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h → τ+τ− or h → W+W− → (e+e−, µ+µ−, τ+τ−) + /ET ). Such channels are domi-

nant in large regions of the allowed supersymmetric parameter space for many concrete

supersymmetric models. The existence of leptons allows for good control over the back-

grounds, rendering this channel competitive to the conventional h → bb̄ channel. We

include hadronic decays of the τ leptons in our analysis through a τ -identification algo-

rithm. We consider integrated luminosities of 100 fb−1, 300 fb−1 and 3000 fb−1, for an LHC

running at pp centre-of-mass energy of 14 TeV and provide the expected constraints on the
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1 Introduction

One of the primary goals of the CERN Large Hadron Collider (LHC) is to discover

or rule out weak scale supersymmetry (SUSY). So far the ATLAS and CMS collabo-

rations have conducted a number of direct SUSY searches in many different channels.

The absence of excesses in those channels over the Standard Model (SM) background in

turn placed impressive constraints on the SUSY parameter space. The limit is particu-

larly stringent for coloured SUSY particles because of their large production cross sec-

tions. For instance, gluino and light flavour squarks are excluded up to masses of about
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1 − 1.5 TeV [1–7], although the precise mass bounds depend on the details of the decay

chains and mass spectrum.1

The recent observation of a SM-like Higgs boson [12, 13] also provides interesting

implications and opportunities for the exploration of SUSY phenomenology. First of all,

the observed mass ∼ 125 GeV and the measured properties of the SM-like Higgs boson

are consistent with the lightest CP-even Higgs (h) in the minimal SUSY extension of

the SM (MSSM) especially when the masses of scalar superparticles are larger than the

several TeV [14–17]. Such scenarios are also consistent with the null results of direct SUSY

searches and the precise measurements of flavour-changing neutral currents (FCNC) and

CP-violating observables.

Even though the scalars are anticipated to be heavy, it is possible to have relatively

light gauginos in the SUSY spectrum. In particular, the electorweak (EW) gauginos can

exist and still be very light, since their production cross sections are much smaller than the

coloured SUSY particles of the same mass. Indeed, in concrete models, the EW gauginos

tend to be much lighter than the coloured SUSY particles. This is due to the fact that the

renormalisation group evolution (RGE) increases coloured SUSY particle masses at low

energies, owing to their strong QCD interaction, whilst the effect is much smaller for EW

gauginos. It is known [18] that if the gaugino GUT relation (M3 : M2 : M1 ∼ 7 : 2 : 1)

holds, the production of EW gauginos can dominate over gluino pair production at the

14 TeV LHC due to the mass hierarchy. Moreover, many SUSY breaking scenarios predict

a large mass splitting between gauginos and scalars [19–24]. Unlike the scalar masses,

gaugino mass terms are prohibited by R-symmetry, and their mass generation mechanism

may be very different. In the scenarios where R-symmetry is only weakly broken, the

gauginos tend to be much lighter than the scalars. In such scenarios, gauginos are the only

SUSY particles which are accessible at the LHC [25–28].

The EW gauginos, namely, charginos and neutralinos, have already been intensively

searched for at the LHC. ATLAS and CMS interpreted their results in the context of sim-

plified models, where several assumptions were made. For instance, the lightest neutralino

(χ̃0
1) was assumed to be bino-like and the second lightest neutralino (χ̃0

2) and the lighter

chargino (χ̃±1 ) wino-like, while possessing the same mass, mχ̃0
2

= mχ̃±
1

. In these simplified

models, particular decays of the chargino and the second lightest neutralino with 100 %

branching ratios were considered. The most stringent constraints were found for the mod-

els where the χ̃0
2 and χ̃±1 decay exclusively into on-shell sleptons (˜̀ and ν̃). In this case,

mχ̃0
2

= mχ̃±
1

is excluded up to about 700 GeV with mχ̃0
1
. 300 GeV [29, 30]. Simplified

models with the chargino and neutralino decays leading to di-τ final states via on-shell τ̃

and ν̃τ have also been searched for, and the limit was found to be mχ̃0
2

= mχ̃±
1
& 300 (350)

GeV with mχ̃0
1
. 100 (50) GeV [29, 30]. If the sleptons and staus are heavier than the EW

gauginos, the χ̃±1 predominantly decays to W± and χ̃0
1. On the other hand, the χ̃0

2 has two

possible decay modes: χ̃0
2 → Zχ̃0

1 and χ̃0
2 → hχ̃0

1. The former has been searched for and

the resulting limit was mχ̃0
2

= mχ̃±
1
& 350 with mχ̃0

1
. 100 GeV [29]. The latter process,

χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1), has also been looked for recently by employing the h→ bb̄ channel.

1See, e.g., [8–11] for the recent ideas and programmes to address this problem.
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lower bound on mχ̃0
2

= mχ̃±
1

search hypothesis

700 GeV [29, 30] χ̃0
2, χ̃

±
1 both decay exclusively to

sleptons, mχ̃0
1

= 300 GeV.

300 (350) GeV [29, 30] mχ̃0
1
. 100 (50) GeV.

350 GeV [29] staus heavier than EW gauginos,

χ̃±1 → W±χ̃0
2, χ̃

0
2 → Zχ̃0

1, mχ̃0
1
.

100 GeV.

200 GeV [31], 300 GeV [32] staus heavier than EW gauginos,

χ̃±1 → W±χ̃0
2, χ̃

±
1 → hχ̃0

1, with

h→ bb̄, when mχ̃0
1
. 30 GeV.

Table 1. Summary of the EW gaugino searches as given in the main text.

This channel suffers from an overwhelmingly large tt̄ background and only weak constraints

have been found. The bound is mχ̃0
2

= mχ̃±
1
& 200 GeV [31] and 300 GeV [32] only when

mχ̃0
1
. 30 GeV. A summary of EW gaugino searches is given in Table 1 for convenience.

The fact that current searches provide weak constraints is not the only reason the

χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) process is especially interesting for further study. Firstly, in this

process one can take advantage of the discovery of the SM-like Higgs boson, making use

of the of its properties as measured in the present dataset [33]. Identifying the observed

boson as the lightest CP-even Higgs in the MSSM allows us to make a precise prediction

of the χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) signature, which is necessary for the limit calculation and

also useful in designing optimal search strategies for this mode. Secondly, as we will see in

section 2, the scenarios with heavy scalar SUSY particles may imply that χ̃0
2 predominantly

decays into h and χ̃0
1.

In this paper, we study the exclusion and discovery reach of the χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1)

process, using the W decays to electrons muons or taus and the h→ ττ and h→WW →
(τ/`, ν)(τ/`, ν) modes. Our study differs from earlier studies for χ̃0

2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) [18,

33–35], which have focused on the decays of the W to electrons or muons and h→ bb̄ modes.

