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1 Introduction

The gauge-Higgs unification [1–4] is an interesting candidate for the new physics beyond

the standard model. This solves the gauge hierarchy problem because a higher dimensional

gauge symmetry protects the Higgs mass against quantum corrections. Chiral fermions in

four-dimensional (4D) effective theory can be obtained by compactifying the extra dimen-

sions on an orbifold.

The simplest models of this category are based on five-dimensional (5D) gauge theories

whose gauge groups are U(3) in the flat spacetime [5–7], and SO(5)× U(1) in the warped

spacetime [8–10]. In these models, the electroweak symmetry is broken by the vacuum

expectation value (VEV) of the Wilson line phase θH ≡
∫

C dy Ay, where C is a non-

contractible cycle along the extra dimension and Ay is the extra-dimensional component

of the gauge field. The mass scale of the Kaluza-Klein (KK) excitation modes mKK is

determined by 〈θH〉 as mKK ≃ mW / |〈θH〉| (mW : the W boson mass) in the flat spacetime,

and mKK ≃ mWπ
√
kπR/ |sin〈θH〉| (ekπR: the warp factor) in the warped spacetime [9].

The current experimental constraints require 〈θH〉 to be small, i.e., 〈θH〉 <∼ O(0.1). In

order to realize such small values of 〈θH〉, we need some amount of fine-tuning among the

model parameters, such as 5D mass parameters for fermions. This stems from the fact that

the effective potential for θH does not exist at tree level and is induced at one-loop level

in 5D gauge-Higgs unification models. The one-loop potential is typically expressed as a

sum of periodic functions of θH with the period of π and 2π (or π/2), which are roughly

approximated as the cosine functions [11, 12]. Therefore, 〈θH〉 = O(1) is realized unless the

model parameters are fine-tuned. This problem can be evaded in the six-dimensional (6D)

gauge-Higgs unification models. In this case, quartic terms in the Wilson line phases exist

at tree level, while quadratic terms are induced at one-loop level. In the flat spacetime, for

example, the effective potential has a form of

V (θH) = − c2g
2

l6R2

(

θH
gπR

)2

+ c4g
2

(

θH
gπR

)4

+O(θ6H), (1.1)

where c2, c4 = O(1) are numerical constants, g is the SU(2)L gauge coupling constant,

l6 ≡ 128π3 is the 6D loop factor, and R is a typical radius of the extra-dimensional space.

By minimizing this, we find that

〈θH〉 ≃
gπ

√
c2√

2l6c4
≃ 0.02

√
c2√

c4
≪ 1, (1.2)

and the KK modes are estimated to be around a few TeV.
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In extra-dimensional models, coupling constants in 4D effective theories generally devi-

ate from the standard model values even at tree level due to mixing with the KK modes [13–

15]. Unless mKK is very high, models need some mechanisms to suppress such deviations.

Especially a requirement that the ρ parameter and the Z boson coupling to the left-handed

bottom quark (the ZbLb̄L coupling) do not deviate too much often imposes severe con-

straints on the model building. It is known that the custodial symmetry can protect them

against the corrections induced by the mixing with the KK modes [8, 16]. Hence we focus

on 6D gauge-Higgs unification models that has the custodial symmetry in this paper.

The purpose of this paper is to select candidates for realistic 6D gauge-Higgs unification

models by means of the group theoretical analysis. The analysis is useful to investigate

the gauge-Higgs unification models because the Higgs sector is determined by the gauge

group structure. There are some works along this direction. 5D models are analyzed in

ref. [17], the tree-level Higgs potentials in 6D models are calculated in ref. [18], and models

in arbitrary dimensions are discussed in ref. [19]. In these works, the custodial symmetry

is not considered and the electroweak gauge symmetry SU(2)L × U(1)Y is embedded into

a simple group. Thus the Weinberg angle θW is determined only by the group structure,

and they found that no simple group realizes the observed value of θW . However, the

assumption that SU(2)L × U(1)Y is embedded into a simple group is not indispensable

because the color symmetry SU(3)C is not unified anyway. Besides, any brane localized

terms allowed by the symmetries are not introduced in refs. [17, 19]. In fact, the realistic

models constructed so far allow both an extra U(1) gauge symmetry, which is relevant to

the realization of the experimental value of θW , and various terms and fields localized at

the fixed points of the orbifolds [6, 7, 10, 11]. Therefore, we include both ingredients in our

analysis. Since larger gauge groups contain more unwanted exotic particles, we consider a

case that the 6D gauge group is SU(3)C ×G×U(1), where G is a simple group whose rank

is less than four.

The paper is organized as follows. In the next section, we explain our setup and derive

conditions for zero-modes. In section 3, we list the zero-modes in the bosonic sector for all

the rank-two and the rank-three groups that include the custodial symmetry. In section 4,

we find a condition to preserve the custodial symmetry, and provide explicit expressions

of the W and Z boson masses. In section 5, we discuss embeddings of quarks into 6D

fermions, and search for appropriate representations of G that the 6D fermions should

belong to. In section 6, we calculate the Higgs potential at tree level. Section 7 is devoted

to the summary. In appendix A, we collect formulae in the Cartan-Weyl basis of the gauge

group generators. In appendix B, general forms of the orbifold boundary conditions are

shown. In appendix C, we list irreducible decompositions of various G representations into

the SU(2)L × SU(2)R multiplets.

2 Setup

2.1 Compactified space

The 6D spacetime is assumed to be flat, and the metric is given by

ds2 = ηMNdx
MdxN = ηµνdx

µdxν + (dx4)2 + (dx5)2, (2.1)

– 2 –
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where M,N = 0, 1, · · · , 5, ηµν = diag(−1, 1, 1, 1) is the 4D Minkowski metric, and a point

in the extra space (x4, x5) is identified as

(

x4

x5

)

∼
(

x4

x5

)

+ 2πn1R1

(

1

0

)

+ 2πn2R2

(

cos θ

sin θ

)

, (2.2)

where n1 and n2 are integers, and R1, R2 > 0 and 0 < θ < π are constants. In order

to obtain a 4D chiral theory at low energies, we compactify the extra space on a two-

dimensional orbifold. All possible orbifolds are T 2/ZN (N = 2, 3, 4, 6) [20]. It is convenient

to use a complex (dimensionless) coordinate z ≡ 1
2πR1

(x4 + ix5). Then, the orbifold obeys

the identification,

z ∼ ωz + n1 + n2τ, (2.3)

where ω = e2πi/N and τ ≡ R2
R1
eiθ. Note that an arbitrary value of τ is allowed when N = 2

while it must be equal to ω when N 6= 2.

The orbifold T 2/ZN has the following fixed points in the fundamental domain [21, 22].

z = zf ≡



























0, 12 ,
τ
2 ,

1+τ
2 (on T 2/Z2)

0, 2+τ
3 , 1+2τ

3 (on T 2/Z3)

0, 1+τ
2 (on T 2/Z4)

0 (on T 2/Z6)

(2.4)

4D fields or interactions are allowed to be introduced on these fixed points.

2.2 Field content

We consider a 6D gauge theory whose gauge group is SU(3)C × G × U(1)Z , where G is

a simple group. Since G must include SU(2)L × SU(2)R, its rank r is greater than one.

In this paper, we investigate cases of r = 2, 3. In the following, we omit SU(3)C since

it is irrelevant to the discussion. The 6D gauge fields for G and U(1)Z are denoted as

AM and BZ
M , and the field strengths and the covariant derivative are defined as F

(A)
MN ≡

∂MAN − ∂NAM − i[AM , AN ], F
(Z)
MN ≡ ∂MB

Z
N − ∂NB

Z
M , and DM ≡ ∂M − iAM − iqZB

Z
M ,

where qZ is a U(1)Z charge. The 6D Lagrangian is expressed as

L = − 1

4g2A
tr
(

F (A)MNF
(A)
MN

)

− 1

4g2Z
F (Z)MNF

(Z)
MN + i

∑

f

Ψ̄fΓMDMΨf

+
∑

zf

L(zf)δ(2)(z − zf), (2.5)

where gA and gZ are the 6D gauge coupling constants for G and U(1)Z , Γ
M are the 6D

gamma matrices, and L(zf) are 4D Lagrangians localized at the fixed points z = zf .

The G gauge field AM is decomposed as

AM =
∑

i

Ci
MHi +

∑

α

Wα
MEα, (2.6)

– 3 –
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where {Hi, Eα} are the generators in the Cartan-Weyl basis, i.e., Hi (i = 1, · · · , r) are the

Cartan generators and α runs over all the roots of G. Since AM is Hermitian, Ci
M are real

and W−α
M = (Wα

M )∗. In the complex coordinate (xµ, z), the extra-dimensional components

of the gauge fields are expressed as

Az = πR1 (A4 − iA5) , Az̄ = A†
z,

BZ
z = πR1

(

BZ
4 − iBZ

5

)

, BZ
z̄ = BZ†

z . (2.7)

2.3 Orbifold conditions for gauge fields

As shown in appendix B, the general orbifold boundary conditions for the gauge fields can

be expressed as

AM (x, z + 1) = AM (x, z), BZ
M (x, z + 1) = BZ

M (x, z),

AM (x, z + τ) = AM (x, z), BZ
M (x, z + τ) = BZ

M (x, z),

Aµ(x, ωz) = PAµ(x, z)P
−1, Az(x, ωz) = ω−1PAz(x, z)P

−1,

BZ
µ (x, ωz) = BZ

µ (x, z), BZ
z (x, ωz) = ω−1BZ

z (x, z), (2.8)

where P is an element of G. The orbifold conditions for 6D fermions are provided in (5.2).

