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1 Introduction

The accurate determination of the Parton Distribution Functions (PDFs) of the proton [1–

5] is one of the most important tasks for precision phenomenology at the Large Hadron

Collider (LHC). PDFs are a dominant source of theoretical uncertainty in the predictions

for Higgs boson production, where the errors that affect them degrade the accuracy of

the Higgs characterization in terms of couplings and branching fractions [6]; they induce

large uncertainties in the cross sections for processes with very massive new-physics parti-

cles [7]; and they substantially affect Standard Model (SM) precision measurements such

as those of the mass of the W boson [8] and of the effective lepton mixing angle sin2 θleff [9].

For these reasons, an active program towards better PDFs is being carried out by differ-

ent groups [10–14], which emphasise the use of new experimental inputs, more accurate

theoretical calculations, and improved fitting methodology.

Modern global PDF analyses are based on a variety of hard-scattering data such as

deep-inelastic scattering (DIS) structure functions at fixed-target experiments, lepton-

proton cross sections from the HERA collider, and inclusive W , Z, and jet production

at hadron colliders. Since the beginning of the LHC data taking, these and many other

processes for which measurements have become available and can be used to constrain
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PDFs. For example, LHC data that might provide information on PDFs encompass inclu-

sive electroweak vector boson production [15, 16], inclusive jet and dijet production [17–21],

direct photon production [22], top quark pair production cross sections [23], W production

in association with charm quarks [16, 24], low and high-mass Drell-Yan production [25],

the W and Z bosons large-pT distributions and their ratios [26], high-mass W produc-

tion, and single-top production, as well as ratios of cross sections measured at different

center-of-mass energies [20, 27].

It is thus clear that a wide variety of high-quality measurements sensitive to PDFs

are already available; more data will follow in the coming years. Therefore, in order to

improve the accuracy of PDF determinations, it is essential to include in PDF fits as

many of these measurements as possible, in order to constrain different combinations of

PDFs in a wide range of Bjorken x’s. The most serious difficulty in doing so is due to

the fact that next-to-leading order (NLO) QCD calculations of hadron collider processes

with realistic acceptance cuts are much slower than what is needed in the iterative PDF

fitting procedure, which requires computing the theoretical predictions a very large number

of times. In order to bypass this problem, a popular solution in the past has been that

of performing leading order (LO) computations, supplemented by bin-by-bin K factors.

Unfortunately, such a solution is not sufficiently accurate to match the precision of present

and future LHC data; in particular, it has the very undesirable feature of neglecting the

combinations of initial-state partons that do not appear at the LO.

In order to overcome this problem, several solutions have been proposed. The under-

lying idea common to all these approaches is: interpolating the PDFs in the
(
x,Q2

)
-plane

with some suitable polynomial basis; precomputing the hadronic cross section by using

the basis members as input; and finally reconstructing the original calculation with the

numerical convolution of the precomputed cross sections and the actual PDFs. Note that

the information about the latter is only required at a finite number of points (xi, Q
2
j ),

which are called the interpolating-grid nodes. Therefore, the time-consuming task of the

precomputation of the cross section with basis members is performed only once, and the

reconstruction of the full result associated with arbitrary PDFs is extremely fast.

The strategy sketched above, which is closely related to the one adopted by x-space

PDF evolution codes [28–30], is what underpins the two best-known fast interpolators of

NLO QCD cross sections, FastNLO [31, 32] and APPLgrid [33]. FastNLO is interfaced to

the jet-production code NLOjet++ [34], and is thus able to provide fast computations of

multijet production at lepton-proton and hadron-hadron colliders.1 APPLgrid is interfaced

to various programs, including NLOjet++ and MCFM [36]. The main drawback of these

tools, namely that of being capable of handling a relatively small number of processes,

is a consequence of the fact that adding new ones requires an ad-hoc procedure, which

is rather time-consuming and error-prone. This is also the principal reason why they are

only interfaced to calculations which are of NLO (and, in the one case mentioned above,

NNLO) in QCD, but neither to (N)LO results matched to parton showers, nor to NLO

results in the electroweak theory.

1Recently, the FastNLO interface has been generalised to processes other than jet production, for

instance to the approximate NNLO calculation of differential distributions in top-pair production of ref. [35].
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The goal of this work is that of solving all of these problems in a general manner, which

is possible thanks to the fact that NLO(+PS) calculations can now be routinely done by

means of automated codes. In fact, among the many features of such codes there are two

which are directly relevant to the problems at hand: firstly, given a sufficient amount of

CPU power the cross section for any process, however complicated, can be computed; and

secondly, the way in which these cross sections are handled and the form in which they

are written are completely standardised. This is what renders it possible to construct a

generic and automated interface between an automated cross section calculator and a fast

interpolator. The main result of this paper is the construction of such an automated in-

terface, that we call aMCfast, and which bridges the automated cross section calculator

MadGraph5 aMC@NLO [37] with the fast interpolator APPLgrid. Thus, the chain Mad-

Graph5 aMC@NLO-aMCfast-APPLgrid will allow one to include, in a straighforward

manner, any present or future LHC measurement in an NLO global PDF analysis. We

point out that a strategy analogous to that pursued in the present paper has motivated the

recent construction of MCgrid [38], whereby APPLgrid has been interfaced to Rivet [39].

We remind the reader that MadGraph5 aMC@NLO contains all ingredients relevant

to the computations of LO and NLO cross sections, with or without matching to parton

showers. NLO results not matched to parton showers (called fNLO [37]) are obtained by

adopting the FKS method [40, 41] for the subtraction of the singularities of the real-emission

matrix elements (automated in the module MadFKS [42]), and the OPP integral-reduction

procedure [43] for the computation of the one-loop matrix elements (automated in the mod-

ule MadLoop [44], which makes use of CutTools [45] and of an in-house implementation

of the optimisations proposed in ref. [46] (OpenLoops)). Matching with parton showers is

achieved by means of the MC@NLO formalism [47]. In the present public version, Mad-

Graph5 aMC@NLO is restricted to computing NLO QCD corrections to SM processes;

however, as discussed in ref. [37], all obstacles that enforce such a limitation have been

cleared, paving the way to higher-order calculations in the context of arbitrary renormal-

isable theories in the near future. As far as APPLgrid is concerned, only a few high-level

routines have been extended in view of its interface with aMCfast. All of these modifi-

cations are of a technical character, except one which is related to the computation of the

factorisation and renormalisation scale dependences, as we shall explain in more detail later.

The scope of this paper is that of fNLO QCD computations. Alternatively, in aMC-

fast the specific nature of the perturbative expansion is used only in a rather trivial way,

since it determines a number of interpolating grids and their linear combination that de-

fines the physical cross sections. Therefore, when e.g. electroweak corrections will become

publicly available in MadGraph5 aMC@NLO, that feature will be immediately inherited

by aMCfast through some straighforward generalisation. Furthermore, what is done here

will allow one, with only a few minimal extensions, to construct fast interfaces to NLO+PS

predictions. This is expected to have several beneficial effects in the context of PDF fits: a

closer connection to the experimentally accessible observables, a wider range of data that

can be used to constrain PDFs, and the possibility of eventually extract PDFs that are

specifically tailored to their use with NLO event generators.
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This paper is organised as follows: in section 2 we give a short introduction to the

interpolating-grid techniques employed here, review the computation of cross sections in

MadGraph5 aMC@NLO, and discuss how the separation between PDFs, partonic cross

sections, and αS dependence can be exploited to construct a fast interface using the AP-

PLgrid routines. The flexibility of aMCfast is illustrated in section 3, where we present

results for many relevant LHC processes, some of which are obtained for the first time

with a fast NLO interface, and whose numerical performance and accuracy are analysed.

Finally, in section 4 we summarise our findings and briefly discuss the plans for the future

developments of aMCfast. An appendix reports some additional information.

2 Automation of fast NLO computations

In this section we first outline the basics of an interpolation technique based on the expan-

sion of a given function onto a basis of polynomials; we then discuss how short-distance

cross sections can be represented, in the most general manner, in terms of interpolating

grids, that allow them to be quickly computed with arbitrary PDFs, and factorisation and

renormalisation scales. Finally, we show how these formulae can be employed in the con-

struction of the aMCfast bridge that interfaces APPLgrid to MadGraph5 aMC@NLO.

2.1 The construction of interpolating grids

The basic idea used by APPLgrid is that of a Lagrange-polynomial expansion. Given a

function F (z) of a real variable z, one has the representation:

F (z) =
s∑

i=0

F

((⌊
z

δ
− s− 1

2

⌋
+ i

)
δ

)
I
(s)
i

(
z

δ
−
⌊
z

δ
− s− 1

2

⌋)
, (2.1)

where s is a given integer (the interpolation order), δ is a small number (the grid spacing

or binning; pδ for some integer p is called a grid node), the interpolating functions are:

I
(s)
i (u) =

(−1)s−i

i!(s− i)!

s∏

k=0,k 6=i

(u− k) , (2.2)

and we have denoted by ⌊u⌋ the largest integer smaller than or equal to u:

⌊u⌋ ∈ Z , u− 1 < ⌊u⌋ ≤ u , u ∈ R . (2.3)

The equality in eq. (2.1) holds up to functional terms of order I
(s+1)
i and higher. Such terms

vanish identically when the argument of F coincides with a grid node, so that eq. (2.1)

is an identity in that case; this is straightforward to prove, and follows directly from the

values that the interpolating functions take when computed with an integer argument:

I
(s)
i (k) = δik , 0 ≤ k ≤ s , k ∈ Z . (2.4)

When z is not a grid node (i.e., z 6= pδ for any integer p), eq. (2.1) tells one that F (z) is

reconstructed by using the values that F takes in the (s+ 1) grid nodes which are nearest
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to z; the number of relevant nodes to the left of z is equal to number of nodes to the right

of z, possibly up to one.

