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1 Introduction

Among the most intriguing features of fundamental theories of extended objects are novel

types of symmetries and concomitant generalized notions of geometry. Particularly interest-

ing examples of these symmetries are T-duality in closed string theory and the equivalence

of commutative/noncommutative descriptions in open string theory. These symmetries

have their natural settings in generalized geometry and noncommutative geometry. Low

energy effective theories link the fundamental theories to potentially observable phenomena

in (target) spacetime. Interestingly, the spacetime remnants of the stringy symmetries can
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fix these effective theories essentially uniquely without the need of actual string computa-

tions: “string theory with no strings attached.”

The main objective of this paper is to study this interplay of symmetry and geometry

in the case of higher dimensional extended objects (branes). More precisely, we intended

to extend, clarify and further develop the construction outlined in [1] that tackles the quest

to find an all-order effective action for a system of multiple p-branes ending on a p′-brane.

The result for the case of open strings ending on a single D-brane is well known: the

Dirac-Born-Infeld action provides an effective description to all orders in α′ [2–4]. The way

that this effective action has originally been derived from first principles in string theory is

rather indirect: the effective action is determined by requiring that its equations of motion

double as consistency conditions for an anomaly free world sheet quantization of the funda-

mental string. A more direct target space approach can be based on T-duality arguments.

Moreover, there is are equivalent commutative and non-commutative descriptions [5], where

the equivalency condition fixes the action essentially uniquely [6, 7]. This “commutative-

noncommutative duality” has been used also to study the non-abelian DBI action [6, 8].

In the context of the M2/M5 brane system a generalization has been proposed in [9].

In this paper, we focus only on the bosonic part of the action. The main idea of [1],

inspired by [9], was to introduce open-closed membrane relations, and a Nambu-Poisson

map which can be used to relate ordinary higher gauge theory to a new Nambu gauge

theory [10–13]. See also the work of P.-M. Ho et al. [14–17] and K. Furuuchi et al. [18, 19]

on relation of M2/M5 to Nambu-Poisson structures. It turns out that the requirement of

“commutative-noncommutative duality” determines the bosonic part of the effective action

essentially uniquely. Interesting open problems are to determine, in the case of a M5-brane,

the form of the full supersymmetric action and to check consistency with κ-symmetry and

(nonlinear) selfduality.

Nambu-Poisson structures were first considered by Y. Nambu already in 1973 [20], and

generalized and axiomatized more then 20 years later by L. Takhtajan [21]. The axioms

of Nambu-Poisson structures, although they seem to be a direct generalization of Poisson

structures, are in fact very restrictive. This was already conjectured in the pioneering

paper [21] and proved three years later in [22, 23]. For a modern treatment of Nambu-

Poisson structures see [24–26].

Matrix-model like actions using Nambu-Poisson structures are a current focus of re-

search (see e.g. [27–30]) motivated by the works of [31–35] and others. See also [36, 37] for

further reference. Among the early approaches, the one closest to ours is the one of [38, 39],

which uses κ-symmetry as a guiding principle and features a non-linear self-duality con-

dition. It avoids the use of an auxiliary chiral scalar [40] with its covariance problems

following a suggestion of [41]. For these and alternative formulations, e.g., those of [42],

based on superspace embedding and κ-symmetry, we refer to the reviews [43, 44].

Generalized geometry was introduced by N. Hitchin in [45–47]. It was further elab-

orated in [48]. Although Hitchin certainly recognized the possible importance for string

backgrounds, and commented on it in [45], this direction is not pursued there. Recently, a

focus of applications of generalized geometry, is superstring theory and supergravity. Here

we mention closely related work [49, 50]. The role of generalized geometries in M-theory
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was previously examined by C.M. Hull in [51]. A further focus is the construction of the

field theories based on objects of generalized geometry. This is mainly pursued in [52, 53]

and in [54], see also [55]. Generalized geometry (mostly Courant algebroid brackets) was

also used in relation to worldsheet algebras and non-geometric backgrounds. See, for ex-

ample, [56–58] and [59, 60]. One should also mention the use of generalized geometry in

the description of T-duality, see [61], or the lecture notes [62]. An outline of the relation

of T-duality with generalized geometry can be found in [63]. Finally, there is an interest-

ing interpretation of D-branes in string theory as Dirac structures of generalized geometry

in [64, 65]. Finally, in [66], we have used generalized geometry to describe the relation

between string theory and non-commutative geometry.

This paper is organized as follows: in section 3, we review basic facts concerning

classical membrane actions. In particular, we recall how gauge fixing can be used to find

a convenient form of the action. We show that the corresponding Hamiltonian density is

a fiberwise metric on a certain vector bundle. We present background field redefinitions,

generalizing the well-known open-closed relations of Seiberg and Witten.

In section 4, we describe the sigma model dual to the membrane action. It is a

straightforward generalization of the non-topological Poisson sigma model of the p = 1 case.

Section 5 sets up the geometrical framework for the field redefinitions of the previ-

ous sections. An extension of generalized geometry is used to describe open-closed re-

lations as an orthogonal transformation of the generalized metric on the vector bundle

TM ⊕ ΛpTM ⊕ T ∗M ⊕ ΛpT ∗M . Compared to the p = 1 string case, we find the need

for a second “doubling” of the geometry. The split in TM and ΛpTM has its origin in

gauge fixing of the auxiliary metric on the p+ 1-dimensional brane world volume and the

two parts are related to the temporal and spatial worldvolume directions. To the best of

our knowledge, this particular structure W ⊕ W ∗ with W = TM ⊕ ΛpTM has not been

considered in the context of M-theory before.

In section 6, we introduce the (p+1)-form gauge field F as a fluctuation of the original

membrane background. We show that this can be viewed as an orthogonal transformation

of the generalized metric describing the membrane backgrounds. On the other hand, the

original background can equivalently be described in terms of open variables and this

description can be extended to include fluctuations. Algebraic manipulations are used to

identify the pertinent background fields. The construction requires the introduction of a

target manifold diffeomorphism, which generalizes the (semi-classical) Seiberg-Witten map

from the string to the p > 1 brane case.

This map is explicitly constructed in section 7 using a generalization of Moser’s lemma.

The key ingredient is the fact that Π, which appears in the open-closed relations, can

be chosen to be a Nambu-Poisson tensor. Attention is paid to a correct mathematical

formulation of the analogue of a symplectic volume form for Nambu-Poisson structures.

Based on the results of the previous sections, we prove in section 8 the equivalence of

a commutative and semiclassically noncommutative DBI action. We present various forms

of the same action using determinant identities of block matrices. Finally, we compare our

action to existing proposals for the M5-brane action.
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In section 9, we show that the Nambu-Poisson structure Π can be chosen to be the

pseudoinverse of the (p+ 1)-form background field C. In analogy with the p = 1 case, we

call this choice “background independent gauge”. However, for p > 1 we have to consider

both algebraic and geometric properties of C in order to obtain a well defined Nambu-

Poisson tensor Π. The generalized geometry formalism developed in section 5 is used to

derive the results in a way that looks formally identical to the much easier p = 1 case.

(This is a nice example of the power of generalized geometry.)

In section 10, we introduce a convenient splitting of the tangent bundle and rewrite

all membrane backgrounds in coordinates adapted to this splitting using a block matrix

formalism. We introduce an appropriate generalization of the double scaling limit of [5] to

cut off the series expansion of the effective action.

In the final section 11 of the paper, we use background independent gauge, double

scaling limit, and coordinates adapted to the non-commutative directions to expand the

DBI action up to first order in the scaling parameter. It turns out that this double scaling

limit cuts off the infinite series in a physically meaningful way. We identify a possible

candidate for the generalization of a matrix model. For a discussion of the underlying

Nambu-Poisson gauge theory we refer to [11].

2 Conventions

Thorough the paper, p > 0 is a fixed positive integer. Furthermore, we assume that we

are given a (p+ 1)-dimensional compact orientable worldvolume Σ with local coordinates

(σ0, . . . , σp). We may interpret σ0 as a time parameter. Integration over all coordinates is

indicated by
∫
dp+1σ, whereas the integration over space coordinates (σ1, . . . , σp) is indicted

as
∫
dpσ. Indices corresponding to the worldvolume coordinates are denoted by Greek

characters α, β, . . . , etc. As usual, ∂α ≡ ∂
∂σα . We assume that the n-dimensional target

manifold M is equipped with a set of local coordinates (y1, . . . , yn). We denote the corre-

sponding indices by lower case Latin characters i, j, k, . . . , etc. Upper case Latin characters

I, J,K, . . . , etc. will denote strictly ordered p-tuples of indices corresponding to (y) coor-

dinates, e.g., I = (i1, . . . , ip) with 1 ≤ i1 < · · · < ip ≤ n. We use the shorthand notation

∂J ≡ ∂
∂yj1

∧ . . .∧ ∂
∂yjp

and dyJ = dyj1∧ . . .∧dyjp . The degree q-parts of the exterior algebras

of vector fields X(M) and forms Ω(M) are denoted by Xq(M) and Ωq(M), respectively.

Where-ever a metric g on M is introduced, we assume that it is positive definite, i.e.,

(M, g) is a Riemannian manifold. With this choice we will find a natural interpretation

of membrane backgrounds in terms of generalized geometry. For any metric tensor gij , we

denote, as usually, by gij the components of the inverse contravariant tensor.

We use the following convention to handle (p+1)-tensors on M . Let B ∈ Ωp+1(M) be

a (p+1)-form on M . We define the corresponding vector bundle map B♭ : Λ
pTM → T ∗M

as B♭(Q) = BiJQ
Jdyi, where Q = QJ∂J . We do not distinguish between vector bundle

morphisms and the induced C∞(M)-linear maps of smooth sections. We will usually use

the letter B also for the
(
n
p

)
× n matrix of B♭ in the local basis ∂J of Xp(M) and dyi

of Ω1(M), that is (B)i,J = 〈∂i, B♭(∂J)〉. Similarly, let Π ∈ Xp+1(M); the induced map

Π♯ : ΛpT ∗M → TM is defined as Π♯(ξ) = ΠiJξJ∂i for ξ = ξJdy
J . We use the letter Π also
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for the
(
n
p

)
×n matrix of Π♯, that is (Π)i,J = 〈dyi,Π♯(dyJ)〉. Clearly, with these conventions

(B)i,J = BiJ and (Π)i,J = ΠiJ .

Let X : Σ → M be a smooth map. We use the notation Xi = yi ◦ X, and corre-

spondingly dXi = d(Xi) = X∗(dyi). Similarly, dXJ = X∗(dyJ). We reserve the symbol

∂̃X
J
for spatial components of the p-form dXJ , that is, ∂̃X

J
= (dXJ)1...p. We define the

generalized Kronecker delta δ
j1...jp
i1...ip

to be +1 whenever the top p-index constitutes an even

permutation of the bottom one, −1 if for the odd permutation, and 0 otherwise. In other

words, δ
j1...jp
i1...ip

= p! · δ[j1[i1
. . . δ

jp]
ip]

. We use the convention ǫi1...ip ≡ ǫi1...ip ≡ δ1...pi1...ip
≡ δ

i1...ip
1...p .

Thus, in this notation we have ∂̃X
I
= ∂l1X

i1 · · · ∂lpXipǫl1...lp .

3 Membrane actions

The most straightforward generalization of the relativistic string action to higher dimen-

sional world volumes is the Nambu-Goto p-brane action, simply measuring the volume of

the p-brane:

SNG[X] = Tp

∫
dp+1σ

√
det (∂αXi∂βXjgij), (3.1)

where gij are components of the positive definite target space metric g, and X : Σ → M

is the n-tuple of scalar fields describing the p-brane. In a similar manner as for the string

action, one can introduce an auxiliary Riemannian metric h on Σ and find the classically

equivalent Polyakov action of the p-brane:

SP [X,h] =
T ′
p

2

∫
dp+1σ

√
h
(
hαβ∂αX

i∂βX
jgij − (p− 1)λ

)
, (3.2)

where λ > 0 can be chosen arbitrarily (but fixed), and T ′
p = λ

p−1
2 Tp. Using the equations

of motion for hαβ ’s:
1

2
hαβ

(
hγδgγδ − (p− 1)λ

)
= gαβ , (3.3)

where gαβ = [X∗(g)]αβ ≡ ∂αX
i∂βX

jgij , in SP , one gets back to (3.1). In the rest of

the paper, we will choose Tp ≡ 1. Using reparametrization invariance, one can always

(at least locally) choose coordinates (σ0, . . . , σp) such that h00 = λp−1 dethab, h0a = 0,

where hab denotes the space-like components of the metric. In this gauge, the first term in

action (3.2) splits into two parts, one of them containing only the spatial derivatives of Xi

and the spatial components of the metric h. Using now the equations of motion for hab,

one gets the gauge fixed Polyakov action1

Sgf
P [X] =

1

2

∫
dp+1σ

{
∂0X

i∂0X
jgij + det (∂aX

i∂bX
jgij)

}
. (3.4)

1The gauge constraints on ha0, h0b and h00 imply an energy-momentum tensor with vanishing compo-

nents Ta0 = T0a and T00. These constraints must be considered along with the equations of motion of the

action (3.4), to ensure equivalence with the actions (3.1) and (3.2). As discussed in [67], the subgroup of

the diffeomorphism symmetries that remains after gauge fixing is a symmetry of the gauge-fixed p-brane

action (3.4) and also transforms the pertinent components of the energy-momentum tensor into one

another (even if they are not set equal to zero). The constraints can thus be consistently imposed at the

level of states.
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The second term can be rewritten in a more convenient form once we define

g̃IJ =
∑

π∈Σp

sgn(π)giπ(1)j1 . . . giπ(p)jp ≡ δ
k1...kp
I gk1j1 . . . gkpjp . (3.5)

Using this notation, one can write

Sgf
P [X] =

1

2

∫
dp+1σ

{
∂0X

i∂0X
jgij + ∂̃X

I
∂̃X

J
g̃IJ
}
. (3.6)

From now on, assume that g is a positive definite metric on M . Note that from the

symmetry of g it follows that g̃IJ = g̃JI . We can view g̃ as a fibrewise bilinear form on the

vector bundle ΛpTM . Moreover, at any m ∈ M , one can define the basis (EI) of Λ
pTmM

as EI = ei1 ∧ . . . ∧ eip , where (e1, . . . , en) is the orthonormal basis for the quadratic form

g(m) at m ∈ M . In this basis one has g̃(m)(EI , EJ) = δI,J , which shows that g̃ is a positive

definite fibrewise metric on ΛpTM .

