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1 Introduction

There has been stimulating progress in observational inflationary cosmology. The BICEP2

experiment [1] has announced the observation of the ratio of tensor to scalar perturbations

of the metric to be

r = 0.2+0.07
−0.05 (1.1)

which has triggered a discussion [2–7] of the implications of these findings on theoretical

models for physics beyond the electroweak scale.

The simplest model which is favored by the combined PLANCK and BICEP2 [1, 8]

data is the quadratic model of chaotic inflation [9], with potential

V =
1

2
m2φ2 (1.2)

which for 50 e-foldings of inflation gives rise to a ratio of tensor to scalar perturbation of

r ≈ 0.16.

The new experimental results and the fact that inflation is a high energy process gives

us a new possibility to study models of physics beyond the Standard Model. In particular,

any serious candidate for new physics will have to be able to reproduce these results. In

this work we will focus on supersymmetric theories. It is then important to embed the

chaotic model of inflation (1.2) into the theory of supergravity [10, 11].

An embedding into old-minimal supergravity was carried out successfully in ref. [12],

by employing chiral multiplets and was further discussed in ref. [13]. A general chaotic

inflation was also discussed in ref. [14, 15], where these proposals are easier to embed into

phenomenological models. An interesting attempt to give a geometric origin to a chaotic

inflationary phase in supergravity was initiated recently in ref. [16], again involving two

chiral multiplets in the dual picture, and further discussed in ref. [17–19].

Another interesting possibility is to study models with massive vector multiplets, first

coupled to the old-minimal supergravity in ref. [20, 21], where also the quadratic potential

was initially discussed [21]. The relation of massive vector multiplets to new-minimal higher
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derivative supergravity was first pointed out in ref. [22]. In a series of papers [23–25] single-

field inflationary models utilizing massive vector multiplets and possible higher derivative

corrections were systematically studied, and a single-field chaotic model was introduced in

ref. [24]. Moreover, the gauged isometries of the minimal supergravity models of inflation

were investigated in ref. [26, 27]. Quadratic chaotic inflationary models where the D-term

dominates over the F-term were studied in ref. [28, 29]. Finally, a different perspective on

chaotic inflation from D-terms in supergravity may be found in ref. [30].

In general, the potential (1.2) is not straightforward to reproduce. The usual issues

one encounters are

• Identify the one and only scalar which drives inflation.

• Stabilize the other scalars, and explain why they do not ruin inflation.

• Higher order corrections may spoil inflation; the notorious η-problem.

In this work we investigate the possibility of embedding the quadratic model of inflation

in supergravity, with the use of massive vector multiplets and we will see how the afore-

mentioned issues are addressed. In particular, a generic property of inflationary models

utilizing massive vector multiplets is that there is no need to stabilize any additional fields

nor identify the inflaton; these are by construction single-field models, and thus the first

two aforementioned issues are automatically solved. To address the issue of higher order

corrections we will rely on the existence of a softly broken shift symmetry and invoke

technical naturalness in the sense of ’t Hooft [31].

2 Chaotic inflation in new-minimal supergravity

Let us start with a real linear multiplet, and couple it to the new-minimal supergravity [32–

35]. The definition of the real linear superfield in this framework is

∇2L = ∇̄2L = 0. (2.1)

The definitions of the bosonic components are

L| = φ , −
1

2
[∇α, ∇̄α̇]L| = hαα̇ (2.2)

with

hm = −
1

2
ǫmnrs∂

nbrs − 2φHm (2.3)

where bmn is the two form of the real linear multiplet and Hm is an auxiliary field of the

new-minimal supergravity formulation which we will review later. It is easy to verify that

the minimal kinematic term

−

∫

d4θEL2 = −
1

2
e∂φ∂φ+

1

2
ehmh

m (2.4)

allows a shift symmetry for the superfield

L→ L+ cMP (2.5)
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for some real constant c, which translates into

φ→ φ+ cMP (2.6)

for the real scalar lowest component. We would like to stress that the shift (2.5) is also a

symmetry of (2.1) and thus does not violate the definition of the real linear multiplet.

The shift symmetry (2.5) protects the minimal kinematic term from higher order cor-

rections and will later shield the model against the η-problem. For example the possible

higher order correction

−
1

(some scale)4

∫

d4θEL4 → violates symmetry

is ruled out since the quartic term (L4) violates the shift symmetry.