The obvious advantage of the channel with h → bb̄ is its relatively large branching ratio

BR(h→ bb̄). However, this channel suffers from an overwhelming tt̄ background. Employ-

ing h→ ττ and h→WW → (τ/`, ν)(τ/`, ν) introduces a reduction of the branching ratio,

by a factor of [BR(h → τ τ̄) + BR(h → WW → (τ/`, ν)(τ/`, ν))]/BR(h → bb̄) ∼ 0.15,

but the tt̄ background can be reduced significantly by vetoing b-jets and requiring two τs

in the final state as we will see in section 3. We will demonstrate that the channel with

h→ ττ and h→WW → (τ/`, ν)(τ/`, ν) can provide competitive discovery and exclusion

prospects to those obtained in the channel with the h→ bb̄ mode.

Revealing the details of the EW gaugino sector is especially important. It is com-

monly believed that this sector contains the particle that can be a candidate for dark

matter. Moreover, studying the accessible mass scale of the EW gauginos at the LHC is

important [36] for the planning of future collider programmes.

– 3 –
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The article is organised as follows: in the next section, we provide the details of the

setup we use for the χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) mode and discuss the cross section and branch-

ing ratio of EW gauginos with particular attention to heavy scalar scenarios with a large

µ-term. In section 3 we provide details of the Monte Carlo simulation performed to gene-

rate the samples used in the analysis and give details of the algorithm employed for the

identification of jets originating from hadronic decays of τ leptons. We then proceed to

outline the details of our discrimination analysis, which forms the basis for defining the

signal regions for the SUSY parameter space scan. The results of the parameter space scan

are presented and discussed in section 4. We conclude in section 5. Supplementary appen-

dices describe the definition of a kinematic variable used in our analysis, the calculation of

cross sections for signal and background and statistical methods with low event numbers.

The last appendix in particular describes a systematic way to recast our results onto the

other scenarios. The application includes higgsino NSLP scenarios with a bino LSP and

higgsino/wino NLSP scenarios with a gravitino LSP as discussed, for example, in [37–40].

2 The χ̃0
2χ̃

±
1 → (hχ̃0

1)(W
±χ̃0

1) mode

In this section we describe the setup of our analysis and clarify the assumptions we made in

the chargino and neutralino sectors. Moreover, we discuss the cross sections and branching

ratios of the production and decay modes relevant to our analysis.

2.1 The setup

Throughout this paper we consider CP-conserving EW gaugino sector and assume mχ̃0
2
'

mχ̃±
1
> mχ̃0

1
for simplicity. This relation is realised in many SUSY breaking scenarios,

particularly in the cases where |µ| � M2 > M1 and M2 � |µ| > M1. The former case is

motivated by the heavy scalar scenario. In the MSSM, the soft scalar masses for Hu and

Hd and the µ-parameter are related by the EW symmetry breaking condition [41]

m2
Z

2
=
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− |µ|2 . (2.1)

In the heavy scalar scenario, the scale of mHu and mHd
is very large (mHu/d

� M2). In

this case, the condition (2.1) implies that the µ-parameter is expected to be of the same

scale as the scalar masses, unless mHu and mHd
are carefully tuned at the EW scale in such

a way that the first terms in the right hand side of eq. (2.1) becomes unnaturally small.2

In this section we assume the scale of µ is equal to the scalar masses and |µ| �M2 >

M1 > 0. However, the collider analysis described in section 3 is applicable to other scenarios

as far as the ÑC̃± → (hχ)(W±χ) topology is concerned, where Ñ and C̃± are massive BSM

particles with the same mass and χ is an invisible particle with an arbitrary mass. One

such scenario involves a bino LSP scenario with a higgsino NLSP, M2 � |µ| > M1. The

application also includes gravitino LSP scenarios with wino or higgsino NSLP as discussed

for example in [37–40], where the same topology is realised by χ̃0
1χ̃
±
1 → (hG̃)(W±G̃) with

G̃ being gravitino. We will get back to this point in the end of this section.

2Even in that case, the same size of tuning is required on the µ-parameter.
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χ̃0
2

χ̃±
1

Z/γ

q

q̄

χ̃∓
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2(χ̃

∓
1 )

χ̃±
1

Figure 1. The tree-level diagrams for the relevant χ̃0
2 and χ̃±

1 production.

2.2 The cross sections

Figure 1 shows the tree-level diagrams for the relevant modes of χ̃0
2 and χ̃±1 production.

There are two types of diagrams which may interfere: s-channel diagrams with gauge

boson exchange and t-channel diagrams with squark exchange. The t-channel diagrams

are suppressed by the squark mass and it is expected that the contribution of this diagram

decreases as the squark mass increases.

Figure 2 shows the NLO production cross sections for the χ̃0
2χ̃
±
1 and χ̃+

1 χ̃
−
1 modes at

the 14 TeV LHC as functions of the squark mass. The cross sections have been calculated

using Prospino 2.1 [42, 43] with all the charges summed. In the plot and throughout the

paper, we take |µ| = mq̃ for simplicity. For the specific plot, we take M2 = 350 GeV and

M1 = 100 GeV. The solid and dashed curves correspond to tanβ = 2 and 50, respectively.

As a result of destructive interference between the s-channel gauge boson exchange dia-

gram and the t-channel squark exchange diagram, the χ̃0
2χ̃
±
1 and χ̃+

1 χ̃
−
1 production cross

sections increase as the squark mass increases. For a squark mass larger than ∼ 4 TeV, the

contribution of the squark exchange diagram is decoupled and the cross sections become

insensitive to the squark mass. It is interesting to note that the χ̃0
2χ̃
±
1 and χ̃+

1 χ̃
−
1 cross

sections are maximised in the limit of large squark mass. This gives additional motivation

to perform EW gaugino searches in the context of heavy scalar scenarios.

Figure 3 shows the NLO cross sections for various gaugino production modes at the

14 TeV LHC. We have assumed the gaugino GUT relation, M3 : M2 : M1 = 7 : 2 : 1, at

the EW scale and plotted the cross sections as functions of M2 (and mg̃ 'M3 = 7M2/2).

The other relevant parameters were fixed as mq̃ = µ = 3 TeV and tanβ = 10.

One can see that the χ̃0
2χ̃
±
1 and χ̃+

1 χ̃
−
1 production modes have substantial cross sections.

Because of the large mass hierarchy in the gaugino GUT relation, the g̃g̃ cross section drops

much faster than the EW gaugino production cross sections as M2 increases. Due to this

effect, χ̃0
2χ̃
±
1 and χ̃+

1 χ̃
−
1 production dominate over g̃g̃ production for M2 & 350 GeV.

The EW gaugino production modes other than χ̃0
2χ̃
±
1 and χ̃+

1 χ̃
−
1 have cross sections

which are a few orders of magnitude smaller. This is due to the fact that these production

modes contain at least one bino state or two W̃ 0 states in the large µ limit, and there exists

no gaugino-gaugino-gauge boson couplings for those states.