For any C ∈ Ωp+1(M), we can add the following coupling term to the action:

SC [X] = −i

∫

Σ
X∗(C) = −i

∫
dp+1σ∂0X

i∂̃X
J
CiJ . (3.7)

The resulting gauge fixed Polyakov action Stot
P [X] = Sgf

P [X] + SC [X] has the form

Stot
P [X] =

1

2

∫
dp+1σ

{
∂0X

i∂0X
jgij + ∂̃X

I
∂̃X

J
g̃IJ − 2i∂0X

i∂̃X
J
CiJ

}
. (3.8)

This can be written in the compact matrix form by defining an (n+
(
n
p

)
)-row vector

Ψ =

(
i∂0X

i

∂̃X
J

)
.

The action then has the block matrix form

Stot
P [X] =

1

2

∫
dp+1σ

{
Ψ†

(
g C

−CT g̃

)
Ψ

}
. (3.9)

From now on, unless explicitly mentioned, we may assume that g̃ is not necessarily

of the form (3.5), i.e., g̃ can be any positive definite fibrewise metric on ΛpTM . Any

further discussions will, of course, be valid also for the special case (3.5). Since g is non-

degenerate, we can pass from the Lagrangian to the Hamiltonian formalism and vice versa.

The corresponding Hamiltonian has the form

Htot
P [X,P ] = −1

2

∫
dpσ

(
iP

∂̃X

)T (
g−1 −g−1C

−CT g−1 g̃ + CT g−1C

)(
iP

∂̃X

)
. (3.10)

The expression g̃+CT g−1C in the Hamiltonian and a similar expression g+Cg̃−1CT play

the role of “open membrane metrics” and first appeared in the work of Duff and Lu [68]

already in 1990. Hamilton densities for membranes have also been discussed around that
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time, see e.g. [67].2 The block matrix in the Hamiltonian can be viewed as positive definite

fibrewise metric G on T ∗M ⊕ ΛpTM defined on sections as

G(α+Q, β +R) =

(
α

Q

)T (
g−1 −g−1C

−CT g−1 g̃ + CT g−1C

)(
β

R

)
, (3.11)

for all α, β ∈ Ω1(M) and Q,R ∈ Xp(M). For p = 1 and g̃ = g, one gets exactly the

inverse of the generalized metric corresponding to a Riemannian metric g and a 2-form C.

Note that, analogously to the p = 1 case, G can be written as a product of block lower

triangular, diagonal and upper triangular matrices:

G =

(
1 0

−CT 1

)(
g−1 0

0 g̃

)(
1 −C

0 1

)
. (3.12)

Before we proceed with our discussion of the corresponding Nambu sigma models, let

us introduce another parametrization of the background fields g and C. In analogy with

the p = 1 case, we shall refer to g and C as to the closed background fields. Let A denote

the matrix in the action (3.9), that is,

A =

(
g C

−CT g̃

)
. (3.13)

This matrix is always invertible, explicitly:

A−1 =

(
(g + Cg̃−1CT )−1 −(g + Cg̃−1CT )−1Cg̃−1

g̃−1CT (g + Cg̃−1CT )−1 (g̃ + CT g−1C)−1

)
. (3.14)

Further, let us assume an arbitrary but fixed (p + 1)-vector Π ∈ Xp+1(M) and consider a

matrix B of the form

B =

(
G Φ

−ΦT G̃

)−1

+

(
0 Π

−ΠT 0

)

=

(
(G+ΦG̃−1ΦT )−1 −(G+ΦG̃ΦT )−1ΦG̃−1 +Π

G̃−1ΦT (G+ΦG̃−1ΦT )−1 −ΠT (G̃+ΦTG−1Φ)−1

) (3.15)

such that the equality A−1 = B, i.e.,

(
g C

−CT g̃

)−1

=

(
G Φ

−ΦT G̃

)−1

+

(
0 Π

−ΠT 0

)
(3.16)

holds. This generalization was introduced and used in [1]. Again, in analogy with the case

p = 1, we will refer to G and Φ as to the open backgrounds. More explicitly, we have the

2We believe that the Hamiltonian (3.10) has been known, in this or a similar form, to experts for a long

time but we were not able to trace it in even older literature, cf. [69] for the string case. More recently,

the Hamiltonian as well as the open membrane metrics appeared, e.g., in [70]. We thank D. Berman for

bringing this paper to our attention.
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following set of open-closed relations:

g + Cg̃−1CT = G+ΦG̃−1ΦT , (3.17)

g̃ + CT g−1C = G̃+ΦTG−1Φ, (3.18)

g−1C = G−1Φ−Π(G̃+ΦTG−1Φ), (3.19)

ΦG̃−1 = Cg̃−1 + (g + Cg̃−1CT )Π. (3.20)

For fixed Π, given (g, g̃, C) there exist unique (G, G̃,Φ) such that the above relations are

fulfilled, and vice versa. The explicit expressions are most directly seen from the equality

A = B−1, again using the formula for the inverse of the block matrix B. In particular,

g−1 = (1− ΦΠT )TG−1(1− ΦΠT ) + ΠG̃ΠT , (3.21)

g̃−1 = (1− ΦTΠ)T G̃−1(1− ΦTΠ) + ΠTGΠ, (3.22)

and the explicit expression for C can be found straightforwardly. Obviously, the inverse

relations are obtained simply by interchanging g ↔ G, g̃ ↔ G̃, C ↔ Φ, and Π ↔ −Π. Using

these relations, we can write the action (3.9) equivalently in terms of the open backgrounds

G, Φ and the (so far auxiliary) (p+ 1)-vector Π.

In terms of the corresponding Hamiltonian (3.10), the above open-closed relations give

just another factorization of the matrix G. This time we have

G =

(
1 Π

0 1

)(
1 0

−ΦT 1

)(
G−1 0

0 G̃

)(
1 −Φ

0 1

)(
1 0

ΠT 1

)
. (3.23)

In the sequel it will be convenient to distinguish the respective expressions of above in-

troduced matricesA andG in the closed and open variables. For the former we we shall use

Ac and Gc and for the latter we introduce Ao and Go, respectively. Hence the open-closed

relations can be expressed either way: A ≡ Ac = Ao ≡ B−1 or Gc = Go. Note, that the

latter form is just equivalent to the statement about the decomposability of a 2x2 block ma-

trix with the invertible upper left block as a product of lower triangular, diagonal, and upper

triangular block matrices, the triangular ones having unit matrices on the diagonal. Note

that for p = 1 and g̃ = g, the open-closed relations (see [5]) are usually written simply as

1

g + C
=

1

G+Φ
+Π. (3.24)

To conclude this section, note that taking the determinant of the matrix Ac , we may prove

the useful identity:

det (g̃ + CT g−1C) =
det g̃

det g
det (g + Cg̃−1CT ). (3.25)

To show this, just note that Ac can be decomposed in two different ways, either

Ac =

(
1 0

−CT g−1 1

)(
g 0

0 (g̃ + CT g−1C)

)(
1 g−1C

0 1

)
,

or as

Ac =

(
1 Cg̃−1

0 1

)(
(g + Cg̃−1CT ) 0

0 g̃

)(
1 0

−g̃−1CT 1

)
.

Taking the determinant of both expressions and comparing them yields (3.25).
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4 Nambu sigma model

In analogy with the p = 1 case, we may ask whether there is a Nambu sigma model

classically equivalent to the action (3.9). To see this, introduce new auxiliary fields ηi and

η̃J , which transform according to their index structure under a change of coordinates on M .

Define an (n +
(
n
p

)
)-row vector Υ =

(
iηi
η̃J

)
. The corresponding (non-topological) Nambu

sigma model then has the form:

SNSM [X, η, η̃] = −
∫

dp+1σ

{
1

2
Υ†A−1Υ+Υ†Ψ

}
, (4.1)

where A can be either of Ao and Ac, supposing that the open-closed relations Ao = Ac

hold. Using the equations of motion for Υ, one gets back the Polyakov action (3.9). For

the detailed treatment of Nambu sigma models see [71].

Yet another parametrization of A−1 — using new background fields GN , G̃N ,ΠN ,

which we refer to as Nambu background fields3 — can be introduced

A−1 =

(
G−1

N ΠN

−ΠT
N G̃−1

N

)
. (4.2)

We will denote as AN the matrix A expressed with help of Nambu background fields

GN , G̃N ,ΠN . Using (3.14), one gets the correspondence between closed and Nambu sigma

background fields:

GN = g + Cg̃−1CT , (4.3)

G̃N = g̃ + CT g−1C, (4.4)

ΠN = −(g + Cg̃−1CT )−1Cg̃−1 = −g−1C(g̃ + CT g−1C)−1. (4.5)

Clearly, GN is a Riemannian metric on M and G̃N is a fibrewise positive definite metric

on ΛpTM . It is important to note that in general, for p > 1, ΠN : ΛpT ∗M → TM is not

necessarily induced by a (p + 1)-vector on M . This also means that it is not in general a

Nambu-Poisson tensor. However; for p = 1, it is easy to show that ΠN is a bivector.

Also note that even if g̃ is a skew-symmetrized tensor product of g’s (3.5), G̃N is not

in general the skew-symmetrized tensor product of GN ’s.

The converse relations are:

g = (G−1
N +ΠN G̃NΠT

N )−1, (4.6)

g̃ = (G̃−1
N +ΠT

NGNΠN )−1, (4.7)

C = −(G−1
N +ΠN G̃NΠT

N )−1ΠN G̃N = −GNΠN (G̃−1
N +ΠT

NGNΠN )−1. (4.8)

Again, it is instructive to pass to the corresponding Hamiltonians. First, find the

canonical Hamiltonian to (4.1), that is

Hc
NSM [X,P, η̃] =

∫
dpσPi∂0X

i − L[X,P, η̃].

3Here, instead of fixing Π and finding open variables in terms of closed ones, we fix Φ to be zero and

find, again using the open-closed relations, unique GN , G̃N ,ΠN as functions of g, g̃ and C, or vice versa.
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Second, use the equations of motion to get rid of η̃. In analogy with the p = 1 case, one

expects that resulting Hamiltonian HNSM coincides with (3.10), that is

HNSM [X,P ] = Htot
P [X,P ].

Indeed, we get

HNSM [X,P ] = −1

2

∫
dpσ

(
iP

∂̃X

)T (
G−1

N +ΠN G̃NΠT
N ΠN G̃N

G̃NΠT
N G̃N

)(
iP

∂̃X

)
. (4.9)

If one plugs (4.3)–(4.4) to (4.9), one obtains exactly the Hamiltonian (3.10). The matrix

G can be thus written as

G =

(
1 ΠN

0 1

)(
G−1

N 0

0 G̃N

)(
1 0

ΠT
N 1

)
(4.10)

when using the Nambu background fields, in which case we shall introduce the notation

GN for it. This shows that to any g, g̃, C one can uniquely find GN , G̃N ,ΠN and vice versa,

since they both come from the respective unique decompositions of the matrix G.

Note that for p = 1 and g̃ = g, relations (4.3)–(4.5) are usually written simply as

1

g + C
=

1

GN
+ΠN . (4.11)

We will refer to the Poisson sigma model, when expressed — using Π — in open

variables (G, G̃,Φ) as to augmented Poisson sigma model.

5 Geometry of the open-closed brane relations

For p = 1, the open-closed relations (3.24) can naturally be explained using the language

of generalized geometry. We have developed this point of view in [66]. One expects that

similar observations apply also for p > 1 case. In the previous section we have already men-

tioned the possibility to define the generalized metric on the vector bundle TM ⊕ΛpT ∗M

by the inverse of the matrix (3.12). Here we discuss an another approach to a generalization

of the generalized geometry starting from equation (3.16). Denote W = TM ⊕ ΛpTM .

The main goal of this section is to show that we can without any additional labor

adapt the whole formalism of [66] to the vector bundle W ⊕W ∗.

Define the maps G, B : W → W ∗ using block matrices as

G
(
V

P

)
=

(
g 0

0 g̃

)(
V

P

)
, B

(
V

P

)
=

(
0 C

−CT 0

)(
V

P

)
, (5.1)

for all V +P ∈ Γ(W ). Next, define the map Θ : W ∗ → W as

Θ

(
α

Σ

)
=

(
0 Π

−ΠT 0

)(
α

Σ

)
, (5.2)
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for all α + Σ ∈ Γ(W ∗). Then define H,Ξ : W → W ∗ as in (5.1) using the fields G, G̃,Φ

instead of g, g̃, C. The open-closed relations (3.16) can be then written as simply as

1

G + B =
1

H+ Ξ
+Θ. (5.3)

We see that they have exactly the same form as (3.24) for p = 1. The purpose of this

section is to obtain these relations from the geometry of the vector bundle W ⊕W ∗.

We define an inner product 〈·, ·〉 : Γ(W ⊕W ∗)× Γ(W ⊕W ∗) → C∞(M) on W ⊕W ∗

to be the natural pairing between W and W ∗, that is:

〈V +P+ α+Σ,W +Q+ β +Ψ〉 = β(V ) + α(W ) + Ψ(P) + Σ(Q),

for all V,W ∈ X(M), α, β ∈ Ω1(M), P,Q ∈ Xp(M), and Σ,Ψ ∈ Ωp(M). Note that this

pairing has the signature (n+
(
n
p

)
, n+

(
n
p

)
).