Since zero-modes of the gauge fields have flat profiles over the extra dimensional space,

we can see from (2.8) that BZ
µ has a zero-mode while BZ

z does not. Namely U(1)Z is un-

broken by the orbifold conditions. The condition for AM to have zero-modes is determined

by the choice of the matrix P in (2.8). It is always possible to choose the generators so

that P is expressed as

P = exp (ip ·H) , (2.9)

where p · H ≡
∑

i piHi and pi are real constants. Thus PHiP
−1 = Hi and PEαP

−1 =

eip·αEα, and the relevant conditions in (2.8) to the zero-mode conditions are rewritten as

Ci
µ(x, ωz) = Ci

µ(x, z), Ci
z(x, ωz) = ω−1Ci

z(x, z),

Wα
µ (x, ωz) = eip·αWα

µ (x, z), Wα
z (x, ωz) = ei(p·α−

2π
N

)Wα
z (x, z). (2.10)

This indicates that Ci
µ always have zero-modes while Ci

z do not irrespective of the choice

of the matrix P . Therefore the orbifold boundary conditions cannot reduce the rank of G

as pointed out in ref. [23]. In contrast, whether Wα
µ and Wα

z have zero-modes depend on

the choice of P . Since (2.10) is the ZN transformation, pi must satisfy eiNp·α = 1. Thus

possible values of p · α are

p · α =
2nαπ

N
, (2.11)

where nα is an integer.

In this paper, we focus on P such that the orbifold bondary conditions break G to

SU(2)L×SU(2)R×U(1)r−2. We denote the positive roots that specify SU(2)L and SU(2)R as

αL and αR, respectively. The SU(2)L and SU(2)R generators are given by (4.1). Then (2.11)

is further restricted as

p · αL = p · αR = 0, (mod 2π)

p · β =
2nβπ

N
. (β 6= αL, αR, nβ ∈ Z, nβ 6∈ NZ) (2.12)

– 4 –
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From the last condition in (2.10), the zero-mode condition for W β
z is

p · β =
2π

N
. (2.13)

3 Zero-modes of gauge and Higgs fields

In this section, we investigate the field content of the zero-modes from the 6D gauge fields.

3.1 Rank-two groups

First we consider a case of r = 2, i.e., G = SO(5),G2. In this case, the unbroken gauge

group by the orbifold conditions is SU(2)L×SU(2)R×U(1)Z . We do not consider G =SU(3)

because it does not contain SU(2)L×SU(2)R as a subgroup. The roots ofG can be expressed

as linear combinations of two-dimensional basis vectors ei (i = 1, 2).

3.1.1 SO(5)

The roots are {±ei ± ej ,±ei} (1 ≤ i 6= j ≤ 2). We can choose the unbroken sub-

group SU(2)L × SU(2)R as

(αL, αR) = (e1 + e2, e1 − e2). (3.1)

The other possible choices are essentially equivalent to this case.1 Then the adjoint repre-

sentation of G is decomposed into the irreducible representations of SU(2)L × SU(2)R as

10 = (3, 1) + (1, 3) + (2, 2). (3.2)

A candidate for the Higgs fields is a bidoublet (2, 2), which consists of ±e1 and ±e2. The

conditions in (2.12) are now expressed as

p1 + p2 = p1 − p2 = 0, (mod 2π)

p1 =
2nPπ

N
. (nP ∈ Z, nP 6∈ NZ) (3.3)

It is enough to find a solution in a range: 0 ≤ p1, p2 < 2π. A solution exists when N 6= 3,

and it is

(p1, p2) = (π, π), (3.4)

or

P = exp {iπ(H1 +H2)} . (3.5)

Therefore the zero-mode condition (2.13) for (2, 2) is expressed as

π =
2π

N
. (3.6)

Namely, we have one Higgs bidoublet when N = 2, while no Higgs exists in the other cases.

1We cannot choose them as (αL, αR) = (e1, e2) because αL + αR is a root in such a case.

– 5 –
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3.1.2 G2

The roots are {±(e1 ±
√
3e2)/2,±(e1 ± 1√

3
e2)/2,±e1,±e2/

√
3}. We can choose the

SU(2)L × SU(2)R subgroup as

(αL, αR) =

(

e1,
e2√
3

)

,

(

e2√
3
, e1
)

. (3.7)

The other possible choices are essentially equivalent to these cases.

Let us first consider the case of (αL, αR) = (e1, e2/
√
3). The irreducible decomposition

of the adjoint representation of G is

14 = (3, 1) + (1, 3) + (2, 4). (3.8)

A candidate for the Higgs fields is (2, 4). The conditions in (2.12) become

p1 =
p2√
3
= 0, (mod 2π)

p1
2

+
p2

2
√
3
=

2nPπ

N
. (nP ∈ Z, nP 6∈ NZ) (3.9)

It is enough to find a solution in a range 0 ≤ p1,
p2√
3
< 2π. A solution exists when N 6= 3,

and it is

P = exp
(

2
√
3πiH2

)

. (3.10)

Therefore the zero-mode condition (2.13) for (2, 4) is expressed as

π =
2π

N
. (3.11)

Namely, we have a (2, 4) multiplet as the Higgs fields when N = 2, while no Higgs exists

in the other cases.

In the case of (αL, αR) = (e2/
√
3, e1), the results are obtained by exchanging SU(2)L

and SU(2)R in the above resuts. Hence we do not have SU(2)L-doublet Higgses.

3.2 Rank-three groups

Next we consider a case of r = 3, i.e., G =SU(4),SO(7),Sp(6). In this case, the unbroken

gauge group by the orbifold conditions is SU(2)L×SU(2)R×U(1)X×U(1)Z . The roots of G

can be expressed as linear combinations of three-dimensional basis vectors ei (i = 1, 2, 3).

3.2.1 SU(4)

The roots are {
√
2e1,

√
2e2, ±e1√

2
± e2√

2
+ e3}.2 We can choose the SU(2)L × SU(2)R

subgroup as

(αL, αR) = (
√
2e1,

√
2e2). (3.12)

2It is sometimes convenient to embed these roots into a four-dimensional vector space. Then they are

expressed as ê
I − ê

J (1 ≤ I 6= J ≤ 4), where ê
I are the basis vectors of the embeded space. The original

basis vectors are expressed as e1 = 1√
2
(ê1 − ê

2), e2 = 1√
2
(ê3 − ê

4) and e
3 = 1

2
(ê1 + ê

2 − ê
3 − ê

4).

– 6 –
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The other choices are essentially equivalent to this case. The U(1)X generator QX is

identified as

QX = 2e3 ·H = 2H3. (3.13)

The irreducible decomposition of the adjoint representation of G is

15 = (3, 1)0 + (1, 3)0 + (2, 2)+2 + (2, 2)−2 + (1, 1)0, (3.14)

where (3, 1)0, (1, 3)0 and (1, 1)0 correspond to SU(2)L, SU(2)R and U(1)X generators,

respectively. Thus the candidates for the Higgs fields are two bidoublets. The conditions

in (2.12) become

√
2p1 =

√
2p2 = 0, (mod 2π)

p1√
2
+

p2√
2
+ p3 =

2nPπ

N
, (nP ∈ Z, nP 6∈ NZ) . (3.15)

Solutions are

P = exp

(

2nPπi

N
H3

)

, (3.16)

where nP = 1, · · · , N − 1. Therefore the zero-mode conditions (2.13) for (2, 2)±2 are

± 2nPπ

N
=

2π

N
. (mod 2π) (3.17)

Namely, the scalar zero-modes we have are

(2, 2)+2, (2, 2)−2 : (when N = 2)

(2, 2)+2 : (when N = 3, 4, 6 and nP = 1)

(2, 2)−2 : (when N = 3, 4, 6 and nP = N − 1)

Nothing : (in the other cases) . (3.18)

3.2.2 SO(7)

The roots are {±ei ± ej ,±ei} (1 ≤ i 6= j ≤ 3). Essentially inequivalent choices of the

SU(2)L × SU(2)R subgroup are

(αL, αR) = (e1 + e2, e1 − e2), (e1 + e2, e3), (e3, e1 + e2). (3.19)

(I) (αL, αR) = (e1 + e2, e1 − e2)

The U(1)X generator is

QX = e3 ·H = H3. (3.20)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (2, 2)+1 + (2, 2)−1 + (2, 2)0

+(1, 1)+1 + (1, 1)−1 + (1, 1)0, (3.21)

– 7 –
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where (3, 1)0, (1, 3)0 and (1, 1)0 correspond to SU(2)L, SU(2)R and U(1)X gener-

ators, respectively. Thus candidates for the scalar zero-modes are three bidoublets

and two singlets. Independent conditions in (2.12) are expressed as

p1 + p2 = p1 − p2 = 0, (mod 2π)

p1 + p3, p1, p3 =
2nPπ

N
. (nP ∈ Z, nP 6∈ NZ) (3.22)

Solutions exist only when N = 4, 6, and they are

P = exp

{

iπ

(

H1 +H2 +
2nP
N

H3

)}

, (3.23)

where nP 6= 0, N/2. Therefore the zero-mode conditions (2.13) for (2, 2)±1, (2, 2)0
and (1, 1)±1 are

π ± 2nPπ

N
=

2π

N
, π =

2π

N
, ±2nPπ

N
=

2π

N
, (3.24)

respectively. Here the double signs correspond.

When N = 4, the scalar zero-modes we have are

(2, 2)−1, (1, 1)+1 : (when nP = 1)

(2, 2)+1, (1, 1)−1 : (when nP = 3) (3.25)

When N = 6, they are

(1, 1)+1 : (when nP = 1)

(2, 2)−1 : (when nP = 2)

(2, 2)+1 : (when nP = 4)

(1, 1)−1 : (when nP = 5) (3.26)

(II) (αL, αR) = (e1 + e2, e3)

The U(1)X generator is

QX = (e1 − e2) ·H = H1 −H2. (3.27)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (2, 3)+1 + (2, 3)−1

+(1, 1)+2 + (1, 1)−2 + (1, 1)0. (3.28)

Candidates for the scalar zero-modes are (2, 3)±1 and (1, 1)±1. Independent con-

ditions in (2.12) are expressed as

p1 + p2 = p3 = 0, (mod 2π)

p1 + p3, p2 + p3, p1 − p2 =
2nPπ

N
. (nP ∈ Z, nP 6∈ NZ) (3.29)

– 8 –
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Solutions exist when N = 3, 4, 6, and they are

P = exp

{

2nPπi

N
(H1 −H2)

}

, (3.30)

where nP 6= 0, N/2. Therefore the zero-mode conditions (2.13) for (2, 3)±1 and

(1, 1)±1 are

± 2nPπ

N
=

2π

N
, ±4nPπ

N
=

2π

N
, (3.31)

respectively.