For any given function S(z), let us now compute the simple example integral

J =

∫ b

a

dz S(z)F (z) (2.5)

by means of its corresponding Riemann sums (or, equivalently, by Monte Carlo methods).

This implies

J =
M∑

k=1

Φk S(zk)F (zk) , (2.6)

with M points zk ∈ (a, b), and Φk suitable normalisation factors. By using eq. (2.1), we

obtain

J =
M∑

k=1

Φk S(zk)
s∑

i=0

F
(
(pδ(zk) + i) δ

)
I
(s)
i

(zk
δ
− pδ(zk)

)
, (2.7)

where we have defined:

pδ(z) =

⌊
z

δ
− s− 1

2

⌋
, (2.8)

which is the integer associated with the leftmost grid node in the set of the (s+1) nearest

neighbours of z. By means of a change of the summation variable i, eq. (2.7) becomes:

J =

M∑

k=1

Φk S(zk)

s+pδ(zk)∑

j=pδ(zk)

F (jδ)I
(s)
j−pδ(zk)

(zk
δ
− pδ(zk)

)
(2.9)

=
∞∑

j=−∞

F (jδ)Gj , (2.10)

with

Gj =
M∑

k=1

Φk S(zk) I
(s)
j−pδ(zk)

(zk
δ
− pδ(zk)

)
Θ(pδ(zk) ≤ j ≤ s+ pδ(zk)) . (2.11)

Equation (2.11) defines the grid values Gj . Owing to the Θ function it contains, the sum

in eq. (2.10) features a finite number of non-null contributions (if the range (a, b) is finite).

Thus, the meaning of eq. (2.10) is that the integral J can be computed a posteriori by

knowing a finite number of grid values, and the values of the function F at the grid nodes;

more importantly, this a-posteriori computation can be done for any function F , because

the grid values are independent of F , and can therefore be pre-evaluated and stored for a

given function S. This also explains the reason for writing the integrand of eq. (2.5) as a

product of two functions: this is convenient whenever the time spent in evaluating F (the

“fast” function) and S (the “slow” function) is small and large respectively. When this is the

case, the computation of the grid {Gj} may be time-consuming, but it is an operation that

has to be carried out only once; on the other hand, the subsequent evaluations of eq. (2.10)

will be quick. We also point out that the derivation above is unchanged in the case where z

is not the integration variable, but a function itself of one (or more) integration variable(s)

for the problem at hand. This is because the starting point is actually eq. (2.6), and not

eq. (2.5), and in the former the role of zk as integration variable can be fully ignored.

– 5 –
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2.2 Generalities on short-distance cross sections

In what follows we use the expressions derived within the FKS subtraction formalism. The

same notations as in ref. [48] are adopted; this is particularly convenient in view of the fact

that, in that paper, cross sections were represented in terms of PDF- and scale-independent

coefficients, and these will be the main ingredients in the definition of the interpolating

grids. We point out, however, that the procedure outlined below remains valid regardless

of the subtraction method chosen to perform the NLO computations. Lest we clutter the

notation with details which are irrelevant here, we work by fixing the partonic process.

This implies, in particular, that we do not need to write explicitly the identities of the

incoming partons; we shall reinstate them later.

The NLO short-distance cross section relevant to a 2→ n+ 1 process consists of four

terms:

dσ(NLO) ←→
{
dσ(NLO,α)

}
α=E,S,C,SC

, (2.12)

dσ(NLO,α) = f1(x
(α)
1 , µ

(α)
F )f2(x

(α)
2 , µ

(α)
F )W (α)dχBjdχn+1 , (2.13)

called event (α = E), and soft, collinear, and soft-collinear (α = S,C, SC) counterevents,

respectively. The quantities dχBj and dχn+1 are the integration measures over the Bjorken

x’s and the (3n − 1) phase-space variables respectively, while f1 and f2 are the PDFs

relevant to the colliding partons coming from the left and from the right. The W (α)’s can

be parametrised as follows:

W (α) = g2b+2
S (µ

(α)
R )


Ŵ (α)

0 + Ŵ
(α)
F log

(
µ
(α)
F

Q

)2

+ Ŵ
(α)
R log

(
µ
(α)
R

Q

)2



+g2bS (µ
(α)
R )ŴBδαS , (2.14)

where the coefficients Ŵ are (renormalisation and factorisation) scale- and PDF-

independent; the last term on the r.h.s. of eq. (2.14) is the Born contribution which, as

the notation suggests, factorises αb
S. In eqs. (2.13) and (2.14) we have denoted by x

(α)
i ,

µ
(α)
F , and µ

(α)
R the Bjorken x’s, factorisation scale, and renormalisation scale respectively;

in general, they may assume different values in the event and various counterevent config-

urations. Finally, Q is the Ellis-Sexton scale.2 The integration of the above cross section

leads to a set of 4N weighted events:

{{
K(α)

n+1;k , x
(α)
1;k , x

(α)
2;k , Ξ

(α)
k

}
α=E,S,C,SC

}N

k=1

, (2.15)

with K(α)
n+1;k an (n+1)-body kinematic configuration (possibly degenerate, in which case it

is effectively an n-body configuration that can be used to compute Born matrix elements),

2We remind the reader that the Ellis-Sexton scale Q, originally introduced in ref. [49], is any scale that

may be used in one-loop computations to express the arguments of all the logarithms appearing there as

sij/Q
2 rather than as sij/skl, where sij and skl are two invariants constructed with the four-momenta of

the particles that enter the hard process.

– 6 –
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and the event weights defined as follows:

Ξ
(α)
k =

dσ(NLO,α)

dχBjdχn+1

(
K(α)

n+1;k, x
(α)
1;k , x

(α)
2;k

)
, (2.16)

where we understand possible normalization pre-factors (such as 1/N , or adaptive-

integration jacobians). Given an observable O, its hth histogram bin defined by

O
(h)
LOW ≤ O < O

(h)
UPP will assume, at the end of the run, the value:

σ
(h)
O =

N∑

k=1

∑

α

Θ
(h,α)
k Ξ

(α)
k , (2.17)

Θ
(h,α)
k = Θ

(
O
(
K(α)

n+1;k

)
−O

(h)
LOW

)
Θ
(
O

(h)
UPP −O

(
K(α)

n+1;k

))
. (2.18)

In view of eq. (2.14), it is convenient to recast eq. (2.17) as follows:

σ
(h)
O =

∑

β=0,F,R,B

σ
(h)
O,β , (2.19)

where, using eqs. (2.13) and (2.16), one has:

σ
(h)
O,0 =

N∑

k=1

∑

α

Θ
(h,α)
k f1(x

(α)
1;k , µ

(α)
F ;k) f2(x

(α)
2;k , µ

(α)
F ;k) g

2b+2
S (µ

(α)
R;k) Ŵ

(α)
0;k , (2.20)

σ
(h)
O,F =

N∑

k=1

∑

α

Θ
(h,α)
k f1(x

(α)
1;k , µ

(α)
F ;k) f2(x

(α)
2;k , µ

(α)
F ;k) g

2b+2
S (µ

(α)
R;k) Ŵ

(α)
F ;k log


µ

(α)
F ;k

Q




2

, (2.21)

σ
(h)
O,R =

N∑

k=1

∑

α

Θ
(h,α)
k f1(x

(α)
1;k , µ

(α)
F ;k) f2(x

(α)
2;k , µ

(α)
F ;k) g

2b+2
S (µ

(α)
R;k) Ŵ

(α)
R;k log


µ

(α)
R;k

Q




2

, (2.22)

σ
(h)
O,B =

N∑

k=1

∑

α

Θ
(h,α)
k f1(x

(α)
1;k , µ

(α)
F ;k) f2(x

(α)
2;k , µ

(α)
F ;k) g

2b
S (µ

(α)
R;k) Ŵ

(α)
B;k . (2.23)

Here we have defined:

Ŵ
(α)
β;k = Ŵ

(α)
β

(
K(α)

n+1;k

)
β = 0, F,R , (2.24)

Ŵ
(α)
B;k = ŴB

(
K(S)

n+1;k

)
δαS , (2.25)

µ
(α)
F ;k = µF

(
K(α)

n+1;k

)
, (2.26)

µ
(α)
R;k = µR

(
K(α)

n+1;k

)
, (2.27)

namely, the values of the short-distance coefficients and of the scales computed at the

kinematic configurations associated with each of the events and counterevents of eq. (2.15).