As can be seen from figures 2 and 3, the χ̃0
2χ̃
±
1 cross section is more than two times

larger than the χ̃+
1 χ̃
−
1 cross section. This is mainly because χ̃0

2χ̃
±
1 contains two distinctive

modes: χ̃0
2χ̃

+
1 with W+ exchange and χ̃0

2χ̃
−
1 with W− exchange. It is therefore more

beneficial to target the χ̃0
2χ̃
±
1 production mode in the EW gaugino searches.

– 5 –
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Figure 2. The NLO production cross sections for the χ̃0
1χ̃

±
1 and χ̃+

1 χ̃
−
1 modes at the 14 TeV LHC as

functions of the squark mass. The cross sections have been calculated using Prospino 2.1 [42, 43]

with all the charges summed. We have set µ = mq̃ and M2 = 350 GeV and M1 = 100 GeV. The

solid and dashed curves correspond to tanβ = 2 and 50, respectively.

Figure 3. The NLO cross sections for various gaugino production modes at the 14 TeV LHC

as functions of M2 (and mg̃ ' M3 = 7M2/2). We have assumed the gaugino GUT relation,

M3 : M2 : M1 = 7 : 2 : 1, at the EW scale. The other relevant parameters were fixed as

mq̃ = µ = 3 TeV and tanβ = 10.

– 6 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
6

Figure 4. The branching ratios of χ̃0
2 → hχ̃0

1 (left) and χ̃0
2 → Zχ̃0

1 (right) modes as functions of |µ|
in the µ > 0 case. M2 is taken to be 350 GeV and mh = 125.5 GeV. We have fixed M2 = 350 GeV

but we show variations of tanβ and M1 as tanβ = 2 (red), 10 (blue), 50 (green) and M1 = 100 GeV

(solid), 1 GeV (dashed).

2.3 The branching ratios

If scalar fermions and the MSSM Higgs bosons (other than the SM-like one) are heavier

than the χ̃±1 and χ̃0
2, these gaugino states decay predominantly into χ̃0

1 and SM bosons,

W±, Z and h, if the decays are kinematically allowed. In this case, χ̃±1 exclusively decays

into W± and χ̃0
1 with BR ∼ 100 %. On the other hand, χ̃0

2 has two possible decay modes:

χ̃0
2 → Zχ̃0

1 and χ̃0
2 → hχ̃0

1. The decay rates of these modes are determined by the χ̃0
2χ̃

0
1Z/h

couplings, up to the phase space factor and the polarisation effect. In the limit of large

|µ| and heavy MSSM Higgs bosons, the χ̃0
2χ̃

0
1Z/h couplings in the CP-conserving case are

given by [44, 45]

|Cχ̃0
1χ̃

0
2Z
| ' e

2

m2
Z

|µ|2
,

|Cχ̃0
1χ̃

0
2h
| ' e

2

mZ

|µ|

∣∣∣2 sin 2β +
M1 +M2

µ

∣∣∣, (2.2)

where e is the electric charge (αem = e2/(4π)).

Figure 4 shows the branching ratios of χ̃0
2 → hχ̃0

1 (left) and χ̃0
2 → Zχ̃0

1 (right) modes

as functions of |µ| in the µ > 0 case. M2 has been fixed to M2 = 350 GeV but tanβ and

M1 are varied as tanβ = 2 (red), 10 (blue), 50 (green) and M1 = 100 GeV (solid), 1 GeV

(dashed). Here and throughout the paper, we have explicitly set mh = 125.5 GeV. This

condition can be always realised by tuning the stop mass, which has no effect on the EW

gaugino sector, and hence on our phenomenological analysis. The branching ratios were

calculated using SUSY-HIT [46].

One can see that the χ̃0
2 → hχ̃0

1 mode is enhanced, whilst the χ̃0
2 → Zχ̃0

1 mode is

suppressed as |µ| increases. This is due to the χ̃0
1χ̃

0
2Z coupling having the extra mZ/µ

suppression factor compared to the χ̃0
1χ̃

0
2h coupling, as seen in eq. (2.2). In the |µ| &

500 GeV region, the χ̃0
2 → hχ̃0

1 mode has BR & 60 % and dominates the χ̃0
2 decay, apart from

– 7 –
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the tanβ = 50, M1 = 1 GeV case. For moderate values of µ, 0.5 . µ/TeV . 3, the factor

|2 sin 2β + (M1 +M2)/µ| in Cχ̃0
1χ̃

0
2h

is important in the competition between the χ̃0
2 → hχ̃0

1

and χ̃0
2 → Zχ̃0

1 modes and at µ ∼ 1 TeV, tanβ ∼ 50, M1 ∼ 1 GeV, BR(χ̃0
2 → Zχ̃0

1) can

be as large as BR(χ̃0
2 → hχ̃0

1). However, in the large |µ| limit BR(χ̃0
2 → hχ̃0

1) approaches

100 % independently of tanβ and M1 as long as the phase space is open.

Figure 5 is equivalent to figure 4, with µ instead set to µ < 0. One can see that

BR(χ̃0
2 → hχ̃0

1) becomes zero at a particular |µ| value depending on tanβ and M1. This

is due to the cancellation between the two terms in the |2 sin 2β + (M1 +M2)/µ| factor in

the χ̃0
1χ̃

0
2h coupling. As can be seen, this cancellation occurs at µ ∼ −1 TeV for tanβ ∼ 10

and µ ∼ −5 TeV for tanβ ∼ 50. As |µ| increases, BR(χ̃0
2 → hχ̃0

1) quickly approaches 100 %

following the cancellation. For |µ| & 10 TeV, the χ̃0
2 → hχ̃0

1 mode dominates over the χ̃0
2

decay, independently of tanβ and M1.

To summarise, we have demonstrated that in the scenarios with large mq̃ and |µ|, χ̃0
2

and χ̃±1 become wino-like gauginos with mχ̃0
2
' mχ̃±

1
'M2 and χ̃0

2χ̃
±
1 has the largest cross

section among the EW gaugino production modes. We also argued that in such scenarios

χ̃±1 predominantly decays into W± and χ̃0
1 and the χ̃0

2 → hχ̃0
1 mode typically dominates

the χ̃0
2 decay. These arguments provide a strong motivation to study the pp → χ̃0

2χ̃
±
1 →

(hχ̃0
1)(W

±χ̃0
1) mode in the EW gaugino searches in the scenarios with large mq̃ and |µ|.

