves the seven closest edges to that pentagon,

as illustrated in the figure. It is clear from this example the advantage of using this edge labelling

as opposed to the cyclic one.

We can also explicitly evaluate (A.17) by plugging in (A.14) the expressions for the

middle momentum twistors (A.9), see figure 7. When doing so, one finds18(
1

(j− 1)j(j)j(j + 1)j

)4

= (A.18)

=
〈j − 3, j − 1, j + 1, j + 3〉〈j − 2, j − 1, j, j + 2〉〈j − 2, j, j + 1, j + 2〉

〈j−2, j−1, j, j+1〉2〈j−1, j, j+1, j+2〉2〈j−1, j, j+1, j+3〉〈j−3, j−1, j, j+1〉
.

A.3 Parity map

In this section we establish the parity relation (3.33) which we can equivalently cast as(
∂

∂χ1

)4

. . .

(
∂

∂χj

)4

R =

(
∂

∂χj+1

)4

. . .

(
∂

∂χn−4

)4

R

∣∣∣∣∣
Z→W

. (A.19)

To evaluate the left hand side we note that

∂

∂χk
=
〈k − 1, k, k + 1, k − 2〉
(k− 1)k (k)j (k + 1)k

∂

∂ηk−2
+ . . . (A.20)

where the . . . contain a linear combination of derivatives from ∂/∂η−1 until ∂/∂ηk−3.

Since we are taking the maximum number of each derivative ∂/∂χk, only the term written

in (A.20) contributes, while all other terms are already saturated by the previous deriva-

tives. Therefore, at the end we are left with a single ratio function component

R(−1)4... (j−2)4 ≡ R(−1,−1,−1,−1),...,(j−2,j−2,j−2,j−2) .

18As usual, for the bottom and top pentagons we need to adjust this formula slightly. For instance, for

j = 1 we find Z−2 in the right hand side which is not defined, see figure 1. The fix is very simple: we

should simply replace Z−2 by the very bottom twistor, that is Z−1. Similarly for the top pentagon, where

we should replace Zn−1 by the very top twistor Zn−2.
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We can proceed in a similar fashion for the right hand side of (A.19), restricting the sum

in (3.7) to the edges above that pentagon. Keeping track of the multiplicative weight

factors, we can now rewrite (A.19) as

R(−1)4... (j−2)4

R(n−2)4... (j+3)4
∣∣
Z→W

=

 n∏
k=j+1

〈k − 1, k, k + 1, k + 2〉
(k− 1)k (k)k (k + 1)k

4

Z→W

/(
j∏

k=1

〈k − 1, k, k + 1, k − 2〉
(k− 1)k (k)k (k + 1)k

)4

. (A.21)

At this point, it is convenient to revert back to a more conventional cyclic notation.

We shall revert to cyclic variables using the map in caption of figure 1 followed by a simple

overall cyclic rotation of all the indices (by a convenient n and j dependent amount).

Altogether, we map each edge index k in (A.21) as

k → n− j

2
− 1

2
δj odd −

k

2
δk even +

k + 3

2
δk odd . (A.22)

This change of labelling is illustrated in figure 8 for n = 8 and j = 3. To avoid any

confusions, we will add a C to the label of all equations written in this cyclic labelling. Next,

it is useful to convert the ratio in (A.21) to two-brackets using (A.15), (A.10) and (A.11). In

two-bracket notation, the parity transformation Z → W simply amounts to interchanging

square and angle brackets. At the end of the day, we arrive at the nice expression19

R(n)4...(n−j+1)4

R(n−j−2)4...(3)4 |Z→W
=

〈1, 2〉 . . . 〈n, 1〉
〈n, 1〉4 . . . 〈n− j, n− j + 1〉4

[n− j − 2, n− j − 1]4 . . . [2, 3]4

[1, 2] . . . [n, 1]
.

(A.23)

To summarize: the main goal of this appendix is to establish this relation thus prov-

ing (3.33).

To do so, we start with the amplitude picture where parity is very well understood —

it amounts to the exchange of λ↔ λ̃ and the usual Grassmann variables η̃ ↔ ¯̃η, see (3.25).

