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Abstract: We present a detailed analysis of the rare exclusive Higgs boson decays into a

single vector meson and a photon and investigate the possibility of using these processes

to probe the light-quark Yukawa couplings. We work with an effective Lagrangian with

modified Higgs couplings to account for possible new-physics effects in a model-independent

way. The h → V γ decay rate is governed by the destructive interference of two amplitudes,

one of which involves the Higgs coupling to the quark anti-quark pair inside the vector

meson. We derive this amplitude at next-to-leading order in αs using QCD factorization,

including the resummation of large logarithmic corrections and accounting for the effects

of flavor mixing. The high factorization scale µ ∼ mh ensures that our results are rather

insensitive to the hadronic parameters characterizing the light-cone distribution amplitude

of the vector meson. The second amplitude arises from the loop-induced effective hγγ∗

and hγZ∗ couplings, where the off-shell gauge boson converts into the vector meson. We

devise a strategy to eliminate theoretical uncertainties related to this amplitude to almost

arbitrary precision. This opens up the possibility to probe for O(1) modifications of the

c- and b-quark Yukawa couplings and O(30) modifications of the s-quark Yukawa coupling

in the high-luminosity LHC run. In particular, we show that measurements of the ratios

Br(h → Υ(nS) γ)/Br(h → γγ) and Br(h → bb̄)/Br(h → γγ) can provide complementary

information on the real and imaginary parts of the b-quark Yukawa coupling. More accurate

measurements would be possible at a future 100TeV proton-proton collider.
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1 Introduction

The discovery of the Higgs boson in 2012 [1, 2] has established the existence of a new kind

of elementary particle, which couples to the other particles of the Standard Model (SM) in

a non-universal way. The SM predictions that the Higgs couplings to heavy gauge bosons

and fermions are given by 2m2
W,Z/v and mf/v, where v ≈ 246GeV is the Higgs vacuum

expectation value, have been confirmed within experimental uncertainties for the W and

Z bosons and for the third-generation fermions [3, 4]. However, no direct measurements

of the Higgs couplings to the light fermions of the first two generations are available at

present. It is not difficult to come up with models in which these couplings can deviate

significantly from those predicted in the SM. For example, in [5] it was proposed that the

Yukawa couplings may depend in a non-trivial way on the Higgs field, and that this might

explain the hierarchies seen in the spectrum of fermion masses. A more general analysis of

different classes of models in which the Higgs couplings to fermions can differ significantly

from those of the SM was presented in [6]. Probing the Higgs couplings to light fermions

is thus of paramount importance. This includes both flavor-diagonal and flavor-changing

interactions. Correlations between the two types of couplings, which to some extent are
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model dependent, have been studied in [7]. The CMS collaboration has recently reported a

slight excess in the search for the flavor-violating decay h → τ±µ∓ [8], which, if interpreted

as a signal, corresponds to a branching fraction Br(h → τ±µ∓) = (0.89+0.40
− 0.37)%. Not

surprisingly, this observation has led to much theoretical speculation.

Our focus in the present work is on the Higgs couplings to light quarks (q 6= t). In a

couple of beautiful papers, it has recently been proposed that one might get access to these

couplings by focussing on the rare, exclusive decays h → V γ of the Higgs boson [9, 10],

where the final state contains a single vector meson V . Such measurements are extremely

challenging at the LHC, as the corresponding branching fractions are in the range of few

times 10−6. Nevertheless, observing these processes is not hopeless in view of the fact that

in its high-luminosity run the LHC will serve as a Higgs factory. With 3 ab−1 of integrated

luminosity, about 1.7 × 108 Higgs bosons per experiment will have been produced [11],

and even larger Higgs samples could be obtained at a future facility such as a 100TeV

proton-proton collider. The theoretical description of rare exclusive decays employs the

formalism of QCD factorization [12–16], which was originally developed for the analysis of

hard exclusive QCD processes and later extended to the more complicated case of exclusive

hadronic two-body decays of B mesons [17, 18]. In a recent paper, we have systematically

developed this approach for the case of the exclusive decays Z → Mγ, W → Mγ and

Z → MW [19]. These processes are less susceptible to new physics and can therefore

be used to test the QCD factorization approach and extract valuable information about

the light-cone distribution amplitudes (LCDAs) of various mesons M . Observing exclusive

radiative decays of heavy electroweak gauge bosons in the high-luminosity run of the LHC

would provide a proof of principle that this kind of rare-decay searches can be performed

in a hadron-collider environment. A promising first step in the direction of observing the

decays Z → J/ψ γ and Z → Υγ, along with the corresponding Higgs decays h → J/ψ γ

and h → Υγ, has recently been reported by the ATLAS collaboration [20].

In this work we extend previous studies of exclusive radiative decays of the Higgs

boson in several important ways. We include QCD radiative corrections and resum large

logarithms arising from evolution effects between the Higgs mass scale and a low hadronic

scale. We comment on the structure of power-suppressed corrections to the factorization

formula, study the effects of the off-shellness of the photon in the h → γγ∗ → γV process

and include the power-suppressed h → γZ∗ → γV contribution. We also take into account

the effects of ω−φ mixing. Most importantly, our analysis allows for generic non-standard

Higgs couplings to SM fermions and gauge bosons, including CP-odd interactions. We

devise a strategy which allows us to eliminate the theoretical uncertainties related to the

dominant h → γγ∗ → γV conversion contribution, including possible new-physics effects, to

almost arbitrary precision. This is a crucial prerequisite for achieving the desired sensitivity

to the Yukawa couplings of light quarks. Finally, we address all relevant h → V γ decays to

both light and heavy mesons in one coherent formalism. For technical details on the QCD

factorization approach the reader is referred to [19].

In the following section we start by defining effective couplings of the Higgs boson

to SM fermions and gauge bosons. These include both CP-even and CP-odd couplings.

In section 3 we discuss in detail the calculation of the different contributions to the h →
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V γ decay amplitudes in the QCD factorization approach, distinguishing between “direct”

contributions induced by the Yukawa couplings of the Higgs boson to light quarks (q 6= t)

and “indirect contributions” resulting from a h → γγ∗/γZ∗ transition followed by the

conversion of the off-shell boson into a vector meson. We show that uncertainties related

to the effective hγγ coupling strength, as regards to both theoretical uncertainties and

possible new-physics contributions, can be eliminated by studying the ratio of the h → V γ

and h → γγ branching fractions. In section 4 we present a phenomenological analysis

both in the SM and in generic new-physics models with modified Higgs interactions. In

particular, we point out that measurements of the ratios of the h → Υ(nS) γ, h → bb̄ and

h → γγ branching fractions can yield highly complementary information on the real and

imaginary parts of the bottom-quark Yukawa coupling. Section 5 contains a summary of

our results and the conclusions. Technical details are relegated to five appendices.

2 Effective Higgs couplings

In our analysis we assume SM couplings for all particles other than the Higgs boson. For

the Higgs couplings to SM quarks and gauge bosons we adopt the effective Lagrangian

LHiggs
eff = κW

2m2
W

v
hW+

µ W−µ + κZ
m2

Z

v
hZµZ

µ −
∑

f

mf

v
h f̄ (κf + iκ̃fγ5) f

+
α

4πv

(

κγγ hFµνF
µν − κ̃γγ hFµνF̃

µν +
2κγZ
sW cW

hFµνZ
µν − 2κ̃γZ

sW cW
hFµνZ̃

µν

)

+ . . . , (2.1)

where sW ≡ sin θW and cW ≡ cos θW are the sine and cosine of the weak mixing angle.

We use s2W = 0.23126± 0.00005 as determined from the neutral-current couplings of the Z

boson evaluated at µ = mZ [21]. F̃µν = 1
2ǫ

µναβFαβ is the dual field-strength tensor, and

we use a sign convention where ǫ0123 = 1. Our choice of factoring out a loop factor in the

second line is made for later convenience. For SM extensions in which the new particles are

heavy, the coefficients of these higher-dimensional operators are suppressed by two powers

of the new-physics scale. We emphasize that the above is not a complete list of operators.

For instance, we have not included higher-dimensional operators of the form hWµνW
µν and

hWµνW̃
µν , whose coefficients are already strongly constrained by data. These operators

would enter our analysis only via the h → γγ∗/γZ∗ one-loop amplitudes, and without loss

of generality their effects can be absorbed into the coefficients κγγ , κγZ and κ̃γγ , κ̃γZ .

Both the CP-even couplings κi and the CP-odd coefficients κ̃i are real. In the SM

κW = κZ = κf = 1, while κ̃f and all the remaining couplings in the second line vanish.

Our κq and κ̃q parameters for quarks are related to the corresponding Yukawa couplings by

yq√
2
≡ (κq + iκ̃q)

mq

v
≡ (κ̄q + i¯̃κq)

mb

v
. (2.2)

In the last step we have introduced rescaled parameters normalized to the mass of the b

quark. This will turn out to be a useful definition for the quarks of the first two generations.
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Figure 1. Two-loo Barr-Zee diagram (left) and effective one-loop contribution (right) to the EDM

of the electron arising from the CP-odd couplings κ̃f , κ̃γγ and κ̃γZ in the effective Lagrangian (2.1).

For our analysis we need the quark masses at the scale µ = mh, where mh = (125.09±
0.24)GeV is the Higgs-boson mass [22]. We define the running quark masses at next-

to-next-to-leading order (NNLO) in the MS scheme, starting from the low-energy val-

ues given in [21]. This yields mb(mh) = (2.79 ± 0.02)GeV, mc(mh) = (622 ± 12)MeV,

ms(mh) = (52.8±1.4)MeV,md(mh) = (2.66±0.11)MeV, andmu(mh) = (1.21±0.08)MeV.

For the top quark we obtain mt(mh) = (166.8± 0.7)GeV starting from mt(mt) = (163.4±
0.7)GeV, which we have derived from the present world average obtained in [23] us-

ing the conversion tables provided in [24]. Present LHC data are largely insensitive

to the Yukawa couplings to light quark flavors. From a global χ2 fit to the measured

Higgs rates, the authors of [10, 25] have derived the bounds
√

|κ̄u|2 + |¯̃κu|2 < 1.3 and
√

|κ̄d,s,c|2 + |¯̃κd,s,c|2 < 1.4 at 95% confidence level (CL). The corresponding bounds for the

original parameters are
√

|κu|2 + |κ̃u|2 < 3000,
√

|κd|2 + |κ̃d|2 < 1500,
√

|κs|2 + |κ̃s|2 < 75

and
√

|κc|2 + |κ̃c|2 < 6.2.

Bounds on the CP-violating Higgs couplings to third-generation fermions have been

studied in [26]. Under the assumption that the Higgs couples to the electron in the standard

way (κe = 1, κ̃e = 0), the strongest constraints come from the electric dipole moment

(EDM) of the electron. They arise from two-loop Barr-Zee diagrams such as the one

shown on the left in figure 1 and yield |κ̃t| < 0.01, |κ̃b| < 1.9 and |κ̃τ | < 2.4 at 90% CL.