When N = 3, the scalar zero-modes we have are

(2, 3)+1, (1, 1)−2 : (when nP = 1)

(2, 3)−1, (1, 1)+2 : (when nP = 2) (3.32)

When N = 4, they are

(2, 3)+1 : (when nP = 1)

(2, 3)−1 : (when nP = 3) (3.33)

When N = 6, they are

(2, 3)+1 : (when nP = 1)

Nothing : (when nP = 2, 4)

(2, 3)−1 : (when nP = 5) (3.34)

(III) (αL, αR) = (e3, e1 + e2)

The results are obtained by exchanging SU(2)L and SU(2)R in the case (II). Hence

we do not have SU(2)L-doublet Higgses.

3.2.3 Sp(6)

The roots are {±ei ± ej ,±2ei} (1 ≤ i 6= j ≤ 3). Essentially inequivalent choices of the

SU(2)L × SU(2)R are

(αL, αR) = (2e1, 2e2), (e1 + e2, 2e3), (2e3, e1 + e2). (3.35)

(I) (αL, αR) = (2e1, 2e2)

The U(1)X generator is

QX = e3 ·H = H3. (3.36)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (2, 2)0 + (2, 1)+1 + (2, 1)−1

+(1, 2)+1 + (1, 2)−1 + (1, 1)+2 + (1, 1)−2 + (1, 1)0. (3.37)
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Independent conditions in (2.12) are expressed as

2p1 = 2p2 = 0, (mod 2π)

p1 + p2, p1 ± p3, p2 ± p3, 2p3 =
2nPπ

N
, (nP ∈ Z, nP 6∈ NZ) (3.38)

Solutions exist only when N = 4, 6. They are

P =















P (1)
nP

≡ exp

{

iπ

(

H2 +
2nPπ

N
H3

)}

,

P (2)
nP

≡ exp

{

iπ

(

H1 +
2nPπ

N
H3

)}

,
(3.39)

where nP 6= 0, N/2.

When N = 4, the scalar zero-modes we have are

(2, 1)+1, (1, 2)−1 : (for P
(1)
1 or P

(2)
3 )

(2, 1)−1, (1, 2)+1 : (for P
(1)
3 or P

(2)
1 ) (3.40)

When N = 6, they are

(2, 1)+1 : (for P
(1)
1 or P

(2)
4 )

(1, 2)−1 : (for P
(1)
2 or P

(2)
5 )

(1, 2)+1 : (for P
(1)
4 or P

(2)
1 )

(2, 1)−1 : (for P
(1)
5 or P

(2)
2 ) (3.41)

(II) (αL, αR) = (e1 + e2, 2e3)

The U(1)X generator is

QX =
(

e1 − e2
)

·H = H1 −H2. (3.42)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (3, 1)+2 + (3, 1)−2 + (2, 2)+1 + (2, 2)−1 + (1, 1)0.

(3.43)

Independent conditions in (2.12) are expressed as

p1 + p2 = 2p3 = 0, (mod 2π)

p1 + p3, p2 + p3, 2p1, 2p2 =
2nPπ

N
, (nP ∈ Z, nP 6∈ NZ) (3.44)

where nP 6= 0, N/2. Solutions exist only when N = 3, 4, 6. They are

P =















P (1)
nP

≡ exp

{

2nPπi

N
(H1 −H2)

}

,

P (2)
nP

≡ exp

{

iπ

(

2nP −N

N
(H1 −H2) +H3

)}

.
(3.45)
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When N = 3, the scalar zero-modes we have are

(3, 1)−2, (2, 2)+1 : (for P
(1)
1 or P

(2)
1 )

(3, 1)+2, (2, 2)−1 : (for P
(1)
2 or P

(2)
2 ) (3.46)

When N = 4, they are

(2, 2)+1 : (for P
(1)
1 or P

(2)
1 )

(2, 2)−1 : (for P
(1)
3 or P

(2)
3 ) (3.47)

When N = 6, they are

(2, 2)+1 : (for P
(1)
1 or P

(2)
1 )

(2, 2)−1 : (for P
(1)
5 or P

(2)
5 )

Nothing : (in the other cases) (3.48)

(III) (αL, αR) = (2e3, e1 + e2)

The results are obtained by exchanging SU(2)L and SU(2)R in the case (II).

4 Custodial symmetry and Weinberg angle

4.1 Custodial symmetry

Here we consider a condition that the custodial symmetry is preserved after the electroweak

symmetry is broken. The SU(2)L and SU(2)R generators are

(T±
L , T

3
L) =

(

E±αL

|αL|
,
αL ·H
|αL|2

)

, (T±
R , T

3
R) =

(

E±αR

|αR|
,
αR ·H
|αR|2

)

, (4.1)

respectively. Thus (2.6) is rewritten as

Aµ = W+
LµT

+
L +W−

LµT
−
L +W 3

LµT
3
L +W+

RµT
+
R +W−

RµT
−
R +W 3

RµT
3
R

+BX
µ x ·H + · · · , (4.2)

where

W±
Lµ ≡ |αL|W±αL

µ , W 3
Lµ ≡ αL · Cµ,

W±
Rµ ≡ |αR|W±αR , W 3

Rµ ≡ αR · Cµ, (4.3)

and BX
µ ≡ x·Cµ

|x|2 is the U(1)X gauge field that does not exist when r = 2. The ellipsis denotes

components that do not have zero-modes. Since the generators in (4.1) are normalized as

tr
(

T+
L T

−
L

)

= tr
(

(T 3
L)

2
)

=
1

|αL|2
, tr

(

T+
R T

−
R

)

= tr
(

(T 3
R)

2
)

=
1

|αR|2
, (4.4)
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the canonically normalized zero-mode gauge fields are

Ŵ±,3
Lµ ≡

√
A

gA |αL|
W±,3

Lµ , Ŵ±,3
Rµ ≡

√
A

gA |αR|
W±,3

Rµ , B̂Z
µ ≡

√
A
gZ

BZ
µ , (4.5)

where A is the area of the fundamental domain of T 2/ZN .

Since we have assumed that SU(2)R × U(1)Z is unbroken by the orbifold boundary

conditions, we introduce some 4D scalar fields at one of the fixed points of T 2/ZN in order

to break it to U(1)Y . We demand that the custodial symmetry SU(2)V ⊂ SU(2)L×SU(2)R
remains unbroken after the Higgs fields have VEVs. The generators of SU(2)V are

T±
V ≡ T±

L + T±
R =

E±αL

|αL|
+
E±αR

|αR|
,

T 3
V ≡ T 3

L + T 3
R =

αL ·H
|αL|2

+
αR ·H
|αR|2

. (4.6)

Thus the conditions for SU(2)V to be unbroken are

[

T±
V , 〈Az〉

]

=
∑

β

〈W β
z 〉
(

N±αL,βEβ±αL

|αL|
+
N±αR,βEβ±αR

|αR|

)

= 0,

[

T 3
V , 〈Az〉

]

=
∑

β

〈W β
z 〉
(

αL · β
|αL|2

+
αR · β
|αR|2

)

Eβ = 0, (4.7)

since Ci
z do not have zero-modes and thus 〈Ci

z〉 = 0.

4.1.1 Rank-two groups

Let us first consider the rank-two groups. We introduce the following Lagrangian at z = 0.3

Lloc =
{

−Dµφ
†Dµφ− V (φ)

}

δ(z), (4.8)

where φ is a complex scalar field belonging to (1, 2)+1/2 under SU(2)L×SU(2)R×U(1)Z ,

and V (φ) is a potential that force φ to have a nonvanishing VEV. After φ gets a VEV,

SU(2)R × U(1)Z is broken to U(1)Y , and the corresponding massless gauge field is ex-

pressed as

B̂Y
µ ≡ sin θZŴ

3
Rµ + cos θZB̂

Z
µ , (4.9)

where a mixing angle θZ is determined by tan θZ = gZ/(gA |αR|). The hypercharge opera-

tor Y is identified as

Y = T 3
R +QZ =

αR ·H
|αR|2

+QZ . (4.10)

After W β
z have nonvanishing VEVs, SU(2)L ×U(1)Y is broken to the electromagnetic

symmetry U(1)em. Since W β
z is U(1)Z neutral and only U(1)em neutral W β

z can have

nonvanishing VEVs, the root β must satisfy

αL · β
|αL|2

+
αR · β
|αR|2

= 0, (4.11)

3Of course, Lloc can be localized at other fixed point.
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if 〈W β
z 〉 6= 0. Thus the second condition in (4.7) is automatically satisfied. The roots that

satisfy (4.11) are ±e2 ∈ (2, 2) in SO(5), and ±
(

e1

2 − e2

2
√
3

)

∈ (2, 4) in G2. Then, from

the first condition in (4.7), we obtain a condition,
∣

∣

∣
〈W e2

z 〉
∣

∣

∣
=
∣

∣

∣
〈W−e2

z 〉
∣

∣

∣
, 〈W β

z 〉 = 0, (β 6= ±e2) (4.12)

for SO(5), while no nonvanishing VEV is allowed for G2.

4.1.2 Rank-three groups

Next consider the rank-three groups. Since the unbroken gauge symmetry by the orbifold

conditions is SU(2)L×SU(2)R×U(1)X×U(1)Z , let us first assume that φ in (4.8) also has a

nonzero U(1)X charge in order to obtain SU(2)L ×U(1)Y at low energies. Then the U(1)Y
gauge field BY

µ becomes a linear combination of W 3
Rµ, B

X
µ and BZ

µ , and the hypercharge

is identified as

Y = T 3
R +QX +QZ =

αR ·H
|αR|2

+ x ·H +QZ . (4.13)

Thus the condition (4.11) now becomes

αL · β
|αL|2

+
αR · β
|αR|2

+ x · β = 0. (4.14)

From this and the second condition in (4.7), both (4.11) and x · β = 0 must be satisfied if

〈W β
z 〉 6= 0. Such roots do not exist among the zero-modes listed in section 3.2. Therefore

we introduce two complex scalar fields φ1 and φ2 instead of φ on the fixed point,

Lloc =
{

−Dµφ
†
1Dµφ1 −Dµφ

†
2Dµφ2 − V (φ1, φ2)

}

δ(z), (4.15)

where φ1 and φ2 are complex scalars belonging to (1, 2)0,+1/2 and (1, 1)+1,0 respectively

under SU(2)L × SU(2)R × U(1)X × U(1)Z , and V (φ1, φ2) is a potential for them. Since

φ1 is neutral for U(1)X , the U(1)Y gauge field BY
µ is now independent of BX

µ . Hence the

hypercharge is identified as (4.10). The U(1)X charges are no longer relevant to the U(1)Y
and U(1)em charges because U(1)X is completely broken by a VEV of another scalar φ2.