In the following sections, we study the pp → χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) channel using

the W → τ/`, ν plus h → ττ and h → WW → (τ/`, ν)(τ/`, ν) channel. We set mq̃ =

µ = mA = 3 TeV, tanβ = 10 throughout. This leads to BR(χ̃±1 → W±χ̃0
1) ' BR(χ̃0

2 →
hχ̃0

1) ' 100 %. With this parameter choice, the lightest CP-even Higgs becomes SM-like

and we use the same branching ratios as those for the SM Higgs boson. Although the above

parameter set is motivated by the heavy scalar scenario, our analysis can easily be recast

onto other SUSY scenarios. Changing the above parameters may modify the pp → χ̃0
2χ̃
±
1

cross section and the χ̃0
2 → hχ̃0

1 branching ratio significantly but does not alter the signal

efficiencies for the signal regions defined in the next section. The discovery reach and

exclusion limit for a different set of parameters can therefore be obtained by rescaling the

cross section and branching ratio accordingly. Moreover, the calculated signal efficiencies

can also be used for a larger class of models as far as the ÑC̃± → (hχ)(W±χ) topology

is concerned, as mentioned in subsection 2.1. Neglecting a finite width effect and spin

correlations, the signal efficiencies will be very similar between χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) and

ÑC̃± → (hχ)(W±χ) at (mχ̃0
2

= mχ̃±
1
,mχ̃0

1
) = (mÑ = mC̃ ,mχ). We explain this point

in more detail in appendix F and provide the necessary information to perform such a

re-analysis.

3 Simulation and analysis

3.1 Monte Carlo simulation

The SUSY pp → χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) signals were generated using the HERWIG++

general-purpose event generator [47–49] via SUSY Les Houches Accord files used as input

for the parameter points, according to the assumptions outlined in the previous section.

The signal cross sections were scaled to the next-to-leading order cross sections using results

– 8 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
6

Figure 5. Equivalent plots to figure 4 but with µ < 0.

obtained from Prospino 2.1. The hV , tt̄, tt̄h and WZ backgrounds were also generated

internally in HERWIG++ at leading order. The Z+jets and W+jets backgrounds were

generated using the parton-level matrix element generator AlpGen and merged with the

HERWIG++ parton shower using the MLM method [50–52]. The generator-level cuts on

the V+jets backgrounds were taken to be pTj,min = 15 GeV, ηj,max = 3.0, ∆Rj,min = 0.2

with m`` ∈ (15, 160) GeV (or mτ,τ ) for V = Z. For the Z+jets case we considered matrix

elements with one extra parton merged to the shower, whereas for the W+jets case we

considered matrix elements with two partons merged to the shower.

For the signal we allowed the W to decay to all lepton flavours, including taus. Like-

wise, for the backgrounds we consider all of the leptonic decays of the W and Z, to muons,

electrons or taus. We consider the Monte Carlo samples of the Z and W backgrounds going

to electrons or muons separately from those going to taus, as they would have different

amounts of missing energy, leptons and jets. The Higgs boson was allowed to decay to

τ+τ− or W+W− with subsequent decay of the W bosons to eνe, µνµ and τντ .

In all cases of signal and background the full parton shower, hadronization and

the underlying event [53] were included.3 All the runs have been generated using the

MSTW2008nlo 68% PDF set. We note that we do not consider pure QCD-initiated back-

grounds since these are expected to be negligible in the high-missing transverse momentum

regime, particularly in conjunction with the existence of isolated leptons or τs.

We define a SUSY benchmark point C350-100, with parameters

M2 = mχ̃±
1

= mχ̃0
2

= 350 GeV, M1 = mχ̃0
1

= 100 GeV. (3.1)

This point will be used as an example to demonstrate the effect of cuts and provide a

typical point to aid the development of the strategy for discriminating the signal against

the various backgrounds.

3The event generator dependence is beyond the scope of this phenomenological study. Moreover, we

note that do not include a description of pile-up events. These should be considered in detail in a full

experimental simulation.
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3.2 Tau identification

3.2.1 Tau lepton decay modes

The study of final states containing hadronically decaying τ leptons is an important and

growing part of the LHC’s physics program. The τ lepton has a multitude of decay modes,

which we may split these into two categories: ‘leptonic’, if the visible decay products contain

a single lepton, and ‘hadronic’, if there are one or three charged hadrons present. We label

the corresponding modes τ` and τh respectively. The hadronic modes are also categorised

as ‘1-prong’ and ‘3-prong’, according to the number of charged particles involved in the

decay.4 The label ‘`’ here and elsewhere implies an electron or a muon. The branching

ratios for these modes are:5

• leptonic: BR(τ → τ`) ∼ 0.35.

• hadronic: BR(τ → τh) ∼ 0.625.

These imply, for a Higgs boson decay to τ+τ−:

• BR(h→ τhτh) ∼ 0.39×BR(h→ τ+τ−).

• BR(h→ τhτ`) ∼ 0.44×BR(h→ τ+τ−).

• BR(h→ τ`τ`) ∼ 0.12×BR(h→ τ+τ−).

3.2.2 Hadronic tau identification algorithm

Both ATLAS [55] and CMS [56] employ reconstruction and identification algorithms, used

to identify hadronically decaying τ leptons and reject various backgrounds. Here, we do

not attempt to reproduce either of the ATLAS or CMS algorithms exactly, but instead use

elements from both resulting in an algorithm that we expect performs in an equivalent way.

We also borrow elements from [57], which examines di-τ tagging in the boosted regime.6

The resulting algorithm is expected to provide conservative hadronic τ -tagging results,

and could be improved substantially via the use of boosted decision trees (BDT) or other

advanced multivariate methods. Since we will not employ simulation of detector effects in

the present analysis, we focus on a simple cut-based algorithm for simplicity.

The first part of the basic algorithm for hadronic τ identification proceeds as follows:

• Reconstruct jets with R = 0.5 using the Cambridge/Aachen jet algorithm as im-

plemented in FastJet [59]. An individual jet is then investigated for constituent

hadronic tracks.7

4If one of the taus undergoes a 3-prong decay, one may improve the analysis significantly using the

information of the secondary vertex of the 3-prong tau decay [54]. This requires a dedicated study and we

do not use the secondary vertex information in this paper.
5These do not add up to 100%, since we are only considering the dominant 1-prong and 3-prong de-

cay modes.
6For di-τ tagging in Higgs searches, see also ref. [58].
7Usage of the word “track” here and elsewhere in this article implies “charged particle”.
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• Consider a track to be a ‘seed’ if it is the hardest track in the jet, has pT > 5 GeV

and is within ∆R = 0.1 of the jet axis.

• If such a track is found, one defines inner and outer cones around it. We use Rin = 0.2

and Rout = 0.4 respectively.

• Require no photons with pT > 2 GeV and no charged tracks with pT > 1 GeV to lie

within the defined annulus between Rin and Rout.

The basic part of the algorithm itself does not provide satisfactory rejection against the

QCD jet background to hadronically decaying τ leptons. If a jet satisfies all the above

criteria, then the following variables are constructed:

• ∆Rmax: the distance to the track furthest away from the jet axis.

• fcore: the fraction of the total jet energy contained in the centre-most cone defined

by ∆R < 0.1.

These variables provide strong discriminating power against QCD jets [55, 60].8 To perform

the rejection of QCD jets, here we apply the following cuts:

• ∆Rmax < 0.05.

• fcore > 0.95.