We now apply the method outlined in section 2.1 to eqs. (2.20)–(2.23). In order to

do so, we recall that the main result of that section is that of computing the number J ,

whose original expression is that of eq. (2.6) (regardless of the fact that such an expression

– 7 –
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was in turn obtained from the integral of eq. (2.5), for the reason explained at the end of

section 2.1), by means of the interpolating grid given in eq. (2.11) and of eq. (2.10).

One starts by observing that the hth bin value σ
(h)
O,β of eqs. (2.20)–(2.23) is written in

the same form as J of eq. (2.6): the double sums over k and α in eqs. (2.20)–(2.23) can

easily be recast in the form of a single sum as in eq. (2.6). The goal is therefore that of

representing σ
(h)
O,β with an interpolating grid, as is done for J in eq. (2.10). In order to

do so, one may easily proceed by analogy. First of all, since we are interested in a quick

recomputation of the cross section after changing the scales and the PDFs, and given that

the latter depend on the Bjorken x’s and the factorisation scale, the implication is that the

role of the variable z of eqs. (2.6)–(2.11) needs to be played by the four variables:

x1, x2, µF , µR . (2.28)

In other words, we have the correspondence:

{zk}k=1,M ↔
{
x
(α)
1;k , x

(α)
2;k , µ

(α)
F ;k, µ

(α)
R;k

}α=E,S,C,SC

k=1,N
. (2.29)

The polynomial expansion of eq. (2.1), whence the interpolating grid is derived, is valid for

each of the variables in eq. (2.28); therefore, the only change w.r.t. the case of the computa-

tion of J is the fact that the one-dimensional grid {Gj} defined in eq. (2.11) will be replaced

by a four-dimensional grid, corresponding to the variables in eq. (2.28). For the construc-

tion of the latter, it is sufficient to compare directly eq. (2.6) with eqs. (2.20)–(2.23). The

role of the “slow” and “fast” functions S and F will be played by the short-distance coeffi-

cients Ŵ and by the scale- and PDF-dependent terms respectively; that of the factor Φk by

the bin-defining Θ
(h,α)
k of eq. (2.18). In other words, we have the following identifications:

β = 0 =⇒ (S, F ) ↔
(
Ŵ0 , f1(x1, µF )f2(x2, µF )g

2b+2
S (µR)

)
, (2.30)

β = F =⇒ (S, F ) ↔
(
ŴF , f1(x1, µF )f2(x2, µF )g

2b+2
S (µR) log

(
µF

Q

)2
)

, (2.31)

β = R =⇒ (S, F ) ↔
(
ŴR , f1(x1, µF )f2(x2, µF )g

2b+2
S (µR) log

(
µR

Q

)2
)

, (2.32)

β = B =⇒ (S, F ) ↔
(
ŴB , f1(x1, µF )f2(x2, µF )g

2b
S (µR)

)
, (2.33)

and

Φk ↔ Θ
(h,α)
k . (2.34)

It is now sufficient to use eqs. (2.30)–(2.34) to rewrite eqs. (2.10) and (2.11). We denote

by j1, j2, j3, and j4 the indices that run over the grid nodes relevant to the variables x1,

x2, µF , and µR, respectively; δi and si, i = 1, . . . 4, are the corresponding grid spacings

and interpolating orders. We obtain:

σ
(h)
O,0 =

∑

j1,j2,j3,j4

f1(j1δ1, j3δ3) f2(j2δ2, j3δ3) g
2b+2
S (j4δ4)G

(h,0)
j1j2j3j4

, (2.35)
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σ
(h)
O,F =

∑

j1,j2,j3,j4

f1(j1δ1, j3δ3) f2(j2δ2, j3δ3) g
2b+2
S (j4δ4) log

(
j3δ3
Q

)2

G
(h,F )
j1j2j3j4

, (2.36)

σ
(h)
O,R =

∑

j1,j2,j3,j4

f1(j1δ1, j3δ3) f2(j2δ2, j3δ3) g
2b+2
S (j4δ4) log

(
j4δ4
Q

)2

G
(h,R)
j1j2j3j4

, (2.37)

σ
(h)
O,B =

∑

j1,j2,j3,j4

f1(j1δ1, j3δ3) f2(j2δ2, j3δ3) g
2b
S (j4δ4)G

(h,B)
j1j2j3j4

, (2.38)

with the interpolating grids:

G
(h,β)
j1j2j3j4

=

N∑

k=1

∑

α

Θ
(h,α)
k Ŵ

(α)
β;k (2.39)

× I
(s1)

j1−pδ1 (x
(α)
1;k )


x

(α)
1;k

δ1
− pδ1(x

(α)
1;k )


Θ

(
pδ1(x

(α)
1;k ) ≤ j1 ≤ s1 + pδ1(x

(α)
1;k )
)

× I
(s2)

j2−pδ2 (x
(α)
2;k )


x

(α)
2;k

δ2
− pδ2(x

(α)
2;k )


Θ

(
pδ2(x

(α)
2;k ) ≤ j2 ≤ s2 + pδ2(x

(α)
2;k )
)

× I
(s3)

j3−pδ3 (µ
(α)
F ;k)


µ

(α)
F ;k

δ3
− pδ3(µ

(α)
F ;k)


Θ

(
pδ3(µ

(α)
F ;k) ≤ j3 ≤ s3 + pδ3(µ

(α)
F ;k)

)

× I
(s4)

j4−pδ4 (µ
(α)
R;k)


µ

(α)
R;k

δ4
− pδ4(µ

(α)
R;k)


Θ

(
pδ4(µ

(α)
R;k) ≤ j4 ≤ s4 + pδ4(µ

(α)
R;k)
)
.

Equations (2.35)–(2.39) give the most general representation of NLO cross sections in

terms of interpolating grids. We shall employ them (in a simplified form) in the next

subsection, in the construction of the aMCfast bridge to APPLgrid.

2.3 The interface of APPLgrid with MadGraph5 aMC@NLO

APPLgrid is a general-purpose C++ library that provides a suitable number of inter-

polation and convolution routines that can be used to construct fast interfaces to NLO

calculations of lepton-proton and hadron-hadron collider processes. APPLgrid is widely

used by various PDF fitting collaborations as well as by ATLAS and CMS in their own

PDF studies. Our purpose is that of exploiting APPLgrid for the construction of the

interpolating grids of eq. (2.39), and their subsequent use in the calculation of the his-

togram bins, eqs. (2.35)–(2.38). As those equations show, APPLgrid needs to be given, in

an initialisation phase, the observables to be computed and their respective binnings (we

stress again that each bin of each observable corresponds to a set of four grids per type of

parton luminosity); and, on an event-by-event basis, the values of those observables and

the short-distance coefficients Ŵ . These tasks are essentially what aMCfast is responsible

for: it extracts the relevant information from MadGraph5 aMC@NLO, and feeds them to

APPLgrid, in the format required by the latter.

The first observation is that, in its current version, APPLgrid supports three-

dimensional grids, while those in eq. (2.39) are four-dimensional. The reason for the latter
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is that in our derivation we have left the freedom of choosing different functional forms

for the factorisation and renormalisation scales. On the other hand, such a flexibility is

seldom exploited, and typically one chooses µF and µR equal in the whole phase space, up

to an overall constant. This is equivalent to setting:

µF = ξF µ , µR = ξR µ , (2.40)

with µ a function of the kinematics. When doing this, two of the four variables in eq. (2.28)

are degenerate, and therefore one must simply consider:

x1, x2, µ , (2.41)

which reduces the number of grid dimensions from four to three. In this case, it is also

convenient to set:3

Q = µ , (2.42)

so that

log

(
j3δ3
Q

)2

−→ log ξ2F , log

(
j4δ4
Q

)2

−→ log ξ2R , (2.43)

in eqs. (2.36) and (2.37) respectively. The other changes to eqs. (2.35)–(2.39) due to the

reduction of the grid dimensionality are all trivial: one eliminates the sums over j4, formally

replaces:

j3δ3 −→ j3δ3 ξF , j4δ4 −→ j3δ3 ξR , (2.44)

and µF with µ in the next-to-last line on the r.h.s. of eq. (2.39) (this and eq. (2.44) are due

to the fact that now it is the variable µ which corresponds to one of the dimensions of the

grid), and finally eliminates the last line of that equation.

The next thing to consider is that APPLgrid does not use the variables in eq. (2.41)

directly, but rather constructs the grids using:

y1, y2, τ , (2.45)

which are defined through a change of variables, several of which are available but is usually

set to:

yi = Y (xi) Y (x) = log
1

x
+ κ(1− x) , (2.46)

τ = T (µ) = log log
µ2

Λ2
. (2.47)

This is because the grids feature a linear spacing, and given the PDFs and αS dependences

on Bjorken x’s and scales a linear sampling in terms of the variables of eq. (2.45) turns out

to be more effective than one based the variables of eq. (2.41). In eq. (2.46) the parameter

κ controls the relative density of grid nodes in the large- w.r.t. the small-x region; in

eq. (2.47), the parameter Λ is typically chosen to be of the order of ΛQCD.