Of course, this exact shift symmetry (2.5) rules out the possibility of introducing a

potential for the theory. Here is where the Green-Schwarz term comes in. It is well

established that a gauge anomaly can be canceled by introducing a two-form which couples

to the gauge field and gives rise to tree diagrams that cancel the anomalous loop diagrams.

This mechanism exists also in supergravity theories and in four dimensions the coupling of

the two-form with the gauge field is given by the gauge invariant contact term

− gM

∫

d4θ E LV = −
1

2
egMφD+

1

2
egMvm (hm + 2φHm) (2.7)

where V the vector superfield of the would-be-anomalous U(1), and L a real linear multiplet

containing the two-form. The fields D and vm are the auxiliary real scalar and the physical

vector of the U(1) vector superfield. In ref. [36] it was shown that the effect of this term is to

introduce a realization of the Stueckelberg mechanism where the two-form of the real linear

is eaten by the vector. The Green-Schwarz mechanism was further investigated in minimal

supergravity in ref. [37]. It is in fact a way to write down massive vector multiplets [36, 38].

On the other hand this same term (2.7) violates the shift symmetry (2.5) and as we will

see it creates a potential. Thus the small breaking of the shift symmetry is generated by

the Green-Schwarz term and it is expected that as long as

gM ≪ H (2.8)

whereH is the Hubble constant, the effect of the small breaking on the kinematic term (2.4)

is negligible. This is natural in the ’t Hooft sense since for gM → 0 the shift symmetry

is restored, and the symmetry of the system is enhanced [31]. To better understand this

argument it is convenient to think of the mass M as parameterizing the flow of the the-

ory through some parameter space. When the theory sits on the M∗ = 0 point, all the

operators that violate the symmetry vanish. Far away from the special point M∗ = 0,

the symmetry violating operators become large. Thus, for a small value of M close to

M∗ = 0 the operators that violate the shift symmetry have to be highly suppressed. More

specifically for example

−
1

(some scale)4

∫

d4θEL4 → naturally suppressed.
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For similar considerations in the old-minimal supergravity framework, in a model of two

chiral multiplets, see ref. [12].

Taking this into account we may proceed to investigate the model in more detail. As

we have mentioned, our interest now lies in the new-minimal supergravity [32], which orig-

inates from the superconformal supergravity after appropriate gauge fixing [39–43]. Note

that the new-minimal supergravity allowes only R-invariant Lagrangians. The bosonic

sector of the pure theory reads

− 2

∫

d4θ E VR =
1

2
e (R+ 6HmH

m) + 2eA−
mH

m. (2.9)

On top of the graviton eam and the gravitino ψα
m, this theory contains two auxiliary fields:

the Am which gauges the R-symmetry and the two-form Bmn, which only appears through

the dual of its field strength Hm. Let us mention that

A−
m = Am − 3Hm. (2.10)

The properties of this minimal supergravity were investigated in a series of papers [22, 32–

36, 40, 44–47].

For the total Lagrangian to be manifestly supersymmetric we will write it down in

new-minimal supergravity superspace [34], and then turn to component form. The theory

we wish to consider is

L = −2M2
P

∫

d4θ E VR +
1

4

[
∫

d2θ EW 2(V ) + h.c.

]

− gM

∫

d4θ E LV −

∫

d4θ E L2

(2.11)

which as we mentioned has a matter sector combination of real linear superfield L and vector

superfield V that reproduce the Green-Schwarz mechanism in supergravity [36]. Here

Wα(V ) = −
1

4
∇̄2∇αV (2.12)

is the standard field strength chiral superfield. For the pure gauge sector we have the

bosonic components

1

4

∫

d2θ EW 2(V ) + c.c. = −
1

4
eFmnFmn(v) +

1

2
eD2 (2.13)

for

Fmn(v) = ∂mvn − ∂nvm. (2.14)

Now we can find the full bosonic sector of (2.11)

e−1LB =
1

2
M2

P (R+ 6HmH
m) + 2M2

PA
−
mH

m

−
1

2
∂φ∂φ+

1

2
hmh

m +
1

2
D2 −

1

4
FmnFmn

+
1

2
gMvm (hm + 2φHm)−

1

2
gMφD.

(2.15)
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Let us integrate out the supergravity auxiliary and the h-field. First we make h and H

unconstrained by introducing Lagrange multipliers X and Y

e−1Laux = 3M2
PHmH

m + 2M2
PA

−
mH

m + ∂nXH
n

−
1

2
gMφD+

1

2
gMvm (hm + 2φHm)

+
1

2
D2 +

1

2
hmh

m + ∂mY (hm + 2φHm).