Now, let T : W ⊕ W ∗ → W ⊕ W ∗ be a vector bundle endomorphism squaring to

identity, that is, T 2 = 1. We say that T is a generalized metric on W ⊕W ∗, if the fibrewise

bilinear form

(E1, E2)T ≡ 〈E1, T (E2)〉,

defined for all E1, E2 ∈ Γ(W ⊕ W ∗), is a positive definite fibrewise metric on W ⊕ W ∗.

It follows from definition that T is orthogonal and symmetric with respect to the inner

product 〈·, ·〉. Moreover, it defines two eigenbundles V± ⊂ W ⊕ W ∗, corresponding to

eigenvalues ±1 of T . It follows immediately from the properties of T , that they are both

of rank n+
(
n
p

)
, orthogonal to each other, and thus

W ⊕W ∗ = V+ ⊕ V−.

Moreover, V+ and V− form the positive definite and negative definite subbundles of 〈·, ·〉,
respectively. From the positive definiteness of V+ it follows that V+ has zero intersection

both with W and W ∗, and is thus a graph of a unique vector bundle isomorphism A :

W → W ∗. The map A can be written as a sum of a symmetric and a skew-symmetric part

with respect to 〈·, ·〉: A = G + B. From the positive definiteness of V+, it follows that G is

a positive definite fibrewise metric on W . From the orthogonality of V+ and V− we finally

obtain that:

V± = {(V +P) + (±G + B)(V +P) |V +P ∈ W}.

The map T , or equivalently the fibrewise metric (·, ·)T can be reconstructed using the data

G and B to get

(V +P+ α+Σ,W +Q+ β +Ψ)T =

(
V +P

α+Σ

)T (
G − BG−1B BG−1

−G−1B G−1

)(
W +Q

β +Ψ

)
.

Note that the above block matrix can be decomposed as a product

(
G − BG−1B BG−1

−G−1B G−1

)
=

(
1 B
0 1

)(
G 0

0 G−1

)(
1 0

−B 1

)
.
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The maps G,B can be parametrized as

G
(
V

Q

)
=

(
g D

DT g̃

)(
V

Q

)
,

B
(
V

Q

)
=

(
B C

−CT B̃

)(
V

Q

)
,

where g is a symmetric covariant 2-tensor on M , C,D : ΛpTM → T ∗M are vector bundle

morphisms, B ∈ Ω2(M), and g̃ and B̃ are symmetric and skew-symmetric fibrewise bilinear

forms on ΛpTM , respectively. The fields g, g̃,D are not arbitrary, since G has to be a

positive definite fibrewise metric on W . One immediately gets that g, g̃ have to be positive

definite. The conditions imposed on D can be seen from the equalities
(

g D

DT g̃

)
=

(
1 0

DT g−1 1

)(
g 0

0 g̃ −DT g−1D

)(
1 g−1D

0 1

)

=

(
1 Dg̃−1

0 1

)(
g −Dg̃−1DT 0

0 g̃

)(
1 0

g̃−1DT 1

)
.

We see that there are two equivalent conditions on D: the fibrewise bilinear form g̃ −
DT g−1D, or 2-tensor g−Dg̃−1DT have to be positive definite. Inspecting the action (3.9),

we see that only the case when B = B̃ = D = 0 is relevant for our purpose.

Now, let us turn our attention to the explanation of the open-closed relations. For

this, consider the vector bundle automorphism O : W ⊕W ∗ → W ⊕W ∗, orthogonal with

respect to the inner product 〈·, ·〉, that is,

〈O(E1),O(E2)〉 = 〈E1, E2〉,

for all E1, E2 ∈ Γ(W ⊕ W ∗). Given a generalized metric T , we can define a new map

T ′ = O−1T O. It can be easily checked that T ′ is again a generalized metric. Obviously,

the respective eigenbundles V+ are related using O, namely:

V T ′

+ = O−1(V T
+ ). (5.4)

We have also proved that every generalized metric T corresponds to two unique fields G
and B. This means that to given G and B, and an orthogonal vector bundle isomorphism

O, there exists a unique pair H, Ξ corresponding to T ′ = O−1T O. We will show that

open-closed relations are a special case of this correspondence. Also, note that (·, ·)T and

(·, ·)T ′ are related as

(·, ·)T ′ = (O(·),O(·))T . (5.5)

Now, consider an arbitrary skew-symmetric morphism Θ : W ∗ → W , that is

〈α+Σ,Θ(β +Ψ)〉 = −〈Θ(α+Σ), β +Ψ〉,

for all α, β ∈ Ω1(M), and Σ,Ψ ∈ Ωp(M). It can easily be seen that the vector bundle

isomorphism eΘ : W ⊕W ∗ → W ⊕W ∗, defined as

eΘ

(
V +Q

α+Σ

)
=

(
1 Θ

0 1

)(
V +Q

α+Σ

)
,

– 12 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
0

for all V +Q+ α+Σ ∈ Γ(W ⊕W ∗), is orthogonal with respect to the inner product 〈·, ·〉.
Its inverse is simply e−Θ. Let T be the generalized metric corresponding to G + B. Note

that V T
+ can be expressed as

V T
+ = {(G + B)−1(α+Σ) + (α+Σ) | (α+Σ) ∈ W ∗}.

Using the relation (5.4), we obtain that

V T ′

+ = e−ΘV T
+ = {

(
(G + B)−1 −Θ

)
(α+Σ) + (α+Σ) | (α+Σ) ∈ W ∗}.

We see that the vector bundle morphism H+ Ξ corresponding to T ′ satisfies

(H+ Ξ)−1 = (G + B)−1 −Θ.

But this is precisely the relation (5.3). We also know how to handle this relation on the

level of the positive definite fibrewise metrics (·, ·)τ and (·, ·)τ ′ . From (5.5) we get the

relation (
H− ΞH−1Ξ BH−1

−H−1Ξ H−1

)
=

(
1 0

−Θ 1

)(
G − BG−1B BG−1

−G−1B G−1

)(
1 Θ

0 1

)
.

Using the decomposition of the matrices, we can write this also as

(
1 Ξ

0 1

)(
H 0

0 H−1

)(
1 0

−Ξ 0

)
=

(
1 0

−Θ 1

)(
1 B

0 1

)(
G 0

0 G−1

)(
1 0

−B 1

)(
1 Θ

0 1

)
.

Comparing both expressions, we get the explicit form of open-closed relations:

H− ΞH−1Ξ = G − BG−1B, (5.6)

ΞH−1 = (G − BG−1B)Θ + BG−1, (5.7)

H−1 = (1 + ΘB)G−1(1− BΘ)−ΘGΘ. (5.8)

We have proved that for given G,B and any Θ, H and Ξ can be found uniquely. Inverse

relations can be obtained by interchanging G ↔ H, B ↔ Ξ and Θ ↔ −Θ. Note that,

actually, the last equation follows from the first two. Now let us turn our attention to the

case of G + B in the form (5.1). One has

G − BG−1B =

(
g + Cg̃−1CT 0

0 g̃ + CT g−1C

)
,

BG−1 =

(
0 Cg̃−1

−CT g−1 0

)
, G−1 =

(
g−1 0

0 g̃−1

)
.

Parametrize Θ as

Θ =

(
π Π

−ΠT π̃

)
,
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where π ∈ X2(M), Π : ΛpT ∗M → TM , and π̃ is skew-symmetric fibrewise bilinear form on

ΛpT ∗M . Right-hand side of (5.7) is then

(
g + Cg̃−1CT 0

0 g̃ + CT g−1C

)(
π Π

−ΠT π̃

)
+

(
0 Cg̃−1

−CT g−1 0

)
=

=

(
(g + Cg̃−1CT )π (g + Cg̃−1CT )Π + Cg̃−1

−(g̃ + CT g−1C)ΠT − CT g−1 (g̃ + CT g−1C)π̃

)
.

We see that to obtain a generalized metric where H is block diagonal, and Ξ is block

off-diagonal, we have to choose π = π̃ = 0. This means that we choose Θ to be of the

form (5.2). Defining

H =

(
G 0

0 G̃

)
, Ξ =

(
0 Φ

−ΦT 0

)
,

it is now straightforward to see that the set of equations (5.6)–(5.8) gives exactly the open-

closed relations (3.17)–(3.20). The relations between the open membrane variables and

Nambu fields GN , G̃N ,ΠN can be explained in a similar fashion. Indeed, note that the

map G + B is invertible, and its inverse, the vector bundle morphism from W ∗ to W , can

be split into symmetric and skew-symmetric part:

(G + B)−1 = H−1
N +ΘN , (5.9)

whereHN is a fibrewise positive definite metric onW , and ΘN is a skew-symmetric fibrewise

bilinear form on W ∗. Parametrizing them as

HN =

(
GN 0

0 G̃N

)
, ΘN =

(
0 ΠN

−ΠT
N 0

)
,

and expanding (5.9), we obtain exactly the set of equations (4.3)–(4.5).

6 Gauge field F as transformation of the fibrewise metric

In this section, we would like to develop the equalities required in the discussion of DBI

actions. In the previous sections we have shown how the closed and open membrane actions

are related using the generalized geometry point of view. One expects that it is also true

for their versions taking into account the fluctuations. The following paragraphs show that

it is true “up to an isomorphism”, fluctuated backgrounds cannot be related simply by

open-closed relations in the form (3.17)–(3.20).

We also show that corresponding open backgrounds are essentially uniquely fixed, there

is no ambiguity at all. For p = 1, we have already used this observation in [66].

The idea is the following: suppose that we would like to add a fluctuation F to the

(p+1)-form C. At this point we consider F to be defined globally on the entire manifold M ,

although everything works also in the case when F is defined only on a some submanifold

of M .4

4Later, this submanifold will correspond to a p′-brane, p′ ≥ p, where p-branes can end.
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Going from C to C + F corresponds to replacing Gc in the Hamiltonian (3.10) with

GF
c , defined as

GF
c =

(
1 0

−F T 1

)
Gc

(
1 −F

0 1

)
≡
(

1 0

−(C + F )T 1

)(
g−1 0

0 g̃

)(
1 −(C + F )

0 1

)
. (6.1)

The matrix

(
1 −F

0 1

)
corresponds to an endomorphism of T ∗M ⊕ΛpTM , which we denote

as e−F . Note that unlike in the p = 1 case, e−F is not orthogonal with respect to the

canonical pairing (valued in Xp−1(M)) on T ∗M ⊕ ΛpTM , defined as:

〈α+Q, β +R〉 = iαR+ iβQ,

for all α, β ∈ Ω1(M) and Q,R ∈ Xp(M). It can be shown that any orthogonal F has

to be identically 0. On the other hand, its transpose map, (e−F )T ≡ e−F , which is an

endomorphism of TM⊕ΛpT ∗M , is orthogonal with respect to the canonical pairing (valued

in Ωp−1(M)) on TM ⊕ ΛpT ∗M iff F is a (p+ 1)-form in M . This pairing is defined as

〈V +Σ,W + Ξ〉 = iV Σ+ iWΞ,

for all V,W ∈ X(M) and Σ,Ξ ∈ Ωp(M). In this notation, the transformation (6.1) can be

written as

GF
c = e−FGce

−F ≡ (e−F )TGce
−F . (6.2)

We know that G can be rewritten as Go in the open variables (G, G̃,Φ), corresponding to

augmented Nambu sigma model. If we define the automorphism eΠ of T ∗M ⊕ ΛpTM as

eΠ

(
α

Q

)
=

(
1 0

ΠT 1

)(
α

Q

)
,

we can express Go as

Go = eΠ

(
1 0

−ΦT 1

)(
G−1 0

0 G̃

)(
1 −Φ

0 1

)
eΠ, (6.3)

where eΠ = (eΠ)T . Dually to the previous discussion, eΠ is an orthogonal transformation

of T ∗M ⊕ ΛpTM ; although eΠ, for non-zero Π, is never orthogonal on TM ⊕ ΛpT ∗M .

Now, it is natural to ask whether to the gauged closed variables (g, g̃, C + F ) there

correspond some open variables and hence an augmented Nambu sigma model, described

by some Π′ and (G, G̃,Φ+F ′), where F ′ describes a fluctuation of the background Φ. More

precisely, we ask whether one can write GF
o in the form

GF
o

?
= eΠ′

(
1 0

−(Φ + F ′)T 1

)(
G−1 0

0 G̃

)(
1 −(Φ + F ′)

0 1

)
eΠ

′

. (6.4)

Translated into the language of the corresponding automorphisms of T ∗M ⊕ ΛpTM , this

boils down to the question

eΠe−F ?
= e−F ′

eΠ
′

, (6.5)
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for some Π′ and F ′. In general, this is not possible. Explicitly the equation (6.5) reads

(
1 −F

ΠT 1−ΠTF

)
?
=

(
1− F ′Π′ −F ′

Π′T 1

)
.

This implies ΠTF = 0, which, of course, in general is not satisfied. The decomposition

on the right-hand side therefore has to contain a block-diagonal term. Note that e−F ′

is

upper triangular, whereas eΠ
′

is lower triangular. For a matrix to have a decomposition

into a product of a block upper triangular, diagonal and lower triangular matrix, it has to

have an invertible bottom right block, that is 1 − ΠTF . Hence, we assume that 1 − ΠTF

is an invertible
(
n
p

)
×
(
n
p

)
matrix. We are now looking for a solution of the equation

eΠe−F = e−F ′

(
M 0

0 N

)
eΠ

′

, (6.6)

where M : T ∗M → T ∗M and N : ΛpTM → ΛpTM are (necessarily) invertible vector

bundle morphisms.