3Although we did not indicate this explicitly in section 2.2, the Ellis-Sexton scale is in general a function

of the kinematics, whence the possibility of using eq. (2.42).
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Finally, one needs to consider the fact that the formulae presented above are obtained

for a given partonic process. In order to compute the actual hadronic cross section, one

needs to sum over all possible such processes, so that eq. (2.13) must be generalised as

follows:

dσ(NLO,α) =
∑

rsq

fr(x
(α)
1 , µ

(α)
F )fs(x

(α)
2 , µ

(α)
F )W (α)

rsq dχBjdχn+1 , (2.48)

where r and s are the identities of the incoming partons, and q collectively denotes the

identities of all outgoing partons. Note that, for simple-enough cases, the sum over q is

trivial, since (r, s) are sufficient to determine unambiguously a partonic process; however,

the notation used in eq. (2.48) is general, and encompasses all possible situations. Since the

interpolating grids are additive, the most straightforward solution is that of following the

procedure outlined so far, and of creating a grid for each possible partonic process. There

is however a better strategy, that helps save disk space and decrease memory footprint, in

that it reduces the number of interpolating grids. This is based on the observation that

one may find pairs of parton indices (r, s) and (r′, s′) such that:

W (α)
rsq = W

(α)
r′s′q′ with (r, s) 6= (r′, s′) for some q , q′ . (2.49)

This suggests to rewrite eq. (2.48) in the following way:

dσ(NLO,α) =
∑

l

F (l)(x
(α)
1 , x

(α)
2 , µ

(α)
F )

∑

q

W
(α)
lq dχBjdχn+1 , (2.50)

where

F (l)(x
(α)
1 , x

(α)
2 , µ

(α)
F ) =

∑

rs

T (l)
rs fr(x

(α)
1 , µ

(α)
F )fs(x

(α)
2 , µ

(α)
F ) , (2.51)

and the values of T
(l)
rs are either zero or one; we have implicitly defined W

(α)
lq = W

(α)
rsq for

(r, s, q) and l such that T
(l)
rs = 1. We point out that, while there may be more than one

way to write the r.h.s. of eq. (2.50) (in other words, the luminosity factors F (l) may not

be uniquely defined), it is always possible to arrive at such a form, thanks to the fact that

the r.h.s.’s of eqs. (2.48) and (2.50) are strictly identical. In fact, eq. (2.50) is what is used

internally by MadGraph5 aMC@NLO; one of the tasks of aMCfast is that of gathering

this piece of information, and of using it to construct the luminosity factors F (l) to be

employed at a later stage. In eq. (2.50) one factors out identical matrix elements; since the

computation of these is the most time-consuming operation, this procedure helps increase

the overall efficiency, which is larger the larger the number of terms in each luminosity

factor F (l). The fact that, in general, the number of terms in the sum over l in eq. (2.50)

is smaller than that in the sums over (r, s) in eq. (2.48) is ultimately what allows one to

reduce the number of interpolating grids. The counting of the terms in such sums is easy

when (r, s) are sufficient to determine uniquely the partonic process. Denoting by nl the

largest value assumed by the luminosity index l for a given process:

1 ≤ l ≤ nl , (2.52)

and by NF the number of active light flavours, one has:

1 ≤ nl ≤ (2NF + 1)2 , (2.53)
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with the two limiting cases being either that where all of the allowed PDF combinations are

associated with the same partonic matrix element, or that where each PDF combination

corresponds to a different partonic matrix element. In appendix A we shall give the explicit

form of eq. (2.51) for all of the processes studied.

By putting everything together, we finally arrive at the representation of the

hth bin value and of its corresponding grids as they are constructed by the Mad-

Graph5 aMC@NLO-aMCfast-APPLgrid chain. We denote by δy and sy the grid spacing

and interpolating order relevant to the variables y1 and y2; the analogous quantities relevant

to the variable τ are denoted by δτ and sτ respectively. We have:

σ
(h)
O,0 =

∑

j1,j2,j3

nl∑

l=1

F̂ (l)(j1δy, j2δy, j3δτ )ĝ
2b+2
S (j3δτ )G

(h,0,l)
j1j2j3

, (2.54)

σ
(h)
O,F =

∑

j1,j2,j3

nl∑

l=1

F̂ (l)(j1δy, j2δy, j3δτ ) ĝ
2b+2
S (j3δτ ) log ξ

2
F G

(h,F,l)
j1j2j3

, (2.55)

σ
(h)
O,R =

∑

j1,j2,j3

nl∑

l=1

F̂ (l)(j1δy, j2δy, j3δτ ) ĝ
2b+2
S (j3δτ ) log ξ

2
R G

(h,R,l)
j1j2j3

, (2.56)

σ
(h)
O,B =

∑

j1,j2,j3

nl∑

l=1

F̂ (l)(j1δy, j2δy, j3δτ ) ĝ
2b
S (j3δτ )G

(h,B,l)
j1j2j3

, (2.57)

with the grids:

G
(h,β,l)
j1j2j3

=
N∑

k=1

∑

α

∑

q

Θ
(h,α)
k Ŵ

(α)
β,lq;k (2.58)

× I
(sy)

j1−pδy (y
(α)
1;k )


y

(α)
1;k

δy
− pδy(y

(α)
1;k )


Θ

(
pδy(y

(α)
1;k ) ≤ j1 ≤ sy + pδy(y

(α)
1;k )
)

× I
(sy)

j2−pδy (y
(α)
2;k )


y

(α)
2;k

δy
− pδy(y

(α)
2;k )


Θ

(
pδy(y

(α)
2;k ) ≤ j2 ≤ sy + pδy(y

(α)
2;k )
)

× I
(sτ )

j3−pδτ (τ
(α)
k

)

(
τ
(α)
k

δτ
− pδτ (τ

(α)
k )

)
Θ
(
pδτ (τ

(α)
k ) ≤ j3 ≤ sτ + pδτ (τ

(α)
k )

)
.

In eq. (2.58) we have inserted the partonic indices l and q in the short-distance quantities

Ŵ , and we have used eqs. (2.46) and (2.47) to introduce:

y
(α)
i;k = Y (x

(α)
i;k ) , (2.59)

τ
(α)
k = T

(
µ
(
K(α)

n+1;k

))
, (2.60)

and we have defined (note the factors ξF and ξR):

F̂ (l)(y1, y2, τ) = F (l)
(
Y −1(y1), Y

−1(y2), ξF T−1(τ)
)
, (2.61)

ĝS(τ) = gS

(
ξR T−1(τ)

)
. (2.62)
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Equations (2.54)–(2.58) are the main results of this paper. In the initialisation phase,

aMCfast provides APPLgrid with the total number of grids needed (equal to the sum

over all observables of the number of bins relevant to each observable, times four), the

grid spacings δy and δτ , the interpolation orders sy and sτ , and the interpolation ranges

in yi and τ . These information are under the user’s control; in particular, one must make

sure that the latter ranges are sufficiently wide for the process under consideration, and

one will want to be careful in the case of a dynamical scale choice for µ. Then, during

the course of the run and event-by-event, aMCfast gets Θ
(h,α)
k , Ŵ

(α)
β,lq;k, y

(α)
i;k , and τ

(α)
k

from MadGraph5 aMC@NLO and feeds4 them to APPLgrid, whose grid-filling internal

routines iteratively construct G
(h,β,l)
j1j2j3

as defined in eq. (2.58).

We conclude this section with two remarks. Firstly, the sums over l and q in the

formulae above achieve the sum over subprocesses which is necessary in order to obtain

the hadronic cross section. In practice, in MadGraph5 aMC@NLO the number of contri-

butions which are integrated separately and eventually summed to give the physical cross

section is often larger than the number of subprocesses, owing to the FKS dynamic partition

and to the use of multi-channel techniques (see ref. [37] for more details). When interfacing

MadGraph5 aMC@NLO with APPLgrid, each of these contributions generates temporary

grids, which are then combined by aMCfast at the end of the run to give the actual grids

of eq. (2.58) that are to be used in fast computations (i.e., in eqs. (2.54)–(2.57)). Sec-

ondly, thanks to the fact that the information on the cross section is (also) given in terms

of the scale- and PDF-independent coefficients Ŵ , MadGraph5 aMC@NLO is capable of

computing a-posteriori PDF and scale uncertainties independently of its interface to AP-

PLgrid, by means of a reweighting procedure (see ref. [48]). While this feature renders the

recomputation of the cross section with alternative PDFs and/or scales much faster than

the original calculation, it is still not fast enough to be employed in PDF fits, for which the

only viable solution is that of using the interpolating grids discussed here. The reason is

related to the sum over events (1 ≤ k ≤ N and α = E,S,C, SC in the previous formulae):

while such sum is performed only once in the case of interpolating grids (when the grid is

constructed: see eq. (2.58)), it must be carried out for each new choice of PDFs and scales

in the context of reweighting. This difference is crucial, because N must be a large number

(especially so in fNLO computations), in order to obtain a good statistical precision.5

2.4 Scale choices

As one can see from eq. (2.14), the grids G
(h,0,l)
j1j2j3

and G
(h,B,l)
j1j2j3

are all that is needed when one

is interested in computing the cross section that corresponds to setting the factorisation and

renormalisation scales equal to their reference value µ, i.e. with ξF = ξR = 1 (see eq. (2.40)).