Thus the U(1)Y gauge field is given by (4.9). In this case, the U(1)em neutral condition

becomes (4.11), which is consistent with the second condition in (4.7). As a result, possible

nonvanishing VEVs are as follows.
∣

∣

∣
〈W±(e1−e3)

z 〉
∣

∣

∣
=
∣

∣

∣
〈W±(e2−e4)

z 〉
∣

∣

∣
∈ (2, 2)±2 in SU(4),

∣

∣

∣
〈W±(e2+e3)

z 〉
∣

∣

∣
=
∣

∣

∣
〈W±(−e2+e3)

z 〉
∣

∣

∣
∈ (2, 2)±1,

∣

∣

∣
〈W±e3

z 〉
∣

∣

∣
∈ (1, 1)±1 in SO(7) (I),

∣

∣

∣〈W±(e1−e3)
z 〉

∣

∣

∣ =
∣

∣

∣〈W±(−e2+e3)
z 〉

∣

∣

∣ ∈ (2, 2)±1 in Sp(6) (II), Sp(6) (III), (4.16)

where the double signs correspond.

In summary, fields that can have nonzero VEVs are the neutral components of a

bidoublet (2, 2) or a singlet (1, 1). The above conditions indicate that a bidoublet Ha

must have a VEV:

〈Ha〉 =
1

2

(

va
va

)

, (4.17)

where va > 0, if we redefine a phase of each field component appropriately.
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4.2 Weinberg angle and weak gauge boson masses

In the approximation that the W and Z bosons have constant profiles over the extra

dimensions, the 4D SU(2)L and U(1)Y gauge coupling constants are read off from couplings

to the matter zero-modes, and are identified as

g =
gA |αL|√

A
, g′ =

gAgZ |αR|
√

A(g2A |αR|2 + g2Z)
. (4.18)

Thus the Weinberg angle is calculated as

tan2 θW ≡ g′

g
=

g2Z |αR|2

|αL|2 (g2A |αR|2 + g2Z)
. (4.19)

We can obtain the experimental value tan2 θW ≃ 0.30 by tuning the ratio gZ/gA.

Next we derive the expressions of the W and Z boson masses. From (4.5) and (4.9),

the expression (4.2) becomes

Aµ =W+
LµT

+
L +W−

LµT
−
L +W 3

LµT
3
L + sin θZB

Y
µ T

3
R + · · · , (4.20)

where BY
µ ≡ gA|αR|√

A B̂Y
µ , after the breaking SU(2)R ×U(1)Z → U(1)Y . Then it follows that

[Aµ, 〈Az〉] =
∑

β

W β
z

{

W+
L,µ

NαL,β

|αL|
Eβ+αL

+W−
Lµ

N−αL,β

|αL|
Eβ−αL

+

(

W 3
Lµ

αL · β
|αL|2

+BY
µ sin θZ

αR · β
|αR|2

)

Eβ

}

. (4.21)

From the results in the previous subsections, the only components that contribute to the

W and Z boson masses are the neutral components of the bidoublets. Since the roots that

form a bidoublet are expressed as







γa + αL
αR−→ γa + αL + αR

↑αL
↑αL

γa
αR−→ γa + αR






, (4.22)

where a labels the bidoublets, (4.21) are rewritten as

[Aµ, 〈Az〉] =
∑

a

[

〈W γa+αL
z 〉

{

eiζ√
2
W−

LµEγa +

(

1

2
W 3

Lµ − sin θZ
2

BY
µ

)

Eγa+αL

}

(4.23)

+〈W γa+αR
z 〉

{

eiη√
2
W+

LµEγa+αL+αR
−
(

1

2
W 3

Lµ − sin θZ
2

BY
µ

)

Eγa+αR

}]

,

where γa is the T 3
L = T 3

R = −1/2 component of the zero-mode bidoublets Ha. We have

used that |N−αL,γa+αL
|2 = |NαL,γa+αR

|2 = |αL|2 /2, and ζ ≡ arg(N−αL,γa+αL
) and η ≡
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arg(NαL,γa+αR
). Thus the relevant terms in 6D Lagrangian are calculated as

L = − 1

4g2A
tr(F (A)MNF

(A)
MN ) + · · · = − 1

2g2Aπ
2R2

1

tr
(

[Aµ, 〈Az〉] [Aµ, 〈Az〉]†
)

+ · · ·

= −
∑

a

∣

∣

∣〈W γa+αL
z 〉

∣

∣

∣

2
+
∣

∣

∣〈W γa+αR
z 〉

∣

∣

∣

2

2g2Aπ
2R2

1

{

1

2
W+µ

L W−
Lµ +

(

1

2
W 3

Lµ − sin θZ
2

BY
µ

)2
}

+ · · ·

= −g
2
∑

a v
2
a

4A

{

Ŵ+µ
L Ŵ−

Lµ +
1

2

(

Ŵ 3
Lµ − |αR| sin θZ

|αL|
B̂Y

µ

)2
}

+ · · · . (4.24)

At the last step, we have used that (4.5), and
∣

∣

∣〈W γa+αL
z 〉

∣

∣

∣ =
∣

∣

∣〈W γa+αR
z 〉

∣

∣

∣ ≡ gπR1va/
√
2 |αL|

(g: 4D SU(2)L gauge coupling), which follows from (4.12) or (4.16). We obtain the W and

Z boson mass terms by integrating (4.24) over the extra dimensions, and their masses are

read off as

mW =
g

2

√

∑

a

v2a,

mZ =

(

1 +
|αR|2 sin2 θZ

|αL|2

)1/2

mW =

(

1 +
g2Z |αR|2

|αL|2 (g2A |αR|2 + g2Z)

)1/2

mW . (4.25)

From these and (4.19), we find that ρ ≡ m2
W /(m

2
Z cos2 θW ) = 1. This is expected because

we have assumed that only SU(2)L doublets and singlets have nonzero VEVs and neglected

the z-dependence of the mode functions for the W and Z bosons. The custodial symmetry

will play a crucial role when such z-dependence is taken into account.

5 Matter field

We consider a case that quarks and leptons live in the bulk. This case is interesting

because the hierarchical structure of the Yukawa coupling constants can be realized by the

wave function localization [24, 25], and the generation structure can also be obtained by

a background magnetic flux [22]. In the following, we focus on the quark sector, but a

similar argument is also applicable to the lepton sector.

5.1 Zero-mode condition

A 6D Weyl fermion Ψχ6 with the 6D chirality χ6 = ± is decomposed as

Ψχ6 =
∑

χ4=±
Ψχ6,χ4 , (5.1)

where χ4 = +(R),−(L) is the 4D chirality. The orbifold boundary conditions for Ψχ6,χ4

are given by [5]

Ψχ6,χ4(x, z + 1) = Ψχ6,χ4(x, z),

Ψχ6,χ4(x, z + τ) = Ψχ6,χ4(x, z),

Ψχ6,χ4(x, ωz) = ω−χ4χ6
2 eiϕωPΨχ6,χ4(x, z). (5.2)
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A factor ω−χ4χ6
2 appears because a 6D spinor is charged under a rotation in the extra-

dimensional space. The phase ϕω satisfies (B.4).

As pointed out in ref. [26], the generations and the hierarchy among the Yukawa

couplings can be obtained by introducing an extra gauge symmetry GF and assuming a

magnetic flux on T 2/ZN and the Wilson line phases for GF . The zero-modes are contained

in Ψχ6,χ4 as

Ψχ6,χ4(x, z) =

jmax
∑

j=1

∑

µ

f (j)µχ6
(z)|µ〉ψ(j)µ

χ4
(x) + · · · , (5.3)

where µ runs over the weights of the zero-mode states,4 and the ellipsis denotes the nonzero

KK modes. The number of the zero-modes jmax is determined by the magnetic flux [22].

The zero-mode functions f
(j)µ
χ6 (z) are determined so that (5.3) satisfies the first two condi-

tions in (5.2). From the last condition in (5.2), we obtain

ψ(j)µ
χ4

(x) = ω−χ4χ6
2 eiϕωPψ(j)µ

χ4
(x). (5.4)

Namely, the zero-mode is an eigenvector of ω−χ4χ6
2 eiϕωP with an eigenvalue 1. Denote the

highest weight of a representation R that Ψχ4,χ6 belongs to as µmax. Then µ is expressed as

µ = µmax −
∑

i

kiαi, (5.5)

where ki are non-negative integers, and αi are the simple roots. Since PN |µ〉 = eiNp·µ|µ〉 =
eiNp·µmax |µ〉,5 the phase ϕω is determined by (B.4) as ϕω = π

N (2mω + 1)− p · µmax, where

mω = 0, 1, · · · , N − 1. Thus we find that

ω−χ4χ6
2 eiϕωP |µ〉 = e−

2πi
N

·χ4χ6
2 exp

(

(2mω + 1)πi

N
− ip · µmax

)

eip·µ|µ〉

= exp

(

πi(2mω + 1− χ4χ6)

N
− i
∑

i

ki(p · αi)

)

|µ〉. (5.6)

Namely, the zero-mode condition for the state |µ〉 is

π(2mω + 1− χ4χ6)

N
−
∑

i

ki(p · αi) = 0. (mod 2π) (5.7)

5.2 ZbLb̄L coupling

When the quarks live in the bulk, the ZbLb̄L coupling often receives a large correction

induced by mixing with the KK modes. The authors of ref. [16] pointed out that the

custodial symmetry plays an important role to suppress the deviation of this coupling

from the standard model value. The ZbLb̄L coupling is protected if the theory has a

parity symmetry PLR that exchanges SU(2)L and SU(2)R, and bL is the component of

T 3
L = T 3

R = −1
2 in a bidoublet (2, 2). Since the Higgs fields also belong to (2, 2), the

right-handed quarks should belong to (1, 1) or (1, 3) + (3, 1).