Bounds from the neutron EDM are approximately one order of magnitude weaker, but

they do not reply on assumptions about the Higgs couplings to the electron. The h → bb̄

and h → τ+τ− rate measurements at the LHC can be used to place upper limits on the

combinations |κb,τ |2 + |κ̃b,τ |2, which imply the stronger bounds (at 95% CL) |κ̃b| < 1.44

and |κ̃τ | < 1.24 from CMS [3], and |κ̃b| < 1.3 and |κ̃τ | < 1.5 from ATLAS [4]. Bounds from

the electron EDM can also be derived for the local operators multiplied by κ̃γγ and κ̃γZ
in (2.1). Evaluating the one-loop contributions to the electron EDM shown on the right in

figure 1, we obtain in the MS scheme

de
e

= − α

16π3

me

v2

[(

ln
µ2

m2
h

+
3

2

)

(κ̃γγ κe + κγγ κ̃e)

+
1− 4s2W
4s2W c2W

(

ln
µ2

m2
h

+
3

2
+

xZ lnxZ
1− xZ

)

(κ̃γZ κe + κγZ κ̃e)

]

,

(2.3)

where xZ = m2
Z/m

2
h. This contribution is logarithmically UV divergent, because the inner

structure of the effective hγγ and hγZ vertices is not resolved. The term proportional

to κ̃γγ κe agrees with a calculation performed in [27]. The subtraction scale µ should be
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identified with the scale of the new physics, which is responsible for these non-standard

interactions. Setting µ = ΛNP = 1TeV for an estimate, and assuming SM-like Higgs

couplings to the electron, we obtain from the present experimental bound |de| < 8.7 ·
10−29 e cm (at 90% CL) [28] the constraint

∣

∣κ̃γγ + 0.09 κ̃γZ
∣

∣ < 0.006 (90% CL) . (2.4)

Barring a fine tuning of the two contributions, this implies that |κ̃γγ | < 6 · 10−3 and

|κ̃γZ | < 0.07. If the new-physics scale lies above 1TeV then these bounds become stronger.

With ΛNP = 10TeV, for example, they improve by a factor of 2.

3 Radiative hadronic decays of Higgs bosons

Our focus in this work is on the rare, exclusive radiative decays h → V γ, where V denotes

a vector meson with momentum k and the photon carries momentum q. We will refer

to vectors orthogonal to the plane spanned by k and q as being transverse. Up to tiny

corrections of order (mV /mh)
2, the mass of the vector meson can be set to zero.

The leading-order Feynman diagrams are shown in figure 2. In the first two graphs,

the Higgs boson couples to the quark and anti-quark pair from which the meson is formed.

We refer to this as the “direct” contribution to the decay amplitude [29, 30]. It can be

calculated from first principles using the QCD factorization approach [12–16], because the

energy released to the final-state meson is much larger than the scale of long-distance

hadronic physics [10, 31, 32]. At leading power in an expansion in ΛQCD/mh, the direct

contribution can be expressed as a convolution of a calculable hard-scattering coefficient

with the leading-twist LCDA of the vector meson V . The corresponding factorization

formula was derived in [19] using the formalism of soft-collinear effective theory [33–36]. It

was shown that, for a given helicity amplitude, the power corrections to the leading term are

suppressed by (ΛQCD/mh)
2 for light mesons and (mQ/mh)

2 for mesons containing heavy

quarks of flavor Q. Even for the b-quark these power corrections are negligible. The third

diagram in figure 2 shows a different production mechanism, in which the vector meson is

produced via the conversion of an off-shell photon or Z boson produced in a h → γγ∗/γZ∗

transition [9]. We refer to this as the “indirect” contribution. It involves the hadronic

matrix element of a local current and thus can be expressed in terms of the decay constant

fV of the vector meson. The direct contribution is sensitive to the Yukawa coupling of

the Higgs boson to the quarks which make up the vector meson. We shall find that in

the SM the direct and indirect contributions to the h → V γ decay amplitude interfere

destructively. They are of similar size for V = Υ, while the direct contributions are smaller

than the indirect ones by factors of about 0.06 for V = J/ψ, 0.002 for V = φ, and few

times 10−5 for V = ρ0 and ω. The sensitivity to the Yukawa couplings thus crucially relies

on the precision with which the indirect contributions can be calculated. We will come

back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −efV
2

[

(

ε∗V · ε∗γ −
q · ε∗V k · ε∗γ

k · q

)

F V
1 − iǫµναβ

kµqνε∗αV ε∗βγ
k · q F V

2

]

, (3.1)
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h

γ

h

γ

h

γ

γ/Z

Figure 2. Direct (left and center) and indirect (right) contributions to the h → V γ decay am-

plitude. The crossed circle in the third diagram denotes the off-shell h → γγ∗ and h → γZ∗

amplitudes, which in the SM arise first at one-loop order.

where both the final-state meson and the photon are transversely polarized. From (3.1),

the decay rate is obtained as

Γ(h → V γ) =
αf2

V

8mh

(

∣

∣F V
1

∣

∣

2
+
∣

∣F V
2

∣

∣

2
)

. (3.2)

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [21], as appropriate

for a real photon. We choose to normalize the decay amplitude in (3.1) to the vector-meson

decay constant fV , which is defined in terms of a matrix element of a local vector current.

Since we consider neutral, flavor-diagonal mesons, the definition of the decay constants

(and of other hadronic matrix elements) is complicated by the effects of flavor mixing. In

complete generality, such a neutral meson V can be regarded as a superposition of flavor

states |qq̄〉. We can thus define flavor-dependent decay constants f q
V via

〈V (k, ε)| q̄γµq |0〉 = −if q
V mV ε

∗µ ; q = u, d, s, . . . . (3.3)

A certain combination of these flavor-specific decay constants can be measured in the

leptonic decay V → e+e−. The corresponding decay amplitude involves the matrix element

of the electromagnetic current Jµ
em =

∑

q Qq q̄γ
µq. We thus define

QV fV ≡
∑

q

Qqf
q
V , where QV =

∑

q

cVq Qq . (3.4)

Here cVq denote the flavor coefficients in the naive constituent-quark model, where |ρ0〉 =
1√
2

(

|uū〉 − |dd̄〉
)

, |ω〉 = 1√
2

(

|uū〉+ |dd̄〉
)

, |φ〉 = |ss̄〉 etc. It follows that

1√
2
fρ0 =

∑

q

Qq f
q
ρ0
,

1

3
√
2
fω =

∑

q

Qq f
q
ω , −1

3
fφ =

∑

q

Qq f
q
φ , (3.5)

and so on. With these definitions, the electromagnetic decay rate is given by

Γ(V → e+e−) =
4πQ2

V f
2
V

3mV
α2(mV ) . (3.6)

In [19], the so-defined decay constants fV have been extracted using the most recent exper-

imental data. Our motivation for factoring out these decay constants in (3.1) is that they

can be determined experimentally without adopting any specific model for flavor mixing.

As we will discuss in section 3.2, the dominant terms in the indirect contributions to the

h → V γ decay amplitudes are proportional to precisely these quantities.

– 6 –
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Figure 3. One-loop QCD corrections to the first diagram in figure 2. Analogous corrections exist

for the second diagram.

3.1 Direct contributions to the form factors

We first consider the direct contribution to the decay amplitude shown in the first two

diagrams in figure 2, in which the Higgs boson couples to the quarks contained inside the

vector meson. In order to calculate the corresponding contributions to the form factors F V
i

defined in (3.1), one calculates the corresponding partonic amplitudes with on-shell quark

and anti-quark states and then projects these amplitudes onto the leading-twist LCDA of

a transversely polarized vector meson V . The relevant light-cone projector reads [37]

MV⊥
(k, x, µ) =

if⊥
V (µ)

4
/k /ε⊥∗

V φ⊥
V (x, µ) + . . . , (3.7)

where the dots stand for higher-twist contributions. In analogy with (3.3) and (3.4), we

define a set of flavor-specific transverse decay constants via

〈V (k, ε)| q̄ iσµνq |0〉 = if q⊥
V (µ) (kµε∗ν − kνε∗µ) . (3.8)

The quantity f⊥
V entering (3.7) is then defined by the combination f⊥

V ≡
(
∑

q Qqf
q⊥
V

)

/QV .

The transverse decay constants are scale-dependent quantities, since the QCD tensor cur-

rent has a non-zero anomalous dimension. The leading-twist LCDA φ⊥
V (x, µ) can be in-

terpreted as the amplitude for finding a quark with longitudinal momentum fraction x

inside the meson.1 It depends on the choice of the factorization scale µ employed in the

factorization formula.

The two leading-order graphs shown in figure 2 are supplemented by the diagrams in

figure 3, which arise at O(αs). Including these effects is crucial in order to control the

scale dependence of the transverse decay constant f⊥
V , the Yukawa coupling yq and the

LCDA φ⊥
V . It will also allow us to resum large logarithms of the form

(

αs ln(m
2
h/µ

2
0)
)n

to

all orders in perturbation theory. Here µ0 ≈ 1GeV is a typical hadronic scale, at which

model predictions for f⊥
V and φ⊥

V are obtained. We work in dimensional regularization and

subtract UV and IR divergences in the MS scheme. The product of the bare decay constant

times the LCDA of a transversely polarized vector meson is related to the product of the

1Strictly speaking, one should introduce flavor-specific LCDAs φq⊥V (x, µ) and define the product

fq⊥V (µ)φq⊥V (x, µ) in terms of a matrix element of a non-local quark current with flavor q, in analogy

with relation (4) in [19]. Because the LCDAs are normalized to 1, and given the present large uncer-

tainties in the shapes of these functions, it is a safe approximation to employ SU(3) symmetry and replace

φq⊥V (x, µ) → φ⊥

V (x, µ).

– 7 –
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corresponding renormalized quantities via

f⊥bare
V φ⊥bare

V (x) =

∫ 1

0
dy Z−1

φ (x, y, µ) f⊥
V (µ)φ⊥

V (y, µ) , (3.9)

where at one-loop order

Zφ(x, y, µ) = δ(x− y) +
CFαs(µ)

2πǫ
V ⊥
0 (x, y) +O(α2

s) , (3.10)

with CF = 4/3. The relevant one-loop Brodsky-Lepage kernel reads [12, 16]

V ⊥
0 (x, y) =

1

2
δ(x− y)− 1

y(1− y)

[

x(1− y)
θ(y − x)

y − x
+ y(1− x)

θ(x− y)

x− y

]

+

. (3.11)

For the decays h → V γ, which are mediated by (pseudo-)scalar currents, an overall UV

divergence remains, which is cancelled by the counterterm for the Yukawa coupling, derived

from yq,bare = µǫZy(µ) yq(µ) with

Zy(µ) = 1− 3CFαs(µ)

4πǫ
+O(α2

s) . (3.12)

When dealing with pseudo-scalar currents we employ the ’tHooft-Veltman (HV)

scheme [38], in which γ5 = iγ0γ1γ2γ3 anti-commutes with the four matrices γµ with

µ ∈ {0, 1, 2, 3}, while it commutes with the remaining (d−4) Dirac matrices γµ⊥. While this

definition is mathematically consistent, it violates the Ward identities of chiral gauge theo-

ries by finite terms, which must be restored order by order in perturbation theory [39]. This

is accomplished by performing the finite renormalization P = ZP
HVPHV of the pseudo-scalar

current P = q̄γ5q, where [40]

ZP
HV(µ) = 1− 2CF

αs(µ)

π
+O(α2

s) . (3.13)

By evaluating the relevant Feynman graphs in figures 2 and 3, we find that the direct

contributions to the form factors in the amplitude decomposition (3.1) are given by

F V
1,direct = κ̄V QV FV , F V

2,direct = i¯̃κV QV FV , (3.14)

where we have defined

κ̄V =
1

QV

∑

q

κ̄q Qq
f q⊥
V

f⊥
V

, ¯̃κV =
1

QV

∑

q

¯̃κq Qq
f q⊥
V

f⊥
V

. (3.15)

The reduced form factors FV are given by

FV =
mb(µ)

v

f⊥
V (µ)

fV

∫ 1

0
dx

φ⊥
V (x, µ)

x(1− x)

[

1 +
CFαs(µ)

4π
h(x,mh, µ) +O(α2

s)

]

, (3.16)

with

h(x,mh, µ) = 2 ln
[

x(1− x)
]

(

ln
m2

h

µ2
− iπ

)

+ ln2 x+ ln2(1− x)− 3 . (3.17)