We can decompose eΠe−F as

(
1 −F (1−ΠTF )−1

0 1

)(
1 + F (1−ΠTF )−1ΠT 0

0 1−ΠTF

)(
1 0

(1−ΠTF )−1ΠT 1

)
. (6.7)

From this we see that F ′ = F (1 − ΠTF )−1, Π′ = Π(1 − F TΠ)−1 and N = 1 − ΠTF . To

find an alternative description of F ′, Π′ and M , examine the inverse of the equation (6.6):

eF e−Π = e−Π′

(
M−1 0

0 N−1

)
eF

′

. (6.8)

The left hand side of this equation is

eF e−Π =

(
1− FΠT F

−ΠT 1

)
,

which shows that 1 − ΠTF is invertible iff 1 − FΠT is invertible. The decomposition of

eF e−Π reads
(

1 0

−ΠT (1− FΠT )−1 1

)(
1− FΠT 0

0 1 + ΠT (1− FΠT )−1F

)(
1 (1− FΠT )−1F

0 1

)
. (6.9)

We thus get that F ′ = (1− FΠT )−1F , Π′ = (1−ΠF T )−1Π and M = (1− FΠT )−1.

We can conclude that the fields F ′, Π′, and vector bundle morphisms M,N in the

decomposition (6.6) have one of the following equivalent forms:

F ′ = F (1−ΠTF )−1 = (1− FΠT )−1F, (6.10)

Π′ = Π(1− F TΠ)−1 = (1−ΠF T )−1Π, (6.11)

– 16 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
0

M = 1 + F (1−ΠTF )−1ΠT = 1 + F ′ΠT = (1− FΠT )−1, (6.12)

N = 1−ΠTF =
(
1 + ΠT (1− FΠT )−1F

)−1
= (1 + Π′TF )−1. (6.13)

Thus, we have found a factorization of GF
o in the form

GF
o = eΠ′

(
MT 0

0 NT

)
e−(Φ+F ′)

(
G−1 0

0 G̃

)
e−(Φ+F ′)

(
M 0

0 N

)
eΠ

′

. (6.14)

Comparing this to GF
c , in particular comparing the respective bottom right blocks, we get

the important identity

g̃ + (C + F )T g−1(C + F ) = NT
(
G̃+ (Φ + F ′)TG−1(Φ + F ′)

)
N. (6.15)

Similarly, comparing the top left blocks of the inverses, one gets

g + (C + F )g̃−1(C + F )T = M−1
(
G+ (Φ + F ′)G̃−1(Φ + F ′

)T
M−T . (6.16)

Equivalently, one can gauge the matrix Ac, i.e., set

AF
c =

(
g (C + F )

−(C + F )T g̃

)
. (6.17)

To express this matrix in open variables we introduce the following notation: Ḡ−1 :=

MTG−1M ,
¯̃
G = NT G̃N , Φ̄ := M−1ΦN and F̄ ′ := M−1F ′N . If we now put

AF
o =

(
Ḡ (Φ̄ + F̄ ′)

−(Φ̄ + F̄ ′)T
¯̃
G

)−1

+

(
0 Π′

−Π′T 0

)
, (6.18)

the (gauged) open-closed relations are equivalent to AF
c = AF

o . As in the previous sections,

using the matrices AF
c , A

F
o , G

F
c and GF

o , one can write down the corresponding Polyakov

or (augmented) Nambu sigma models, i.e.,

Stot,F
P [X] =

1

2

∫
dp+1σ{Ψ†AF

c Ψ} =
1

2

∫
dp+1σ{Ψ†AF

o Ψ}, (6.19)

SF
NSM [X, η, η′] = −

∫
dp+1σ{Υ†AF

c
−1

Υ+Υ†Ψ}=−
∫
dp+1σ{Υ†AF

c
−1

Υ+Υ†Ψ}, (6.20)

Htot,F
P [X,P ] = HF

NSM [X,P ] = −1

2

∫
dpσ

(
iP

∂̃X

)T

GF

c

(
iP

∂̃X

)

= −1

2

∫
dpσ

(
iP

∂̃X

)T

GF

o

(
iP

∂̃X

)
. (6.21)

7 Seiberg-Witten map

In the previous section, we have developed the correspondence between closed and open

fields, including their respective fluctuations. However, they are not related simply by
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open-closed relations. Instead, the discussion brings new vector bundle isomorphisms M

and N , defined by (6.12), (6.13), respectively, into the picture. The determinant of the

left-hand side of (6.16) seems to be a likely candidate to appear in the “commutative”

membrane DBI action, whereas the determinant on the right-hand side of (6.16) seems to

contain as a factor a likely candidate to appear in its “noncommutative” counterpart.

This observation suggests that we should look for a change of coordinates on the

manifold M , the Jacobian of which could cancel the det 2(N) factor coming under the

determinant from the right-hand side of (6.16). The resulting diffeomorphism will be called

a Seiberg-Witten map in analogy to the string p = 1 case. We use a direct generalization of

the semi-classical construction used first in [7]. The most intriguing part will be to define

carefully a substitute for a determinant of a Nambu-Poisson (p+ 1)-vector.

In the following, let Π be a Nambu-Poisson (p+1)-vector (see appendix A) on M . We

can examine the F -gauged tensor Π′ = (1− ΠF T )−1Π.5 We will now show that for p > 1

this tensor is always a Nambu-Poisson (p + 1)-vector, whereas for p = 1 it is a Poisson

bivector if F is closed.

First, for p > 1, one can see that

Π′ =

(
1− 1

p+ 1
〈Π, F 〉

)−1

Π, (7.1)

where 〈Π, F 〉 = ΠiJFiJ ≡ Tr(ΠF T ). For this, one has to prove that

Π = (1−ΠF T )

(
1− 1

p+ 1
〈Π, F 〉

)−1

Π. (7.2)

This can easily be checked in coordinates (x1, . . . , xn) in which (A.7) holds, and hence, for

Π with components ΠiJ = ǫiJ . Now, using (7.1) and lemma A.2, we see that Π′ is again a

Nambu-Poisson tensor.

To include the p = 1 case: for p ≥ 1, and F closed, we can use the fact that

GΠ′ = e−FGΠ, where GΠ and GΠ′ are graphs of the maps Π♯ and Π′♯, respectively

(see lemma A.1). This is easily verified using (6.11). It can be seen that the Dorfman

bracket (A.1) satisfies [e−F (V + ξ), e−F (W + η)]D = e−F [V + ξ,W + η]D, whenever F is

closed. But this implies that GΠ′ is closed under the Dorfman bracket, which is according

to A.1 equivalent to the Nambu-Poisson fundamental identity. On the other hand, note

that for p > 1, F ′ is not necessarily a (p+ 1)-form.

Next, see that the scalar function in front of Π in (7.1) is related to the determinant

of the vector bundle isomorphism 1−ΠF T . For p > 1, any Nambu-Poisson tensor and any

(p+ 1)-form F , its holds

det (1−ΠF T ) =

(
1− 1

p+ 1
〈Π, F 〉

)p+1

. (7.3)

To prove this identity, note that both sides are scalar functions. We may therefore use any

local coordinates on M . Again, use those in which (A.7) holds. The rest of the proof is

straightforward.

5We assume that 1 − ΠFT is invertible. In a more formal approach we also could treat Π′ as a formal

power series in Π.
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Further on, assume that F is closed, that is at least locally F = dA for a p-form A.

Define a 1-parametric family of tensors Π′
t := (1 − tΠF T )−1Π, cf. Footnote 5. This is

obviously chosen so that Π′
0 = Π and Π′

1 = Π′. Differentiation of Π′
t with respect to t gives:

∂tΠ
′
t = Π′

tF
TΠ′

t. (7.4)

This equation can be rewritten as

∂tΠ
′
t = −L

A
♯
t
Π′

t, (7.5)

where the time-dependent vector field A♯
t is defined as A♯

t = Π′♯
t(A). To see this, note

that Π′
t is, using similar arguments as above, a Nambu-Poisson tensor. Then recall the

property (A.3), and choose ξ = A and η = dyJ . Contracting the resulting vector field

equality with dyi gives exactly L
A

♯
t
Π′

t = −Π′
tF

TΠ′
t. Equation (7.5) states precisely that

the flow φt corresponding to A♯
t, together with condition Π′

0 = Π, maps Πt to Π, that is,

φ∗
t (Π

′
t) = Π. (7.6)

We have thus found the map ρA ≡ φ1, which gives ρ∗A(Π
′) = Π. This is the p ≥ 1 analogue

of the well known semiclassical Seiberg-Witten map. Obviously, it preserves the singular

foliation defined by Π. We emphasize the dependence of this map on the p-form A by an

explicit addition of the subscript A.

Denote J i
k = ∂X̂i

∂xk , with X̂i := ρ∗A(x
i) being covariant coordinates. We have

ρ∗A(Π
′j1,...jp+1) = J j1

i1
. . . J

jp+1

ip+1
Πi1...ip+1 . (7.7)

Further, denote by |J | the determinant of J i
k in some (arbitrarily) chosen local coordi-

nates (x1, . . . , xn) on M . One can choose, for instance, the special coordinates (x̃i, . . . x̃n)

on M in which (A.7) holds. We will use the notation |J̃ | for the determinant of the matrix

J̃ i
k = ∂x̃i(ρA(x))

∂x̃k . From now, for any function ϕ (e.g., a matrix component, determinant,

etc.), the symbol ϕ̂ will always denote the function defined as ϕ̂(x) ≡ ρ∗A(ϕ)(x) = ϕ(ρA(x)).

Recall now the definition (A.8) of the density |Π(x)|.6 By definition of |J |, we then have

|J | = |J̃ | |Π̂(x)|
1

p+1

|Π(x)|
1

p+1

(7.8)

The Jacobian |J̃ | can easily be calculated using (7.1) and (7.7). Indeed, the equation (7.7)

can be, in (x̃) coordinates, rewritten as

(
1− 1

p+ 1
〈Π̂, F̂ 〉

)−1

ǫj1...jp+1 = ǫj1...jp+1 J̃1
i1 . . . J̃

p+1
ip+1

ǫi1...ip+1 .

To justify this, note that Seiberg-Witten map acts nontrivially only in the directions of the

first (p+1)-coordinates. The Jacobi matrix J̃ of ρA in (x̃) coordinates is thus a block upper

6For p = 1, one can (around every regular point of the characteristic distribution) define |Π(x)| to be the

Jacobian of the transformation to the Darboux-Weinstein coordinates. This gives a good definition even if

Π is degenerate.
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triangular with identity matrix in the bottom right block. Moreover, the determinant of

J̃ is then equal to the determinant of the top left block. We can divide both sides with

ǫj1...jp+1 . We thus remain with the equation

(
1− 1

p+ 1
〈Π̂, F̂ 〉

)−1

= J̃1
i1 . . . J̃

p+1
ip+1

ǫi1...ip+1 = |J̃ |.

Putting this back into (7.8), we obtain the useful relation

|J |p+1 =

(
1− 1

p+ 1
〈Π̂, F̂ 〉

)−(p+1) |Π̂(x)|
|Π(x)| , (7.9)

or using (7.3)7

|J |p+1 = det (1− Π̂F̂ T )
−1 |Π̂(x)|

|Π(x)| . (7.10)

Note that this expression does not depend on the choice of the Darboux coordinates in

which the densities |Π(x)| are calculated. We discuss this subtlety in the appendix A un-

der (A.9). We see that |Π(x)| itself transforms as in (A.10). Fortunately, the determinant of

the block M in (A.9) does not depend on the coordinates (x̃1, . . . x̃p+1). Since these are the

only coordinates changed by the Seiberg-Witten map, we get (detM)(x) = (detM)(ρA(x)).

In other words, these determinants cancel out in the fraction |Π̂(x)|/|Π(x)|, as expected.
The following observation is in order: the Nambu-Poisson tensor Πt does not depend

on the choice of the gauge p-potential A. As already mentioned, the Nambu-Poisson map

ρA does: an infinitesimal gauge transformation δA = dλ — with a (p − 1)-form gauge

transformation parameter λ — induces a change in the flow, which is generated by the

vector field X[λ,A] = ΠiJdΛJ∂i, where

Λ =
∞∑

k=0

(L
A

♯
t
+ ∂t)

k(λ)

(k + 1)!

∣∣∣
t=0

, (7.11)

is the semiclassically noncommutative (p − 1)-form gauge parameter. This is the p-brane

analog of the exact Seiberg-Witten map for the gauge transformation parameter. It is

straightforwardly obtained by application of the BCH formula to ρ∗A+dλ(ρ
∗
A)

−1. Finally, in

analogy with the p = 1 case, we define the (components of the) semiclassically noncommu-

tative field strength to be

F̂ ′
i1,...,ip+1

= ρ∗AF
′
i1,...,ip+1

, (7.12)

i.e., the components of F ′ evaluated in the covariant coordinates. Infinitesimally, compo-

nents of F̂ transform as

δF̂ ′ = ΠiJdΛJ∂iF̂
′, (7.13)

which justifies the adjectives “semiclassically noncommutative”.

7For p = 1, one can derive this relation by calculating |J̃ | in Darboux-Weinstein coordinates directly

from (7.7) and the definition of Π′, and then use (7.8).
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8 Nambu gauge theory; equivalence of commutative and semiclassically

noncommutative DBI action

Here we consider a system of multiple open M2 branes ending on an M5 brane. We

would like to describe this system by an effective action that is exact, for slowly varying

fields, to all orders in the coupling constant. Since we focus only on the bosonic part

of this action, we do not need to restrict ourselves to the values p = 2 and p′ = 5 and

our construction is valid for arbitrary values of p and p′ such that p ≤ p′. Our goal

is thus the construction of an effective action for a p′-brane with open p-branes ending

on it while being submerged in a Cp+1-background. The construction is based on two

guiding principles: firstly, this effective action should have dual descriptions similar to the

commutative and non-commutative ones of the D-brane and open strings8 and secondly, it

should feature expressions that also appear in the p-brane action (6.19).