When ξF 6= 1 and/or ξR 6= 1, then the grids G
(h,F,l)
j1j2j3

and/or G
(h,R,l)
j1j2j3

, respectively, are also

4aMCfast-specific input routines have been added to APPLgrid.
5On the other hand, reweighting is more flexible than grid interpolation, in that it gives one the possibility

of recomputing the cross section by adopting a different functional form for the scales w.r.t. that used in the

original computation, which is not feasible when using grids. Such a possibility is however not available in

the public version of MadGraph5 aMC@NLO. More importantly, reweighting does not need the prior

knowledge of the observables which one is going to study.
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necessary (see eqs. (2.55) and (2.56)). We point out that these two grids are not constructed

when APPLgrid is interfaced to codes other than MadGraph5 aMC@NLO. In that case,

APPLgrid is still capable of computing the cross section for non-central scales, since the

form of the latter can be determined by using renormalisation group equations (RGEs).

By doing so, one arrives at an expression (e.g., eq. (14) of ref. [33]) which is in one-to-one

correspondence with the results derived here (in order to see this, one must use the explicit

expressions of the Ŵ coefficients given in ref. [48]); this is not surprising, since both are

ultimately a direct consequence of RGE invariance.

Although fully equivalent from a physics viewpoint, the two-grid and four-grid ap-

proaches do not give pointwise-identical results (in other words, their outcomes are strictly

equal only in the limit of infinite statistics). The main advantage of using only two grids

is that of a smaller memory footprint. Conversely, the two-grid approach has two draw-

backs that we consider significant, and are the reason why aMCfast works with four grids.

Firstly, the ξF -dependent term features a convolution (i.e., a one-dimensional integral) of

a one-loop Altarelli-Parisi kernel [50] with a PDF, P (0)⊗ f . This convolution is effectively

performed when summing over events in the four-grid approach, in eq. (2.55). The absence

of G
(h,F,l)
j1j2j3

in the two-grid procedure implies that APPLgrid needs to perform this convolu-

tion explicitly, and it does so by resorting to an external code, the PDF-evolution package

HOPPET [28]. APPLgrid does work without HOPPET being installed, but in this case

it is not possible to choose a non-central factorisation scale. Secondly, and related to the

previous point: the representation of a cross section in terms of interpolating grids is exact

up to terms of higher order in the interpolation-order parameter; this implies, for example,

that eq. (2.55) is an identity up to terms that contain the interpolating functions I(sy+1)

and I(sτ+1) — as we shall show later, in all practical cases such missing terms are totally

negligible. The crucial point here is that this is an identity regardless of the statistics used

in the computation of the cross section (i.e., it is independent of N , up to fluctuations that

may affect the grid construction in the case of very small N ’s; again, we shall document

this later). However, and for the specific case of the ξF -dependent eq. (2.55), this is true

only because the convolution integral P (0) ⊗ f implicit in there is carried out by the very

procedure (i.e., the same number of events, the same seeds) that fills the interpolating

grid. Any other way of computing P (0) ⊗ f , and in particular one that uses an external

program such as HOPPET, implies that this property does not hold. Therefore, in the

two-grid approach the difference between a cross section computed with non-central scales,

and its representation in term of grids, is much larger than formally guaranteed by the cho-

sen interpolation orders; this difference tends to zero only in the limit of infinite statistics

N →∞. We did explicitly verify that this is indeed the case.

In summary, we believe that working with four grids in APPLgrid gives a couple of

clear advantages over the two-grid procedure: one does not need to install any external

convolution package, and the cross section and its grid representation are identical for any

scale choices, regardless of the statistics used. The latter feature is beneficial also in view

of the fact that results for central and non-central scale choices in MadGraph5 aMC@NLO

are fully correlated: hence, the ratios of predictions obtained with different scales are

more stable than each of them individually. We point out that both of these advantages

– 14 –



J
H
E
P
0
8
(
2
0
1
4
)
1
6
6

are relevant to the factorisation scale dependence. As far as the renormalisation scale is

concerned, the situation is simpler, since no convolution integral is involved. Therefore,

the optimal approach6 would be that of using three grids, and construct G
(h,R,l)
j1j2j3

(relevant

to the ξR dependence) on the fly, using G
(h,B,l)
j1j2j3

. However, the gain of doing so w.r.t. our

four-grid implementation is extremely marginal, and thus we did not consider it when

constructing aMCfast.

3 Results and validation

As an illustration of the flexibility of aMCfast, in this section we present predictions for a

variety of LHC processes, which either are currently or might soon become relevant for PDF

determinations. Predictions are given for a 14TeV LHC, using as inputs the NNPDF2.3

NLO PDF set [51] (associated with αS(MZ) = 0.1180) in the case of five or four light

flavours, and the NNPDF2.1 NLO PDF set [52] (associated with αS(MZ) = 0.1190) in

the case of three light flavours. We have made this choice of input parameters in order

to be definite: the pattern of our findings would be unchanged had we used e.g. different

PDF sets [2, 10, 12]. For the same reason, we do not consider PDF uncertainties in our

illustrative study, and thus we only employ the central PDF member of the NNPDF2.3

and NNPDF2.1 sets. All such sets are taken from the LHAPDF5 [53] library.

3.1 General strategy

The main idea is the following: given a process, an observable O, and a binning for the

differential distribution in O, we compute the value of its hth bin (for all bins) σ
(h)
O , in two

different ways: directly, by means of MadGraph5 aMC@NLO, and a posteriori, using the

grids constructed with the MadGraph5 aMC@NLO-aMCfast-APPLgrid chain. For the

latter chain to be validated, these two results must be identical up to numerical inaccuracies;

we shall call the former the reference result, and the latter the reconstructed result. In other

words, we regard the l.h.s. of eq. (2.19) as computed directly withMadGraph5 aMC@NLO,

and its r.h.s. as obtained from the interpolating grids, eqs. (2.54)–(2.58), so as to establish

numerically the accuracy of the equality in eq. (2.19). As we have already stressed, we

expect that inaccuracies are solely due the interpolating procedure, and not to a (possible)

lack of statistics in the simulations; importantly, as was discussed in section 2.4, in our

approach this property must hold for any non-central scale choices as well. In order to

document this, all of our results will be presented for three different scale choices:7

µF = µ , µR = µ , (3.1)

µF = 2µ , µR = µ/2 , (3.2)

µF = µ/2 , µR = 2µ , (3.3)

6This is only the case if one does not need to deal with processes that feature µR-dependent Yukawa;

otherwise, the fourth grid is not trivially related to the Born one.
7One should be careful not to interpret the envelope resulting from eqs. (3.1)–(3.3) as representative of

the higher-order theoretical uncertainty: these choices are made for the sole purpose of validating aMCfast

with arbitrary ξF and ξR.
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Parameter value Parameter value

κ 5 Λ 0.250GeV

(xmin, xmax) (2·10−7, 1) (µmin, µmax) (10,3162) GeV

Ny 50 Nτ 30

sy 3 sτ 3

Table 1. Grid parameters used in the MadGraph5 aMC@NLO-aMCfast-APPLgrid valida-

tion runs presented here. In the case of tt̄ production (section 3.2), the values of µmax and Nτ have

been set equal to 104 GeV and 50, respectively.

and as obtained from two different runs: one with “low” statistics, and one with “high”

statistics. For each choice of scales and type of run, we shall plot the reference result, and

the ratio of the reconstructed over the reference result. From that ratio, we shall see that

the typical numerical inaccuracies due to the use of the interpolating grids are in the lower

10−4, with occasional larger differences in the case of the low-statistics runs, due to a still-

insufficient amount of information stored in the grids.8 The crucial point is the following:

even with very limited statistics, the reconstruction of the reference results is extremely

good, and this for distributions whose quality is largely insufficient for any phenomeno-

logical application. This proves that, for all practical purposes, the level of agreement

between reconstructed and reference results is independent of the statistics employed.

In keeping with the strategy at the core of all applications of MadGraph5 aMC@NLO,

the only operations to be performed by the user when running with aMCfast are related to

the process-specific analysis. In particular, in view of the fast interface to fNLO results, the

user’s analysis (to be stored, as for any other kind of fNLO user utility, into the directory

MYPROC/FixedOrderAnalysis — see section 3.2.2 of ref. [37] for more details) will need to

contain, for each observable that he/she wants to consider, the instructions for filling the

histogram that will contain the reference result (such instructions are identical to those

of an fNLO analysis used when no interface with aMCfast is considered), and those for

setting up the associated interpolating grids. Several templates of analyses that can be

used with aMCfast will be provided in MYPROC/FixedOrderAnalysis (starting from the

next version of MadGraph5 aMC@NLO), and the user should be able to easily adapt

them to suit the needs of any given calculation. For the whole procedure to work, one will

need to install, on top of MadGraph5 aMC@NLO and of the bridge code aMCfast, also

APPLgrid version 1.4.56 or higher.