– 8 –
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This result agrees with a previous calculation performed in [31] apart from a typo.2 We

have expressed the Yukawa coupling in terms of the running b-quark mass using the second

relation in (2.2). We focus primarily on the cases V = J/ψ and Υ(nS), where to an excellent

approximation the vector meson contains a single quark flavor q, and hence κ̄J/ψ ≈ κ̄c and

κ̄Υ(nS) ≈ κb, and similarly for the CP-odd parameters ¯̃κV . For the light mesons V = ρ0,

ω and φ, on the other hand, flavor-mixing effects can be important. This concerns, in

particular, the possibility of a small admixture of an |ss̄〉 flavor component in the wave

functions of ρ0 and ω, which can be important due to the smallness of the Yukawa couplings

to the up and down quarks in the SM. Since the ρ0 meson is a member of an isospin triplet,

its flavor mixing into |ss̄〉 can only be caused by electromagnetic interactions or isospin-

violating effects in QCD. Both types of effects are estimated to be very small, and hence

we expect that |fs⊥
ρ0 /f⊥

ρ0 | ≪ 1. To good approximation we can thus use the naive relation

κ̄ρ0 ≈ 2κ̄u + κ̄d
3

SM→ 6.1 · 10−4 . (3.18)

The situation is different for the case of the ω meson, whose mixing into an |ss̄〉 flavor state
can be non-negligible. In appendix A we derive explicit expressions for the parameters κ̄ω
and κ̄φ in a simple flavor-mixing scheme for the ω−φ system. Assuming that |κ̄s| ≫ |κ̄u,d|
like in the SM, and working in the SU(3) limit and to first order in the small mixing angle

θωφ, we obtain

κ̄ω ≈ 2κ̄u − κ̄d +
√
2 κ̄s θωφ(m

2
ω)

SM→
(

− 0.08 + 26.8 θωφ
)

· 10−3 ,

κ̄φ ≈ κ̄s

[

1 +
θωφ(m

2
φ)√

2

]

SM→ 0.019 + 0.013 θωφ .
(3.19)

In the SM the contributions from the up and down quarks almost precisely cancel in

κ̄ω, and hence the contribution induced by ω−φ mixing is likely to be the dominant

one. Existing estimates for the mixing angle θωφ derived from mass-independent analyses

include θωφ ≈ 0.05 [41] and θωφ ≈ 0.06 [42, 43]. On the other hand, in a more recent mass-

dependent analysis the values θωφ(m
2
ω) ≈ 0.008 and θωφ(m

2
φ) ≈ 0.081 were obtained [44].

We conclude from this discussion that κ̄φ ≈ κ̄s to good approximation, while a more

accurate description of flavor-mixing effects would be required before the quantity κ̄ω can

be interpreted reliably in terms of quark Yukawa couplings.

In the factorization formula (3.16) all non-perturbative hadronic physics is contained

in the decay constants and the LCDA. The quantity multiplying the LCDA under the

integral is the hard-scattering coefficient, which can be calculated in perturbation the-

ory. It depends on the momentum distribution of the quark inside the hadronic bound

state. QCD-based model calculations of LCDAs are typically performed at a low hadronic

scale µ0 ∼ 1GeV. If such a low value is chosen for the factorization scale µ in (3.16),

the hard-scattering coefficient contains large logarithms of the form
(

αs ln(m
2
h/µ

2
0)
)n

with

2These authors use the pole mass instead of the running quark mass in the prefactor, which adds

−3 ln(µ2/m2
b)− 4 to the kernel h(x,mh, µ). In eq. (130) of [31] one finds instead −3 ln[µ2/(−m2

h)]− 4. We

are grateful to the authors for confirming this mistake.
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ln(m2
h/µ

2
0) ≈ 9.7, which should be resummed to all orders in perturbation theory. To per-

form this resummation, it is convenient to use the expansion of the LCDA in the basis of

Gegenbauer polynomials, which reads [12, 16]

φ⊥
V (x, µ) = 6x(1− x)

[

1 +
∞
∑

n=1

aV⊥

n (µ)C(3/2)
n (2x− 1)

]

. (3.20)

We can then rewrite (3.16) as a sum over Gegenbauer moments, finding

FV =
6mb(µ)

v

f⊥
V (µ)

fV

[

1− CFαs(µ)

π
ln

m2
h

µ2

]

IV (mh) , (3.21)

with

IV (mh) =
∞
∑

n=0

C2n(mh, µ) a
V⊥

2n (µ) . (3.22)

The factor in brackets in (3.21) precisely compensates the scale dependence of the product

mb(µ) f
⊥
V (µ), while the quantity IV is formally scale invariant. Using a technique devel-

oped in [19], we obtain for the hard-scattering coefficients Cn in moment space the closed

expression

Cn(mh, µ) = 1 +
CFαs(µ)

4π

[

−4 (Hn+1 − 1)

(

ln
m2

h

µ2
− iπ

)

+ 4H2
n+1 − 3 + 4iπ

]

+O(α2
s) ,

(3.23)

where Hn+1 =
∑n+1

k=1
1
k are the harmonic numbers. As a consequence of the symmetry of

the hard-scattering coefficient under the exchange x ↔ (1 − x), the sum in (3.22) runs

over even Gegenbauer moments only. Large logarithms of the type
(

αs ln
m2
h

µ2

)n
can now

be resummed readily by choosing the factorization scale of order µ ∼ mh and evolving the

scale-dependent quantities mb(µ), f
⊥
V (µ) and aV⊥

n (µ) up to that scale. The solution of the

corresponding renormalization-group (RG) equations at NLO of RG-improved perturbation

theory is discussed in appendix B. At leading order in QCD the Gegenbauer moments

aV⊥

n (µ) in (3.20) are renormalized multiplicatively, such that [12, 29]

aV⊥

n (µ) =

(

αs(µ)

αs(µ0)

)

γ⊥n
2β0

aV⊥

n (µ0) , with γ⊥n = 8CF (Hn+1 − 1) . (3.24)

Here µ0 denotes a low reference scale, while µ = O(mh) is the hard factorization scale, to

which the LCDAs are evolved. The NLO corrections to these relations are discussed in

appendix B. They have a negligible impact on our numerical results. All of the anoma-

lous dimensions are strictly positive (for n 6= 0), which implies that aV⊥

n (µ) → 0 in the

formal limit µ → ∞. In this limit the leading-twist LCDAs approach the asymptotic form

6x(1−x). Similarly, it follows from relation (B.2) in appendix B that the transverse decay

constants of vector mesons vanish in the asymptotic limit, i.e. f⊥
V (µ) → 0 for µ → ∞.

It has been emphasized in [19] that RG evolution effects render our predictions rather

insensitive to the precise values of the Gegenbauer moments. From (3.22), we obtain

Re IV (mh) = 1.01 + 1.13aV⊥

2 (mh) + 1.21aV⊥

4 (mh) + 1.29aV⊥

6 (mh) + 1.35aV⊥

8 (mh) + . . .

≈ 1.01 + 0.51aV⊥

2 (µ0) + 0.36aV⊥

4 (µ0) + 0.29aV⊥

6 (µ0) + 0.24aV⊥

8 (µ0) + . . . .

(3.25)
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Meson V fV [MeV] f⊥
V (2GeV)/fV aV⊥

2 (µ0) QV vV

ρ0 216.3± 1.3 0.72± 0.04 0.14± 0.06 1√
2

1√
2

(

1
2 − s2W

)

ω 194.2± 2.1 0.71± 0.05 0.15± 0.07 1
3
√
2

− s2W
3
√
2

φ 223.0± 1.4 0.76± 0.04 0.14± 0.07 −1
3 −1

4 +
s2W
3

Table 1. Hadronic input parameters for light vector mesons. The decay constants fV are extracted

from data on the electromagnetic decay widths V → l+l− [19], while the ratios f⊥

V /fV are derived

from a compilation of theoretical predictions. The values of the Gegenbauer moments at the scale

µ0 = 1GeV are taken from [47, 48]. The last two columns show the effective charges QV and vV
defined in (3.4) and below (3.28).

While all Gegenbauer moments have O(1) coefficients at the high-energy scale, the coeffi-

cients of the higher moments are strongly reduced when one expresses the answer in terms

of moments normalized at the low scale µ0 = 1GeV.

In order to obtain numerical predictions for the reduced form factors we need as

hadronic input parameters the decay constants fV and f⊥
V and the Gegenbauer moments

aV⊥

2n of the various vector mesons. As mentioned earlier, the decay constants fV can be

extracted from experimental data, and up-to-date values have been derived in [19]. The ra-

tios f⊥
V /fV needed in (3.21) must be obtained using some non-perturbative approach, such

as lattice QCD, light-cone QCD sum rules or the non-relativistic effective theory NRQCD

for heavy quarkonia [45, 46], which provides a systematic expansion of hadronic matrix

elements in powers of the small velocity v ∼ αs(mQv) of the heavy quark in the quarko-

nium rest frame. Details of such determinations are reviewed in appendix C. In table 1

we compile the relevant input parameters for light vector mesons. Because of the lack of

information about higher Gegenbauer moments we can only keep few terms in the infi-

nite sum (3.20). The systematics of the Gegenbauer expansion has been discussed in [19],

where it was pointed out that the higher moments aV⊥

n with n ≫ 1 fall off faster than

1/n. Indeed, high-rank Gegenbauer polynomials C
(3/2)
n (2x− 1) with n ≫ 1 would resolve

structures on scales ∆x ∼ 1/n. For a light vector meson V , it is reasonable to assume

that the LCDA φ⊥
V (x) does not exhibit pronounced structures at scales much smaller than

O(1). To estimate the impact of higher moments we use aV⊥

4 (µ0) = ±0.15 for our error

estimates. Relation (3.25) suggests that the effect of yet higher-order terms is small.

The LCDAs of heavy mesons exhibit a different behavior, since the presence of the

heavy-quark mass introduces a new scale. For a quarkonium state V ∼ (QQ̄) composed

of two identical heavy quarks, the LCDA peaks at x = 1/2 and has a width that tends to

zero in the limit of infinite heavy-quark mass. The second moment of the LCDA around

x = 1/2 can be related to a local NRQCD matrix element called 〈v2〉V [49]. Including the

one-loop QCD corrections calculated in [31], we obtain

4σ2
V (µ) ≡

∫ 1

0
dx (2x− 1)2 φ⊥

V (x, µ) =
〈v2〉V
3

+
CFαs(µ)

4π

(

28

9
− 2

3
ln

m2
Q

µ2

)

+ . . . . (3.26)

A critical discussion of the extraction of the parameters 〈v2〉V for different quarkonium
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Meson V fV [MeV] f⊥
V (2GeV)/fV σV (µ0) QV vV

J/ψ 403.3± 5.1 0.91± 0.14 0.228± 0.005± 0.057 2
3

1
4 − 2s2W

3

Υ(1S) 684.4± 4.6 1.09± 0.04 0.112± 0.004± 0.028 −1
3 −1

4 +
s2W
3

Υ(2S) 475.8± 4.3 1.08± 0.05 0.144± 0.007± 0.036 −1
3 −1

4 +
s2W
3

Υ(3S) 411.3± 3.7 1.07± 0.05 0.162± 0.010± 0.041 −1
3 −1

4 +
s2W
3

Table 2. Hadronic input parameters for heavy quarkonium states. The decay constants fV are

extracted from data on the electromagnetic decay widths V → l+l− [19], while the ratios f⊥

V /fV are

derived from NRQCD scaling relations. The width parameters σV are obtained from relation (3.26),

where the first error is of parametric origin and the second one parameterizes the uncertainty due

to higher-order effects. The last two columns show the effective charges QV and vV .

states is presented in appendix C. Using the values compiled there, but with increased

error estimates, we obtain the ratios of decay constants and the width parameters σV (µ0)

at the low scale µ0 = 1GeV shown in table 2. As a reasonable model at the scale µ0 we

adopt the form [19]

φ⊥
V (x, µ0) = Nσ

4x(1− x)√
2πσV

exp

[

−(x− 1
2)

2

2σ2
V

]

, (3.27)

where the polynomial in front of the Gaussian factor ensures that the LCDA vanishes at

the endpoints x = 0, 1. In order to estimate the uncertainties related to the functional

form and to capture the effects of unknown higher-order corrections to relation (3.26), we

include a second error of ±25% on the σV parameters. Given this form, we compute the

first 20 Gegenbauer moments at the low scale µ0, evolve them up to the factorization scale

µ ≈ mh using (3.24), and use these results in evaluating relation (3.22).