In figure 6 we show the variables ∆Rmax and fcore, constructed for hadronic jets for

a signal benchmark point C350-100 and the W+jets background.9 Only jets with pT >

20 GeV and |η| < 2.5 were considered. In figure 7 we show the efficiency of τ identification

versus the transverse momentum of the jet in question, pT,jet, obtained by the procedure

outlined in this section. For the signal, the efficiency was defined for the identification of

‘true’ τ jets, defined to be those closest to the visible τ decay products taken from the Monte

Carlo truth. For the W+jets background, the efficiency was defined with respect to any jet.

The efficiency for the SUSY benchmark point C350-100 varies from around 50% in the

pT,jet region of 20 − 300 GeV and then drops down to ∼ 20% at around pT,jet ∼ 400 GeV.

For the W+jets background the efficiency starts off at ∼ 1% at pT,jet ∼ 20 GeV and then

rises to an efficiency of 2− 3%, more or less constant up to pT,jet ∼ 500 GeV.

3.3 Analysis

In order not to limit the scope of our phenomenological analysis, we will assume that a

multi-object trigger can conceivably be designed, involving multiple leptons or hadronic tau

jets with pT & 20 GeV, in conjunction with missing transvese energy /ET & 100 GeV [61–

63]. Such a trigger actually appears in the ATLAS study of ref. [64], where in section

3.4, pre-selection critera of pT (lep) > 10 GeV, pT (tau) > 20 GeV and /ET > 100 GeV

8More variables have been employed by the experimental collaborations, but we found that the two that

we consider are sufficient at this level of simulation.
9Two-dimensional distributions of the two variables for the two samples that we have investigated can

be seen in appendix A.
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Figure 6. Distributions of the variables used for discrimination of the jets originating from τ leptons

and those from QCD, for the SUSY benchmark point C350-100 and the W+jets background

(W → eνe/µνµ).

Figure 7. The efficiency of tagging a jet as a τ -jet for the SUSY benchmark point C350-100 and

the W+jets background (with W → eνe/µνµ). For C350-100, the efficiency was defined for the

identification of ‘true’ τ jets, defined to be those closest to the visible τ decay products taken from

the Monte Carlo truth. For the W+jets, the efficiency was defined with respect to any jet. Jets of

pT > 20 GeV and |η| < 2.5 are considered in both cases.
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are imposed for a similar Wh-mediated SUSY search at the high-luminosity LHC. Our

selection criteria are essentially tighter than their pre-selection criteria. We investigate the

effect of increasing the pT thresholds for leptons and taus below.

We define the first level of the analysis for discriminating the signal against the various

backgrounds as follows:

1. Particles of pT > 0.5 GeV and |η| < 5.0 are considered.

2. If isolated leptons with pT > 20 GeV are found, they are placed in a separate list,

and removed from the list of particles. An isolated lepton is defined as either: having∑
i pT,i less than 20% of its transverse momentum around a cone of ∆R = 0.4 around

it, or as a lepton that contains no photons with pT > 2 GeV and no tracks with

pT > 1 GeV in the annulus ∆R = (0.2, 0.4) around it.10

3. Jet finding is performed on the list of remaining particles, using FastJet and the

Cambridge/Aachen jet algorithm, with parameter R = 0.5. Jets of pT > 20 GeV are

accepted.

4. Tagging of τ -jets is performed as described in section 3.2.

5. Only events with a total number of isolated leptons, n`,iso, and τ -tagged jets, nτ,tag,

equal to 3 are accepted: i.e. we require nτ,tag + n`,iso = 3. A hypothesis is then

performed to match the topology of the SUSY events. The hypotheses vary according

to the number of isolated leptons and τ -tagged jets and are listed in detail in Table 2.

6. Several variables are calculated and are passed through to the second level of analysis.

Steps 1-5 are what we define as the ‘basic’ analysis, and these will provide what we call

σbasic (table 4). The variables calculated in step 6 and used for further discrimination in

the second-level analysis are: the transverse momentum of the di-τ -tagged system, pT,ττ ,

the distance between the τ -tagged jets, ∆Rτ,τ , the distance between the di-τ -tagged system

and the lepton, ∆Rττ,`, the missing transverse energy, /pT and the variable Mmin, which is

sharply peaked at low values for the WZ background and broadly falls off for the signal,

defined in appendix B. The variables are outlined in table 3. There we provide an example

set of cuts, applied to the SUSY benchmark point C350-100, found to give a significance

of ∼ 2.5σ for an integrated luminosity of 100 fb−1 at 14 TeV. To investigate the effect

of higher pT thresholds, we set for each isolated lepton, pT (lept) > 30 GeV, and for each

hadronic tau, pT (tau) > 40 GeV. This reduces the significance to ∼ 2σ and verifies that

our analysis is not substantially affected by higher thresholds that aim to take into account

current triggering strategies.

For completeness, we show in table 4 the resulting cross sections after applying the

analysis on the SUSY benchmark point and the different backgrounds for this example. In

the final stage of the analysis the nτ,tag = 3 channel was excluded, since it was found to

reduce significance by allowing more background. Note that this set of cuts will constitute

‘signal region 1’ of our full analysis.

10We apply two different criteria to take into account the possibility of radiation from the core lepton.
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nτ,tag n`,iso real signal channels hypothesis

3 0 (h→ τhτh, W → τν) assign hardest two to h.

2 1 (h→ τhτ`, W → τhντ ),

(h→ τhτh, W → `ν`)

assign hardest two to h.

1 2 (h→ τhτ`, W → `ν`),

(h→ τ`τ`, W → τhντ )

if leptons are same sign, assign

highest-pT to h along with the

τ -tagged jet. Otherwise: as-

sign any two highest-pT to h.

0 3 (h→ τ`τ`, W → `ν`) If all leptons are the same sign,

reject the event. Otherwise:

pair two highest-pT of opposite

sign as the h.

Table 2. The hypotheses applied for the reconstruction of the Supersymmetric topology as de-

scribed in the main text. The different hypotheses are given according to the number of τ -tagged

jets, nτ,tag, and the number of isolated leptons n`,iso. In the final stage of the analysis, the nτ,tag = 3

was found to reduce significance and was not considered.

Details of how the initial cross sections for the signal and background are calculated

are given in appendix C. We note that in the case of the Z+jets and W+jets samples, we

obtained Ncuts = 0 events after all cuts.11 To provide an estimate of the cross section,

we assume that the Poisson distribution has mean number of events λ = 3 and use this

as an upper bound to estimate the resulting cross sections. The probability of having a

Poisson-distributed sample with mean λ > 3, given that zero events have been observed,

is ' 0.05. It is useful to mention at this point that we do not apply a K-factor to the

Z+jets or W+jets cross sections. The induced uncertainty due to this omission can be

absorbed in the systematic uncertainty due to lack or low number of events in the final

Monte Carlo samples. Nevertheless, since conservative estimates for these backgrounds

have been assumed, K-factors of ∼ 2 would not have a significant impact to the main

conclusions of our analysis.