(2.16)

From the equations of motion of A−
m we find the condition

Hm = 0 (2.17)

and from the Hm equations we find

6M2
PHm + 2M2

PA
−
m + gMvmφ+ ∂mX + 2φ∂mY = 0 (2.18)

which combined with (2.17) leads to

A−
m = −

gMvmφ+ ∂mX + 2φ∂mY

(2M2
P )

. (2.19)

In fact the equation (2.19) never shows up, except in the supersymmetry transformations

of the on-shell theory. The auxiliary Lagrangian becomes

e−1Laux = −
1

2
gMφD+

1

2
gMvmh

m +
1

2
D2 +

1

2
hmh

m + ∂mY h
m. (2.20)

Integrating out hm and D we find

e−1Laux = −
1

8
(gMvm + 2∂mY )2 −

g2

8
M2φ2. (2.21)

The model (2.11) after integrating out all the non-propagating fields is

e−1LB =
1

2
M2

PR−
1

2
∂φ∂φ−

g2

8
M2φ2 −

1

4
FmnFmn(v)−

1

8
g2M2vmvm (2.22)

where we have shifted

vm → vm +
2

gM
∂mY. (2.23)

It is clear from (2.23) that the Stueckelberg mechanism is at work.

The sector relevant to inflation reads

e−1Lscalar =
1

2
M2

PR−
1

2
∂φ∂φ−

m2

2
φ2 (2.24)

where we have replaced

gM = 2m (2.25)

which is fixed by the observational data (see for example [10]) to be

m ∼ 1013GeV. (2.26)
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During inflation since the η slow-roll parameter is small we see that indeed

gM

H
∼
MP

φ
≪ 1 (2.27)

and relation (2.8) holds.

We see that the model (2.11) successfully reproduces the simplest model of chaotic

inflation (1.2). Moreover there is no ambiguity in choosing the inflaton field, which is a

common issue in supergravity inflation. The ambiguity is resolved by the simple fact that

there is no other scalar in the first place. Indeed, thanks to the Stueckelberg mechanism the

second scalar of the inflaton multiplet is eaten by the vector field. Thus we have a model of

single-field chaotic inflation in supergravity which is technically natural employing a softly

broken shift symmetry.

We should mention that single-field inflationary models with the use of massive vector

multiplets have been introduced only recently in the literature [23–25], and in particular in

ref. [24] a very interesting discussion on their properties can be found, including a realization

of the chaotic model. In fact the model studied here is dual to the chaotic models of ref. [24],

and thus essentially reproduces equivalent results. On the other hand the “linear superfield

— vector superfield” picture we presented makes the technical naturalness of the model

manifest in the new-minimal supergravity formulation.

As we have mentioned earlier, the Lagrangian (2.11) describes a massive vector multi-

plet. This may be seen by rewriting (2.11) as

L = −2M2
P

∫

d4θ E VR − gM

∫

d4θ E L

(

V +
1

gM
Φ+

1

gM
Φ̄

)

+
1

4

[
∫

d2θ EW 2(V ) + h.c.

]

−

∫

d4θ E L2

(2.28)

where now L is unconstrained. From (2.28) we see that the chiral superfield Φ has to carry

a vanishing R-charge for the chiral-linear duality to be possible. Then by integrating out

L from (2.28) we have

L = −2M2
P

∫

d4θ E VR +
1

4

[
∫

d2θ EW 2(V ) + h.c.

]

+
1

4
g2M2

∫

d4θ E V 2 (2.29)

where we have shifted

V → V −
1

gM
Φ−

1

gM
Φ̄. (2.30)

The Lagrangian (2.29) describes a massive vector multiplet coupled to the new-minimal

supergravity. It is easy to see that the bosonic sector of (2.29) will be given again by (2.22).

In the limit gM → 0 gauge invariance is restored, and the theory will be described by a

massless vector multiplet and a massless chiral multiplet. Indeed in this limit the theory

will become

L = −2M2
P

∫

d4θ E VR +
1

4

[
∫

d2θ EW 2(V ) + h.c.