We are now ready to present our numerical results for the direct contributions to the

reduced form factors FV in (3.21) for various vector mesons, including detailed error esti-

mates. They are collected in table 3. The different sources of theoretical errors contain a

perturbative uncertainty (subscript “µ”), which we determine by varying the factorization

scale µ between mh/2 and 2mh. Once the NLO corrections are included our results are

very stable under scale variations. The scale uncertainties are larger for the imaginary

parts than for the real parts of the form factors, since these start at O(αs) and there is

thus no compensation of the scale dependence. We emphasize, however, that the imaginary

parts only have a small impact on our numerical predictions for the decay rates. We also

include the uncertainty in the value of the b-quark mass, which has a very small impact.

The uncertainties related to hadronic parameters include the ratio f⊥
V /fV (subscript “f”)

and uncertainties in the shapes of the LCDAs, as modeled by the values of the Gegenbauer

moments aV⊥

2 and aV⊥

4 (light mesons) and the width parameter σV (heavy mesons). These

hadronic uncertainties are the dominant sources of errors. The last column in the table

shows the results obtained when all errors are added in quadrature. These numbers will

be used for our phenomenological analysis in section 4. We observe that the spread of
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Meson Form factor with errors [%] Combined value [%]

Fρ0 4.30+0.04
− 0.05 µ ± 0.03mb

± 0.24f ± 0.12a2 ± 0.22a4 (4.30± 0.35) + i(0.67± 0.14)

+i
(

0.67+0.14
− 0.10 µ ± 0.00mb

± 0.04f ± 0.03a2 ± 0.06a4
)

Fω 4.26+0.04
− 0.05 µ ± 0.03mb

± 0.30f ± 0.14a2 ± 0.21a4 (4.26± 0.40) + i(0.66± 0.14)

+i
(

0.66+0.14
− 0.10 µ ± 0.00mb

± 0.05f ± 0.03a2 ± 0.06a4
)

Fφ 4.53+0.04
− 0.05 µ ± 0.03mb

± 0.24f ± 0.15a2 ± 0.23a4 (4.53± 0.37) + i(0.70± 0.15)

+i
(

0.70+0.14
− 0.10 µ ± 0.01mb

± 0.04f ± 0.04a2 ± 0.06a4
)

FJ/ψ 4.54+0.02
− 0.04 µ ± 0.03mb

± 0.70f
+0.13
− 0.17 σV (4.54± 0.72) + i(0.63± 0.14)

+i
(

0.63+0.11
− 0.08 µ ± 0.00mb

± 0.10f
+0.03
− 0.04 σV

)

FΥ(1S) 5.04+0.02
− 0.03 µ ± 0.04mb

± 0.18f
+0.09
− 0.07 σV (5.04± 0.21) + i(0.66± 0.10)

+i
(

0.66+0.12
− 0.08 µ ± 0.00mb

± 0.02f
+0.02
− 0.01 σV

)

FΥ(2S) 5.09+0.02
− 0.04 µ ± 0.04mb

± 0.24f
+0.13
− 0.12 σV (5.09± 0.27) + i(0.68± 0.11)

+i
(

0.68+0.12
− 0.09 µ ± 0.00mb

± 0.03f
+0.03
− 0.02 σV

)

FΥ(3S) 5.11+0.02
− 0.04 µ ± 0.04mb

± 0.24f
+0.15
− 0.14 σV (5.11± 0.29) + i(0.69± 0.12)

+i
(

0.69+0.12
− 0.09 µ ± 0.00mb

± 0.03f
+0.04
− 0.03 σV

)

Table 3. Theory predictions for the reduced form factors FV including error estimates.

h

γ

W h
W

W

γ

h

γ

t

h

γ

t

Figure 4. Examples of electroweak radiative corrections (top row) and higher-order QCD radiative

corrections (bottom row) to the h → V γ decay amplitudes.

the results for the form factors FV for different vector mesons is rather small. The theo-

retical uncertainties on the real part of FV are typically between 4% and 9%. The only

exception is FJ/ψ, for which the uncertainty in the ratio of decay constants is about 16%.

It would probably be possible to reduce this uncertainty by performing a more detailed

NRQCD analysis.

Power-suppressed corrections to our results (3.16) and (3.21) can be organized in an

expansion in (ΛQCD/mh)
2 for light mesons and (mV /mh)

2 for heavy mesons [19]. They are
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=

Figure 5. One-loop SM contributions to the effective hγγ and hγZ vertices.

at most of order 10−2 for V = Υ(nS), 10−3 for V = J/ψ, and 10−4 for all light mesons. It

is thus safe to work with the leading-order terms. In our analysis we neglect two-loop QCD

corrections, whose effects should be covered by the error we estimate from scale variations,

and one-loop QED or electroweak radiative corrections, a few examples of which are shown

in the top row in figure 4. For flavor-diagonal final-state mesons, the first diagram involves

a factor mW
v

α
π ∼ 0.7 · 10−3 instead of the Yukawa coupling yq in the diagrams in figure 2,

while the second diagram involves a factor yt
α
π ∼ 2 · 10−3. This is smaller (by roughly a

factor 10) than the charm-quark Yukawa coupling and of the same order as the strange-

quark Yukawa coupling. If the goal is to reach sensitivity to the strange-quark Yukawa

coupling in the SM, then these electroweak corrections should be calculated. However,

such a level of sensitivity will be out of reach at the LHC. In the bottom row in figure 4 we

show other examples of neglected diagrams, which involve a h → gg(γ) transition followed

by the conversion of the two gluons into the final-state meson. The diagram on the left

corresponds to a two-gluon LCDA of the vector meson, which does not exist at leading

twist due to the Landau-Yang theorem. The graph on the right is analogous to the second

diagram shown in the first row, but with the internal W bosons replaced by gluons. A

naive estimate indicates that the two types of effects should be of similar magnitude.

3.2 Indirect contributions to the form factors

We now proceed to study the photon- and Z-pole contributions to the decay amplitude

shown in the third diagram in figure 2. The crossed circle in this diagram represents the

off-shell h → γγ∗ and h → γZ∗ amplitudes, which in the SM are induced by loop graphs

involving a virtual charged fermion or a W boson (in unitary gauge), as shown in figure 5.

Since the indirect contributions to the decay amplitudes are numerically dominant over the

direct ones and our goal is to compute them with the highest possible accuracy, we include

the effect that the intermediate gauge boson is slightly off shell (k2 = m2
V ), and we keep

the full dependence on the meson mass even though this is a very small effect.

The exact one-loop expressions for the off-shell h → γγ∗ and h → γZ∗ amplitudes

have been derived in [50]. Using these results and extending them to the case of the

pseudo-scalar Higgs couplings in (2.1), we find

F V
1,indirect =

α(mV )

π

m2
h −m2

V

mV v

[

QV Cγγ(xV )−
vV

(sW cW )2
m2

V

m2
Z −m2

V

CγZ(xV )

]

,

F V
2,indirect = i

α(mV )

π

m2
h −m2

V

mV v

[

QV C̃γγ(xV )−
vV

(sW cW )2
m2

V

m2
Z −m2

V

C̃γZ(xV )

]

,

(3.28)

where xV = m2
V /m

2
h accounts for the effects of the off-shell boson, and vV ≡ ∑

q c
V
q vq is
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defined in analogy with QV in (3.4), where vf = 1
2 T

f
3 − s2WQf are the vector couplings of

the Z boson to fermions. It is a safe approximation to neglect flavor-mixing effects for the

subleading contribution from h → γZ∗ → γV . At one-loop order, the loop functions are

given by

Cγγ(xV ) =
∑

q

κq
2NcQ

2
q

3
Af (τq, xV ) +

∑

l

κl
2Q2

l

3
Af (τl, xV )

− κW
2

Aγγ
W (τW , xV ) + κγγ ,

CγZ(xV ) =
∑

q

κq
2NcQqvq

3
Af (τq, xV ) +

∑

l

κl
2Qlvl
3

Af (τl, xV )

− κW
2

AγZ
W (τW , xV ) + κγZ ,

(3.29)

and

C̃γγ(xV ) =
∑

q

κ̃qNcQ
2
q Bf (τq, xV ) +

∑

l

κ̃l Q
2
l Bf (τl, xV ) + κ̃γγ ,

C̃γZ(xV ) =
∑

q

κ̃qNcQqvq Bf (τq, xV ) +
∑

l

κ̃l Qlvl Bf (τl, xV ) + κ̃γZ .
(3.30)

The first two terms in each coefficient are the contributions from the quarks and leptons,

the third term in Cγγ and CγZ arises from gauge-boson loops, and the last term accounts

for possible new-physics contributions parameterized by the operators shown in the second

line of (2.1). We have introduced the dimensionless variables τf = 4m2
f/m

2
h (for f = q, l)

and τW = 4m2
W /m2

h. We use the running quark masses mq(mh) when evaluating the

variables τq, which is appropriate in view of the large momentum transfer in the loop.

Explicit expressions for the loop functions Af , A
γV
W and Bf are given in appendix D. In

the SM we have κq = κl = κW = 1 and κγγ = κγZ = 0. The effective Higgs couplings κ̃i
entering in (3.30) all vanish in the SM.

Since for small values of τf the fermion loop functions Af (τf , xV ) and Bf (τf , xV ) are

proportional to τf , it suffices for all practical purposes to keep the contributions from

the third-generation fermions. The effects of the off-shellness of the photon that converts

into the final-state vector meson gives rise to very small corrections. The relevant variable

xV = m2
V /m

2
h varies between 3.8×10−5 for V = ρ and 6.9×10−3 for Υ(3S). Note also that

the contribution of the h → γZ∗ amplitude in (3.28) is by itself strongly power suppressed.

Numerically, we obtain

Cγγ(0) = κγγ − 4.164κW + 0.920κt − (0.012− 0.011i)κτ − (0.007− 0.008i)κb

− (0.015− 0.010i)κ̄c − 0.001κ̄s + . . . ,

CγZ(0) = κγZ − 2.173κW + 0.132κt − (0.004− 0.004i)κb − (0.002− 0.001i)κ̄c + . . . ,

(3.31)

and similar expressions hold for the CP-odd coefficients C̃γγ and C̃γZ . Notice that the

contributions from second-generation fermions are very small even if one assumes that

their Yukawa couplings are as large as those of the b-quark (i.e., for κ̄c,s = 1). In the

SM, we have Cγγ(0) = −3.266 + 0.021i and CγZ(0) = −1.046 + 0.005i, while the CP-odd
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coefficients C̃γγ and C̃γZ vanish. In the expressions for the form factors in (3.28) these

coefficients are weighted by different factors. Note also that to good approximation the

indirect contributions to the form factors are proportional to 1/mV and hence they are

larger for lighter mesons.