4Do not confuse it with the 4D Lorentz index.
5We have used (2.11) at the second equality.
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Cases in which the bosonic sector has the parity symmetry PLR and a scalar bidoublet

are SO(5), SU(4) and SO(7) (I) in section 3. In appendix C, we list the irreducible repre-

sentations of these groups whose dimensions are less than 30, and their decomposition into

the SU(2)L × SU(2)R(×U(1)X) multiplets. There is no (1, 3) + (3, 1) multiplets included

in the list. Hence the left-handed and the right-handed quarks should be embedded into

(2, 2) and (1, 1), respectively.

5.3 Yukawa couplings

5.3.1 General expression

The Yukawa couplings originate from the 6D minimal couplings in the kinetic term,

iΨ̄χ6Γ
MDMΨχ6 = − iχ6

πR1
Ψ̄χ6,χ4=χ6AzΨχ6,χ4=−χ6 + h.c. + · · · . The canonically normalized

Higgs zero-mode Hβ is contained in Az as Az =
∑

β

√
2

|αL|gπR1H
βEβ + · · · , where g is the

SU(2)L gauge coupling constant. (See (6.5).) Then the Yukawa couplings in 4D effective

Lagrangian are expressed as

Lyukawa =































∑

i,j





∑

β,µL

yRHRLRR

(+)ij

(

Hβ
)∗
ψ̄
(i)µL

L ψ
(j)µL+β
R + h.c.



 (χ6 = +)

∑

i,j





∑

β,µL

yRHRLRR

(−)ij Hβψ̄
(i)µL

L ψ
(j)µL−β
R + h.c.



 (χ6 = −)

, (5.8)

whereRH , RL andRR are irreducible representations of SU(2)L×SU(2)R(×U(1)X)×U(1)Z
that |β〉, |µL〉 and |µR〉 = |µL + χ6β〉 belong to, and

yRHRLRR

(+)ij ≡ i
√
2g〈µL|E−β|µL + β〉

∫

d2z f
(i)µL∗
+,0 (z)f

(j)µL+β
+,0 (z),

yRHRLRR

(−)ij ≡ i
√
2g〈µL|Eβ|µL − β〉

∫

d2z f
(i)µL∗
−,0 (z)f

(j)µL−β
−,0 (z). (5.9)

Note that these coupling constants only depend on the representations {RH ,RL,RR}, and
take common values for all β ∈ RH and µL ∈ RL.

Exponentially small Yukawa couplings can be obtained by using the wave function

localization in the extra dimensions [24, 25]. For the third generation, we assume that the

overlap integrals in (5.9) do not provide any suppression factors, i.e., equal one. Then the

Yukawa couplings are determined only by the group-theoretical factors. In the following,

we focus on the third generation quarks.

Consider a 6D Dirac fermion Ψ = Ψ++Ψ− that belongs to the representation R. The

theory is assumed to be symmetric under an exchange: Ψ+ ↔ −Ψ− so that a 6D mass

term MΨ(Ψ̄+Ψ− + Ψ̄−Ψ+) is prohibited. Let us also assume that Ψχ6,− and Ψχ6,+ have

zero-modes Q(χ6)
L ∈ (2, 2) and λ

(χ6)
R ∈ (1, 1). The Higgs fields Hβ that couple to them

form bidoublets Ha. Then, from (5.8), the Yukawa couplings from i
∑

χ6=± Ψ̄χ6Γ
MDMΨχ6

before the breaking of SU(2)R ×U(1)Z at the fixed point are expressed as

Lyukawa =
∑

a

{

y(+)
a tr

(

Q̄(+)
L H̃a

)

λ
(+)
R + y(−)

a tr
(

Q̄(−)
L Ha

)

λ
(−)
R + h.c.

}

, (5.10)
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where H̃a ≡ σ2H∗
aσ2 and

y(+)
a = i

√
2g〈µL|E−β|µL + β〉 = i

√
2gN∗

β,µL
,

y(−)
a = i

√
2g〈νL|Eβ|νL − β〉 = i

√
2gN∗

−β,νL
. (5.11)

Here |µL〉, |νL〉 ∈ (2, 2), |µL + β〉, |νL − β〉 ∈ (1, 1), and a complex constant Nβ,µ is

defined below (A.3). Note that Q(+)
L and Q(−)

L (λ
(+)
R and λ

(−)
R ) belong to different (2, 2)

((1, 1)) multiplets in R because the same (2, 2) ((1, 1)) cannot satisfy (5.7) for χ6 = ±
simultaneously. We discriminate the two different (2, 2) and (1, 1) multiplets by denoting

them as Q(χ6)
L ∈ (2, 2)χ6

and λ
(χ6)
R ∈ (1, 1)χ6

. The Yukawa couplings depend on how the

quark fields are embedded into Q(±)
L and λ

(±)
R .

5.3.2 Embedding of quarks

As we will see in section 6, the Higgs potential at tree level only contains quartic terms.

The electroweak symmetry breaking occurs at one-loop level, and the top Yukawa coupling

provides a dominant contribution to the one-loop Higgs potential. In general, such one-

loop potential breaks SU(2)L×SU(2)R, and thus the Higgs VEVs are not aligned as (4.17).

Namely the custodial symmetry is broken. A simple way to avoid this difficulty is to assume

that the quark fields couple to the Higgs fields only through a combination Ha+H̃a. This is

achieved when y
(+)
a = y

(−)∗
a and the quark fields are equally contained in both Ψ+ and Ψ−.

Specifically, consider a case that νL = −µL and 4D fermions ζR ∈ (2, 2) and ηL ∈ (1, 1) are

localized at a fixed point, which transform as ζR → −ζR and ηL → −ηL under Ψ± → −Ψ∓.
Then combinations Q′

L ≡ (−Q(+)
L +Q(−)

L )/
√
2 and λ′R ≡ (−λ(+)

R + λ
(−)
R )/

√
2 have masses

with them at the fixed point and are decoupled at low energies. Since y
(+)
a = y

(−)∗
a due to

the property (A.2), we can redefine the overall phases of Ha so that y
(+)
a = y

(−)
a > 0. Then

we obtain the desired form of the Yukawa coupling,6

Lyukawa =
yλ
2

∑

a

tr
{

Q̄L

(

Ha + H̃a

)}

λR + h.c.+ · · · , (5.12)

where yλ ≡ y
(+)
a = y

(−)
a , QL ≡ (Q(+)

L +Q(−)
L )/

√
2 and λR ≡ (λ

(+)
R + λ

(−)
R )/

√
2.

Now we will see how the quark fields should be embedded into 6D fields. For simplicity,

we consider a case that there is one Higgs bidoublet H as a zero-mode for a while. We

introduce two 6D Dirac fermions Ψ(2/3) = Ψ
(2/3)
+ +Ψ

(2/3)
− and Ψ(−1/3) = Ψ

(−1/3)
+ +Ψ

(−1/3)
− ,

whose U(1)Z charges are 2/3 and −1/3, respectively. Let us assume that Ψ(qZ) (qZ =

2/3,−1/3) contain Q(qZ)
L ∈ (2, 2) and λ

(qZ)
R ∈ (1, 1) as zero-modes. The bidoublets are

decomposed as

Q(2/3)
L = (Q

(1)
L , Q

(2)
L ), Q(−1/3)

L = (Q
(3)
L , Q

(4)
L ), H = (H̃2, H1), (5.13)

where H̃ i
2 ≡ ǫijH

j∗
2 , and {Q(1)

L , Q
(3)
L , H̃2} and {Q(2)

L , Q
(4)
L , H1} are SU(2)L doublets whose

T 3
R eigenvalues are −1/2 and 1/2, respectively. Then the Yukawa couplings in the form

6Notice that Q
(∓)
R and λ

(∓)
L also satisfy the zero-mode condition (5.7) when Q

(±)
L and λ

(±)
R are zero-

modes. So we also need additional 4D localized fermions to decouple them.
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of (5.12) are expressed as

Lyukawa =
yt
2
tr
{

Q̄(2/3)
L

(

H+ H̃
)}

tR +
yb
2
tr
{

Q̄(−1/3)
L

(

H+ H̃
)}

bR + h.c.

=
yt
2

{

Q̄
(1)
L

(

H̃2 + H̃1

)

+ Q̄
(2)
L (H1 +H2)

}

tR

+
yb
2

{

Q̄
(3)
L

(

H̃2 + H̃1

)

+ Q̄
(4)
L (H1 +H2)

}

bR + h.c., (5.14)

where yt and yb are calculated from (5.11). Since only the combination H1+H2 couples to

the quarks, this combination obtains a tachyonic mass while the other combination H1−H2

does not at one-loop level. Therefore the latter does not have a nonzero VEV, and 〈H1〉 =
〈H2〉 is realized. Namely, the alignment (4.17) is achieved. (See section 6.2.) Since Q

(1)
L and

Q
(4)
L have the same quantum numbers for SU(2)L×U(1)Y , they are mixed with each other

after the breaking SU(2)R × U(1)Z → U(1)Y occurs at the fixed point. The left-handed

quark is identified as a linear combination,

qL = cos θqQ
(1)
L + sin θqQ

(4)
L , (5.15)

where θq is a mixing angle. The orthogonal combination and Q
(2)
L and Q

(3)
L are exotic fields

that must be decoupled at low energies. Hence we need to introduce 4D localized fermions

that couple with those exotic components. As a result, the following Yukawa couplings are

obtained at low energies.