All of the calculations reported below are carried out either with the default physics

model of fNLO computations in MadGraph5 aMC@NLO, which corresponds to the SM

with NF = 4 light flavours, or with its NF = 5 or NF = 3 variants; the quarks which

are not light (the top and, depending on the value of NF , the bottom and the charm)

are given a non-zero mass. The parameters used to initialise the interpolating grids are

given in table 1: from the first and second lines there, and by using eqs. (2.46) and (2.47),

8This inaccuracy includes a contribution from the internal interpolation in LHAPDF5, which is sig-

nificantly reduced with LHAPDF6.
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one immediately obtains the actual interpolation ranges in the variables yi and τ , and

the corresponding grid spacings by taking the ratio of those over (Ny − 1) and (Nτ − 1),

respectively. In the low- and high-statistics runs we employ a number of phase-space

points per integration channel of the order of 103 and 106 respectively. For each process

we shall consider a couple of observables to be definite, but we emphasise again that the

number and the nature of the observables that one can compute are the user’s choice.

The kinematical cuts will in general be similar to those used by ATLAS or CMS in some

analogous experimental analyses; however, a comparison with experimental data is beyond

the scope of this work. In all cases, we shall set µ = HT/2, with HT the scalar sum of the

transverse energies of all the final-state particles. We point out that the choice of scales

may have some implications on the settings of the corresponding interpolation parameters.

For example, as one can see from table 1, in the case of tt̄ production the values of µmax

and Nτ have been increased w.r.t. those used for all the other processes, and this in order

to attain a comparable numerical precision. On the other hand, we have verified that, by

choosing scales which do not depend on the event kinematics, and are of the order of the

hardness of the given process at threshold, setting Nτ = 10 is amply sufficient. To put

things in perspective, however, we emphasise that even by using Nτ = 30 in tt̄ production

with µ = HT/2, numerical inaccuracies are at most 5·10−4 and generally smaller than that,

i.e. better than any PDF-fit application will ever need.

We start by studying top-quark pair production, which provides information on the

gluon PDF in the large-x region complementary to those provided by jet-production data.

We shall then consider isolated-photon production in association with jets, a process that

allows a variety of tests of perturbative QCD and that is also directly sensitive to the

gluon PDF. We shall next discuss the production of a lepton pair in association with one

extra hard jet. We shall then turn to considering Zbb̄ production, a case-study of how the

complete automation of fast NLO QCD calculations allows one to include in global PDF

fits arbitrarily complicated processes at no significant extra cost. Finally, we shall discuss

in some details another important process at the LHC for PDF extraction, namely the

production of a W boson in association with charm quarks, which is directly sensitive to

the poorly known strange-quark PDF, and for which data from ATLAS and CMS have

recently become available.

3.2 Top-quark pair production

Top-quark pair production provides one with unique information on the poorly known large-

x gluon PDF [13, 23, 35]. Unlike the case of the Tevatron, where tt̄ production is mostly

driven by qq̄ scattering, at the LHC the gg-initiated process is dominant, contributing to

more that 85% of the total inclusive cross section. The recent calculation of the total cross

section to NNLO [54], as well as the upcoming NNLO results for differential distributions,

make top-quark pair production an essential ingredient for present and future global PDF

analyses. A wide range of data from the LHC for this process are available, both for

inclusive cross-sections [55–57] and for differential distributions [58, 59], and much more

will be measured in the near future.
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l nrs (r, s)

1 1 (g , g)

2 5 (b̄ , g) (c̄ , g) (s̄ , g) (ū , g) (d̄ , g)

3 5 (d , g) (u , g) (s , g) (c , g) (b , g)

4 5 (g , b̄) (g , c̄) (g , s̄) (g , ū) (g , d̄)

5 5 (g , d) (g , u) (g , s) (g , c) (g , b)

6 5 (d , d̄) (u , ū) (s , s̄) (c , c̄) (b , b̄)

7 5 (b̄ , b) (c̄ , c) (s̄ , s) (ū , u) (d̄ , d)

Table 2. Values of l and (r, s) for which T
(l)
rs = 1, as generated by aMCfast in tt̄ production. For

a given l, the number nrs of non-null terms in the sum on the r.h.s. of eq. (2.51) is also given.

As usual, the production of stable tt̄ pairs in MadGraph5 aMC@NLO is simulated

by starting with the generation of the process. Since in the default model used by

MadGraph5 aMC@NLO there are four light flavours, one needs first to import a proper

massless-bottom model. This is done by means of the following commands:

MG5 aMC> import model loop sm-no b mass

MG5 aMC> define p = g u d s c b u~ d~ s~ c~ b~

Here, the second command instructs MadGraph5 aMC@NLO that the proton contains five

light flavours, and does include the bottom quark; by doing so, partonic subprocesses will

be generated that feature bottom quarks in the initial state. After this, one may proceed

with the generation command;

MG5 aMC> generate p p > t t~ [QCD]

followed by the standard output and launch commands (see section 3 of ref. [37] for more

details). There are nl = 7 contributing parton luminosities. For each of them, we report in

table 2 the corresponding (r, s) contributions, which are the terms on the r.h.s. of eq. (2.51)

with T
(l)
rs = 1; the number of such terms, denoted by nrs, is also reported in this table. As

was already mentioned in section 2.3, the assignments of table 2 are automatically deter-

mined by aMCfast using the information provided by MadGraph5 aMC@NLO. We point

out that each of the lines in table 2 corresponds to the set of four grids of eqs. (2.54)–(2.57).

It is possible to use them separately, e.g. in order to determine the relative contribution

of each parton luminosity to the different bins of the kinematical distributions studied,

although this feature has not been used in this paper.

The results of our validation are presented in figures 1 and 2, where we show the

rapidity of the top quark (y(t)), and the tt̄ invariant mass (M(tt̄)), respectively. Each

figure consists of two panels, with that of the left (right) obtained with a low-statistics

(high-statistics) run. Each panel has a main frame, where the solid histogram is the

MadGraph5 aMC@NLO reference result obtained with the central scales of eq. (3.1), and

the dashed histograms are the MadGraph5 aMC@NLO reference results relevant to the

two non-central scale choices of eqs. (3.2) and (3.3) — incidentally, we note that the latter

two predictions are obtained by using the reweighting technique presented in ref. [48] (i.e.,
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Figure 1. Rapidity of the top quark, in tt̄ production at the 14TeV LHC, for a low- (left

panel) and high-statistics (right panel) run. In the main frames we show the reference Mad-

Graph5 aMC@NLO results obtained with central (eq. (3.1), solid histogram) and with non-central

(eqs. (3.2) and (3.3), dashed histograms) scale choices. The three lower insets present the ratios of

the reconstructed results over the corresponding reference result, for each of the three scale choices.

Figure 2. As in figure 1, for the tt̄ invariant mass.

MadGraph5 aMC@NLO has been run only once). The three lower insets show the accuracy

obtained with interpolating grids, since they display as dashed histograms the ratio of the

reconstructed over the reference result, for each of the three scale choices. These histograms

thus represent the validation of the MadGraph5 aMC@NLO-aMCfast-APPLgrid chain,

with values equal to one equivalent to a fast computation of the cross section with zero

interpolation errors. As one can see from the plots, we obtain in all bins and for all scale

choices an accuracy of 3·10−4 at worst in the case of the high-statistics run. In keeping with

the general discussion given at the beginning of section 3, the reconstruction accuracy of the

low-statistics results is also quite good, in spite of the fact that the corresponding differential

cross sections display extremely large fluctuations, and are unsuitable for phenomenology.
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3.3 Photon production in association with one jet

The production of direct photons in hadronic collisions is sensitive to the gluon PDF, owing

to the dominance of QCD Compton-scattering-like diagrams. Thanks to tight isolation

requirements applied to both theory prediction and data, one is able to significantly reduce

or even eliminate completely the cross section of non-direct photons, due to poorly-known

fragmentation-fuction contributions in the former, and to the contaminating π0 → γγ

decays in the latter. A recent re-analysis of all available isolated-photon collider data

(inclusive in additional QCD radiation) has shown that NLO QCD gives a good description

of all the data sets, and in addition it can provide one with some constraints on the

gluon PDF in the region of Bjorken-x relevant to the calculation of the gluon-fusion Higgs

production cross section [22]. Therefore, there is a solid case to include photon data in

the next generation of global PDF analyses. Data for isolated-photon production has been

released by ATLAS and CMS [60–62]; in particular, the latest ATLAS measurement [60],

that makes use of the complete 7TeV run statistics, extends their kinematical coverage in

the photon transverse energy up to a value of ET (γ) ∼ 600GeV (see also ref. [63] for a

study of the sensitivity of this measurement to various sets of PDFs).

On top of inclusive isolated-photon production, that of isolated photons in association

with extra jets allows one to extend the sensitivity to the gluon PDF to a wider range

of Bjorken-x, and also provides one with some information on the quark PDFs. Some

measurements of isolated photon plus jets have been reported by ATLAS and CMS [64–

66]; while these data are still not precise enough to directly constrain PDFs [67], the

increase of the statistics collected in future LHC runs will dramatically change the picture,

so that this process will become a useful addition to global PDF fits.