Let us now discuss the impact of QCD and electroweak radiative corrections on the

above results. Gluon exchanges between the two quark lines that make up the final-state

meson in the third diagram in figure 2 are of non-perturbative nature and are accounted for

by the meson decay constant fV . Radiative corrections connecting the effective hγγ and

hγZ vertices in the last diagram in figure 2 to the final-state quarks give rise to graphs which

no longer receive the enhancement proportional to m2
h/m

2
V from the photon propagator.

Also, at least two gluons would need to be exchanged by color conservation. The effect

of such diagrams is negligible. We thus only need to worry about QCD corrections to the

h → γγ∗ and h → γZ∗ amplitudes, which arise from two-loop graphs in which a gluon is

exchanged inside the quark loop. These corrections have been calculated in numerical form

in [51] and analytically in [52]. In practice the corrections are only relevant for the top-quark

contribution. Their effect is to enhance the decay amplitude by a few percent. Two-loop

electroweak corrections to the h → γγ amplitude in the SM were calculated in [53, 54] (see

also [55]). One finds that they are small and negative. For mh = 125.09GeV, the effects

of QCD and electroweak corrections nearly cancel each other, leaving a total correction of

about −0.2% [54]. In our phenomenological analysis we will ignore radiative corrections

on the indirect contributions computed here, as their combined effect is well below the 1%

level. We will device a strategy where the dominant contribution proportional to Cγγ(0),

including radiative corrections, drops out. Radiative corrections then only have a tiny

impact of the coefficients of the subleading terms.

3.3 Reduction of theoretical uncertainties

If we assume that the Higgs couplings to the electron are close to those predicted by the

SM, the CP-odd form factors F V
2 are more than two orders of magnitude smaller than

F V
1 . For a first discussion we can thus focus on the form factors F V

1 . Keeping only the

numerically significant terms, we find

F
Υ(1S)
1 = 0.022κW − 0.005κt − 0.005κγγ − (0.017± 0.001)κb + . . . ,

F
J/ψ
1 = −0.137κW + 0.030κt + 0.033κγγ + (0.030± 0.005)κ̄c + . . . ,

Fφ
1 = 0.206κW − 0.045κt − 0.049κγγ − (0.015± 0.001)κ̄φ + . . . ,

(3.32)

where the last term in each line represents the direct contribution. We have dropped the

small imaginary parts of the latter, whose impact is tiny. Replacing κ̄φ ≈ κ̄s ≈ 0.019κs
and κ̄c ≈ 0.223κc one obtains equivalent expressions in which the modified Higgs couplings

are expressed as corrections to the SM Yukawa couplings. The challenge is to detect the

small impact of the direct contributions in the last two cases.

To this end, it is essential to have absolute confidence in the precision with which

the indirect contributions can be calculated in the SM, and to be able to subtract these

contributions in a reliable way without assuming that the SM is correct. The latter task

– 16 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
2

can be accomplished because the off-shellness of the photon in the h → γγ∗ contribution as

well as the h → γZ∗ contribution in the third graph in figure 2 are both very small effects.

It is therefore possible to eliminate the main dependence of the indirect contributions on

the new-physics parameters by considering the following ratio of decay rates:

Br(h → V γ)

Br(h → γγ)
=

Γ(h → V γ)

Γ(h → γγ)
=

8πα2(mV )

α

Q2
V f

2
V

m2
V

(

1− m2
V

m2
h

)2 ∣
∣1−∆V

∣

∣

2
+

∣

∣rCP − ∆̃V

∣

∣

2

1 + |rCP|2
.

(3.33)

Taking such a ratio has the additional advantage that one becomes insensitive to the un-

known total width of the Higgs boson, and hence one obtains directly the ratio of branching

fractions. One can even go one step further and eliminate the sensitivity to the decay con-

stant fV by using (3.6) and considering the ratio

mV

Γ(V → e+e−)

Br(h → V γ)

Br(h → γγ)
=

6

α

(

1− m2
V

m2
h

)2 ∣
∣1−∆V

∣

∣

2
+
∣

∣rCP − ∆̃V

∣

∣

2

1 + |rCP|2
. (3.34)

The only remaining hadronic uncertainties are now contained in the calculation of the

reduced form factors FV , which we have collected in table 3.

The explicit expressions for the various quantities entering the right-hand side of (3.33)

are rCP = C̃γγ(0)/Cγγ(0) and

∆V = −κ̄V
FV

Cγγ(0)

πmV v

α(mV )m2
h

− Cγγ(xV )− Cγγ(0)

Cγγ(0)
+

m2
V

m2
Z

vV
QV s2W c2W

CγZ(0)

Cγγ(0)
,

∆̃V = −¯̃κV
FV

Cγγ(0)

πmV v

α(mV )m2
h

− C̃γγ(xV )− C̃γγ(0)

Cγγ(0)
+

m2
V

m2
Z

vV
QV (sW cW )2

C̃γZ(0)

Cγγ(0)
,

(3.35)

where we work to leading order in the small ratios m2
V /m

2
Z and xV = m2

V /m
2
h. Since the

individual terms in these expressions are all normalized to Cγγ(0), it is convenient to define

an effective parameter κeffγγ by normalizing this coefficient to its SM value. Specifically, we

write

κeffγγ =
Cγγ(0)
[

Cγγ(0)
]

SM

=
[

1.275κW − 0.282κt + (0.004− 0.003i)κτ + (0.002− 0.002i)κb

+ (0.004− 0.003i)κ̄c − 0.306κγγ

]

/(1− 0.006i) .

(3.36)

Here and below the omitted contributions have coefficients equal to zero up to the indicated

number of digits. From the empirical fact that the Higgs couplings to W bosons and to

the third-generation fermions agree with their SM values within errors, it follows that

κeffγγ cannot be too different from its SM value, except perhaps for a possible new-physics

contribution parameterized by κγγ . Note that a tiny imaginary part of κeffγγ , which can be

present for non-standard values of the κi parameters, would have no noticeable impact on

our analysis. The ratio rCP entering in (3.33) vanishes in the SM and is entirely due to the

various CP-odd new-physics parameters κ̃i. We find

rCP =
−(0.429 + 0.003i)κ̃t + (0.004− 0.003i)κ̃τ + (0.002− 0.002i)κ̃b

κeffγγ

+
(0.005− 0.003i)¯̃κc − (0.306 + 0.002i)κ̃γγ

κeffγγ
.

(3.37)
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Under the assumption that the Higgs couplings to the electron are approximately SM like,

the upper bounds |κ̃t| < 0.01 and |κ̃γγ | < 0.006 mentioned above relation (2.3) imply that

the first and last term in the numerator, which have the largest coefficients by far, are at

most 0.004 and 0.002 in magnitude, respectively. It follows that the magnitude of rCP can

at most be of order 1%, and hence the impact of this parameter in (3.35) is likely to be

negligible. We emphasize that the parameter rCP can in principle be probed experimentally

by studying h → γγ decays, in which both photons undergo nuclear conversion to electron-

positron pairs [56]. In practice, such a measurement appears to be very challenging.

We now present our numerical results for the CP-even coefficients ∆V for the various

mesons. The complete expressions are collected in appendix E. They contain direct contri-

butions proportional to the relevant κ̄q parameters and indirect contributions, which are

due to the power-suppressed h → γZ∗ → γV contribution and the effect of the off-shellness

of the photon in the h → γγ∗ → γV contribution. These latter terms are significantly

smaller than the theoretical uncertainties in the direct terms. In our phenomenological

analysis we will keep these small effects but evaluate them in the SM. This gives rise to

the expressions

∆ρ0 =
[

(0.068± 0.006) + i(0.011± 0.002)
] κ̄ρ0

κeffγγ
+ 0.00002 ,

∆ω =
[

(0.068± 0.006) + i(0.011± 0.002)
] κ̄ω
κeffγγ

− 0.00011 ,

∆φ =
[

(0.093± 0.008) + i(0.015± 0.003)
] κ̄φ
κeffγγ

+ 0.00014 ,

∆J/ψ =
[

(0.281± 0.045) + i(0.040± 0.009)
] κ̄c
κeffγγ

+ 0.00005 ,

(3.38)

and

∆Υ(1S) =
[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i ,

∆Υ(2S) =
[

(1.014± 0.054) + i(0.141± 0.022)
] κb
κeffγγ

+ 0.0207− 0.0015i ,

∆Υ(3S) =
[

(1.052± 0.060) + i(0.148± 0.025)
] κb
κeffγγ

+ 0.0221− 0.0015i .

(3.39)

Approximate expressions for κ̄ρ0 , κ̄ω and κ̄φ have been given in (3.18) and (3.19). The

constant terms in the above results show the tiny power-suppressed corrections. Only for

the Υ(nS) states they reach the level of percent. Our complete expressions for the CP-odd

coefficients ∆̃V are also given in appendix E. It is a good approximation to only keep the

direct contributions in these terms, which are likely to give rise to the dominant effects.

Their coefficients are the same as in the expressions above, but with κ̄q replaced by ¯̃κq and

κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expres-

sions obtained by other authors. From [10] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u +

κ̄d)/3, ∆ω = (0.092±0.021) (2κ̄u+ κ̄d) and ∆φ = (0.130±0.027)κ̄s, while from [32] one can

obtain ∆J/ψ = (0.392± 0.053)κ̄c, ∆Υ(1S) = (1.048± 0.046)κb, ∆Υ(2S) = (1.138± 0.053)κb
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and ∆Υ(3S) = (1.175 ± 0.056)κb. These values are systematically higher than ours due to

the fact that these authors have not (or not fully) included QCD radiative corrections and

RG evolution effects in the direct contributions. For the Υ(nS) states it is important to

keep the small imaginary parts of the direct contributions, since in the SM the real parts

almost perfectly cancel in the combinations
∣

∣1−∆V

∣

∣ in (3.33). The result for ∆ω obtained

in [10] misses the contribution from ω−φ mixing and contains a sign mistake in front of

κ̄d. Note also that our predictions for the ∆V parameters of light mesons are significantly

more accurate than those obtained in [10].

4 Phenomenological results

We begin by quoting our benchmark results for the h → V γ branching fractions in the SM.

For a Higgs mass of mh = (125.09 ± 0.024)GeV, the SM value of the h → γγ branching

ratio is (2.28 ± 0.11) · 10−3 [57]. Using this result, we obtain for the decays into light

vector mesons
Br(h → ρ0γ) = (1.68± 0.02fρ ± 0.08h→γγ) · 10−5 ,

Br(h → ωγ) = (1.48± 0.03fω ± 0.07h→γγ) · 10−6 ,

Br(h → φγ) = (2.31± 0.03fφ ± 0.11h→γγ) · 10−6 ,

(4.1)

where we quote separately the uncertainties due to the vector-meson decay constant fV
and the h → γγ branching ratio, the latter being the dominant source of uncertainty. Our

predictions are systematically lower and more accurate than those obtained in [10], where

the values Br(h → ρ0γ) = (1.9 ± 0.15) · 10−5, Br(h → ωγ) = (1.6 ± 0.17) · 10−6 and

Br(h → φγ) = (3.0 ± 0.13) · 10−6 are quoted. While the first two results are compatible

with ours within errors, there is a significant difference for the important mode h → φγ.

For decays into heavy vector mesons, we find

Br(h → J/ψ γ) = (2.95± 0.07fJ/ψ ± 0.06direct ± 0.14h→γγ) · 10−6 ,

Br(h → Υ(1S) γ) = (4.61± 0.06fΥ(1S)

+1.75
− 1.21 direct ± 0.22h→γγ) · 10−9 ,

Br(h → Υ(2S) γ) = (2.34± 0.04fΥ(2S)

+0.75
− 0.99 direct ± 0.11h→γγ) · 10−9 ,

Br(h → Υ(3S) γ) = (2.13± 0.04fΥ(3S)

+0.75
− 1.12 direct ± 0.10h→γγ) · 10−9 .