LSU(2)L×U(1)Y
yukawa =

yt
2
cos θqq

†
L

(

H̃2 + H̃1

)

tR +
yb
2
sin θqq

†
L (H1 +H2) bR + h.c.. (5.16)

When yt = yb, the large ratio of the top quark mass mt to the bottom quark mass mb is

obtained if θq = O(mb/mt).
7 In such a case, mt is calculated as

mt =
∣

∣

∣

yt
2
v cos θq

∣

∣

∣ ≃
∣

∣

∣

ytv

2

∣

∣

∣ =
g |Nβ,µL

| v√
2

=
√
2 |Nβ,µL

|mW , (5.17)

where v is defined as 〈H1〉 = 〈H2〉 = (0, v/2)t (see (4.17)). We have used that cos θq ≃
1, (4.25) and (5.11). Therefore, the observed top quark mass is obtained if |Nβ,µL

| =
√
2.8

We can extend this result to the two-Higgs-bidoublet case straightforwardly.

5.3.3 Available representations for matter fermions

In summary, the quark multiplets should be embedded into two 6D Dirac fermions Ψ(2/3)

and Ψ(−1/3) whose U(1)Z charges are 2/3 and −1/3, respectively. Irreducible representa-

tions R which they belong to must satisfy the following conditions.

1. R includes two bidoublets and two singlets, which are denoted as (2, 2)± and (1, 1)±,

respectively.

7In contrast to the mixing between Q
(+)
L and Q

(−)
L , the mixing angle θq can take arbitrary values because

there is no symmetry to fix it.
8A small deviation from the observed value of mt is expected to be explained by quantum correction.

(See ref. [27]).
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2. There are weights µL and νL = −µL that satisfy |µL〉 ∈ (2, 2)+, |µL + β〉 ∈ (1, 1)+,

|νL〉 ∈ (2, 2)−, |νL − β〉 ∈ (1, 1)−, and |Nβ,µL
| = |N−β,νL | =

√
2, where β is a root

in the Higgs bidoublet.

3. The states in (2, 2)± and (1, 1)± satisfy the zero-mode condition (5.7).

We will search for R that satisfies these conditions from the list in appendix C. We focus

on the cases of G = SO(5), SU(4), SO(7)(I), which have the PLR symmetry.

SO(5)

There is no irreducible representation that satisfies the condition 1 among the list in

appendix C.1.

SU(4)

Only 20′ satisfies the condition 1 among the list in appendix C.2. The weights of 20′

that form (2, 2) and (1, 1) are

(2, 2)±2 :







e1−e2√
2

± e3
αR−→ e1+e2√

2
± e3

↑αL
↑αL

−e1−e2√
2

± e3
αR−→ −e1+e2√

2
± e3






,

(1, 1)±4 : ±2e3, (1, 1)0 : 0. (5.18)

where the double signs correspond. Notice that the weights that form bidoublets are

the same as the roots that form the Higgs bidoublets.

When the Higgs bidoublet (2, 2)±2 appears as a zero-mode, one example of

(β, µL, νL) is chosen as

(β, µL, νL) =

(

e1 − e2√
2

± e3,
−e1 + e2√

2
± e3,

e1 − e2√
2

∓ e3
)

, (5.19)

where the double signs correspond. Then {µL−β, µL, µL+β} and {νL−β, νL, νL+β}
are the weights, but µL±2β and νL±2β are not. Therefore the condition 2 is satisfied

(see (A.3)).

Since (p1, p2, p3)=(0, 0, 2nPπ/3) and the simple roots are (α1, α2, α3)=(
√
2e1,−e1√

2
−

e2√
2
+ e3,

√
2e2), the zero-mode condition (5.7) becomes

π(2mω + 1− χ4χ6)

N
− 2nPk2π

N
= 0, (mod 2π) (5.20)

where mω = 0, 1, · · · , N − 1. The decomposition of 20′ is given by (C.13), and

k2 = 0 : (1, 1)+4,

k2 = 1 : (2, 2)+2,

k2 = 2 : (3, 3)0, (1, 1)0,

k2 = 3 : (2, 2)−2,

k2 = 4 : (1, 1)−4. (5.21)
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Thus the condition 3 is satisfied only when the model is compactified on T 2/Z3.

In fact, when (N,nP ,mω) = (3, 1, 0), the fermionic zero-modes from each 6D Dirac

fermion contain

Q(+)
L ∈ (2, 2)+2, λ

(+)
R ∈ (1, 1)+4,

Q(−)
L ∈ (2, 2)−2, λ

(−)
R ∈ (1, 1)−4, (5.22)

and when (N,nP ,mω) = (3, 2, 2), they contain

Q(+)
L ∈ (2, 2)−2, λ

(+)
R ∈ (1, 1)−4,

Q(−)
L ∈ (2, 2)+2, λ

(−)
R ∈ (1, 1)+4. (5.23)

By introducing 4D localized fermions with appropriate quantum numbers to decouple

unwanted zero-modes, the desired Yukawa couplings (5.16) are obtained. For the

other choices of (N,nP ,mω), we cannot obtain the necessary multiplets.

SO(7) (I)

The irreducible representations that satisfy the condition 1 among the list in ap-

pendix C.3 are 21 and 27. These also satisfy the condition 2, but they cannot satisfy

the condition 3 for any choice of (N,nP ,mω).

6 Higgs potential

In contrast to the 5D gauge-Higgs unification model, we have quartic couplings of the Higgs

fields at tree level. The relevant terms in the 6D Lagrangian are

L = − 1

4g2A
tr
(

F (A)MNF
(A)
MN

)

+ · · ·

= − 1

2g2A(πR1)2
tr
(

(∂µAz)
†∂µAz

)

− 1

8g2A(πR1)4
tr
(

[Az, Az̄]
2
)

+ · · · . (6.1)

In this section, we calculate the classical Higgs potential Vtree focusing on the Higgs bidou-

blets, which are relevant to the electroweak symmetry breaking. In the previous section, we

have shown that only a model of G =SU(4) compactified on T 2/Z3 has required zero-mode

spectrum for the quarks. For the sake of completeness, however, we will also calculate Vtree
in the other cases that have Higgs bidoublets. We have one Higgs bidoublet in the cases

of SO(5) on T 2/Z2, SU(4) on T 2/ZN (N = 3, 4, 6), SO(7) (I) on T 2/ZN (N = 4, 6), and

Sp(6) (II) or (III) on T 2/ZN (N = 3, 4, 6), and we have two Higgs bidoublets in the case

of SU(4) on T 2/Z2.

6.1 SO(5) case

First we consider the SO(5) case. In this case, the roots that form the bidoublet are







e2
αR−→ e1

↑αL
↑αL

−e1
αR−→ −e2






. (6.2)
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From (6.1), the kinetic terms of the zero-modes W β
z in the 4D effective Lagrangian are

Leff = − A
2(gAπR1)2

∑

β

(∂µW β
z )

∗∂µW
β
z + · · · . (6.3)

We have used (A.4), and A is the area of T 2/ZN . Thus the canonically normalized Higgs

bidoublet is defined as

H =

(

H2∗
2 H1

1

−H1∗
2 H2

1

)

≡
√
A√

2gAπR1

(

W e2
z W e1

z

−W−e1
z W−e2

z

)

. (6.4)

Then it follows that

Az =

√
2gAπR1√

A
(

H1
1Ee1 +H2∗

2 Ee2 +H2
1E−e2 +H1∗

2 E−e1
)

,

[Az, Az̄] =
2(gAπR1)

2

A
[ (

∣

∣H1
1

∣

∣

2 −
∣

∣H1
2

∣

∣

2
)

H1 +
(

∣

∣H2
2

∣

∣

2 −
∣

∣H2
1

∣

∣

2
)

H2

+
{

Ne1,e2
(

H1
1H

2∗
1 −H1

2H
2∗
2

)

EαL

+Ne1,−e2
(

H1
1H

2
2 −H2

1H
1
2

)

EαR
+ h.c.

}

]

, (6.5)

where we have used (A.2). Hence, from (6.1), Vtree is calculated as

Vtree =
A

8g2A(πR1)4
tr
(

[Az, Az̄]
2
)

=
g2A
2A

[

(

∣

∣H1
1

∣

∣

2 −
∣

∣H1
2

∣

∣

2
)2

+
(

∣

∣H2
2

∣

∣

2 −
∣

∣H2
1

∣

∣

2
)2

+2
∣

∣Ne1,e2
∣

∣

2 ∣
∣H1

1H
2∗
1 −H1

2H
2∗
2

∣

∣

2
+ 2

∣

∣Ne1,−e2
∣

∣

2 ∣
∣H1

1H
2
2 −H2

1H
1
2

∣

∣

2
]

=
g2

4

{

(

H†
2H2 −H†

1H1

)2
+ 4

∣

∣

∣
H̃†

2H1

∣

∣

∣

2
}

=
g2

4

[

{

tr
(

H†H
)}2

− 4 det
(

H†H
)

]

, (6.6)

where H2 ≡ (H1
2 , H

2
2 )

t and H1 ≡ (H1
1 , H

2
1 )

t are the SU(2)L doublets with the hyper-

charge Y = 1/2. We have used that (4.18) with |αL|2 = 2, and
∣

∣Ne1,e2
∣

∣

2
=
∣

∣Ne1,−e2
∣

∣

2
= 1.

The above result agrees with eq. (7) in ref. [18]. The final expression in (6.6) is manifestly

invariant under the transformation: H → ULHU †
R (UL ∈ SU(2)L and UR ∈ SU(2)R).

6.2 Cases of rank-three groups

Next we consider the cases of the rank-three groups. In these cases, the candidates for the

zero-mode Higgs bidoublets consist of the following roots.