3.4 Signal regions

To perform a scan of the supersymmetric parameter space, we define signal regions, with

cuts that aim to bring out the different qualities of the defined variables. These signal

regions are shown in table 5, for the variables defined in table 3. All the signal regions

exclude the nτ,tag = 3 channel, since it was found to reduce significance.

4 Results

We performed the analysis on the M2-M1 plane, according to the cuts defined in the signal

regions in table 5 at integrated luminosities of 100 fb−1, 300 fb−1 and 3000 fb−1. We show

11For the Z(→ τ+τ−)+jets, this depends on how large the missing transverse momentum cut imposed is.
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variable definition benchmark point cut (≡signal region 1)

/pT missing transverse momentum > 95 GeV

Mmin appendix B > 235 GeV

pT,ττ di-τ -tagged jet pT > 20 GeV

∆Rτ,τ distance between τ -tagged jets ∈ (0.1, 2.9)

∆Rττ,` distance between di-τ -tagged jet system

and lepton

∈ (0.1, 2.6)

Table 3. The variables used for further discrimination after the basic part of the analysis is applied

to the signal and backgrounds.

sample σinitial (fb) σbasic (fb) σcuts (fb)

SUSY C350-

100

5.7 0.658 0.152

WZ 767 85.734 0.079

W (→ `ν`)+jets ∼ 600× 103 61.974 . 0.055

W (→
τντ )+jets

∼ 300× 103 7.591 . 0.052

hV 443 5.071 0.037

tt̄h 3.4 0.147 0.008

tt̄ 8600 14.876 0.005

Z(→ ``)+jets ∼ 600× 103 1659 . 0.029

Z(→ ττ)+jets ∼ 300× 103 52.762 0.047

Table 4. The effect of the cuts on the SUSY benchmark point C350-100 and the relevant back-

grounds. The ‘initial’ cross section calculations are presented in appendix C. The ‘basic’ cross

sections are obtained after applying the procedure outlined in steps 1-5 in section 3.3.

variable SR1 SR2 SR3 SR4 SR5 SR6 SR7

/pT 95 GeV 120 GeV 100 GeV 90 GeV 90 GeV 150 GeV 90 GeV

Mmin 235 GeV 270 GeV 220 GeV 220 GeV 300 GeV 240 GeV 200 GeV

pT,ττ 20 GeV 80 GeV 20 GeV 50 GeV 20 GeV 20 GeV 20 GeV

∆Rτ,τ (0.1, 2.9) (0.1, 2.9) (0.1, 2.9) (0.1, 2.9) (0.1, 2.9) (0.1, 2.9) (0.1, 2.9)

∆Rττ,` (0.1, 2.6) (0.1, 2.5) (0.1, 2.6) (0.1, 2.6) (0.1, 2.6) (0.1, 2.6) (0.1, 2.6)

Table 5. The cuts for the different signal regions (SR) used in the analysis.
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the resulting envelope of significances in figure 8, where the solid curves show the 3σ

evidence region, whereas the dashed curves show the 5σ discovery region. We also show in

figure 9, the expected exclusion region at 2σ (solid) and 3σ (dashed). For completeness, we

show the corresponding overlapping signal regions in appendix F. There, we also provide

the total cross sections for the backgrounds after cuts given by the different signal regions.

These can be used to infer constraints in explicit SUSY models that contain the specific

decay chain we are considering.

The analysis can yield a low number of events for both signal and background, of

O(10), and for the calculation of significance we used the Poisson distribution to calculate

the p-values. These were subsequently converted to the corresponding Gaussian standard

deviations. Details of the procedure are provided in appendix D, with supplementary

material in appendix E.

Although the authors of ref. [34] have not performed an equivalent parameter-space

scan over M1-M2, and the details of the chosen parameters differ from the ones presented

in this article, it is still interesting to compare with the potential of the final state in which

the channel χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) involves leptonic W decays and Higgs boson decays to

bb̄. There, the authors have found that it is possible to discover a signal of the process at

the ∼ 5σ level at ∼ 100 fb−1 of luminosity, for points for which M2 ∼ 265 − 390 GeV and

M1 ∼ 133−198 GeV. Indeed, our analysis is competitive with this result, with such points

falling somewhere between the 3σ and 5σ discovery regions at 100 fb−1 and 300 fb−1, as

demonstrated by the black and red curves respectively, in figure 8. This indicates that this

channel is as important as the final state with h→ bb̄, or at least complementary.

5 Conclusions

We have presented a phenomenological analysis of the channel χ̃0
2χ̃
±
1 → (hχ̃0

1)(W
±χ̃0

1) using

the W → `ν`/τντ and Higgs boson channels (h→ τ+τ− and h→ W+W− → leptons) at

the LHC. Such channels are common in many concrete SUSY models where the predictions

include χ̃0
2 and χ̃±1 that predominantly decay into h and W , respectively.

Our analysis has included detailed hadron-level simulation of the relevant dominant

backgrounds, including the effects of the underlying event. Hadronic τ identification was

modelled at hadron level with a custom-made algorithm based on the ones employed by

both the ATLAS and CMS experiments. We have employed a cut-based analysis on several

variables that bring out the properties of the signal against those of the backgrounds.

Specifically, we have constructed a mass variable, Mmin, which is sharply peaked at low

value for the WZ background and broadly falls off for the signal.

Consequently we have demonstrated the potential for discovering or constraining the

SUSY parameter space in the M2-M1 plane at integrated luminosities of 100 fb−1, 300 fb−1

and 3000 fb−1, collected at a 14 TeV proton-proton centre-of-mass energy. The 5σ discovery

potential of our analysis reaches up to M2 ' 350 GeV with M1 . 100 GeV at the 14 TeV

LHC with 300 fb−1. This implies that a future e+e− collider with
√
s = 1 TeV can play

indispensable role to cover M2 < 500 GeV region. A large part of this region can also
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Figure 8. The significance envelope on the M2-M1 plane obtained for the signal regions defined in

table 5 at integrated luminosities of 100 fb−1 (black) or 300 fb−1 (red). The solid curves show the

3σ evidence region, whereas the dashed curves show the 5σ discovery region.

Figure 9. The exclusion envelope on the M2-M1 plane obtained for the signal regions defined in

table 5 at integrated luminosities of 100 fb−1 (black) or 300 fb−1 (red). The solid curves show the

2σ exclusion boundary, whereas the dashed curves show the 3σ boundary.
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be covered by the 14 TeV High Luminosity LHC with 3000 fb−1, which has a discovery

potential in the M2 . 550 GeV, M1 . 200 GeV region.

This work serves a first study of making use of h→ ττ mode in the chargino-neutralino

searches in future runs of the LHC. We thus recommend further examination of this

channel by experimental collaborations, including the effects of full detector simulation,

τ -jet tagging and multi-variate analyses.