(4.2)

In these cases there is an extra source of theoretical uncertainty related to the calculation

of the direct contribution to the decay amplitude. Note that there is an almost perfect

cancellation between the direct and indirect contributions to the h → Υ(nS) γ decay am-

plitudes, and as a consequence the resulting branching ratios are roughly three orders of

magnitude smaller than the h → J/ψ γ branching fraction. For comparison, we note that

the branching ratios found in [32] read (2.79+0.16
− 0.15) · 10−6 for J/ψ, (0.61+1.74

− 0.61) · 10−9 for

Υ(1S), (2.02+1.86
− 1.28) · 10−9 for Υ(2S) and (2.44+1.75

− 1.30) · 10−9 for Υ(3S). We find good agree-

ment with the results reported by these authors except for the decay h → Υ(1S) γ, where

their value is about a factor 7 smaller than ours. The reason is that we do not neglect the

imaginary part of the direct contribution to ∆Υ(1S) in (3.38), which prevents
∣

∣1−∆Υ(1S)

∣

∣

2

from becoming arbitrarily small.
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Figure 6. Predictions (central values) for the ratios of the h → V γ and h → γγ branching

fractions with V = φ, J/ψ and Υ(1S) as functions of the rescaled Yukawa couplings normalized to

the parameter κeff
γγ defined in (3.36). The black dots indicate the SM values. Coupling parameters

inside the dashed white circle in the third plot are preferred by the current LHC data. See text for

further details.

Our predictions may also be compared with the upper limits obtained from a recent

first analysis of these rare decays reported by the ATLAS collaboration. They are Br(h →
J/ψ γ) < 1.5 · 10−3, Br(h → Υ(1S) γ) < 1.3 · 10−3, Br(h → Υ(2S) γ) < 1.9 · 10−3 and

Br(h → Υ(3S) γ) < 1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a

factor 500 to become sensitive to the h → J/ψ γ mode in the SM, while the SM branching

fractions for the decays h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we

will discuss below, these decay modes allow for very interesting new-physics searches. With

3 ab−1 of integrated luminosity, about 1.7×108 Higgs bosons per experiment will have been

produced by the end of the high-luminosity LHC run [11]. If the J/ψ is reconstructed via its

leptonic decays into muon pairs, the effective branching ratio in the SM is Br(h → J/ψ γ →
µ+µ−γ) = 1.8 · 10−7, meaning that about 30 events can be expected per experiment. If

also the decays into e+e− can be used, then ATLAS and CMS can hope to collect a

combined sample of about 120 events. A detailed discussion of the experimental prospects

for reconstructing these events over the background can be found in [9]. Concerning the

h → φγ decay mode, a reconstruction efficiency ǫφγ = 0.75 was assumed for the φγ final

state in [10], which appears to us as an optimistic assumption. In the SM one expects

about 400ǫφγ events per experiment in this mode, meaning that the two experiments can

hope to look at a combined sample of several hundred events. Likewise, in the SM one

expects about 2900ǫρ0γ events per experiment in the decay mode h → ρ0γ.

In figure 6 we show our predictions for the ratio of branching fractions (times 1000)

defined in (3.33) in the plane of the parameters κ̄V /κ
eff
γγ and ¯̃κV /κ

eff
γγ . We focus on the most

interesting cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would

look very similar to that for V = φ (apart from the overall scale of the branching fractions),

while the plots for higher Υ(nS) resonances would look very similar to that for the Υ(1S)

meson. For orientation, we mention that a value of 0.4 in these plots corresponds to a
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h → V γ branching fraction of about 10−6, assuming that the h → γγ branching fraction

is SM like. This assumption will be implicit whenever we quote absolute branching ratios

below; otherwise the quoted numbers must be rescaled by Br(h → γγ)/Br(h → γγ)SM.

The structure of our results (3.38) implies that the rescaled Yukawa couplings always

enter normalized to κeffγγ . Hence, if a deviation from the SM is observed in any of these

modes, then this could be caused either by a new-physics effect on the h → γγ branching

ratio (parameterized by κeffγγ) or by a non-standard Yukawa coupling. The former effect

would however be correlated among all decay channels. We observe that the h → φγ

branching ratio is rather insensitive to the CP-odd parameter ¯̃κφ, the reason being that

this parameter enters quadratically and only via the direct contribution, which by itself is a

small correction. An analogous statement holds (with less accuracy) for the case h → J/ψ γ.

It is thus a reasonable approximation to study these decay modes under the assumptions

that ¯̃κφ = 0 and ¯̃κc = 0. The situation is different for the h → Υ(nS) γ decay modes, for

which there is a strong cancellation between the direct and indirect contributions. The

direct contributions are no longer a small correction, and hence the quadratic terms in κb
and κ̃b are important. The dashed white circle in the third plot indicates the current upper

bound on the combination

λbγ ≡
√

∣

∣

∣

∣

κb
κeffγγ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

κ̃b
κeffγγ

∣

∣

∣

∣

2

. (4.3)

To an excellent approximation, λ2
bγ measures the deviation of the ratio Br(h → bb̄)/Br(h →

γγ) from its SM value. The Higgs bosons must be produced via the same production

mechanism in both cases, so that possible new-physics effects in Higgs production cancel

out. Since the h → bb̄ mode is measured at the LHC in the rare V h and tt̄h associated-

production channels, at present no accurate direct measurements of λbγ are available.

However, from the model-independent global analyses of Higgs couplings performed by

ATLAS and CMS, in which all couplings to SM particles (including the effective couplings

to photons and gluons) are rescaled by corresponding κi parameters and also invisible

Higgs decays are allowed, one obtains λbγ = 0.63 ± 0.27 for CMS (see figure 17 in [3])

and λbγ = 0.67 ± 0.32 for ATLAS (see table 9 in [4]). At 95% CL this (roughly) implies

λbγ < 1.3. Within this allowed region, the h → Υ(1S) branching ratio varies by more than

two orders of magnitude and can take values as large as 1.3 ·10−6. This might be accessible

in the high-luminosity run of the LHC. If the Υ(1S) meson is reconstructed via its decays

into muon or electron pairs, one could then hope for a sample of about 20 events with

3 ab−1 combining the ATLAS and CMS data sets.

In order to better assess the theoretical uncertainties in our predictions, we now study

the projections of the results onto the axis where the CP-odd couplings vanish. For the

light mesons (V = ρ0, ω, φ), setting ¯̃κV = 0 has basically no impact on the branching ratios.

In figure 7 we show the ratio of branching fractions defined in (3.33) as a function of the

CP-even couplings κ̄V for h → ρ0γ and h → φγ. The width of the bands indicates the

theoretical uncertainty. We have not included the small uncertainty in the values of the

decay constants fV , because they can be eliminated using relation (3.34), and we assume

that by the time the h → V γ modes will be discovered the decay constants will have
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Figure 7. Predictions for the h → ργ and h → φγ branching ratios, normalized to the h → γγ

branching fraction, as functions of κ̄ρ0 ≈ (2κ̄u + κ̄d)/3 and κ̄φ ≈ κ̄s, respectively, normalized to

κeff
γγ . The SM values are indicated by the red arrows.

been measured more precisely than today. The corresponding plot for h → ωγ would

look identical to the left plot, but with a different vertical scale. While the theoretical

uncertainties are small in all cases, we observe that the sensitivity of the branching ratios to

the modified Yukawa couplings is unfortunately rather week. For example, a hypothetical

10% measurement of the h → ρ0γ branching ratio at the SM value would imply that

|κ̄ρ0/κeffγγ | < 0.8, which is to say that a certain combination of the up- and down-quark

Yukawa couplings is bounded not to exceed 80% of the b-quark Yukawa coupling. A 1%

measurement would be required to obtain the more interesting bound |κ̄ρ0/κeffγγ | < 0.08,

which is still more than 100 times the SM value for κ̄ρ0 given in (3.18). The situation

is not much better for the case h → φγ. With a 10% measurement of the branching

fraction at the SM rate, one would be able to conclude that −0.55 < κ̄φ/κ
eff
γγ < 0.62. With

a 1% measurement one would obtain the bounds −0.04 < κ̄φ/κ
eff
γγ < 0.08, which would

come close to the SM value κ̄φ ≈ 0.02. Such a measurement is however out of the reach

of the LHC.

We now turn to the more interesting cases of radiative Higgs decays into heavy quarko-

nium states. In figure 8 we show our predictions as a function of the physical parameters

κc (not κ̄c) and κb, again assuming that the CP-odd couplings κ̃c and κ̃b vanish. In the

latter case the impact of a possible CP-odd coupling on the branching fraction can be

significant, and in the case of a measurement of a non-standard rate one should keep this

possibility in mind. From the left plot in the figure we conclude that a 20% measure-

ment of the h → J/ψ γ branching ratio at the SM value would allow one to constrain

−0.51 < κc/κ
eff
γγ < 3.07, which would provide quite interesting information on the CP-even

charm-quark Yukawa coupling. With a 10% measurement this range could be shrunk to

0.32 < κc/κ
eff
γγ < 1.53, and with a 5% measurement one could reach 0.75 < κc/κ

eff
γγ < 1.19.

Such accurate measurements serve as an interesting physics target for a future 100TeV

proton-proton collider.

The situation with the h → Υ(nS) γ decay modes is different and quite interesting. In

the SM the corresponding branching fractions shown in (4.2) are so small that these decays
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Figure 8. Predictions for the h → J/ψ γ and h → Υ(1S) γ branching ratios, normalized to the

h → γγ branching fraction, as functions of κc and κb, respectively, normalized to κeff
γγ . The SM

values are indicated by the red arrows.

would be unobservable. The strong suppression arises from an almost perfect cancellation

between the direct and indirect contributions to the decay amplitudes, which results from

the fact that in the SM Re∆Υ(nS) ≈ 1 within a few percent, see (3.39). Thanks to this

fortuitous fact, these decays offer a much enhanced sensitivity to the effects of new physics.

For instance, the SM value of the h → Υ(1S) γ branching ratio of 4×10−9 can be enhanced

by a factor of more than 200 for κb/κ
eff
γγ ≈ −1 or κb/κ

eff
γγ ≈ 3. The first of these possibilities

would yield a h → bb̄ rate consistent with current LHC measurements. For example, with

a hypothetical 25% measurement Br(h → Υ(1S) γ)/Br(h → γγ) = (0.4 ± 0.1) · 10−3 one

would conclude from the figure that −1.21 < κb/κ
eff
γγ < −0.64, which would be a very

significant piece of information and a spectacular sign of new physics.

One may ask whether the current bounds obtained by the ATLAS collaboration already

have a significant impact on the Higgs couplings. Unfortunately this is not the case. We

find that the upper values reported in [20] imply approximately

√

∣

∣

∣

∣

κc
κeffγγ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

κ̃c
κeffγγ

∣

∣

∣

∣

2

< 429 ,

√

∣

∣

∣

∣

κb
κeffγγ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

κ̃b
κeffγγ

∣

∣

∣

∣

2

< 78 , (4.4)

both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other

words, the current bounds derived from exclusive h → V γ decays imply that the couplings

of the charm and bottom quarks to the Higgs boson are not much stronger than the top-

quark Yukawa coupling (the more optimistic value |κc| < 220 was quoted in [25]).

We emphasize again that any experimental information on the rare radiative decays

h → Υ(nS) γ should be interpreted in terms of an allowed region in the two-dimensional

plane of the couplings κb/κ
eff
γγ and κ̃b/κ

eff
γγ . The one-dimensional projection shown in figure 8

is meant for illustrative purposes only. It is interesting to speculate about some possible

scenarios that may arise at the end of the high-luminosity LHC run with an integrated

luminosity of 3 ab−1. Existing estimates of the precision achievable on the Yukawa coupling

to bottom quarks and the effective Higgs coupling to photons (our parameter |κeffγγ |) suggest
that, at 95% CL, the quantity λbγ defined in (4.3) can be measured with a precision at
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Figure 9. Constraints on the effective coupling strengths κb/κ
eff
γγ and κ̃b/κ

eff
γγ derived in two

possible scenarios for future measurements of the ratios Br(h → bb̄)/Br(h → γγ) (light blue) and

Br(h → Υ(1S) γ)/Br(h → γγ) (orange). The allowed parameter space is given by the red-shaded

intersection of the two rings. The black dot indicates the SM value.

least as good as 15% [11]. In figure 9 we consider two possible future scenarios:

(I) λbγ = 1.0± 0.15 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
< 0.2 · 10−3 ,

(II) λbγ = 0.65± 0.10 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
= (0.4± 0.2) · 10−3 .