γ + αL
αR−→ γ + αL + αR

↑αL
↑αL

γ
αR−→ γ + αR






,







−γ − αR
αR−→ −γ

↑αL
↑αL

−γ − αL − αR
αR−→ −γ − αL






, (6.7)

– 22 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
5

where γ = −e1√
2
− e2√

2
+ e3 for SU(4), γ = −e1 + e3 for SO(7) (I), and γ = −e2 − e3 for

Sp(6) (II) or (III). The canonically normalized Higgs bidoublets are defined as

H+ =

(

H2∗
2+ H1

1+

−H1∗
2+ H2

1+

)

≡
√
A√

2gAπR1

(

W γ+αL
z W γ+αL+αR

z

−W γ
z W γ+αR

z

)

,

H− =

(

H2∗
2− H1

1−
−H1∗

2− H2
1−

)

≡
√
A√

2gAπR1

(

W−γ−αR
z W−γ

z

−W−γ−αL−αR
z W−γ−αL

z

)

, (6.8)

where the signs in the suffixes denote the signs of the U(1)X charges. Then it follows that

Az =

√
2gAπR1√

A
(

H1
1+EγLR

+H2∗
2+EγL +H2

1+EγR +H1∗
2+Eγ

+H1
1−E−γ +H2∗

2−E−γR +H2
1−E−γL +H1∗

2−E−γLR

)

+ · · · ,

[Az, Az̄] =
2(gAπR1)

2

A
[ (

∣

∣H1
2+

∣

∣

2 −
∣

∣H1
1−
∣

∣

)

γ ·H +
(

∣

∣H2
2+

∣

∣

2 −
∣

∣H2
1−
∣

∣

2
)

γL ·H

+
(

∣

∣H2
1+

∣

∣

2 −
∣

∣H2
2−
∣

∣

2
)

γR ·H +
(

∣

∣H1
1+

∣

∣

2 −
∣

∣H1
2−
∣

∣

2
)

γLR ·H

+
{

NγLR,−γR

(

−H1
1+H

2∗
1+ +H1

2−H
2∗
2−
)

EαL

+NγLR,−γL

(

−H1
1+H

2
2+ +H2

1−H
1
2−
)

EαR

+NγL,−γ

(

−H1
2+H

2∗
2+ +H1

1−H
2∗
1−
)

EαL

+NγR,−γ

(

−H2
1+H

1
2+ +H1

1−H
2
2−
)

EαR
+ h.c.

}

]

+ · · · , (6.9)

where γL ≡ γ + αL, γR ≡ γ + αR and γLR ≡ γ + αL + αR, and the ellipses denote fields

belonging to other multiplets, if any. After some calculations, we obtain

Vtree =
g2

2

[

(

|H1+|2 − |H2−|2
)2

+
(

|H2+|2 − |H1−|2
)2

+
∣

∣

∣
H†

1+H̃2+

∣

∣

∣

2
+
∣

∣

∣
H†

1+H̃2−
∣

∣

∣

2
+
∣

∣

∣
H†

1−H̃2+

∣

∣

∣

2
+
∣

∣

∣
H†

1−H̃2−
∣

∣

∣

2

−
∣

∣

∣H̃t
2+H2−

∣

∣

∣

2
−
∣

∣

∣H̃t
1+H1−

∣

∣

∣

2
+
∣

∣

∣H̃
†
2+H1+ + H̃†

2−H1−
∣

∣

∣

2
]

=
g2

2

[

{

tr
(

H†
+H+

)}2
+
{

tr
(

H†
−H−

)}2
− tr

(

H̃†
+H̃+H†

−H−
)

−tr
(

H†
−H̃+H̃†

+H−
)

− 2 det
(

H†
+H+

)

− 2 det
(

H†
−H−

)

]

+ · · · , (6.10)

where H̃ i
1,2+ ≡ ǫijH

j∗
1,2+, and H̃± ≡ σ2H∗

±σ2. We have used that

γ · γLR = γL · γR = 0,

|γLR|2 = |γL|2 = |γR|2 = |γ|2 = 2,

γ · γL = γ · γR = γL · γLR = γR · γLR =
|γ|2
2

= 1,

|NγLR,−γL |2 = |NγLR,−γR |2 = |NγL,−γ |2 = |NγR,−γ |2 =
|γ|2
2

= 1,

NγL,−γ

NγLR,−γR

=
N∗

γ,αL

N∗
γR,αL

=
N∗

γ,αR

N∗
γL,αR

=
NγR,−γ

NγLR,−γL

, (6.11)
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which are followed by (A.2), (A.3) and the fact that αL · αR = 0 and [EαL
, EαR

] = 0. We

have also chosen the phases of the Higgs fields so that NγL,−γ/NγLR,−γR = −1.

The final expression in (6.10) is manifestly invariant under the transformation: H± →
ULH±UR (UL ∈ SU(2)L and UR ∈ SU(2)R). Except for the case of SU(4) on T 2/Z2,

one of the bidoublets H± is absent due to the orbifold boundary conditions. In such

cases, the model becomes a two-Higgs-doublet model. In contrast to the SO(5) case, the

potential (6.10) with H+ = 0 or H− = 0 does not agree with (7) of ref. [18]. This is because

they have assumed γ + αL + αR = −γ, which only holds in the SO(5) case.

Finally we comment on the Higgs mass. We consider a case of SU(4) on T 2/Z3. The

tree-level Higgs potential (6.10) becomes

Vtree =
g2

2

[

{

tr
(

H†H
)}2

− 2 det
(

H†H
)

]

=
g2

2

{

(

H†
1H1

)2
+
(

H†
2H2

)2
+ 2

∣

∣

∣
H̃†

2H1

∣

∣

∣

2
}

, (6.12)

where H = (H̃2, H1) is one of H±. Since only the U(1)em neutral components H2
1 and H2

2

can have nonzero VEVs, we focus on them. As discussed in section 5.3.2, we expect that

h+ ≡ (H2
1 +H

2
2 )/

√
2 has a tachyonic mass while h− ≡ (H2

1 −H2
2 )/

√
2 does not at one-loop

level. Including such mass terms, the potential becomes

V = −m2
+ |h+|2 +m2

− |h−|2 +
g2

4

{

(

|h+|2 + |h−|2
)2

+
(

h∗+h− + h+h
∗
−
)2
}

+ · · · , (6.13)

where m± > 0, and the ellipsis denotes terms involving the charged components. We can

always redefine the phase of fields so that 〈h+〉 > 0. Then, from the minimization condition

for the potential, we obtain

〈h+〉 =
√
2m+

g
, 〈h−〉 = 0. (6.14)

Therefore, the alignment (4.17) is actually achieved. Note that the one-loop induced

quadratic terms do not have the SU(2)L × SU(2)R symmetry. Thus the custodial sym-

metry is broken in the Higgs sector. This does not cause a problem for the protection of

the ρ parameter at tree level as long as the relevant terms to the W and Z boson masses

in (4.24) have the custodial symmetry.

The mass of the lightest neutral Higgs boson is

mH = g |〈h+〉| =
gv√
2
=

√
2mW , (6.15)

where v is defined as 〈H2
1 〉 = 〈H2

2 〉 = v/2 > 0, and we have used (4.25) at the last equality.

We expect that the deviation from the observed value mH ≃ 125GeV is explained by

quantum corrections.9

9Although the quantum correction to the Higgs quartic couplings is divergent, the ratio mH/mW is

proven to be finite and calculable in ref. [28].
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7 Summary

We have investigated 6D gauge-Higgs unification models compactified on T 2/ZN (N =

2, 3, 4, 6) that have the custodial symmetry. The gauge group is assumed to be SU(3)C ×
G× U(1)Z , where G is a simple group. Since G includes SU(2)L × SU(2)R, its rank must

be more than one. The Higgs fields originate from the extra-dimensional components of

the G gauge field. In contrast to 5D models [8–10], we have at least two Higgs doublets.

Thus their VEVs need to be aligned as (4.17) to preserve the custodial symmetry. This

severely constrains the structure of models.

In order to select candidates for viable models, we demanded the following require-

ments.

• The model has a scalar bidoublet zero-mode as the Higgs fields.

• The bosonic sector has a symmetry under a parity PLR that exchanges SU(2)L and

SU(2)R in order to protect the ZbLb̄L coupling against a large deviation induced by

mixing with the KK modes.

• The quark fields are embedded into 6D fermions in such a way that they couple to

the Higgs bidoublet H only through a combination H+ σ2H∗σ2.

• The representation R that the 6D fermions belong to provides a right size group

factor to realize the top Yukawa coupling constant.

The third requirement is demanded in order for the Higgs VEVs to be aligned as (4.17).

The third and the fourth requirements can be achieved if R satisfies the three conditions

in section 5.3.3. Our results are summarized in table 1. In the cases with blank, there is no

choice of the orbifold boundary conditions so thatG is broken to SU(2)L×SU(2)R(×U(1)X).

There is only one candidate that satisfies the above requirements if we restrict ourselves to

the cases that rankG ≤ 3 and dimR < 30. It is the case of G =SU(4), N = 3 and R = 20′.

Namely, the model is 6D SU(3)C ×U(4) gauge theory compactified on T 2/Z3, and the top

and bottom quarks are embedded into the symmetric traceless rank-2 tensor of SO(6).10

We have focused on the third generation quarks to restrict G, N and R. Embeddings of

other fermions are much less constrained.

There are many issues that we have not discussed in this paper. We have approximated

the mode functions of the W and Z bosons as constants. However, after the electroweak

symmetry is broken, they are no longer constants and depend on z. This z-dependence

causes the deviation of the ρ parameter and the ZbLb̄L coupling from the standard model

values. We have to check that the custodial symmetry actually suppresses these deviations

by using the exact mode functions. We should also calculate the one-loop effective potential

to check that the vacuum alignment (4.17) is actually achieved, and to evaluate the Higgs

mass spectrum. The moduli stabilization in the gauge-Higgs unification is also an important

subject [12, 29]. It is interesting to investigate this subject in the presence of a background

magnetic flux on T 2/ZN . All these issues are left for our future works.

10Since the zero-mode spectrum is non-chiral in this case, the chiral structure of the effective theory must

be attributed to the chiral field content of the localized fermions at the fixed point.
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SO(5) G2 SU(4) SO(7) Sp(6)

(I) (II), (III) (I) (II), (III)

T 2/Z2 1 (S) 0 2 (S)

T 2/Z3 1 (S) X 0 1

T 2/Z4 0 (S) 0 1 (S) 1 (S) 0 0 (S) 1

T 2/Z6 0 (S) 0 1 (S) 1 (S) 0 0 (S) 1

Table 1. Summary of the results. The numbers denote those of the Higgs bidoublets. (I), (II) and

(III) represent three different ways of choosing the SU(2)
L
×SU(2)

R
subgroup in section 3.2. “(S)”

indicates that the spectrum is symmetric under SU(2)L ↔ SU(2)R. The check mark is added to a

case that there is an appropriate embedding of quarks into 6D fermions.
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A Cartan-Weyl basis

The generators of a simple group G whose rank is r in the Cartan-Weyl basis are Hi

(i = 1, · · · , r) and Eα, which satisfy

H†
i = Hi, E†

α = E−α,

[Hi, Hj ] = 0, [Hi, Eα] = αiEα,

[Eα, Eβ] = Nα,βEα+β, [Eα, E−α] = α ·H, (A.1)

where α, β are the root vectors, and α 6= −β. A complex constant Nα,β is nonzero only

when α+ β is a root, and satisfies the following equations.