A Correlation between τ -tagging variables

We show in figure 10 the two-dimensional distributions of the two variables, ∆Rmax and

fcore, that we have employed for the discrimination of hadronic tau jets from QCD jets. The

variables are correlated in both signal and background. However, it is evident that both

variables are necessary for discrimination between the hadronic taus and the QCD jets. The

figure has been normalised to integrate to unity over the range (∆Rmax, fcore) = (0.2, 1.0)

and hence one can notice that the SUSY signal is more sharply peaked in the region

(∆Rmax < 0.5, fcore > 0.95).

B Definition of the Mmin variable

We define the Mmin variable that we will use as a handle for rejecting non-SUSY back-

grounds. Although the variable is designed to reject the WZ background, it can also

potentially perform well against other backgrounds. There are three neutrinos in the final

state: one coming from W decay, the other two from the τ lepton decays. The direction of

the τ -neutrino is approximately collimated with respect to the original τ lepton direction

due to the mass hierarchy, mZ � mτ . With this approximation, the momenta of the τ

lepton and the τ -neutrino can be parametrised as

pτ+ = pρ1/a, pτ− = pρ2/b,

pν1 = (1/a− 1)pρ1 , pν2 = (1/b− 1)pρ2 , (B.1)

where pρ1/2 is the momentum of the visible decay products and: 0 < a(b) < 1. Note

that events that in the phenomenological analysis of this article that do not satisfy this

condition on a and b are deemed ‘unphysical’ and rejected. Assuming the event topology in

figure 11, the unknown neutrino momenta can be constrained by the mass shell conditions

of the W and Z bosons and the missing momentum conditions.12

a, b, pν : 5 unknowns

mZ , mW , p
x
miss, p

y
miss : 4 constraints

Since (# of unknown − # of constraints) = 1, we can parameterise the all neutrino

momenta by a single parameter, θ.

12Vectors in bold typeset represent 3-vectors.
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Figure 10. Two dimensional-distributions of the variables used for discrimination of the jets

originating from τ leptons and those from QCD, ∆Rmax and fcore. top: SUSY benchmark point

C350-100, bottom: W+jets background (W → eνe/µνµ).
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W

Z

τ+

τ−

a

b

ν

`

Figure 11. The WZ background topology considered in constructing the Mmin variable.

The mass-shell constraint for the Z boson gives

ab =
2(pρ1 · pρ2)

m2
Z

. (B.2)

By introducing θ ≡ arctan
(
a
b

)
, a and b can be written as

a =

√
2(pρ1 · pρ2)

m2
Z

tan θ, b =

√
2(pρ1 · pρ2)

m2
Z

tan−1 θ (B.3)

The transverse components of the neutrino momentum are determined by

pT
ν = pT

miss − (1/a− 1)pρ1 − (1/b− 1)pρ2 . (B.4)

The mass shell condition of W constrains the last unknown parameter pzν as

pz±ν =
cpz` ±

√
E2
` (c2 − t2` t2ν)

t2`
, (B.5)

where t`/ν = pT`/ν , c = t` · tν +m2
W /2. If eq. (B.5) yields complex solution, we simply take

the real part [65, 66].

All the neutrino momenta are now parametrised by θ. We define the invariant mass

of the system

M±inv(θ) =

√[
p` + p±ν (θ) + pτ+(θ) + pτ−(θ)

]2
, (B.6)

where ± corresponds to the discrete ambiguity in eq. (B.5). The variable Mmin is defined

by the global minimum of the Minv over the θ

Mmin ≡ min
θ∈[0,π/2]

min{M+
inv(θ),M−inv(θ)} . (B.7)

Figure 12 shows the distributions of Mmin for the WZ and SUSY benchmark point

event samples for 1000 parton-level events. The SUSY benchmark point C350-100 involves

the parameters:

mχ̃±
1

= mχ̃0
2

= 350 GeV, mχ̃0
1

= 100 GeV. (B.8)
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Figure 12. The Mmin distribution for WZ (black) and SUSY benchmark point (red) event samples.

C Calculation of the initial cross sections

For completeness we provide the branching ratios used to reproduce the initial cross sections

that appear in table 4.

• SUSY benchmark C350-100: using Prospino 2.1, the NLO cross section for the

SUSY benchmark point is σSUSY ' 200 fb. For the signal, we consider the decays

of the W to all three lepton families and the decays of the Higgs boson to either

τ+τ− or W+W− (again with the W s decaying to all leptons). We also assume that

BR(χ̃0
2 → hχ̃0

1) = 1. Hence:

σ(SUSY )initial = σSUSY ×BR(W → `/τν)

× (BR(h→ τ+τ−) +BR(h→W+W−)×BR(W → `/τν)2)

= σSUSY × 0.3257

× (0.0632 + 0.2155× 0.32572)

' 5.7 fb . (C.1)

• WZ: we allow for (W → `ν, Z → τ+τ−) or (W → τν, Z → `+`−). We use the

NLO cross section σ(WZ) = 51.82 pb, according to [67]. We obtain: σinitial =

σ(WZ)×(BR(W → `ν)BR(Z → τ+τ−)+BR(W → τν)BR(Z → `+`−)) = (51.82×
103)× (0.22× 3.37× 10−2 + 0.11× (6.7× 10−2)) pb ' 767 fb.

• W+jets: the AlpGen tree-level cross section merged to the HERWIG++ parton shower

is σ(W + jets) ' 300 pb per lepton flavour (electrons, muons or taus). This was

calculated for 2 associated partons with the W boson.

• hV : the processes hW and hZ are included. We assume σ(hW ) = 1504 fb and

σ(hZ) = 883 fb at NNLO QCD + NLO EW, taken from [68] for Mh = 125 GeV.
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We allow h → W+W− and h → τ+τ−, impose no constrain on the W decays and

allow for the Z to decay to all leptons. Hence: σinitial = (BR(h→ τ+τ−) +BR(h→
W+W−))× (σ(hZ)×BR(Z → τ+τ−/`+`−) + σ(hW )) = (0.0632 + 0.2155)× (883×
(10.1× 10−2) + 1504) fb ' 443 fb.

• tt̄h, tt̄: we assume that the efficiency of tagging jets originating from the decays

b quarks is 70%. If one then vetoes events that contain at least one b-tagged jet,

then for events containing tt̄, a 1− (0.72 + 2× 0.3× 0.7) = 0.09 rejection factor can

be achieved. We consider only leptonic decays of the W bosons originating from the

decays of the top quarks and only consider h→ τ+τ−. We assume total cross sections:

σ(tt̄) ∼ 900 pb and σ(tt̄h) ' 611 fb [68]. This gives: σinitial(tt̄ → leptons + jets) =

0.09 × 900 pb × BR(W → `/τν)2 ' 8600 fb and σinitial(tt̄h → leptons + jets +

(τ+τ−)) ' 3.5 fb.

• Z+jets: the AlpGen tree-level cross section merged to the HERWIG++ parton shower

is σ(Z + jets) ' 300 pb per lepton flavour (electrons, muons or taus). This sample

has been produced with one associated parton with the Z boson.