We have thus computed γ+jet production with MadGraph5 aMC@NLO. The compu-

tation is performed with five light flavours, so the generation command must be preceded by

the same import and define commands which have been used in the case of tt̄ production

(see section 3.2). On top of those, we must also use here:

MG5 aMC> define j = g u d s c b u~ d~ s~ c~ b~

since a light jet must have the same parton contents as the proton. The generation com-

mand is then:

MG5 aMC> generate p p > a j [QCD]

We have imposed the photon to be hard and central, pT (γ) ≥ 80GeV and |η(γ)| ≤ 3. We

use the Frixione photon-isolation prescription [68], since in this way one sets identically

equal to zero the contribution of the fragmentation-function component in an infrared-safe

manner. The parameters of the isolation (which in MadGraph5 aMC@NLO can be easily

modified at the run-card level) are set as follows: ǫγ = 1.0 and n = 1 (see eq. (3.4) of

ref. [68]; note that, in an hadronic environment, the energies and angles of that equation

have to be formally replaced by transverse energies and distances in the (η, ϕ) plane); we use

an isolation cone of radius R0 = 0.4. Jets are reconstructed with the anti-kT algorithm [69],

as implemented in FastJet [70], with a jet radius of R = 0.4, and subject to the conditions

pT (j) ≥ 30GeV and |η(j)| ≤ 4.4. There are nl = 33 parton luminosities that contribute

to the current process; their list is given in table 3 (see appendix A). That table shows
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Figure 3. As in figure 1, for the photon transverse momentum, in the hadroproduction of an

isolated photon in association with an extra jet.

Figure 4. As in figure 3, for the photon pseudorapidity.

that the definition of the parton luminosities in MadGraph5 aMC@NLO (i.e., eq. (2.50))

is not maximally efficient. For example, the matrix elements associated with l = 30 and

l = 31 in table 3 are not equal, but differ by a trivial overall factor (the charge squared

of a up-type vs an down-type quark). The combination of these two contributions could

therefore be achieved by simply relaxing the condition that all non-zero T
(l)
rs elements be

equal to one. While this can easily be done in the context of a specific computation, its

general implementation in an automated code able to deal with any user-defined process

is not straightforward.

The validation plots, presented in figures 3 and 4, follow the same pattern as those for

tt̄ production. The representative observables chosen here are the photon transverse mo-

mentum (pT (γ), figure 3) and the photon pseudorapidity (η(γ), figure 4). As in section 3.2,

the agreement between the reference and reconstructed results is at the level of 10−4 or

better for the high-statistics run, and only slightly worse for the low-statistics one.
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3.4 Dilepton production in association with one jet

We now turn to studying the hadroproduction of a lepton pair in association with one

jet; the leptons originate from an intermediate virtual Z or γ boson, and we shall denote

the pair with the shorthand notation Z⋆ in what follows. Inclusive Z-boson production

has been used for a long time in PDF fits, since it provides one with a clean handle on

the quark flavour separation in the proton, and various quality measurements from the

Tevatron [71, 72] and the LHC [15, 73] are available. On the other hand, by requiring the

presence of an additional extra jet one enters in a different domain, since at the Born level

one is dominated by qg channels, which thus allow one to probe directly the gluon PDF.

In this context, it is convenient to study the large-pT (Z
⋆) region: in fact, the fraction of

gluon-initiated events increases9 with pT (Z
⋆), and furthermore by doing so one is safely

away from the small-pT (Z
⋆) region, where fixed-order calculations do not give physically-

meaningful predictions. Another advantage associated with this kinematic region is that

ratios of cross sections for W over Z production in association with jets can result in clean

constraints on quarks and antiquarks PDFs at large-x [26], where they are poorly known

(and especially so for the antiquarks).

There are various ATLAS and CMS measurements available for Z+jets production,

which typically focus on the comparison between theory and data as a test of perturbative-

QCD predictions which are capable of describing a significant amount of hard radiation [74–

77]. However, from the PDF point of view, it is more interesting to perform the analysis

as inclusively as possible (bar for the first jet, which one needs in order to be sensitive to

the gluon PDF, as mentioned above), and to concentrate on the precise measurement of

the Z⋆ transverse momentum, possibly in bins of different rapidity y(Z⋆). It is particularly

convenient to perform such a measurement with a leptonically-decaying Z, which offers a

cleaner scenario w.r.t. that of a hadronic decay; there are ongoing analyses in ATLAS and

CMS — see e.g. [78].

We have computed dilepton+jet production at fNLO with MadGraph5 aMC@NLO

in the five-flavour scheme, following the generation command:10

MG5 aMC> generate p p > mu+ mu- j [QCD]

which has been preceded by the same import and define commands relevant to section 3.3.

We have also imposed the following cuts:

pT (µ
±) ≥ 10 GeV ,

∣∣η(µ±)
∣∣ ≤ 2.5 , M(µ+µ−) ≥ 20 GeV . (3.4)

The list of parton luminosities relevant to this process is the same as that for γ+jet

production, and is given in table 3. As in the γ+jet case, jets are reconstructed by using

the anti-kt algorithm with R = 0.4, pT (j) ≥ 30GeV, and |η(j)| ≤ 4.4.

For the aMCfast validation we have chosen the transverse momentum of the lepton

pair and its invariant mass, pT (µ
+µ−) and M(µ+µ−), which we display in figures 5 and 6

respectively. The latter clearly shows the small-M enhancement due to the presence of

9This comment applies to an intermediate hardness region; asymptotically, qg-initiated contributions

are strongly suppressed by the fastly decreasing gluon PDF at large x’s.
10The muons are treated as massless particles.
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Figure 5. As in figure 1, for the lepton-pair transverse momentum, in the hadroproduction of a

lepton pair in association with an extra jet.

Figure 6. As in figure 5, for the lepton-pair invariant mass.

an intermediate photon. In the former, the feature around pT (µ
+µ−) ∼ 30GeV is due to

the presence of a sharp kinematic threshold only at the Born level (induced by the pT (j)

cut), which causes this region to be infrared-sensitive [79]. Although this is an issue from

the physics point of view for perturbative calculations, it does not pose any problems for

the reconstruction through interpolating grids. We observe again an excellent agreement

between the reference and the reconstructed results.

3.5 Z production in association with a bb̄ pair

The production of a Z boson in association with a bottom-antibottom quark pair is an

interesting example of how the automation of a fast interface to NLO QCD computations

achieved by aMCfast can be a valuable tool to easily include arbitrarily complicated pro-

cess into a global PDF fit. A related application could be that of studying to which degree

the recent discrepancies between theory and experiment (see e.g. ref. [80]) for the production

of Z bosons in association with bottom quarks might be absorbed by a change in PDFs. The

hadroproduction of Wbb̄ and (Z/γ∗)bb̄ in the MadGraph5 aMC@NLO framework has been

previously discussed in ref. [81], without however considering any aspects relevant to PDFs.
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Figure 7. As in figure 1, for the rapidity of the Zbb̄ system, in Zbb̄ hadroproduction.

The generation of the current process in MadGraph5 aMC@NLO is achieved through

the command:

MG5 aMC> generate p p > z b b~ [QCD]

Note that the default model adopted by MadGraph5 aMC@NLO for NLO computations

treats the bottom quarks as massive particles, and one works in a four-flavour scheme:

hence, no models are explicitly imported, and no multi-particle labels redefined, at variance

with was done previously. This is important in order to be able to perform the computation

of Zbb̄ production without resorting to any kind of jet-reconstruction algorithm, to probe

the b quarks down to zero transverse momentum, and to define a fully-inclusive cross

section. The list of partonic luminosities that contribute to this process is given in table 4.

We validate the results of the present simulation by considering the rapidity distribution of

the Zbb̄ system (shown in figure 7), and the transverse momentum of the bb̄ pair (shown in

figure 8). As in the previous cases, we observe no significant deviations of the reconstructed

from the reference predictions.

3.6 W production in association with charm quarks

The final representative example of an LHC process of interest for PDF fits that we discuss

in this work is the hadroproduction of W bosons in association with charm quarks. This

process is directly sensitive to the PDF of the strange quark (see e.g. refs. [82, 83]), which

among the light-quark PDFs is the most poorly determined. In the majority of global PDF

fits, the strange PDF is constrained by neutrino data [84–86] (in particular by the so-called

dimuon process, i.e. charm production in charged-current DIS). The use of neutrino DIS

data in PDF fits has several drawbacks, such as the need to model charm fragmentation,

and to understand charm-quark mass effects at low scales.

It is therefore quite interesting that Wc hadron-collider data provide one with a clean

and robust independent check of the strange PDF determined elsewhere. In addition to

that, the differences in the production rates of W+ and W− bosons in association with

charm quarks give information on the strange asymmetry in the proton, that plays an

important role in the explanation [87] of the NuTeV anomaly [86]. Data on W production

in association with either charm jets or D mesons have been made public by ATLAS [88]

and CMS [24], based on the 7TeV 2011 data sets, and analogous measurements from the
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Figure 8. As in figure 7, for the transverse momentum of the bb̄ pair.

8TeV run are ongoing. In particular, the CMS Wc data has been recently used in a

QCD analysis [16], together with HERA data, to show that the strange-quark PDF from

collider-only data can be determined with a precision comparable to that of global fits

which include neutrino data. Another recent analysis of the compatibility of the LHC Wc

data with existing fixed-target DIS and Drell-Yan data has been presented in ref. [89].