Nα,β = −Nβ,α = −N∗
−α,−β = Nβ,−α−β = N−α−β,α. (A.2)

For a series of the weights {µ − qα, · · · , µ − α, µ, µ + α, · · · , µ + pα}, where p and q are

integers and neither µ− (q + 1)α nor µ+ (p+ 1)α is a weight, it follows that

2α · µ
|α|2

= q − p, |Nα,µ|2 =
p(q + 1) |α|2

2
, (A.3)

where a complex constant Nα,µ is defined as Eα|µ〉 = Nα,µ|µ + α〉. The generators are

normalized as

tr(HiHj) = δij , tr(HiEα) = 0, tr(EαEβ) = δα,−β . (A.4)
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B Orbifold boundary conditions

The orbifold T 2/ZN is defined by identifying points of R2 by a discrete group Γ which is

generated by three descrete transformations O1: z → z+1, Oτ : z → z+τ and Oω: z → ωz.

Field values of a 6D field at Γ-equivalent points must be related to each other through

gauge transformations11 in order for the Lagrangian to be single-valued on T 2/ZN . Thus

the most general orbifold boundary conditions are given by

AM (x, z + 1) = T1AM (x, z)T−1
1 , BZ

M (x, z + 1) = BZ
M (x, z),

Ψχ6(x, z + 1) = eiϕ1T1Ψχ6(x, z), (B.1)

for the translation O1,

AM (x, z + τ) = TτAM (x, z)T−1
τ , BZ

M (x, z + τ) = BZ
M (x, z),

Ψχ6(x, z + τ) = eiϕτTτΨχ6(x, z), (B.2)

for the translation Oτ , and

Aµ(x, ωz) = PAµ(x, z)P
−1, Az(x, ωz) = ω−1PAz(x, z)P

−1,

BZ
µ (x, ωz) = BZ

µ (x, z), BZ
z (x, ωz) = ω−1BZ

z (x, z),

Ψχ4,χ6(x, ωz) = ω−χ4χ6
2 eiϕωPΨχ4,χ6 , (B.3)

for the ZN twist Oω. Matrices T1, Tτ and P are elements of G, and ϕ1 and ϕτ are the

Scherk-Schwarz phases. A factor ω−1 and ω−χ4χ6
2 in (B.3) appears because Az, B

Z
z and

Ψχ4,χ6 are charged under the rotation in the extra-dimensional space. Since (ω−χ4χ6
2 )N =

−1, the phase ϕω is determined so that

eiNϕωPN = −1. (B.4)

The matrices T1, Tτ and P satisfy the relations,

[T1, Tτ ] = 0, PN = 1,

P−1T1P =



























T−1
1 (N = 2)

T−1
τ T−1

1 (N = 3)

T−1
τ (N = 4)

T−1
τ T1 (N = 6)

, P−1TτP =

{

T−1
τ (N = 2)

T1 (N = 3, 4, 6)
, (B.5)

which reflect the properties of O1, Oτ and Oω.

Here we perform a gauge transformation,

AM → UAMU
−1 + iU∂MU

−1, Ψ → UΨ, (B.6)

11More properly, they are related through automorphisms of the Lie algebra of G. For simplicity, we do

not consider a case of outer automorphisms [23].
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where

U(z) ≡ exp

{

− Im (τ z̄)

Im τ
lnT1 −

Im z

Im τ
lnTτ

}

, (B.7)

Using (B.5), we can show that

U(z + 1) = U(z)T−1
1 , U(z + τ) = U(z)T−1

τ ,

P−1U(ωz)P = U(z), P−1
(

iU∂zU
−1
)

P = ω−1
(

iU∂zU
−1
)

. (B.8)

Thus, the matrices T1 and Tτ in (B.1) and (B.2) can be absorbed by this gauge transforma-

tion, while the conditions in (B.3) are unchanged. Since we need the fermionic zero-modes,

we assume that ϕ1 = ϕτ = 0 for the fermion that the quarks are embedded. Then the

orbifold boundary conditions are reexpressed as (2.8) and (5.2).

C Decomposition of G representations

Here we list various representations of G =SO(5),SU(4),SO(7), and their irreducible de-

compositions to multiplets of the SU(2)L × SU(2)R(×U(1)X) subgroup.

Each representation is specified by the Dynkin coefficients mi (i = 1, · · · , r), and the

highest weight is expressed as µmax =
∑

imiµi, where µi are the fundamental weights. The

dimension of the representation is calculated by the Weyl dimension formula:

dimR =
∏

l

∑

i(mi + 1)li |αi|2
∑

i li |αi|2
, (C.1)

where αi are the simple roots, and li are numbers such that
∑

i liαi are positive roots. We

focus on irreducible representations whose dimensions are less than 30 in the following.12

C.1 SO(5)

The simple roots are (α1, α2) = (e1 − e2, e2), and the fundamental weights are (µ1, µ2) =

(e1, e
1+e2

2 ). The dimension formula (C.1) becomes

dimR =
1

6
(m1 + 1)(m2 + 1)(m1 +m2 + 2)(2m1 +m2 + 3). (C.2)

The decompositions to the irreducible representations of SU(2)L × SU(2)R are as follows.

[m1,m2] = [1, 0]

5 = (2, 2) + (1, 1). (C.3)

[m1,m2] = [0, 1]

4 = (2, 1) + (1, 2). (C.4)

[m1,m2] = [2, 0]

14 = (3, 3) + (2, 2) + (1, 1). (C.5)

12The irreducible decompositions of other representations and the weights of each representation are

easily obtained by using LieART [30].
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[m1,m2] = [1, 1]

16 = (3, 2) + (2, 3) + (2, 1) + (1, 2). (C.6)

[m1,m2] = [0, 2]

This is the adjoint representation and decomposed as (3.2).

[m1,m2] = [0, 3]

20 = (4, 1) + (3, 2) + (2, 3) + (1, 4). (C.7)

C.2 SU(4)

The simple roots are (α1, α2, α3) = (
√
2e1,−e1√

2
− e2√

2
+ e3,

√
2e2), and the fundamental

weights are (µ1, µ2, µ3) = (e
1√
2
+ e3

2 , e
3, e

2√
2
+ e3

2 ). The dimension formula (C.1) becomes

dimR =
1

12
(m1 + 1)(m2 + 1)(m3 + 1)(m1 +m2 + 2)

×(m2 +m3 + 2)(m1 +m2 +m3 + 3). (C.8)

The decompositions to the irreducible representations of SU(2)L × SU(2)R ×U(1)X are as

follows.

[m1,m2,m3] = [1, 0, 0]

4 = (2, 1)+1 + (1, 2)−1. (C.9)

[m1,m2,m3] = [0, 1, 0]

6 = (2, 2)0 + (1, 1)+2 + (1, 1)−2. (C.10)

[m1,m2,m3] = [0, 0, 1]

4̄ = (2, 1)−1 + (1, 2)+1. (C.11)

[m1,m2,m3] = [1, 0, 1]

This is the adjoint representation and decomposed as (3.14).

[m1,m2,m3] = [0, 1, 1]

20 = (3, 2)−1 + (2, 3)+1 + (2, 1)+1 + (2, 1)−3 + (1, 2)+3 + (1, 2)−1. (C.12)

[m1,m2,m3] = [0, 2, 0]

20′ = (3, 3)0 + (2, 2)+2 + (2, 2)−2 + (1, 1)+4 + (1, 1)−4 + (1, 1)0. (C.13)

[m1,m2,m3] = [1, 1, 0]

20 = (3, 2)+1 + (2, 3)−1 + (2, 1)+3 + (2, 1)−1 + (1, 2)+1 + (1, 2)−3. (C.14)

[m1,m2,m3] = [0, 0, 3]

20′′ = (4, 1)−3 + (3, 2)−1 + (2, 3)+1 + (1, 4)+3. (C.15)

[m1,m2,m3] = [3, 0, 0]

20
′′
= (4, 1)+3 + (3, 2)+1 + (2, 3)−1 + (1, 4)−3. (C.16)
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C.3 SO(7)

The simple roots are (α1, α2, α3) = (e1 − e2, e2 − e3, e3), and the fundamental weights are

(µ1, µ2, µ3) = (e1, e1 + e2, e
1+e2+e3

2 ). The dimension formula (C.1) becomes

dimR =
1

720
(m1 + 1)(m2 + 1)(m3 + 1)(m1 +m2 + 2)(m2 +m3 + 2)(2m2 +m3 + 3)

×(m1 +m2 +m3 + 3)(m1 + 2m2 +m3 + 4)(2m1 + 2m2 +m3 + 5). (C.17)

The SU(2)L × SU(2)R subgroup is chosen as (αL, αR) = (e1 + e2, e1 − e2). The decompo-

sitions to the irreducible representations of SU(2)L × SU(2)R ×U(1)X are as follows.

[m1,m2,m3] = [1, 0, 0]

7 = (2, 2)0 + (1, 1)+1 + (1, 1)−1 + (1, 1)0. (C.18)

[m1,m2,m3] = [0, 1, 0]

This is the adjoint representation and decomposed as (3.21).

[m1,m2,m3] = [0, 0, 1]

8 = (2, 1)+1/2 + (2, 1)−1/2 + (1, 2)+1/2 + (1, 2)−1/2. (C.19)

[m1,m2,m3] = [2, 0, 0]

27 = (3, 3)0 + (2, 2)+1 + (2, 2)−1 + (2, 2)0 + (1, 1)+2

+(1, 1)+1 + (1, 1)0 + (1, 1)0 + (1, 1)−1 + (1, 1)−2. (C.20)
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