Denote the p′-brane submanifold as N . We shall now clarify the geometry underly-

ing the following discussion. Originally, g, g̃, C were assumed to be the closed membrane

backgrounds in the ambient background manifold M . Hereafter, we denote by the same

characters their pullbacks to the p′-brane N . This makes sense since all of them are co-

variant tensor fields on M . Little subtlety comes with the Nambu-Poisson tensor Π. We

have basically two options. First, we would like to restrict some Nambu-Poisson tensor in

M to the p′-brane. This in fact requires N to be a Nambu-Poisson submanifold of M . The

latter option is to choose the Nambu-Poisson tensor Π on N after we restrict the other

backgrounds to N . The open membrane variables G, G̃,Φ, calculated using the membrane

open-closed relations (3.17)–(3.20), are assumed to be calculated entirely on N , using the

pullbacks of closed variables. Finally, the field F is assumed to be a (p + 1)-form defined

and having components only in N . All the discussion related to Seiberg-Witten map in

the previous section is assumed to take place on the submanifold N .

The open-closed membrane relations (6.16) immediately imply

det[g + (C + F )g̃−1(C + F )T ] = det 2[1− FΠT ] · det[G+ (Φ + F ′)G̃−1(Φ + F ′)T ] , (8.1)

where F ′ = (I − FΠT )−1F . Obviously, in order get a sensible action we have to form

an integral density, which can be integrated over the world volume of the larger p′-brane.

And, in order to obtain a noncommutative action from the right hand side of (8.1), we

have to apply the Seiberg-Witten map ρ∗A to it. It would be tempting to take the square

root of the identity (8.1) to construct the action. But, recall (7.10) and notice the factor

det−(p+1)[1−FΠT ] appearing in it upon the application of the Seiberg-Witten map. Hence,

not the square root but the 2(p + 1)-th root of (8.1) is the most natural choice to enter

the effective action that we look for. As we already said, the Lagrangian density must be

an integral density, and therefore we need to multiply that piece of the action by a proper

power of the determinant of the pullback of the target space metric. These considerations

8Actually, our exposition so far closely followed our previous work [71], where the role of generalized

geometry was emphasized.
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fix the action essentially uniquely and we postulate

Sp-DBI = −
∫

dp
′+1x

1

gm
det

p
2(p+1) (g) · det

1
2(p+1)

[
g + (C + F )g̃−1(C + F )T

]
, (8.2)

where gm is a “closed membrane” coupling constant. The integration is over the p′-brane

and the fields g, g̃, and C in this expression are the pull-backs of the corresponding back-

ground target space fields to this p′-brane. Asking for

1

gm
det

p
2(p+1) g · det

1
2(p+1)

[
g + (C + F )g̃−1(C + F )T

]

=
1

Gm
det

p
2(p+1) (G) det

1
(p+1) [1−ΠF T ] · det

1
2(p+1)

[
G+ (Φ + F ′)G̃−1(Φ + F ′)T

]
, (8.3)

it follows from (8.1) that the closed and open coupling constants gm and Gm must be

related as

Gm = gm (detG/ det g)
p

2(p+1) . (8.4)

As desired, the action (8.2) is exactly equal to its “noncommutative” dual

Sp-NCDBI = −
∫

dp
′+1x

1

Ĝm

|̂Π|
1

p+1

|Π|
1

p+1

det
p

2(p+1) Ĝ·det
1

2(p+1)
[
Ĝ+(Φ̂+F̂ ′) ̂̃G−1(Φ̂+F̂ ′)T

]
, (8.5)

where as before ̂ denotes objects evaluated at covariant coordinates9 and F̂ ′ is the Nambu

(NC) field strength (7.12). This follows from integrating of (8.3) followed by the change of

integration variables on its right hand side according to the Seiberg-Witten map.

The factor involving the quotient of |̂Π| and |Π| vanishes for constant |Π|, but it is

essential for the gauge invariance of (8.5) in all other cases.

Let us give two alternative, but equivalent, expressions for the action (8.2), which

might turn out to be useful when looking for supersymmetric generalizations. The first

one is obvious:

Sp-DBI = −
∫

dp
′+1x

1

gm
det

1
2 (g) · det

1
2(p+1)

[
1 + g−1(C + F )g̃−1(C + F )T

]
. (8.6)

A very similar expression can be found using (3.25)

Sp-DBI = −
∫

dp
′+1x

1

gm
det

1
2 (g) · det

1
2(p+1)

[
1 + g̃−1(C + F )T g−1(C + F )

]
. (8.7)

For the second one, let us note that det g̃ = det(
p′

p−1) g, in the case of factorizable g̃.

Hence, in this case:

Sp-DBI = −
∫

dp
′+1x

1

gm
det

p−( p′

p−1)
2(p+1) g · det

1
2(p+1)

(
g (C + F )

−(C + F )T g̃

)
. (8.8)

9Let us emphasize that this is not a coordinate transformation of a tensor. We just evaluate the

component functions in different coordinates.
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Let us note that in the case of a D-brane, i.e., p = 1, we get indeed the DBI D-brane

action. In the other extreme case, p = p′, we get10

SM = −
∫

dp+1x
1

gm
det

1
2(p+1)

(
g (C + F )

−(C + F )T g̃

)
. (8.9)

Now we can compare our action, e.g, to the DBI part of the M5-brane action in

equation (2.9) of [38, 39]. Their action is, up to conventions,

S′ = −
∫

d6x
√
det g

√
1 +

1

3
trk − 1

6
trk2 +

1

18
(tr k)2 , (8.10)

where kij = (dA+C)ikl(dA+C)jkl is the modified field strength. (See also [72], for an early

proposal with a similar index structure.) The form of the polynomial in k in the action

has been determined by lengthy computation based on κ-symmetry and the requirement of

non-linear self-duality, the self-duality relations being consistently decoupled from the back-

ground. More precisely, in [38, 39], it is shown that consistency of the non-linear self-duality

is restrictive enough that demanding κ-symmetry gives its explicit form, which can be ob-

tained without a priori specifying the form of the polynomial in the action. At the same time

the projector specifying the κ-symmetry and the form of the polynomial are determined.

To our surprise, we found that this action S′ can be interpreted as a low-energy (second

order in k) approximation of our p-DBI action (8.2). Indeed,for p = 2 and p′ = 5 we have

dp
′+1x = d6x, 1

2(p+1) =
1
6 and

det
1
6 (1 + k) =

√
1 +

1

3
trk − 1

6
trk2 +

1

18
(tr k)2 + . . . .

The fact that two very different approaches (one based on non-linear self-duality and κ-

symmetry, the other on commutative/non-commutative duality) give rise to the same action

in the low energy limit is very encouraging and seems to indicate that our proposal can

indeed be extended to a full supersymmetric action.

Finally, let us mention that noncommutative structures in the context of the M5 brane

have previously been discussed, for example, in [73] and [74]. However, the type of non-

commutativity discussed in these earlier papers is the well-known deformation of the com-

mutative point-wise multiplication along a (constant) Poisson tensor that already appeared

in the p = 1 string theory case. This is very different from the notion of noncommutativity

that we argue to be pertinent for p > 1 and in particular for the p = 2 case relevant for the

M5 brane: for p > 1, we do not deform the commutative product — our “noncommutativ-

ity” has rather to be understood in the Nambu-Poisson sense as explained in detail above,

cf. the remark at the end of the previous section.

9 Background independent gauge

For p = 1, assuming that the pullback of the background 2-form C to the p′-brane N

is non-degenerate and closed (that is symplectic), one can choose the bivector Π to be

10The notation SM will be justified later.
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the inverse of C (that is a Poisson bivector corresponding to the symplectic structure C).

Solving the open-closed relations then gives

G = −Cg−1C, Φ = −C. (9.1)

This is known as the background independent gauge [5]. Our aim is to generalize this

construction for p ≥ 1, even giving milder assumptions on C for p = 1.

Let us start on the level of linear algebra first. Assume that V is a finite-dimensional

vector space. Let g be an inner product on V , and C ∈ Λ2V ∗ a 2-form. Let P : V → V

denote a projector orthogonal with respect to g, such that

ker(C) = ker(P ),

where C is viewed as a map C : V → V ∗. Then there exists a unique bivector Π ∈ Λ2V ,

satisfying

ΠC = P , PΠ = Π. (9.2)

The reader can find the proof of this statement in proposition B.1 of appendix B.

Recall that open-closed relations for p = 1 have the form

1

g + C
=

1

G+Φ
+Π. (9.3)

This equality can be rewritten as

G+Φ = (1− (g + C)Π)−1(g + C). (9.4)

Using (9.2), one gets

G+Φ = P ′T gP ′ − Cg−1C − C,

where P ′ = 1−P . From this we can read of the symmetric and skew-symmetric part to get

G = P ′T gP ′ − Cg−1C , Φ = −C. (9.5)

We can view this as a generalization of (9.1), not assuming a non-degenerate C. See that

G is again a positive definite metric, and G + Φ is thus invertible. Note that we are now

on the level of a single vector space V , not discussing any global properties of Π yet.

We would like to generalize this procedure to p ≥ 1 case. Our goal is to find a suitable

choice for Π, such that Φ = −C. Assume that C : ΛpV → V ∗ is a linear map, g is an

inner product on V , and g̃ is an inner product on ΛpV . The key is to keep in mind the

open-closed relations (5.3). We see that by defining

G =

(
g 0

0 g̃

)
, B =

(
0 C

−CT 0

)
,

we get an inner product G onW ≡ V ⊕ΛpV , and a bilinear skew-symmetric form B ∈ Λ2W ∗.

The situation is thus analogous to the previous one, if we replace V by W , the metric

g by G, and the 2-form C by B. If we define P to be an orthogonal projector with respect
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to G with ker(P) = ker(B), we may again apply proposition B.1 to see that there exists a

unique Θ ∈ Λ2W , such that

ΘB = P ,PΘ = Θ. (9.6)

Now we can solve the open-closed relations (5.3) for this choice of Θ, using the same

calculation as we did in order to obtain (9.5). One gets

H = P ′TGP ′ − BG−1B , Ξ = −B, (9.7)

where P ′ = 1− P. Exploring what B and Ξ are, leads to Φ = −C, as intended. However,

we do not know whether H and Θ obtained by this procedure are of the suitable form,

that is whether H is block-diagonal and Θ block-off-diagonal. This can be easily proved

by examining the projector P. Clearly, one has

kerB = kerCT ⊕ kerC ⊆ V ⊕ ΛpV.

Therefore we have that Im(P) = kerB⊥ = (kerCT )⊥(g) ⊕ (kerC)⊥(g̃). This proves that in

a block form, we have

P =

(
P 0

0 P̃

)
,

where P : V → V is an orthogonal projector with respect to g, and P̃ : ΛpV → ΛpV is an

orthogonal projector with respect to g̃. This and the relation (9.7) imply that H is block-

diagonal. The second equality in (9.6) then proves that Θ is block-off-diagonal, that is

Θ =

(
0 Π

−ΠT 0

)
,

where Π : ΛpV ∗ → V . We can now simply extract all the relations from (9.6). The equality

ΘB = P gives (
0 Π

−ΠT 0

)(
0 C

−CT 0

)
=

(
P 0

0 P̃

)
,

which translates into

ΠCT = −P , ΠTC = −P̃ . (9.8)

Rewriting the equation BP = B, we get

(
0 C

−CT 0

)(
P 0

0 P̃

)
=

(
0 C

−CT 0

)
,

which translates into

CP̃ = C , CTP = CT . (9.9)

Also see that ker(P̃ ) = ker(C), and ker(P ) = ker(CT ). The equality PΘ = Θ gives

(
P 0

0 P̃

)(
0 Π

−ΠT 0

)
=

(
0 Π

−ΠT 0

)
,
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and thus

PΠ = Π , P̃ΠT = ΠT . (9.10)

Finally, we may examine (9.7) to find

G = P ′T gP ′ + Cg̃−1CT , G̃ = P̃ ′T g̃P̃ ′ + CT g−1C , Φ = −C. (9.11)

We have thus shown that, corresponding to the orthogonal projectors P and P̃ and the

linear map C : ΛpV → V ∗, there exists a unique linear map Π : ΛpV ∗ → V , such that (9.8)

and (9.10) hold. Plugging this Π into open-closed relations (5.3) gives (9.11).

To use this for our purposes, we have to impose conditions on C to ensure that Π is a

Nambu-Poisson tensor.

For p > 1, first observe that the linear map Π : ΛpV ∗ → V induced (at a chosen point

on M) by a Nambu-Poisson tensor has rank either 0 or p+1. Since Π always has the same

rank as C, we get the first assumption on the linear map C.

There will always arise problems with the smoothness of Π at points x ∈ N , where

C(x) = 0. If this set has measure zero, we can change the area of integration in DBI

action from N to an open submanifold N ′, where C(x) 6= 0. If not, we cannot go to the

background-independent gauge. Let us hereafter assume that C(x) 6= 0 for all x ∈ N , and

therefore that rank(C) = p+ 1.

Now assume that the linear map C is induced by a (p + 1)-form C ∈ Λp+1V ∗. Note

that in this case, we always have the estimate rank(C) ≥ p+ 1.

Let D ⊆ V denote the non-degenerate subspace of CT orthogonal (with respect to

g) to its kernel, that is D = ker(CT )⊥. Assumption on the rank of C thus means that

dim(D) = p + 1. From the skew-symmetry of C, we have that C ∈ Λp+1D∗. It is thus a

top-level form on D. Choose now an orthonormal basis (e1, . . . , ep+1) of D. We see that

C = λ · e1 ∧ . . . ∧ ep+1, (9.12)

where λ 6= 0. Now, choosing an arbitrary complementary basis (f1, . . . , fp′−p) of ker(C
T ) ≡

D⊥, one can find counterexamples to the assumption that, for a general g̃, the map Π is a

(p+1)-vector (although it has a correct rank). We thus have to add the second assumption:

g̃ has to be of the special skew-symmetrized tensor product form (3.5).