(4.5)

In the first scenario the ratio Br(h → bb̄)/Br(h → γγ) is measured at its SM value and

an upper limit of about 0.5 · 10−6 is placed on the h → Υ(1S) γ branching ratio. Even

though no observation of this rare decay is accomplished, the assumed upper bound still

has a non-trivial impact, as it limits the allowed values of κb/κ
eff
γγ to the right half-plane.

In particular, this would exclude the possibility that κb/κ
eff
γγ ≈ −1. In the second scenario

the parameter λbγ is measured close to its current value but with higher accuracy, while a

rough 50% measurement of the h → Υ(1S) γ branching ratio at about (0.91± 0.46) · 10−6

is obtained. In this case one could exclude the SM value κb/κ
eff
γγ = 1 and limit the allowed

values of this ratio to the left half-plane. These speculative results nicely indicate the power

of future searches for the rare exclusive decay h → Υ(1S) γ in the high-luminosity phase of

the LHC. The statistics of such a search can be approximately doubled by including also

the Υ(2S) γ and Υ(3S) γ final states.

Several ideas for constraining the absolute value of the charm-quark Yukawa coupling

in the high-luminosity run at the LHC or at a future 100TeV collider have been put forward

in [25]. If such a measurement can indeed be made, it implies a circular allowed region

centered at (0, 0) in the plane of the parameters κc/κ
eff
γγ and κ̃c/κ

eff
γγ . A measurement of

the h → J/ψ γ branching ratio would be mainly sensitive to κc/κ
eff
γγ and hence confine the

couplings to a curved band, which intersects this region (see the center plot in figure 6).

In this way, it may be possible to perform an analysis similar to that shown in figure 9 for

the Higgs couplings to the charm quark.
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If at a future 100TeV proton-proton collider one succeeds to collect large data samples

of the rare decays h → V γ → l+l−γ with V = J/ψ or Υ(nS), one might even speculate

about the possibility to measure the polarization of both the vector meson and the photon

by considering events in which the photon undergoes a nuclear conversion to an electron-

positron pair, in analogy with what was proposed for h → γγ decay in [56] and for the

B → K∗γ process in [58]. With such a measurement it would be possible to differentiate

between the two structures in (3.1), which in 3-vector notation correspond to the products

ε∗V · ε∗γ and ε∗V × ε∗γ of polarization vectors. In this way one would become sensitive to the

sign of the ratio κ̃q/κq of the CP-odd and CP-even Yukawa couplings, thus breaking the

degeneracy beetween the upper and lower half-planes in figure 9.

5 Conclusions

We have performed a state-of-the-art analysis of the rare exclusive decays h → V γ in

the context of generic extensions of the SM with modified Higgs couplings. These decays

are characterized by a destructive interference between two decay topologies. The direct

contribution is governed by diagrams where the Higgs boson decays into a quark anti-

quark pair, from which the vector meson is formed. It is proportional to the (modified)

Yukawa coupling of the Higgs to that quark flavor. Using QCD factorization and techniques

developed in [19], we have derived a closed analytic expression for the direct amplitudes

at next-to-leading order in αs as an infinite sum over Gegenbauer moments renormalized

at the scale µ ∼ mh. In this way large logarithmic corrections are resummed, and the

sensitivity of our predictions to hadronic input parameters is reduced. Power corrections

to the factorization formula are suppressed by (ΛQCD/mh)
2 or (mV /mh)

2 and can be safely

neglected. The second, indirect contribution to the decay amplitude arises from diagrams

where the Higgs boson decays into a photon and an off-shell neutral gauge boson, which

converts into the vector meson. Due to the smallness of the Yukawa couplings, this indirect

contribution is the dominant one in all cases but h → Υ(nS) γ. In order to reduce the

sensitivity to possible new-physics effects in the effective (loop-induced) hγγ vertex and

thus get access to the quark Yukawa couplings, we consider the ratio of the h → V γ and

h → γγ branching fractions, in which the indirect contribution drops out up to very small

power corrections. In our analysis we account for the effects of flavor mixing, which can

be important for the light mesons ρ0, ω and φ.

We have derived numerical predictions for the h → V γ branching fractions and studied

the possibility of using such measurements as probes of new-physics effects on the light-

quark Yukawa couplings. In the SM, the branching ratios we find typically lie in the range

of few times 10−6, several orders of magnitude below the ATLAS bounds for the h → J/ψ γ

and h → Υ(nS) γ branching ratios reported in [20]. Nevertheless, the very high yield of

Higgs bosons expected in the high-luminosity phase of LHC operation, combined with a

dedicated experimental effort, could make measurements of these rare processes possible.

We estimate that with 3 ab−1 of integrated luminosity it will be possible to probe for O(1)

modifications of the real part of the charm-quark Yukawa coupling and O(30) modifications

of the real part of the strange-quark Yukawa coupling.
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We have emphasized that the decays h → Υ(nS) γ provide a golden opportunity to

probe for new-physics effects on the bottom-quark Yukawa couplings. Due to a fortuitous

cancellation between the direct and indirect contributions to the corresponding decay am-

plitudes, the SM branching fractions for these modes are more than two orders of magnitude

smaller than the h → J/ψ γ branching ratio. They are unobservable at the LHC and at any

conceivable future collider. However, we show that with O(1) modifications of the b-quark

Yukawa couplings these branching fractions can be enhanced to an observable level. Any

measurement of such a decay would be a clear signal of new physics. Moreover, as we

have shown, a combined measurement of the two ratios Br(h → Υ(nS) γ)/Br(h → γγ) and

Br(h → bb̄)/Br(h → γγ) can provide complementary information on the real and imaginary

parts of the b-quark Yukawa coupling. This will allow one to probe the interesting option

that κb ≈ −1 has the opposite sign as in the SM.

Several extensions of our work are possible and worth pursuing. Decays into flavor

off-diagonal neutral mesons can be used to probe for flavor-violating couplings of the Higgs

boson, which at tree level are forbidden in the SM. Another straightforward generalization

is the application of our approach to the weak radiative decays h → M0Z and h → M±W∓,

whereM can be a pseudoscalar or vector meson, as well as decays into final states containing

two mesons. This is left for future work.

Exclusive radiative decays of the Higgs boson are an experimentally challenging en-

deavor, because the expected branching fractions are very small and the final states not

easy to reconstruct. Nevertheless, we have argued that studies of these processes may not

be impossible in the high-luminosity phase at the LHC and, even more so, at a future

100TeV proton-proton collider. This would present us with a unique laboratory to study

the real and imaginary parts of the Yukawa couplings of bottom and charm quarks, and

probe for enhanced Yukawa couplings of the lighter quarks. We cannot think of any other

way in which such direct studies of Yukawa couplings could be performed.
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A Effects of ω-φ mixing

We express the physical mass eigenstates |ω〉 and |φ〉 in terms of the flavor eigenstates

|ωI〉 = 1√
2

(

|uū〉+ |dd̄〉
)

and |φI〉 = |ss̄〉 by means of the rotation

(

|ω〉
|φ〉

)

=

(

cos θωφ − sin θωφ
sin θωφ cos θωφ

)(

|ωI〉
|φI〉

)

. (A.1)
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In the limit where OZI-violating contributions are neglected, we can then relate the matrix

elements of the flavor-specific tensor currents in (3.8) to decay constants defined in terms

of the analogous matrix elements

〈ωI(k, ε)|
ū iσµνu+ d̄ iσµνd√

2
|0〉 = if⊥

ωI
(kµε∗ν − kνε∗µ) ,

〈φI(k, ε)| s̄ iσµνs |0〉 = if⊥
φI

(kµε∗ν − kνε∗µ)

(A.2)

of the flavor eigenstates |ωI〉 and |φI〉 with the corresponding flavor currents. Assuming

isospin symmetry, this gives

fu⊥
ω = fd⊥

ω =
cos θωφ√

2
f⊥
ωI

, fs⊥
ω = − sin θωφ f

⊥
φI

, (A.3)

and

fs⊥
φ = cos θωφ f

⊥
φI

, fu⊥
φ = fd⊥

φ =
sin θωφ√

2
f⊥
ωI

. (A.4)

By definition, the quantities f⊥
ω and f⊥

φ defined below (3.8) are then given by

f⊥
ω = cos θωφ f

⊥
ωI

+
√
2 sin θωφ f

⊥
φI

,

f⊥
φ = cos θωφ f

⊥
φI

− sin θωφ√
2

f⊥
ωI

.
(A.5)

From (3.15) it then follows that

κ̄ω = 2κ̄u − κ̄d +

√
2 δω

1 +
√
2 δω

(κ̄s + κ̄d − 2κ̄u) ,

κ̄φ = κ̄s +
δφ√
2− δφ

(κ̄s + κ̄d − 2κ̄u) ,

(A.6)

where

δω =
f⊥
φI

f⊥
ωI

tan θωφ , δφ =
f⊥
ωI

f⊥
φI

tan θωφ . (A.7)

In the limit of SU(3) flavor symmetry the ratio f⊥
φI
/f⊥

ωI
can be replaced by 1. Note that

in general the mixing angle θωφ and the matrix elements in (A.2) may depend on the

momentum transfer k2. If this is the case, the values of f⊥
ωI

and f⊥
φI

entering in (A.3)

and (A.4) are different. All parameters entering the quantities δV in (A.7) must then be

evaluated at k2 = m2
V .

B RG evolution equations

The running quark masses and transverse decay constants obey the RG equations3

µ
d

dµ
mq(µ) = γm(µ)mq(µ) , µ

d

dµ
f⊥
V (µ) = −γT (µ) f⊥

V (µ) , (B.1)

3We follow the convention that the anomalous dimensions of coupling constants are defined with the

opposite sign than those of operators.
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where γm and γT are the anomalous dimensions of the quark mass and the QCD tensor

current in (3.8). At two-loop order these objects were first obtained in [59] and [60],

respectively. At NLO in RG-improved perturbation theory, the evolution equations have

the solutions

mq(µ) =

(

αs(µ)

αs(µ0)

)− γm0
2β0

[

1− γm1 β0 − β1γ
m
0

2β2
0

αs(µ)− αs(µ0)

4π
+ . . .

]

mq(µ0) ,

f⊥
V (µ) =

(

αs(µ)

αs(µ0)

)

γT0
2β0

[

1 +
γT1 β0 − β1γ

T
0

2β2
0

αs(µ)− αs(µ0)

4π
+ . . .

]

f⊥
V (µ0) .

(B.2)

The relevant one- and two-loop coefficients of the anomalous dimensions read

γm0 = −6CF , γm1 = −3C2
F − 97

3
CFCA +

20

3
CFTFnf ,

γT0 = 2CF , γT1 = −19C2
F +

257

9
CFCA − 52

9
CFTFnf ,

(B.3)

where CF = 4/3, CA = 3 and TF = 1/2 for SUc(3). Moreover,

β0 =
11

3
CA − 4

3
TFnf , β1 =

34

3
C2
A − 20

3
CATFnf − 4CFTFnf (B.4)

are the first two coefficients of the QCD β-function. Above, µ0 is a low refer-

ence scale, at which the quark masses and decay constants are calculated using some

non-perturbative approach.

The evolution of the leading-twist LCDAs at NLO order has been studied in [61–65].