]

+
1

2

∫

d4θ E Φ̄Φ (2.31)
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and the shift symmetry will translate into

Φ → Φ+ dMP . (2.32)

In (2.32) the constant d can be complex. Note that (2.28) allowed only for a pure imaginary

shift of the chiral superfield and thus only in the gM → 0 limit d can be complex. The

fact that the shift (2.32) is a symmetry of (2.31) is connected to the structure of the

new-minimal supergravity, which gives
∫

d4θ E Φ =

∫

d4θ E Φ̄ = 0 (2.33)

for a chiral superfield with vanishing R-charge.

If we instead start with the most general (up to two derivatives), gauge invariant

coupling of the real linear with the vector multiplet, the superspace Lagrangian reads

L = −2M2
P

∫

d4θ E VR +
1

4

[
∫

d2θ EW 2(V ) + h.c.

]

− gM

∫

d4θ E LV −

∫

d4θ E F(L)

(2.34)

and after integrating out all the auxiliary field sector we find the bosonic part

e−1LB =
1

2
M2

PR−
1

4
F ′′∂φ∂φ−

g2

8
M2φ2 −

1

4
FmnFmn(v)−

1

4F ′′
g2M2vmvm (2.35)

where

F ′′(φ) =
∂2F(φ)

∂φ∂φ
. (2.36)

Again in (2.35) the vector has eaten the Lagrange multiplier Y .

For a general kinematic function

F(φ) = c0 + c2φ
2 + c3φ

3 + . . . (2.37)

when all the higher order terms are present there is no shift symmetry, and in general F(φ)

will receive large corrections. Only in the case when

cn = 0 , n ≥ 3 (2.38)

does F respect the shift symmetry and any correction to the higher order terms will have

to be generated by the Green-Schwarz term and thus be suppressed.

3 Chaotic inflation in old-minimal supergravity

Now we investigate the embedding of the quadratic chaotic model in the old-minimal

superspace [48]. This supergravity also originates from the superconformal supergravity

after appropriate gauge fixing [39–43]. A complete treatment of the curvature superfields

of this theory can be found in ref. [49]. In addition to the graviton and the gravitino, the

pure theory contains two auxiliary fields: a complex scalar u, and a real vector bm. It is

– 7 –
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well known how to couple a self-interacting massive vector multiplet to the old-minimal

supergravity [20, 21].

Following the results of the previous section, we consider the superspace Lagrangian

in the old-minimal formulation

L = −3M2
P

∫

d2Θ2E R+ h.c.+
1

4

[
∫

d2Θ2EW 2(V ) + h.c.

]

− gM

∫

d4θ EQV −

∫

d4θ E G(Q)

(3.1)

where Q is a real linear multiplet with definition [50]

(D̄2 − 8R)Q = 0. (3.2)

We see from (3.2) that the shift symmetry argument used in the new-minimal case does

not apply, since the shift

Q → Q+ cMP (3.3)

for a real constant c, violates the definition (3.2). Thus a choice of a quadratic kinematic

function

G(Q) = Q2 (3.4)

is not protected by a shift symmetry.

To find the component form and relate to the known results, it is better to rewrite

the Lagrangian (3.1) as the coupling of a massive vector multiplet to supergravity. For the

part containing the real linear superfield we have

LQ = −gM

∫

d4θ EQV −

∫

d4θ E G(Q)

= −gM

∫

d4θ EQ

(

V +
Φ

gM
+

Φ̄

gM

)

−

∫

d4θ E G(Q).

(3.5)

In (3.5) the superfield Q is unconstrained, and it may be integrated out via the equations

of motion

G′(Q) = −gM

(

V +
Φ

gM
+

Φ̄

gM

)

. (3.6)

The theory then becomes

L =
1

4

∫

d2Θ2EW 2(V ) + c.c.+

∫

d2Θ2E

{

−
1

8
(D̄2 − 8R)Z(V )

}

+ c.c. (3.7)

with

Z(V ) = −3M2
P − [G(Q) + gMQV ]G′(Q)=−gMV . (3.8)

The Lagrangian (3.7) is defined for any hermitian function Z(V ) of dimension [Z(V )] = 2

of the real vector superfield V .
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To turn to component form let us first define the components of the massive vector

multiplet as

C = V |

N = −
1

4
D2V |

vαα̇ = −
1

2
[Dα, D̄α̇]V |

D =
1

8
Dα(D̄2 − 8R)Dα V |.

(3.9)