In this case we find that ΛpD is spanned by orthonormal basis of the form e1 ∧ . . . ∧
êr ∧ . . . ∧ ep+1. This allows us to write Π explicitly as

Π = − 1

λ
· e1 ∧ . . . ∧ ep+1. (9.13)

It is easy to show that such a Π indeed satisfies (9.8) and (9.10), and since such a Π is

unique, this is the one. We can thus conclude that for rank(C) = p + 1, and g̃ in the

form (3.5), Π is a (p+ 1)-vector, more precisely Π ∈ Λp+1D.

We now turn our attention to global properties. If we assume that C(x) 6= 0 on the

p′-brane, we can define the subspace D at every point, defining a smooth subbundle (it is

an orthogonal complement to the kernel of constant rank vector bundle morphism CT ).

Around any point, we can choose a local orthonormal frame (e1, . . . , ep+1), forming a local
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basis for the sections of D. The expression (9.13) proves that Π is a smooth (p+1)-vector

on the p′-brane, since 1
λ is a smooth function.

Finally, we have to decide under which conditions Π forms a Nambu-Poisson tensor.

In the view of lemma A.3, we see that the sufficient and necessary condition is that the

subbundle D defines an integrable distribution in N . This distribution has to be regular,

and thus, this condition is equivalent to the involutivity ofD under vector field commutator:

[D,D] ⊆ D.

One can find a simple equivalent criterion for C to define an integrable distribution

D. In order to do so, assume now that (e1, . . . , ep+1, f1, . . . fp′−p) is a positively oriented

orthonormal local frame for N , such that (e1, . . . , ep+1) is a local orthonormal frame for D.

The metric volume form Ωg is then by definition

Ωg = e1 ∧ . . . ∧ ep+1 ∧ f1 ∧ . . . ∧ fp′−p.

Having a volume form, one can form the Hodge dual of C. Using (9.12) we get

∗C = λ · f1 ∧ . . . ∧ fp′−p.

We see that D = ker(∗C)T , (∗C)T : TN → Λp′−p−1T ∗N . But forms with integrable kernel

distribution have their own name, they are called integrable forms, see appendix B for the

definition and basic properties. We can conclude that Π is a Nambu-Poisson (p+1)-vector

if and only if ∗C is an integrable everywhere non-vanishing (p′ − p)-form on N . Note that

the Hodge star is defined with respect to the induced metric on N .

There exists a nice sufficient integrability condition: if C is a (p + 1)-form of rank

p + 1, such that δC = 0, then ∗C is integrable. By δ we denote the codifferential defined

using the Hodge duality. Note that δC = 0 are the non-homogeneous charge free Maxwell

equations for the field strength C. Also, note that in the whole discussion, we do not need

the integrability of the distribution D⊥. Since C is already a non-vanishing (p+1)-form of

rank p+1, the sufficient condition for integrability of D⊥ is dC = 0. Interestingly, both D

and D⊥ are integrable regular distributions if C is a (p+ 1)-form of rank p+ 1, satisfying

the Maxwell equations dC = 0, δC = 0.

For p = 1, the discussion is very similar, except that the rank of C can be any nonzero

even integer not exceeding n. This adds another condition on dC. In particular, the

necessary and sufficient condition on C to define a Poisson tensor Π is the integrability of

the regular smooth distribution D, and a condition dC|Γ(D) = 0.

10 Non-commutative directions, double scaling limit

By the construction of the preceding section, we have the decompositions

TM = D ⊕D⊥, ΛpTM = D̃ ⊕ D̃⊥,

where D̃ = ΛpD. We say that tangent vectors contained in D point in “non-commutative”

directions. Because D is integrable, around each point there are coordinates such that D

is spanned by coordinate tangent vectors corresponding to first p+ 1 of these coordinates.
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These local coordinates are accordingly called “non-commutative” coordinates. This ter-

minology comes from the fact that for p = 1, we have {xi, xj} = Πij . The right-hand

side is non-vanishing when both xi and xj correspond to D. This gives non-vanishing

quantum-mechanical commutator of these coordinates.

We can thus write all involved quantities in the block matrix form corresponding to

this decomposition. From the orthogonality of respective subspaces, the matrices of g and

g̃ will be block diagonal:

g =

(
g• 0

0 g◦

)
, g̃ =

(
g̃• 0

0 g̃◦

)
,

where g• is a positive definite fibrewise metric on D, g◦ is a positive definite fibrewise metric

on D⊥ and g̃• and g̃◦ are positive definite fibrewise metrics on D̃ and D̃⊥, respectively. In

the same fashion we obtain

C =

(
C• 0

0 0

)
, Π =

(
Π• 0

0 0

)
, F =

(
F• FI

FII F◦

)
.

Examine how the F -gauged tensor Π′ looks like in this block form. We have

1− F TΠ =

(
1− F T

• Π• 0

−F T
I
Π• 1

)
.

Hence

Π′ ≡ Π(1− F TΠ)−1 =

(
Π•(1− F T

• Π•)
−1 0

0 0

)
.

Denote Π′
• = Π•(1 − F T

• Π•)
−1. We also have Π′

• = (1 − Π•F
T
• )−1Π•. Also, note that in

this formalism P and P̃ are simply given as

P =

(
1 0

0 0

)
, P̃ =

(
1 0

0 0

)
.

Hence, the defining equations of Π can be written as

Π•C
T
• = −1 , ΠT

• C• = −1. (10.1)

Having this in hand, recall that for p = 1, the background independent gauge could

be obtained in a completely different way. It was obtained by Seiberg and Witten in [5] as

a following limit of the relation (4.11). Reintroducing the Regge slope α′ into description,

the relation between closed variables g, C and Nambu fields GN , ΠN is explicitly

GN = g − (2πα′)2Cg−1CT ,
1

2πα′
ΠN = −(2πα′)g−1C

(
g − (2πα′)2Cg−1C

)−1
.

Now one would like to do the zero slope limit α′ → 0 in a way such that GN and ΠN

remain finite. This clearly requires the simultaneous scaling of the metric g. Scaling the g

as a whole will not work, since the resulting GN will not be a metric. The correct answer
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is given by scaling the non-commutative part g• and commutative part g◦ of the metric g

differently. The resulting maps GN and ΠN also split accordingly as

GN• = g• − (2πα′)2C•g
−1
• CT

• , GN◦ = g◦,

1

2πα′
ΠN• = −(2πα′)g−1

• C•(g• − (2πα′)2C•g
−1
• C•)

−1.

Now, scaling g• ∝ ǫ, g◦ ∝ 1, α′ ∝ ǫ
1
2 as ǫ 7→ 0 gives in this limit

GN• = −C•g
−1
• CT

• , GN◦ = g◦,

ΠN• = C−1
• .

Replacing ΠN by Π andGN byG is exactly the background independent gauge. This double

scaling limit was then used to determine which terms should be kept in the expansion of the

DBI action. We would like to find an analogue of this in our p > 1 case.11 We immediately

see that first naive answer would be wrong. One of the relations is

GN• = g• + C•g̃
−1
• CT

• .

Note that g̃• is again a skew-symmetrized p-fold tensor product of g•. This suggests that

if g• ∝ ǫ, then g̃• ∝ ǫp. This would imply that C• ∝ ǫ
p
2 in order to keep GN• finite (we

have included ǫ into C). But the second relation is

G̃N• = g̃• + CT
• g

−1
• C.

This shows that G̃N → 0 as ǫ → 0. This is clearly not very plausible. However, this can

still be fixed by using the remaining gauge fixing freedom of the Polyakov action (3.2) by

scaling also the ratio between g and g̃. The biggest issue comes with the fact that g̃◦ is

not a tensor product of g◦’s only. In fact, every component (g̃◦)IJ contains as many g•’s

as the number of “commutative” indices in I (or J) is. This means that every component

of g̃◦ should scale differently. We must thus abandon the idea of scaling just g, we have to

scale g̃ independently! The correct answer is given by the geometry of the vector bundle

W = TM ⊕ ΛpTM again. We immediately see that scaling G• ∝ ǫ, G◦ ∝ 1 and B ∝ ǫ
1
2

gives in limit ǫ → 0 the background independent gauge. This corresponds to

g• ∝ ǫ, g̃• ∝ ǫ, g◦ ∝ 1, g̃◦ ∝ 1, C• ∝ ǫ
1
2 . (10.2)

Let us note that in the case of an M5 brane a scaling treating directions differently was

described in [75] and [76]. It would be interesting to compare the scaling in these papers

with the one introduced here.

11 Matrix model

Now we will apply the previous generalization of the background independent gauge. We

will use the double scaling limit to cut off the power series expansion of the DBI action. It

11See [9] for a previous discussion of the double scaling limit in the context of the M2/M5 system that

came to different conclusions regarding the appropriate powers of ǫ.
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turns out that we find an action describing a natural p > 1 (semi-classical) analogue of a

matrix model with higher brackets and an interacting with the gauge field F . It will be of

order 2(p+ 1) in the matrix variables X̂a, and at most quadratic in F . The term of order

2(p+1) in X̂a’s and constant in F gives a possible p > 1 analogue of the semiclassical pure

matrix model.

Assume that C satisfies all the conditions required for Π to be a Nambu-Poisson tensor

on N . From (8.6), we have that Lagrangian of the commutative p-DBI action has the form

Lp−DBI = − 1

gm
det

1
2 (g) · det

1
2(p+1) [1 + g−1(C + F )g̃−1(C + F )T ].

Note that the second determinant is the determinant of the vector bundle endomorphism

X : TM → TM , where X = 1+g−1(C+F )g̃−1(C+F )T . In the block form X : D⊕D⊥ →
D ⊕D⊥, we have

X=

(
1+g−1

• (C•+F•)g̃
−1
• (C•+F•)

T+g−1
• FIg̃

−1
◦ F T

I
g−1
• (C• + F•)g̃

−1
• F T

II
+ g−1

• FIg̃
−1
◦ F T

◦

g−1
◦ FIIg̃

−1
• (C• + F•)

T + g−1
◦ F◦g̃

−1
◦ F T

I
1 + g−1

◦ FIIg̃
−1
• F T

II
+ g−1

◦ F◦g̃
−1
◦ F T

◦

)
.

Here we have used the following notations for the blocks of F

F =

(
F• FI

FII F◦

)
.

This can be decomposed as a product

X =

(
g−1
• (C• + F•) 0

0 1

)
Y

(
g̃−1
• (C• + F•)

T 0

0 1

)
,

where the vector bundle endomorphism Y : D̃ ⊕D⊥ → D̃ ⊕D⊥ is

Y =

(
1 + Π′T

• (g• + FIg̃
−1
◦ F T

I
)Π′

•g̃• g̃−1
• (F T

II
− g̃•Π

′T
• FI‘g̃

−1
◦ F T

◦ )

g−1
◦ (FII − F◦g̃

−1
◦ F T

I
Π′

•g̃•) 1 + g−1
◦ FIIg̃

−1
• F T

II
+ g−1

◦ F◦g̃
−1
◦ F T

◦

)
.

Writing Y in block form as

Y =

(
Y• YI
YII Y◦

)
,

note that Y• is an invertible matrix. This is true because it is a top left block of the

matrix Y coming from positive definite matrix g + (C + F )g̃−1(C + F ) by multiplying it

by invertible block-diagonal matrices. Hence, we can write

det (Y ) = det (Y•) det (Y◦ − YIY
−1
• YII). (11.1)

The second matrix has the form

Y◦ − YIY
−1
• YII = 1 + g−1

◦ FII(1− Y −1
• )g̃−1

• F T
II + g−1

◦ F◦g̃
−1
0 F T

◦ + g−1
◦ FIIY

−1
• Π′T

• FIg̃
−1
◦ F T

◦

+ g−1
◦ F◦g̃

−1
◦ F T

I Π′
•g̃•Y

−1
• g̃−1

• F T
II − g−1

◦ F◦g̃
−1
◦ F T

I Π′
•g̃•Y

−1
• Π′T

• FIg̃
−1
◦ F T

◦ .
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At this point, we will employ the double scaling limit introduced above. Namely, in the

det
1

2(p+1) (Y ), we wish to keep only the terms scaling at most as ǫ1. Note that (Y• − 1) ∝ ǫ.

Also, Y −1
• = 1− (Y• − 1) + o(ǫ2). Using this, we can write

Y◦−YIY
−1
• YII=1+g−1

◦

(
FIIΠ

′T
• g•Π

′
•F

T
II+

(
FIIΠ

′T
• FI+F◦

)
g̃−1
◦

(
FIIΠ

′T
• FI+F◦

)T)
+o(ǫ2).

The whole term in parentheses after g−1
0 is of order ǫ1. Therefore, we have

det
1

2(p+1) (Y◦−YIY
−1
• YII)=1 +

1

2(p+ 1)
tr(g−1

◦ FIIΠ
′T
• g•Π

′
•F

T
II)

+
1

2(p+1)
tr
(
g−1
◦

(
FIIΠ

′T
• FI+F◦

)
g̃−1
◦

(
FIIΠ

′T
• FI+F◦

)T ))
+o(ǫ2).

For the first factor in (11.1), we have

det
1

2(p+1) (Y•) = 1 +
1

2(p+ 1)
tr
(
Π′T

• (g• + FIg̃
−1
◦ F T

I )Π′
•g̃•
)
+ o(ǫ2).