Starting at two-loop order the scale dependence of aV⊥

n (µ) receives contributions propor-

tional to aV⊥

k (µ) with k = 0, . . . , n. Defining the vector ~a = (1, aV⊥

2 , aV⊥

4 , . . . ) containing the

even Gegenbauer moments, one finds ~a(µ) = U(µ, µ0)~a(µ0), where the evolution matrix

U has a triangular structure with entries

Unk(µ, µ0) =







αs(µ)

4π
dkn(µ, µ0)E

LO
n (µ, µ0) ; k < n ,

ENLO
n (µ, µ0) ; k = n ,

(B.5)

and Unk(µ, µ0) = 0 for k > n (with even k, n ≥ 0). Explicit expressions for En(µ, µ0)

and dkn(µ, µ0) can be found, e.g., in appendix A of [66]. The relevant two-loop anomalous

dimensions for the Gegenbauer moments of a transversely polarized vector meson were

calculated in [67, 68]. Numerically, we obtain for the evolution from the low reference scale

µ0 = 1GeV up to the high scale µ = mh

U(mh, µ0) =

























1 0 0 0 0 0 · · ·
−0.00335 0.463 0 0 0 0 · · ·
0.00079 −0.00716 0.304 0 0 0 · · ·
0.00076 −0.00139 −0.00608 0.228 0 0 · · ·
0.00054 −0.00019 −0.00193 −0.00484 0.182 0 · · ·
0.00038 0.00011 −0.00069 −0.00191 −0.00388 0.152 · · ·

...
...

...
...

...
...

. . .

























,

(B.6)
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Meson V f⊥
V (2GeV)/fV Method Reference

ρ 0.76± 0.04 lattice (unquenched) [69]

0.687± 0.027 lattice (unquenched) [70]

0.742± 0.014 lattice (quenched) [71]

0.72± 0.02+0.02
−0.00 lattice (quenched) [72]

0.70± 0.04 light-cone sum rules [48]

0.72± 0.04 our combination

ω 0.707± 0.046 light-cone sum rules† [48]

0.71± 0.05 our combination

φ 0.750± 0.008 lattice (unquenched) [70]

0.780± 0.008 lattice (quenched) [71]

0.76± 0.01 lattice (quenched) [72]

0.763± 0.041 light-cone sum rules† [48]

0.76± 0.04 our combination

Table 4. Compilation of theoretical predictions for the ratio f⊥

V (µ)/fV at µ = 2GeV for light

vector mesons. Values marked with a dagger are obtained by taking ratios of individual results for

the two decay constants. In our combinations we adopt more conservative error estimates than in

some of the original references.

where we have adjusted the number of light quark flavors when crossing the thresholds

at µ = mc and mb. Due to the high value of the electroweak scale the mixing effects are

strongly suppressed; for example, we obtain aV⊥

4 (mh) ≈ 0.304aV⊥

4 (µ0) − 0.007aV⊥

2 (µ0) +

0.0008. When NLO evolution effects are included, the coefficients of the various terms

shown in the second row of (3.25) get rescaled by factors of 1.001, 0.994, 0.984, 0.975,

0.969, respectively. Given that all present estimates of the hadronic parameters aV⊥

n are

afflicted with large theoretical uncertainties, it is sufficient for all practical purposes to use

the leading-order solution (3.24).

C Transverse vector-meson decay constants

The direct contributions to the h → V γ form factors in (3.16) involve the ratio f⊥
V (µ)/fV of

the vector-meson decay constants of tensor and vector currents, as defined in (3.4) and (3.8).

It is reasonable to assume that non-perturbative evaluations of this ratio are subject to

smaller theoretical uncertainties than calculations of the individual decay constants. For

light mesons, predictions for the ratio of decay constants have been obtained using light-

cone QCD sum rules and lattice QCD. Table 4 shows a compilation of available results,

normalized at the reference scale µ = 2GeV. The numbers in boldface show our own

combinations of these results.
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Meson V mQ [GeV] 〈v2〉V f⊥
V (2GeV)/fV

J/ψ 1.4± 0.2 0.225+0.106
− 0.088 [73] 0.91± 0.14

Υ(1S) 4.6± 0.1 −0.009± 0.003 [74] 1.09± 0.02

Υ(2S) 4.6± 0.1 0.090± 0.011 [74] 1.08± 0.02

Υ(3S) 4.6± 0.1 0.155± 0.018 [74] 1.07± 0.03

Table 5. NRQCD parameters for heavy quarkonia extracted from their electronic decay widths

Γ(V → e+e−), and resulting values for the ratio of decay constants.

For heavy quarkonia, the ratio of decay constants can be calculated using NRQCD.

Including the leading relativistic corrections [32] and one-loop QCD effects [31], we obtain

f⊥
V (µ)

fV
=

mV

2mQ

(

1− 2

3
〈v2〉V +

CFαs(µ)

4π
ln

m2
Q

µ2
+ . . .

)

, (C.1)

where mQ is the pole mass of the heavy quark, and the dots denote higher-order terms.

Numerical values for the NRQCD matrix element 〈v2〉V for the J/ψ and Υ(nS) states with

n = 1, 2, 3 have been obtained from an analysis of the electromagnetic decays V → e+e− in-

cluding O(αs) corrections and the leading relativistic effects [73, 74]. The results obtained

in this way, along with the adopted values of the pole masses of the heavy quarks, are

compiled in table 5. There are significant uncertainties related to the values of the heavy-

quark pole masses and the NRQCD matrix elements 〈v2〉V , which in our opinion have

been underestimated in these analyses. It is well known that the concept of a pole mass

is ill defined beyond perturbation theory and affected by renormalon ambiguities [75, 76].

The values used in [73, 74] are “one-loop pole masses”, but the intrinsic uncertainties in

these values are parametrically of order ΛQCD. Also, as emphasized in [77], the NRQCD

expressions for the electromagnetic decay rates Γ(V → e+e−) receive very large perturba-

tive corrections at two- and three-loop order, and this prevents an accurate extraction of

the non-perturbative parameters 〈v2〉V . In view of these remarks, the errors assigned on

the b-quark mass and on the NRQCD matrix elements for the Υ(nS) states seem overly

optimistic. In order to be conservative, we increase these errors by a factor of 2. This

yields the results shown in table 2.

D Loop functions

The loop functions describing fermionic and bosonic contributions to the off-shell h → γV ∗

decay amplitudes with V = γ, Z have been derived first in [50]. In our notation, they read4

Af (τ, x) =
3τ

2(1− x)

{

1− 2x

1−x

[

g(τ)−g
(

τ/x
)

]

+

(

1− τ

1−x

)

[

f(τ)−f
(

τ/x
)

]

}

,

Bf (τ, x) =
τ

1− x

[

f(τ)− f
(

τ/x
)

]

,

4We have corrected a typo in the expression for the function Af (τ, x) given in eq. (4) of [50].
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Aγγ
W (τ, x) =

2 + 3τ

1− x

{

1− 2x

1− x

[

g(τ)− g
(

τ/x
)

]

}

+
3τ

(1− x)2

(

2− τ − 8x

3

)

[

f(τ)− f
(

τ/x
)

]

,

AγZ
W (τ, x) =

1

1− x

[

1− 2s2W +

(

5

2
− 3s2W

)

τ

]{

1− 2x

1− x

[

g(τ)− g
(

τ/x
)

]

}

+
τ

(1− x)2

[(

5

2
− 3s2W

)

(2− τ)− 2x
(

3− 4s2W
)

]

[

f(τ)− f
(

τ/x
)

]

, (D.1)

where

f(τ) =



















arcsin2
1√
τ

; τ ≥ 1 ,

−1

4

(

ln
1 +

√
1− τ

1−
√
1− τ

− iπ

)2

; τ < 1 ,

(D.2)

and g(τ) = τ(1− τ) f ′(τ). In the limit τ → ∞ one finds that Af (τ, x) → 1, Bf (τ, x) → 1,

Aγγ
W (τ, x) → 7 and AγZ

W (τ, x) → 31
6 − 7s2W .

E Coefficient functions ∆V and ∆̃V

Here we list the complete expressions for the CP-even coefficients ∆V and the CP-odd

coefficients ∆̃V defined in (3.35). For the former ones, we obtain

∆ρ0 =

[

(0.068± 0.006) + i(0.011± 0.002)
]

κ̄ρ0 + 0.0001κW − 0.0001κ̄c

κeffγγ
,

∆ω =

[

(0.068± 0.006) + i(0.011± 0.002)
]

κ̄ω − 0.0001κW − 0.0001κ̄c

κeffγγ
,

∆φ =

[

(0.093± 0.008) + i(0.015± 0.003)
]

κ̄φ + 0.0002κW − 0.0002κ̄c − 0.0001κγZ

κeffγγ
,

∆J/ψ =

[

(0.281± 0.045) + i(0.040± 0.009)
]

κ̄c

κeffγγ

+
0.0004κW − 0.0003κτ − 0.0001κb + 0.0001κ̄s − 0.0003κγZ

κeffγγ
,

∆Υ(1S) =

[

(0.948± 0.040) + i(0.130± 0.019)
]

κb

κeffγγ

+
0.019κW − 0.001κt − 0.001iκτ + (0.001− 0.002i)κ̄c − 0.010κγZ

κeffγγ
, (E.1)

where the parameters κ̄V for light mesons have been defined in (3.15). The corresponding

expressions for the Υ(2S) and Υ(3S) mesons will not be shown explicitly, since they are

very similar to that for the Υ(1S) state, see (3.38). In the above results the first term

shows the direct contribution. The remaining terms, which originate from the power-

suppressed h → γZ∗ → γV contribution and the effect of the off-shellness of the photon in

the h → γγ∗ → γV contribution, are extremely small. Even for ∆φ and assuming a SM-like
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Higgs couplings to strange quarks, the theoretical uncertainty in the direct contribution

is an order of magnitude larger than the power-suppressed terms. Only for Υ(1S) the

power-suppressed terms reach the level of 10−2, but still this contribution is smaller than

the theoretical uncertainty in the direct contribution. Our complete expressions for the

CP-odd coefficients ∆̃V are

∆̃ρ0 − rCP =

[

(0.068± 0.006) + i(0.011± 0.002)
]

¯̃κρ0 + (0.429 + 0.003i)κ̃t + (0.306 + 0.002i)κ̃γγ

κeffγγ

− (0.004− 0.003i)κ̃τ + (0.002− 0.002i)κ̃b + (0.005− 0.003i)¯̃κc
κeffγγ

,

∆̃ω − rCP =

[

(0.068± 0.006) + i(0.011± 0.002)
]

¯̃κω + (0.429 + 0.003i)κ̃t + (0.306 + 0.002i)κ̃γγ

κeffγγ

− (0.004− 0.003i)κ̃τ + (0.002− 0.002i)κ̃b + (0.005− 0.003i)¯̃κc
κeffγγ

,

∆̃φ − rCP =

[

(0.093± 0.008) + i(0.015± 0.003)
]

¯̃κφ + (0.429 + 0.003i)κ̃t + (0.306 + 0.002i)κ̃γγ

κeffγγ

− (0.004− 0.003i)κ̃τ + (0.002− 0.002i)κ̃b + (0.005− 0.003i)¯̃κc
κeffγγ

,

∆̃J/ψ − rCP =

[

(0.277± 0.045) + i(0.043± 0.009)
]

¯̃κc + (0.429 + 0.003i)κ̃t + (0.306 + 0.002i)κ̃γγ

κeffγγ

− (0.004− 0.003i)κ̃τ + (0.003− 0.002i)κ̃b
κeffγγ

,

∆̃Υ(1S) − rCP =

[

(0.945± 0.040) + i(0.132± 0.019)
]

κ̃b + (0.427 + 0.003i)κ̃t + (0.306 + 0.002i)κ̃γγ

κeffγγ

− (0.004− 0.002i)κ̃τ + (0.004− 0.001i)¯̃κc + 0.010κ̃γZ
κeffγγ

.

(E.2)

It is a good approximation to only keep the direct contributions, which are likely to give

rise to the dominant effects.
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