The bosonic sector of (3.7) reads

e−1LB = −
1

4
FmnFmn(v) +

1

2
D2 −

1

4
Z ′′bmbm −

1

3
Z ′ūN̄ −

1

3
Z ′uN +

1

9
Zuū

+
1

6
ZR+ Z ′′NN̄ −

1

9
Zbmbm +

1

2
Z ′D−

1

4
Z ′′∂C∂C +

1

3
Z ′bmvm

(3.10)

where now Z is a function of the lowest component C and

Z ′ =
∂Z

∂C
, Z ′′ =

∂2Z

∂C∂C
. (3.11)

After integrating out the auxiliary sector and performing the appropriate Weyl rescalings

one finds [21]

e−1LB =
1

2
M2

PR+
1

2
M2

PJ
′′∂C∂C −

1

2
M4

P (J
′)2

−
1

4
FmnFmn(v) +

1

2
M2

PJ
′′vmvm

(3.12)

where

J (C) =
3

2
ln

[

−
1

3M2
P

Z(C)

]

. (3.13)

For a ghost-free theory one should have

J ′′ < 0. (3.14)

It can be easily seen that the J (C) which reproduces the quadratic chaotic model is given by

J = −
m2

2M2
P

C2 (3.15)

and the part of (3.12) relevant to inflation will read

e−1Lscalar =
1

2
M2

PR−
1

2
∂ψ∂ψ −

m2

2
ψ2 (3.16)

for the inflaton

ψ = mC. (3.17)

Again this is a single-field inflationary model.
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Nevertheless the function (3.15) does not correspond to a vector superfield self-coupling

of the form

−
1

2
m2

∫

d4θE V 2 (3.18)

but will come from a more involved function of V . Indeed, the vector superfield function

inside (3.7) has to have the form

Z(V ) = −3M2
P e

− m
2

3M2
P

V 2

(3.19)

which leads to (3.15) and (3.16). On the other hand, a quadratic term as (3.18) will give

rise to an exponential potential. In fact the coupling of the massive vector multiplet to

standard supergravity was investigated in ref. [24] reproducing, among other models, also

quadratic chaotic inflation.

Let us recapitulate for a moment. We have shown that starting with a theory of

quadratic chaotic inflation we can embed it in supergravity in two distinct ways. In one

case (the new-minimal) there is a softly broken shift symmetry in superspace which can

be used to give a technical naturalness argument against higher order corrections. The

embedding can be also straightforwardly carried out in the old-minimal formulation, but

in this case there is no obvious way to render the theory technically natural.

Finally, one may also interpret (3.7) as a supergravity model with a gauged chiral

sector [48] of the form

L =

∫

d2Θ2E

{

−
1

8
(D̄2 − 8R)Z(ln[Φ̄eV Φ])

}

+ c.c.

+
1

4

∫

d2Θ2EW 2(V ) + c.c.

(3.20)

where the real part of the lowest component of the chiral superfield

S = lnΦ (3.21)

will drive inflation, while the imaginary will be eaten by the massive vector.

4 Conclusions

We have studied the embedding of the quadratic model of chaotic inflation into the new-

minimal and the old-minimal theories of supergravity, with the use of massive vector mul-

tiplets. This embedding is quite straightforward and reproduces a single-field inflation

model. This stems from the underlying Stueckelberg (or BEH) mechanism, where the sec-

ond unwanted component of the scalar multiplet is eaten by the massive vector. Indeed

this new mechanism has been investigated previously in a series of papers [23–25]. The

simplicity and generality of the models indicate that their detailed cosmological properties

deserve further study, a problem to which we will return in the future.

Our additional interest here was the notion of technical naturalness in superspace. As

we have demonstrated, the model in the new-minimal formulation naturally evades the η-

problem, due to a softly broken superspace shift symmetry of the real linear superfield. In
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the old-minimal formulation, even though the quadratic chaotic model can be successfully

embedded, we could not identify a corresponding mechanism.

Closing, let us make a final comment on the 4D Green-Schwarz terms. These were

merely introduced to generate a potential for the inflaton, and not to cancel some anomaly.

Nevertheless, the specific combination of couplings we have used exactly reproduces the

4D analog of the Green-Schwarz mechanism, which leads one to hope that it would be

possible to embed the theory into a UV complete superstring model. However, in order to

protect the form of the potential it is essential that the model exhibits the shift symmetry.

If such a model existed one could extend the technical naturalness of this paper to a top-

down naturalness. The identification of specific superstring sectors with the supergravity

properties discussed in this article would offer a new insight to string inflation which we

leave for future research.
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