Putting all together, we obtain

det
1

2(p+1) (Y )=1+
1

2(p+1)
tr
(
Π′T

• (g•+FIg̃
−1
◦ F T

I )Π′
•g̃•
)
+

1

2(p+1)
tr(g−1

◦ FIIΠ
′T
• g•Π

′
•F

T
II)

+
1

2(p+1)
tr
(
g−1
◦

(
FIIΠ

′T
• FI+F◦

)
g̃−1
◦

(
FIIΠ

′T
• FI+F◦

)T)
+o(ǫ2). (11.2)

Now, comparing the definitions of scalar densities corresponding to Π and Π′, it is clear that

det(C• + F•) = ± det(1−ΠF T ) · |Π(x)|−(p+1).

Here we assume that one chooses the basis of ΛpD induced by the basis of D. The sign ±
depends on the ordering of that basis. Next, see that det(g̃•) = det (

p
p−1)(g•) = det p(g•).

This shows that

Sp-DBI = ∓
∫

dp
′+1x

1

gm

det
1

p+1 (1−ΠF T )

|Π(x)|
1

p+1 det
1
2 (g•)

det
1
2 (g) det

1
2(p+1) (Y ).

Changing the coordinates according to Seiberg-Witten map, we get the noncommutative

DBI action in the form:

Sp-NCDBI = ∓
∫

dp
′+1x

1

ĝm

det
1
2 (ĝ)

|Π(x)|
1

p+1 det
1
2 (ĝ•)

det
1

2(p+1) (Ŷ ).

In the last part of the discussion assume that the distribution D⊥ is also integrable,

so we can use the set of local coordinates (x1, . . . , xp+1, xp+2, . . . , xp
′+1) on N , such that

( ∂
∂x1 , . . .

∂
∂xp+1 ) span D, and ( ∂

∂xp+2 , . . . ,
∂

∂xp′+1 ) span D⊥. All quantities with indices in

D⊥ are now assumed to be in this coordinate basis. Under this assumptions, the integral

density in the action can be written as

det
1
2 (g) = det

1
2 (g•) · det

1
2 (g◦).
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Finally, to distinguish the noncommutative and commutative coordinates, we reserve

the letters (a, b, c) for labeling the coordinates (x1, . . . , xp+1), (i, j, k) for labeling the coor-

dinates (xp+2, . . . , xp
′+1), (A,B,C) for p-indices containing only noncommutative indices

(thus p-indices labeling D̃) and (I, J,K) for p-indices containing at least one commutative

index (thus p-indices labeling D̃⊥). Also, note that from the definition of ρA, we have

Π̂
′aB = {X̂a, X̂b1 , . . . , X̂bp},

where {·, . . . , ·} is the Nambu-Poisson bracket corresponding to Π, X̂a = ρ∗A(x
a), and B =

(b1, . . . , bp). To simplify the expressions, we shall also use the shorthand notation {·, X̂A} ≡
{·, X̂a1 , . . . , X̂ap}. Finally, we also introduce usual index raising/lowering conventions, for

example, F̂ k
A =

∑p′+1
n=1 ĝknF̂nA = ĝklF̂lA, or F̂k

A = ̂̃gAB
F̂kB for multiindices. Note that

since both g and g̃ are block diagonal, no confusion concerning range of summation appears.

Implementing this notation, we can write

Sp-NCDBI = ∓
∫

dp
′+1x

1

ĝm

det
1
2 (ĝ◦)

|Π(x)|
1

p+1

(
1 +

1

2(p+ 1)
{X̂a, X̂A}{X̂a, X̂A}

+
1

2(p+ 1)
{X̂a, X̂A}F̂a

I F̂bI{X̂b, X̂A}+
1

2(p+ 1)
{X̂a, X̂A}F̂kAF̂

k
B{X̂a, X̂

B}

+
1

2(p+ 1)
(F̂kA{X̂a, X̂A}F̂aJ + F̂kJ)(F̂

k
B{X̂b, X̂B}F̂b

J + F̂ kJ)

)
+ · · · .

Note that the first non-cosmological term {X̂a, X̂A}{X̂a, X̂A} can be rewritten as

{X̂a, X̂A}{X̂a, X̂A} =
1

p!
ĝa1b1 . . . ĝap+1bp+1{X̂a1 , . . . , X̂ap+1}{X̂b1 , . . . , X̂bp+1}, (11.3)

where summation now goes over all (not strictly ordered) (p+1)-indices (a1, . . . , ap+1) and

(b1, . . . , bp+1). Here, we have used the fact that g̃• is a skew-symmetrized p-fold tensor

product of g•. We can even drop the restriction of the summations to noncommutative

directions, since the Nambu-Poisson bracket takes care of this automatically. This term

corresponds to a p > 1 generalization of the matrix model. Note that using the double

scaling limit for the expansion of (11.2) leads to a series in positive integer powers of ǫ,

automatically truncating higher-order powers in F . This gives an independent justification

of the independent scaling of g̃• and g̃◦ in (10.2).

12 Conclusions and discussion

In this paper we have extended, clarified and further developed the construction outlined

in [1]. We discussed in detail the bosonic part of an all-order effective action for a system

of multiple p-branes ending on a p′-brane. The leading principle was to have an action

allowing, similarly to the DBI action, for two mutually equivalent descriptions: a com-

mutative and a “noncommutative” one. As explained in the main body of the paper, the

noncommutativity means a semicalssical one, in which the Poisson tensor is replaced by a
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Nambu-Poisson one.12 It turned out that this requirement determines the bosonic part of

the effective action essentially uniquely.

In our derivation of the action, generalized geometry played an essential role. All key

ingredients, have their origin in the generalized geometry. It already has been appreciated

in the literature that the presence of a (p+1)-form leads to a generalized tangent space

TM ⊕ΛpT ∗M . Although, this observation perfectly applies also in our situation, we found

it very useful to double it, i.e., to consider the the extended/doubled generalized tangent

space W ⊕W ∗, with W = TM ⊕ ΛpTM .

Let us comment on this more: in the string case, p=1, the sum of the background

fields g+B plays a prominent role. It enters naturally the Polyakov action, the DBI action,

Buscher’s rules, etc. In generalized geometry, one way define a generalized metric, is to give

a subbundle of the generalized tangent bundle TM ⊕ T ∗M of maximal rank, on which the

natural (+) pairing on generalized tangent bundle is positive definite. Such a subbundle can

be characterized as a graph of the map from TM → T ∗M defined by the sum g+B. There-

fore, it is quite natural to look for a formalism which would allow for a natural “sum” of a

metric and a higher rank (p+1)-form. What this sum should be is indicated by the Polyakov

type membrane action in its matrix form (3.9). From here it is just a small step to recognize

the doubled generalized tangent bundle as a right framework for a meaningful interpreta-

tion of the “sum” of the metric and a higher rank (p+1)-form. This observation is further

supported by the form of the open closed relations in the doubled form (3.16) and the ma-

trix form of the Nambu sigma model (4.1). Finally, the corresponding Hamiltonian (3.10),

cf. also (4.9), tells us what the relation to the generalized metric on TM ⊕ ΛpT ∗M is.

Hence, at the end, we do not really use the full doubled generalized tangent bundle, we

use it only for a nice embedding of the generalized tangent bundle TM ⊕ ΛpT ∗M .13

Nevertheless, we found the doubled generalized geometry quite intriguing. Extending

on the above comments: since on the doubled generalized tangent bundle there is a natural

function-valued non-degenerated pairing 〈., .〉, we can mimic the standard constructions

with TM ⊕ T ∗M . For instance, one can speak of the orthogonal group, define the gener-

alized metric using an involutive endomorphism T on W ⊕W ∗, such that 〈T , .〉 defines a
fibre-wise metric on the doubled generalized tangent bundle, etc.

However, we are still facing a problem; we lack a canonical Courant algebroid structure.

The reason lies basically in very limited choices for the anchor map ρ : W ⊕W ∗ → TM ,

which leave us only with a projection onto the tangent bundle TM . The map ρ is therefore

“too simple” to control the symmetric part of any bracket. However, we can still consider

Leibniz algebroid structures on W ⊕ W ∗. There are several possibilities to do this. To

choose the one suitable for p-brane backgrounds, one can consider the action of the map eB :

W ⊕W ∗ → W ⊕W ∗, where B is a general section of Λ2W , viewed as a map from W to W ∗,

and extended to End(W⊕W ∗) by zeros. The map eB is thus an analogue of the usual B-field

12Let us notice, that in our approach to noncommutativity of fivebrane, the ordinary point-wise product

remains undeformed.
13The doubled generalized geometry formalism can also be introduced for the p=1 string case and allows

an elegant formulation of the theory. For any p, the appearance of TM and ΛpTM (and similarly of T ∗M

and ΛpT ∗M) is related to the split into one temporal and p spatial world-sheet directions.
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transform of generalized geometry TM⊕T ∗M . It turns our that there is a Leibniz algebroid,

such that the condition for eB to be an isomorphism of the bracket forces B to take the block

off-diagonal form (5.1), with C ∈ Ωp+1
closed(M). This bracket coincides with the one defined

by Hagiwara in [24] to study Nambu-Dirac manifolds. Moreover, Nambu-Poisson manifolds

appear naturally as its Nambu-Dirac structures. Interestingly, its full group of orthogonal

automorphisms can be calculated, giving (for p > 1) a semi-direct product Diff(M) ⋉

(Ωp+1
closed ⋊G), where G is the group of locally constant non-zero functions on M . Notably,

this coincides with the group of all automorphisms of higher Dorfman bracket, see e.g. [25].

Relating our approach, based on the generalized geometry on the vector bundle W ⊕
W ∗, with the usual generalized geometries in M -theory and supergravity [49–51, 70], we

notice the following. A choice of a generalized geometry is subject to the field content one

wants to describe. In principle, one can double each of of them and use the advantages of

having a natural function-valued pairing as we did for our case of interest in this paper.

However, the field content coming with such a doubled generalized geometry is much bigger

then we started with and we have to reduce it accordingly.

Finally, let us again notice the striking similarity with the result of [38, 39] — based on

a very different approach — and discussed after equation (8.10). We find worth to pursue

a deeper understanding of this similarity in the future.
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A Nambu-Poisson structures

Here we recall some fundamental properties of Nambu-Poisson structures [21] as needed in

this paper. For details see, e.g., [24] or [25].

For any (p+ 1)-vector field A on M we define the induced map A♯ : Ωp(M) → X(M)

as A♯(ξ) = (−1)piξA = ξKAiK∂i.

Also, for an alternative formulation of the fundamental identity, we need to recall the

Dorfman bracket, i.e., the R-bilinear bracket on the sections of TM ⊕ ΛpT ∗M , defined as

[V + ξ,W + η]D = [V,W ] + LV η − iWdξ, (A.1)

for all V,W ∈ X(M) and ξ, η ∈ Ωp(M).
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Let Π be a (p+ 1)-vector field on M . We call Π a Nambu-Poisson structure if

LΠ♯(df1∧...∧dfp)(Π) = 0 , (A.2)

for all f1, . . . , fp ∈ C∞(M).

Lemma A.1. For an arbitrary p ≥ 1, the condition (A.2) can be stated in the following

equivalent ways:

1. The graph GΠ = {Π♯(ξ)+ξ | ξ ∈ Ωp(M)} is closed under the Dorfman bracket (A.1);

2. for any ξ, η ∈ Ωp(M) it holds that

(LΠ♯(ξ)(Π))
♯(η) = −Π♯(iΠ♯(η)(dξ)) ; (A.3)

3. let [·, ·]π : Ωp(M)× Ωp(M) → Ωp(M) be defined as

[ξ, η]π := LΠ♯(ξ)(η)− iΠ♯(η)(dξ) , (A.4)

for all ξ, η ∈ Ωp(M). Then it holds that

[Π♯(ξ),Π♯(η)] = Π♯([ξ, η]π) , (A.5)

for all ξ, η ∈ Ωp(M);

4. for any ξ ∈ Ωp(M) it holds that

LΠ♯(ξ)(Π) = −
(
idξ(Π)Π− 1

p+ 1
idξ(Π ∧Π)

)
. (A.6)

For p > 1, around any point x ∈ M , where Π(x) 6= 0, there exist local coordinates

(x1, . . . , xn), such that

Π(x) =
∂

∂x1
∧ · · · ∧ ∂

∂xp+1
. (A.7)

In this coordinates ΠiJ = δiJ1...p+1 = ǫiJ .

For p > 1, a Nambu-Poisson tensor can be multiplied by any smooth function, and

one gets again a Nambu-Poisson tensor:

Lemma A.2. Let Π be a Nambu-Poisson tensor, and p > 1. Let f ∈ C∞(M) be a smooth

function on M . Then fΠ is again a Nambu-Poisson tensor. For p = 1 this is not true in

general.

This lemma has a simple useful consequence

Lemma A.3. Let n = p+ 1. Then any Π ∈ Γ(Λp+1TM) is a Nambu-Poisson tensor.

There is an interesting little technical detail. One of the equivalent reformulations

of fundamental identity was the closedness of the graph GΠ under the Dorfman bracket.

But see that the both, the definition of GΠ and the involutivity condition have a good

meaning also for any vector bundle morphism Π♯ : ΛpT ∗M → TM . We may ask whether

there exists Π♯, which is not induced by (p+ 1)-vector on M . The answer is given by the

following lemma:
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Lemma A.4. Let Π♯ : ΛpT ∗M → TM be a vector bundle morphism, such that its graph

GΠ = {Π♯(ξ) + ξ | ξ ∈ Ωp(M)},

is closed under higher Dorfman bracket (A.1). Let Π be a contravariant (p + 1)-tensor

defined by

Π(α, ξ) = 〈α,Π♯(ξ)〉,

for all α ∈ Ω1(M) and ξ ∈ Ωp(M). Then Π is a (p+1)-vector, and hence a Nambu-Poisson

tensor.