We shall show that (A.23) is a simple consequence of the more transparent relation

An[1−, 2+, . . . , (n−j−1)+, (n−j)−, . . . , n−] = An[1+, 2−, . . . , (n−j−1)−, (n−j)+, . . . , n+]∗

(A.24)

for the scattering of j + 2 negative helicity and n − j − 2 positive helicity gluons. In

a more supersymmetric notation, the quantity on the left hand side is the component

(η̃1)4 (η̃n−j)
4 . . . (η̃n)4 of the super amplitude

An =

δ8(
n∑
i=1

λiη̃i)

〈1, 2〉 . . . 〈n, 1〉
MMHV loop
n (λ, λ̃)R(η, Z) , (A.25)

19When simplifying the ratio of weights it is convenient to explore momentum conservation for the various

middle squares to see that the dependence on the middle spinors neatly drops out. Recall that for any

square momentum conservation
∑4
j=1 λj λ̃j = 0 readily leads to 〈1, 2〉[2, 3] = −〈1, 4〉[4, 3] and 〈1, 2〉[2, 1] =

〈3, 4〉[3, 4].
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−1
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2

0
7

8
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23

4

5

6

Figure 8. Example for N3MHV octagon, (n = 8, j = 3). In blue, the edges charged for P1234 ◦
P1234 ◦P1234 ◦P and in green the edge charged for the parity conjugate P ◦P ◦P ◦P1234. The OPE

labelling for the edges is presented in black and in red the cyclic labelling used in this derivation.

whereR = 1+RNMHV+. . . is the ratio function andMMHV loop
n (λ, λ̃) is the MHV amplitude

divided by its tree level part. To extract this component we need to recall the relation

between the Grassmann variables η̃ and η showing up in this expression. In one direction,

it reads [36]

η̃i =
〈i, i+ 1〉ηi−1 + 〈i+ 1, i− 1〉ηi + 〈i− 1, i〉ηi+1

〈i− 1, i〉〈i, i+ 1〉
, (A.26)

while the inverse map is more subtle. It is not unique since we are working on the support

of the supersymmetric delta function. In other terms, there is a gauge freedom which we

can fix freely. One map that does the job gives η1 = η2 = 0 and [38, 39]

η3 = 〈2, 3〉η̃2 ,

η4 = 〈2, 4〉η̃2 + 〈3, 4〉η̃3 ,

...

ηn = 〈2, n〉η̃2 + . . .+ 〈n− 1, n〉η̃n−1 . (A.27)

Since η̃1 and η̃n do not appear in this inverse map, we must look for them in the fermionic

delta function when extracting this component. Therefore, we can simply replace the

fermionic delta function by 〈n, 1〉4 and consider the component (η̃n−j)
4 . . . (η̃n−1)4 of the

simpler quantity

〈n, 1〉4

〈1, 2〉 . . . 〈n, 1〉
MMHV loop
n (λ, λ̃)R(η, Z)

∣∣∣∣
ηj=

∑j−1
k=2〈k,j〉η̃k

. (A.28)

In turn, this component is also straightforward to extract since it is another example of a

saturation effect. More precisely, η̃n−1 shows up only in ηn such that extracting four units
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of it is tantamount to taking four powers of ηn (times 〈n− 1, n〉4). Next, ηn is crossed out

and η̃n−2 shows up in ηn−1 only and so on. All in all, we arrive at

An[1−, 2+, . . . , (n− j − 1)+, (n− j)−, . . . , n−] = (A.29)

= MMHV loop
n (λ, λ̃)

〈n, 1〉4

〈1, 2〉 . . . 〈n, 1〉
〈n− 1, n〉4 . . . 〈n− j, n− j + 1〉4R(n)4... (n−j+1)4 .

The right hand side of (A.24) can be treated similarly.20 In the end, we conclude that

〈n, 1〉4

〈1, 2〉 . . . 〈n, 1〉
〈n− 1, n〉4 . . . 〈n− j, n− j + 1〉4R(n)4... (n−j+1)4(Z)

=
[n− j − 2, n− j − 1]4

[1, 2] . . . [n, 1]
[n− j − 3, n− j − 2]4 . . . [2, 3]4R(n−j−2)4... (3)4(W ) (A.30)

which gives precisely the ratio in (A.23) thus proving (3.33). This was the main goal of

this appendix.

Other cases can be analyzed in a similar way. For instance, to establish an identity

like P1234 ◦ . . .◦P1234 ◦P123 ◦P4 ◦P ◦ . . .◦P = P ◦ . . .◦P ◦P4 ◦P123 ◦P1234 ◦ . . .◦P1234|Z→W
we start — on the amplitude side — with an amplitude that besides gluons also involves

a positive helicity fermion ψ and one negative helicity fermion ψ̄. However, the analysis

becomes more and more cumbersome as we consider cases with pentagons that are further

away from being maximally charged. It would be interesting to streamline this analysis

and work out the general case in a clean way. A better understanding of (the space of) all

possible inverse maps η(η̃) would probably be useful in this respect.
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