Once again, we now compare a couple of reference distributions from Mad-

Graph5 aMC@NLO to those obtained with the a-posteriori aMCfast-APPLgrid convo-

lution. For simplicity, we restrict ourselves to considering W+c̄ production; on the other

hand, the process we shall actually deal with is that where an electron and a neutrino,

rather than a W , are present in the final state, so as to make sure that all production spin

correlations are correctly taken into account. Incidentally, this also shows that one is not

restricted to performing computations in the narrow width approximation; in particular,

the complex mass scheme [90] is fully supported in MadGraph5 aMC@NLO. Similarly to

the case of the b quark in Zbb̄ production discussed in section 3.5, in the present case it

is best to treat the charm as a massive particle. Since in the default model used by Mad-

Graph5 aMC@NLO the charm is massless, one needs to import a proper massive-charm

model before proceeding with the generation of the process. This is done by means of the

following commands:

MG5 aMC> import model loop sm-c mass

MG5 aMC> define p = g u d s u~ d~ s~

MG5 aMC> generate p p > e+ ve c~ [QCD]

In this list, the second command instructs MadGraph5 aMC@NLO that the proton con-

tains three light flavours, and does not feature the charm quark; by doing so, no partonic

subprocesses will be generated that feature a charm in the initial state. The following cuts

have been imposed:

pT (e
+) ≥ 10 GeV ,

∣∣η(e+)
∣∣ ≤ 2.5 . (3.5)

The list of partonic luminosities that contribute to this process in given in table 5.

The two representative distributions that we use for validation are the pseudorapidity

of the positron, (η(e+), presented in figure 9), and its transverse momentum (pT (e
+) ,

presented in figure 10). The same conclusions as in all previous cases apply here.
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Figure 9. As in figure 1, for the e+ pseudorapidity, in W+c̄ hadroproduction.

4 Conclusions and outlook

In this paper we have presented aMCfast, a tool that serves to achieve the complete

automation of fast NLO QCD computations for arbitrary processes, by constructing a

bridge between MadGraph5 aMC@NLO, which performs the core automated cross section

calculations, and APPLgrid, which allows one to represent a given observable in term of

interpolating grids that can be used for a fast and a-posteriori evaluation, and one in which

the possibility is given of changing the scales and PDFs w.r.t. those used in the original

computation. Since fast calculations of NLO cross sections are an absolute necessity in the

context of global PDF fits, the combination of the automated programs discussed in this

paper covers all the present and, more importantly, future needs relevant to PDF analyses.

We have validated our approach by considering a representative sample of production

processes at the LHC (some of which not previously available in the form of fast computa-

tions), and by comparing for several observables the bin-by-bin agreement between the orig-

inal results of MadGraph5 aMC@NLO, and those reconstructed by means of aMCfast and

APPLgrid. The typical accuracy that we find is of the order of some parts in 10−4, which is

in fact far more than sufficient for any kind of phenomenological application. Moreover, our

approach allows one to consider scale variations without any loss of precision, and without

the need for interfacing APPLgrid with an external program to perfom PDF evolution.

A natural outcome of this work is the use of the grids produced using aMCfast in

actual global PDF analyses, in view of the possible inclusion into the latter of LHC data,

and especially of those which have not been considered so far, for lack of either sufficiently

precise measurements, or of theoretical NLO calculations suited to the task. Given that

the format of the results of the aMCfast-APPLgrid interface is a trivial extension of that

produced by APPLgrid interfaced with other codes, aMCfast should be straighforward

to employ by the global-PDF fitters already experienced with the former code.

The outlook for the near future features two important developments.

Firstly, there is no conceptual difference between what has been done here, and its

analogue in the case of a perturbative expansion in either the electroweak coupling con-

stant α, or simultaneously in αS and α (mixed-coupling expansion). From the technical
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Figure 10. As in figure 9, for the e+ transverse momentum.

viewpoint, the only implication of a mixed-coupling expansion is the necessity of intro-

ducing additional interpolating grids, which is trivial. This point is important in view of

the fact that MadGraph5 aMC@NLO is expected to be able to handle soon both kind

of computations; thus, any extension of the MadGraph5 aMC@NLO capabilities will be

made immediately available for fast computations, thanks to straightforward modifications

to aMCfast. This will pave the way to a systematic inclusion of electroweak NLO correc-

tions into global PDF fits; cases where such an inclusion may prove particularly relevant

include high-pT jet production, the high-mass Drell-Yan cross section, as well as the con-

sistent treatment of photon-initiated processes that are necessary for the determination of

the photon PDF [91]. Secondly, the scale- and PDF-independent coefficients computed by

MadGraph5 aMC@NLO, and used by aMCfast to set up the interpolating grids at fixed

order, are quite similar to those relevant to the MC@NLO short-distance cross sections.

Therefore, the current structure of aMCfast will need only a minor upgrade to be able

to deal with NLO+PS computations. Apart from its obvious phenomenological spinoffs,

and the possibility of obtaining PDF fits that include resummation effects well tuned to

experimental data, such a project is also interesting from a more theoretical viewpoint, in

that it would help spur a thorough investigation of the effects of the PDFs in initial-state

showers; there is some evidence that these effects are small, but more systematic studies

should be carried out, in view of the fact that they cannot be taken into account by any

method based solely on short-distance cross section information.

The aMCfast code is available at: http://amcfast.hepforge.org/.
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l nrs (r, s)

1 2 (g , u) (g , c)

2 6 (b̄ , u) (b̄ , c) (s̄ , u) (s̄ , c) (d̄ , u) (d̄ , c)

3 6 (d , u) (d , c) (s , u) (s , c) (b , u) (b , c)

4 2 (c̄ , c) (ū , u)

5 2 (u , u) (c , c)

6 2 (c̄ , u) (ū , c)

7 2 (u , c) (c , u)

8 1 (g , g)

9 3 (g , d) (g , s) (g , b)

10 3 (b̄ , b) (s̄ , s) (d̄ , d)

11 3 (d , d) (s , s) (b , b)

12 6 (c̄ , d) (c̄ , s) (c̄ , b) (ū , d) (ū , s) (ū , b)

13 6 (u , d) (u , s) (u , b) (c , d) (c , s) (c , b)

14 6 (b̄ , d) (b̄ , s) (s̄ , d) (s̄ , b) (d̄ , s) (d̄ , b)

15 6 (d , s) (d , b) (s , d) (s , b) (b , d) (b , s)

16 2 (g , c̄) (g , ū)

17 6 (b̄ , c̄) (b̄ , ū) (s̄ , c̄) (s̄ , ū) (d̄ , c̄) (d̄ , ū)

18 6 (d , c̄) (d , ū) (s , c̄) (s , ū) (b , c̄) (b , ū)

19 2 (c̄ , c̄) (ū , ū)

20 2 (u , ū) (c , c̄)

21 2 (c̄ , ū) (ū , c̄)

22 2 (u , c̄) (c , ū)

23 3 (g , b̄) (g , s̄) (g , d̄)

24 3 (b̄ , b̄) (s̄ , s̄) (d̄ , d̄)

25 3 (d , d̄) (s , s̄) (b , b̄)

26 6 (c̄ , b̄) (c̄ , s̄) (c̄ , d̄) (ū , b̄) (ū , s̄) (ū , d̄)

27 6 (u , b̄) (u , s̄) (u , d̄) (c , b̄) (c , s̄) (c , d̄)

28 6 (b̄ , s̄) (b̄ , d̄) (s̄ , b̄) (s̄ , d̄) (d̄ , b̄) (d̄ , s̄)

29 6 (d , b̄) (d , s̄) (s , b̄) (s , d̄) (b , s̄) (b , d̄)

30 2 (u , g) (c , g)

31 3 (d , g) (s , g) (b , g)

32 2 (c̄ , g) (ū , g)

33 3 (b̄ , g) (s̄ , g) (d̄ , g)

Table 3. As in table 2, for γ+jet and dilepton+jet production.

A Luminosity factors

In this appendix, we report the luminosity indices l and parton identities (r, s) for which

the quantity T
(l)
rs that enters eq. (2.51) is equal to one. We do so for all of the processes

studied in section 3, except for tt̄ production, whose analogous information have already

been given in section 3.
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l nrs (r, s)

1 1 (g , g)

2 2 (s̄ , g) (d̄ , g)

3 2 (d , g) (s , g)

4 2 (c̄ , g) (ū , g)

5 2 (u , g) (c , g)

6 2 (g , s̄) (g , d̄)

7 2 (g , d) (g , s)

8 2 (g , c̄) (g , ū)

9 2 (g , u) (g , c)

10 2 (u , ū) (c , c̄)

11 2 (d , d̄) (s , s̄)

12 2 (c̄ , c) (ū , u)

13 2 (s̄ , s) (d̄ , d)

Table 4. As in table 2, for Zbb̄ production.

l nrs (r, s)

1 1 (g , s̄)

2 2 (u , s̄) (d , s̄)

3 2 (d̄ , s̄) (ū , s̄)

4 1 (s , s̄)

5 1 (s̄ , s̄)

6 1 (g , g)

7 1 (s̄ , g)

8 2 (s̄ , u) (s̄ , d)

9 2 (s̄ , d̄) (s̄ , ū)

10 1 (s̄ , s)

Table 5. As in table 2, for e+νec̄ production.
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