Proof. The closedness of GΠ under the Dorfman bracket can immediately be rewritten

as (A.3), where Π is now not necessarily a (p+1)-vector. This relation is tensorial in η, so

choose η = dyJ , and look at the i-th component of the identity. The left-hand side is

(LΠ♯(ξ)Π)
iJ = ξK

(
ΠmKΠiJ

,m −ΠiK
,mΠmJ −

p∑

r=1

ΠjrK
,mΠij1...m...jp

)

− ξK,m

(
ΠiKΠmJ +

p∑

r=1

ΠjrKΠij1...m...jp

)
.

The right-hand side of (A.3) is

−Π♯(iΠ♯(dyJ )dξ)
i = ΠiMΠlJ(dξ)lM = −ξK,m

(
ΠiMΠlJδmK

lM

)
.

The terms proportional to ξK form the differential part of the identity, whereas the terms

proportional to ξK,m form the algebraic part:

ΠiKΠmJ +

p∑

r=1

ΠjrKΠij1...m...jp = ΠiMΠlJδmK
lM .

We will use this algebraic identity to show that ΠkM = 0, whenever k ∈ M . This will

prove that Π is a (p + 1)-vector. To do this, choose m = i = k, and K = J = M in the

above identity. Assume that mq = k, where M = (m1 . . .mp). Then, the only non-trivial

term in the sum is the one for r = q. Right-hand side vanishes due to skew-symmetry of

the symbol δ. Hence, we obtain

2(ΠkM )2 = 0.

This proves that ΠkM = 0, and Π is thus a (p+ 1)-vector.

A.1 Scalar density

Interestingly, the coordinates (x1, . . . xn), in which Π has the form (A.7), allow us to define

a well-behaved scalar density |Π(x)| of weight −(p+1). Let (y1, . . . , yn) be arbitrary local

coordinates. Define the function |Π(x)| as

|Π(x)| = det

(
∂yi

∂xj

)p+1

, (A.8)
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that is, the Jacobian of the coordinate transformation yi = yi(xk). This is indeed a scalar

density (with respect to a change y 7→ ỹ) of weight −(p + 1), as can easily be seen using

the chain rule.

For p = 1, let Πij be the matrix of Π in (y) coordinates. We can ask, whether

|Π(x)| = detΠij whenever Π is decomposable. The answer is clearly negative for n > 2,

where detΠij = 0. The case p = 1, n = 2 is a special case contained in the next question.

Let p ≥ 1 and n = p+1. Let ΠiJ be the matrix of the vector bundle map Π♯. For n = p+1,

this is a square n × n matrix. We can thus ask whether |Π(x)| = detΠiJ . It is of course

modulo the sign, depending on the ordering of the basis of Ωp(M). Now, see that

Π(x) =
∂

∂x1
∧ · · · ∧ ∂

∂xp+1
= |Π(x)| 1n ∂

∂y1
∧ · · · ∧ ∂

∂yp+1
.

This means that |Π(x)| 1n = Π1...n(x). The determinant of ΠiJ is up to sign the n-th power

of Π1...n, and thus detΠiJ = ±|Π(x)|.
Further, we have to be careful with the dependence of |Π(x)| on the choice of the

special local coordinates (x1, . . . , xn). Let (x′1, . . . , x′n) is another set of such coordinates,

that is

Π(x) =
∂

∂x1
∧ · · · ∧ ∂

∂xp+1
=

∂

∂x′1
∧ · · · ∧ ∂

∂x′p+1
. (A.9)

Denote by J the Jacobi matrix of the transformation x̃i = x̃i(xk). We can split it as

J =

(
Jǫ K

L M

)
,

where the top-left block Jǫ is a (p+1)× (p+1) submatrix corresponding to the first p+1

of both sets of coordinates. The condition in (A.9) forces det (Jǫ) = 1 and L = 0. We thus

get the important observation that

det J = detM,

and moreover detM = detM(xj>p+1). This implies that |Π(x)| transforms, with respect

to the change the special coordinates (x), as

|Π(x)| = det (M)p+1|Π(x)|′, (A.10)

where |Π(x)|′ is calculated with respect to (x′) coordinates on M .

B Background independent gauge

B.1 Pseudoinverse of a 2-form

Proposition B.1. Let V be a finite-dimensional vector space. Let g be an inner product

on V , and C ∈ Λ2V ∗ a 2-form on V . Let P : V → V an orthogonal projector, such that

ker(P ) = ker(C). Then there exists a unique 2-vector Π, such that

ΠC = P , PΠ = Π.
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Proof. Let C, g and P be the matrices of C, g, P , respectively, in an arbitrary fixed basis

of V . First construct the map C̃ ≡ g−1C : V → V . This map is skew-symmetric with

respect to g. Indeed, we have

g−1(g−1C)Tg = −g−1C.

Denote C̃ = g−1C. Let A be the matrix diagonalizing g, that is ATgA = 1. Finally,

define the matrix C̃′ = A−1C̃A. This matrix is skew-symmetric (in the ordinary sense).

Standard linear algebra says that there exists a standard block-diagonal form of the ma-

trix C̃′. In more detail, one can find an orthogonal matrix O and a matrix Σ, such that

C̃′ = OΣOT , where Σ has the form

Σ = diag

((
0 λ1

−λ1 0

)
, . . . ,

(
0 λk

−λk 0

)
, 0, . . . , 0

)
.

where k = 1
2rank(C̃

′), and λ1, . . . , λk > 0. Note that the matrix O is not unique, and the

matrix Σ is unique up to the reordering of the 2× 2 blocks.

This shows that we can write C = gAOΣOTA−1. Define ∆2k =

diag(1, . . . , 1, 0, . . . , 0), where the number of 1’s is 2k. The (unique) matrix P can

be now written as P = AO∆2kO
TA−1. Let Π be the matrix of a bivector we are looking

for. The equation ΠC = P translates into

ΠgAOΣOTA−1 = AO∆2kO
TA−1.

We thus get that (OTA−1ΠgAO)Σ = ∆2k. This means that

Π = AOΣ+OTA−1g−1,

where Σ+Σ = ∆2k. Now it is easy to see that Π is a bivector, if and only if Σ+ is, and that

PΠ = Π holds if and only if∆2kΣ
+ = Σ+. This fixesΣ+ and thusΠ uniquely. It coincides

with the Moore-Penrose pseudoinverse of the matrixΣ, and it is given, in the block form, as

Σ+ =

(
Σ0

−1 0

0 0

)
,

where Σ0 is the invertible top left 2k × 2k block of Σ.

B.2 Integrable forms

Let M be a smooth manifold, and let C be a (p+ 1)-form on M . The form C is called an

integrable form if it holds

C(P) ∧ C = 0, (B.1)

C(P) ∧ dC = 0, (B.2)

for all P ∈ Xp(M), where on the left-hand side C(P) denotes the value of the induced vector

bundle morphism C : ΛpTM → T ∗M when evaluated on (P). The condition (B.1) is in

fact a very restrictive one. Also, it is very similar to the algebraic part of Nambu-Poisson

fundamental identity:
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Lemma B.2. Let C be a (p+ 1)-form. Then C satisfies (B.1) if and only if it is decom-

posable around every point x ∈ M , such that C(x) 6= 0. That means that there exists a

(p+ 1)-tuple (α1, . . . , αp+1) of linearly independent 1-forms , such that locally

C = α1 ∧ . . . ∧ αp+1.

Proof. Let us proceed by induction on p. The p = 0 case is a trivial statement, any 1 form

is decomposable. Now choose p > 0. Assume that statement holds for all p-forms, and let

C be a (p+ 1)-form satisfying (B.1). We have to show that it is decomposable.

Let x ∈ M , such that C(x) 6= 0. First, see that for any V ∈ X(M), such that

(iV (C))(x) 6= 0, the p-form iV (C) satisfies (B.1), and thus, by induction hypothesis, is

decomposable. Let us take any Q ∈ Xp−1(M). We have to show that

(iV C)(Q) ∧ (iV C) = 0.

But this can be rewritten as

iV
(
C(V ∧Q) ∧ C

)
= 0,

which follows from the assumptions on C, taking P = V ∧ Q. Second, take the original

condition (B.1) and apply iV to both sides with an arbitrary V ∈ X(M). One gets

iV (C(P)) · C − C(P) ∧ iV (C) = 0.

But iV (C(P)) is a scalar function, and since C is a nonzero (p+ 1)-form at x, there have

to exist V ∈ X(M) and P ∈ Xp(M), such that λ ≡ iV (C(P)) 6= 0, at least at some

neighborhood of x. Thus, locally we can write

C =
1

λ
C(P) ∧ iV (C).

Since λ(x) 6= 0, also (iV (C))(x) 6= 0. We can now apply the induction hypothesis to this

p-form to get p linearly independent 1-forms (α1, . . . , αp), such that

iV C = α1 ∧ . . . ∧ αp.

This finishes the proof, because taking αp+1 = (−1)p

λ C(P) leads to the desired decomposi-

tion.

Let us now clarify where integrable forms got their name from:

Definition B.3. Let C is a (p+1)-form. Denote by M ′ the open submanifold of M , where

C 6= 0. The kernel distribution K of C is a distribution on M ′, defined at every x ∈ M ′ as

Kx = {V ∈ TxM | iV (C(x)) = 0}.

Note that this distribution is not necessarily a smooth one.

We can now relate integrability of distributions to the integrability od forms.
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Lemma B.4. Let C be a (p+1)-form. Then C integrable if and only if K is an integrable

(n− (p+ 1))-dimensional regular smooth distribution on M ′.

Proof. First assume that C is an integrable (p + 1)-form. Then by the previous lemma,

around every point of x ∈ M ′, there exists a (p+ 1)-tuple of linearly independent 1-forms,

such that locally

C = α1 ∧ . . . ∧ αp+1. (B.3)

The subspace Kx can be determined easily as

Kx = {V ∈ TxM | iV (αi(x)) = 0, ∀i ∈ {1, . . . , p+ 1}}.

This is a set of k linearly independent linear equations for the components of V . The

dimension of Kx is thus n− (p+1). To see that this is a smooth regular distribution, note

that K is the kernel of a smooth vector bundle morphism of a constant rank, and hence a

subbundle of TM ′. Hence, a smooth distribution in M ′.

To see that it is also integrable, plug the expression (B.3) into the second defining

equation (B.2). It turns out that it is equivalent to

dαj ∧ α1 ∧ . . . ∧ αp+1 = 0, (B.4)

for all j ∈ {1, . . . , p + 1}. Now take any V ∈ Γ(K), and plug it into (B.4). It gives

iV (dαj) = 0 for all j ∈ {1, . . . , p + 1}. But this is, using the Cartan formula for dαj ,

equivalent to involutivity of the subbundle K under the commutator of vector fields, which

is in turn, using the Frobenius integrability theorem, equivalent to the integrability of K.

Conversely, assume that K is integrable ((n− (p+1))-dimensional regular smooth dis-

tribution. At every x ∈ M ′, there is a neighborhood Ux ∋ x, and a set of local coordinates

(x1, . . . , x(n−(p+1)), y1, . . . , yp+1), such that sections of the subbundle K are on Ux spanned

by ( ∂
∂x1 , . . . ,

∂
∂x(n−(p+1)) ). Then C has to be annihilated by all vectors of K, so it has to

have the local form

C = λ · dy1 ∧ . . . ∧ dyp+1. (B.5)

We see that this C clearly satisfies (B.1). Since we are on M ′, we have λ 6= 0. We

set α1 = λdy1, and αi = dyi for i = 2, . . . , p + 1. The second condition for integrable

(p+ 1)-forms translates as (B.4). Obviously, this holds for the above defined αj ’s.

At x ∈ M \ M ′ the integrability conditions (B.1), (B.2) hold trivially and we can

conclude that C is an integrable (p+ 1)-form.

Remark B.5. One can extend the distributionK to the whole manifoldM . For each x ∈ M\
M ′, defineKx = {0}. By this extension one gets a smooth singular distribution onM . How-

ever, even for integrable (p+ 1)-forms, K is not integrable in general. For details see [77].

Let us conclude this section by relating the concepts of integrable (p + 1)-forms to

Nambu-Poisson structures. This is given by the following lemma.

Lemma B.6. Let M be an orientable smooth manifold. Let Ω be the corresponding volume

form. Let C be a (p+ 1)-form on M . Define a (p+ 1)-vector Π by equation

iΠΩ = C.

Then Π is a Nambu-Poisson (n−(p+1))-vector if and only if C is an integrable (p+1)-form.

– 40 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
0

Proof. Clearly, Π(x) = 0 if and only if C(x) = 0. Let Π be a Nambu-Poisson tensor. By

previous comment, at singular points of Π, C vanishes. The conditions on integrability

are, at these points, satisfied trivially. Assume that Π(x) 6= 0. Then there exist local

coordinates (x1, . . . , xn) around x, such that

Π =
∂

∂x1
∧ . . . ∧ ∂

∂xn−(p+1)
.

In these coordinates, the volume form Ω is

Ω = ω · dx1 ∧ . . . ∧ dxn,

where ω 6= 0. We thus see that C has the explicit form

C = ω · dxn−(p+1)+1 ∧ . . . ∧ dxn.

It is easy to check that it satisfies both integrability conditions (B.1), (B.2).

The converse statement follows basically from the proof of the previous lemma. There,

we have shown that C can be, for an integrable (p + 1)-form, written (around any point

where C(x) 6= 0) in the local form (B.5). Writing the volume form in these local coordinates

as

Ω = g · dx1 ∧ . . . dx(n−(p+1)) ∧ dy1 ∧ . . . dyp+1,

one finds the local expression for Π as

Π =
λ

g
· ∂

∂x1
∧ . . . ∧ ∂

∂xn−(p+1)
.

Note that this is a top-level multivector field on the submanifold N ′. In the view of

lemma A.3, one would expect that this is enough. Inspection of the fundamental identity

shows that all partial derivatives are contracted with the components of Π, so in the

fundamental identity there are no partial derivatives in transversal directions. We can now

apply (the proof of) lemma A.3 to conclude that Π is a Nambu-Poisson tensor on M .
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