D Discovery with low statistics

Discovery occurs when the probability of obtaining a given experimental result, which

contains some signal, is small when compared to the expected background hypothesis.

How small this probability should be is somewhat a matter of preference and convention.

Nowadays, in high energy physics, these probabilities are taken to correspond to 3 standard

deviations away from the assumed central value of a Gaussian for the case of ‘evidence’

of a signal, and 5 standard deviations for the case of ‘discovery’ of a signal. On the other

hand, exclusion is based on the probability of having fewer events than the background

alone would give, given the signal plus background hypothesis.

To be concrete, let us assume that we are performing counting experiments of events,

obtaining as a result, Ni counts in each experiment i. Let us assume that in one specific

experiment, we obtained a measurement nobs. By some theoretical prediction, for example

obtained using a Monte Carlo event generator, or otherwise, the expected background

number of events in this experiment is given to be b. We can assume that the counts Ni

are random variables, distributed according to some distribution P (Ni, b), where b is the

mean of the distribution. In this case, the probability of obtaining nobs or more events,

when the mean is equal to the expected background b is given by:

P (N ≥ nobs, b) =
i=∞∑
i=nobs

P (Ni, b), (D.1)

where the sum can also be turned into an integral in the continuous variable case. In simple

words, according to the ‘background only’ distribution, getting a measurement of nobs or

more amounts to the probability of the shaded area in figure 13., and this probability tells

you how likely b is as an assumption of the mean of the distribution.
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Figure 13. The shaded region in the above probability distribution shows the probability of

obtaining N > nobs events.

In the specific case of the Poisson distribution:

Pois(Ni, b) =
bNi

Ni!
e−b, (D.2)

then eq. (D.1) becomes P (N ≥ nobs, b) =
∑i=∞

i=nobs

bNi

Ni!
e−b. This sum can be shown (see

appendix E) to be equivalent to the so-called ‘regularised incomplete gamma function’,

Γreg(s, x):

P (N ≥ nobs, b) =

i=∞∑
i=nobs

bNi
Ni!

e−b = Γreg(nobs, b) = Γ(nobs, b)/Γ(nobs), (D.3)

for nobs > 0, and where we have defined the ‘unregularised incomplete gamma function’:

Γ(nobs, b) =

∫ b

0
dt tnobs−1e−t , (D.4)

and Γ(nobs) is defined in eq. (E.2) in the following section, for n = nobs. We can then

calculate the probability for discovery. This is given by P (N ≥ nobs, b) for nobs = s + b,

where s is the expected signal contribution to the event counts. This probability will differ

from the one obtained using the large sample (i.e. Gaussian) approximation, in which the

significance is given approximately by σ ∼ s/
√
b. For exclusion, we need to calculate the

probability of having less than b events, under the assumption that the expected number

of events is s+ b, i.e. P (N < b, s+ b).

E Cumulative distribution for Poisson random variables

The unregularised incomplete gamma function is given by:

Γ(n, x) =

∫ x

0
dt tn−1e−t. (E.1)

One can then define the gamma function:

Γ(n) = lim
x→∞

Γ(n, x) =

∫ ∞
0

dt tn−1e−t. (E.2)
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The integral that appears in Γ(n, x) can be expanded by performing consecutive inte-

grations by parts:∫ x

0
dt tn−1e−t = −e−ttn−1

∣∣x
0

+ (n− 1)

∫ x

0
dt tn−2e−t

= −e−xxn−1 − (n− 1)e−xxn−2

+ (n− 1)(n− 2)

∫ x

0
dt tn−3e−t ,

= −e−x[xn−1 + (n− 1)xn−2

+ (n− 1)(n− 2)xn−3 + . . .]

+ (n− 1)(n− 2)(n− 3) . . . (1)[1− e−x].

(E.3)

From the last equality in the above expression we can deduce that

Γ(n) = (n− 1)! . (E.4)

For n > 0, dividing Γ(n, x) by Γ(n), we obtain:

Γ(n, x)

Γ(n)
= 1− e−x

[
xn−1

(n− 1)!
+

xn−2

(n− 2)!
+

xn−3

(n− 3)!
+ . . .

]
= 1−

∑
i≤n−1

xie−x

i!
=

∞∑
i=n

xie−x

i!
, (E.5)

which is nothing but the cumulative sum for the Poisson distribution.

F Individual signal regions

In figures 14 and 15 we demonstrate the individual signal regions contributing to the

envelops shown in figures 8 and 9. The analyses at each luminosity are identical and the

more ‘irregular’ form at lower luminosities is related to the Poisson statistics that govern

the smaller number of events in those cases.

The sensitivity of the BSM searches depends on the hardness of the final state particles

but not strongly on the angular distributions and polarisation. The hardness of the final

state particles is primarily determined by the topology and mass spectrum of the BSM

particles appearing in the process. Therefore, for example, if the LSP neutralino is replaced

by a gravitino with the same mass, keeping the rest of the topology unchanged, the signal

region efficiency is almost unchanged [69].

In table 6 we show the resulting cross sections after applying each of the signal regions,

defined in table 5. These can be used in conjunction with the efficiency data files for the

signal on the M2-M1 plane attached to this article13 to construct the signal cross section for

each signal region for explicit BSM scenarios with ÑC̃± → (hχ)(W±χ) topology, where Ñ

13The file corresponding to signal region X is “efficiency regionX expanded.dat”, located in the subdirec-

tory “efficiencies” of the distribution of this article.
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Figure 14. The significance on the M2-M1 plane obtained for the signal regions defined in table 5 at

integrated luminosities of 100 fb−1 (upper left), 300 fb−1 (upper right) and 3000 fb−1 (bottom). The

solid curves show the 3σ evidence region, whereas the dashed curves show the 5σ discovery region.

signal region SR1 SR2 SR3 SR4 SR5 SR6 SR7

σbkg (fb) 0.312 0.189 0.338 0.297 0.254 0.195 0.512

Table 6. The resulting sum of cross sections for the backgrounds for the different signal regions

(SR) used in the analysis.

and C̃± are massive BSM particles with the same mass, M2, and χ is an invisible particle

with mass M1. This feature makes simplified models very useful for recasting analysis

One can calculate the signal cross section for the process in question according to the

given model:

[signal efficiency, signal region X]× [signal cross section]× [BR] , (F.1)

and use this in conjunction with the background cross section for region X as given in the

table to obtain the p-value over the parameter space. Our efficiency data considers only

the process with the W → `/τ, ν and Higgs bosons decaying inclusively to leptons (either

h → τ+τ− or h → W+W− → (e+e−, µ+µ−, τ+τ−) + /ET ). The [BR] factor in eq. (F.1)

should therefore include these branching ratios.
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Figure 15. The exclusion on the M2-M1 plane obtained for the signal regions defined in table 5

at integrated luminosities of 100 fb−1 (upper left), 300 fb−1 (upper right) and 3000 fb−1 (bottom).

The solid curves show the 2σ exclusion boundary, whereas the dashed curves show the 3σ boundary.
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