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1 Introduction

The construction of nonsingular cosmological solutions is a central problem in General

Relativity (GR), both for its implications on the mathematical structure of the theory and

for potential applications to describing our universe. This subject combines deep physical

questions — did our Universe have a beginning, or is it eternal? — with precise theorems

regarding general properties of solutions. The singularity theorems in GR1 imply that,

under fairly general assumptions, cosmological solutions must be singular. Even inflating

solutions have been shown to be geodesically incomplete in the past [2]. In this context, it

is important to try to extend the validity of these theorems, or to find nonsingular models

and understand how the theorems are evaded. Moreover, the existence of such models

would have interesting consequences for inflation, by providing possible past-completions

or by decaying into realistic cosmologies.

A key assumption in the original singularity theorems is the strong energy condition

(SEC) Tµνv
µvν ≥ 1

2Tvµv
µ, where Tµν is the energy-momentum tensor, and vµ is a timelike

vector. The SEC is, however, known to be violated in many consistent systems, and there-

fore one way to proceed is to relax this condition. It is reasonable to impose instead the

(weaker) null energy condition (NEC) Tµνv
µvν ≥ 1

2Tvµv
µ, where this time vµ is a null vec-

tor. This condition appears to be satisfied macroscopically in our universe. Furthermore,

1See e.g. [1] for a detailed discussion.
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for the purpose of performing a self-consistent GR study, it is important to demand that

the solutions be weakly curved, with all scales much larger than the Planck length. Under

these conditions, positive curvature is the main ingredient that allows the circumvention

the singularity theorems.2

Ref. [4] (see also [5–7] for earlier related work) constructed a family of nonsingular

solutions that satisfy the NEC and are everywhere weakly curved. These are bouncing

universes that arise from the competition between positive curvature, a negative cosmo-

logical constant, and a fluid with equation of state −1 < w < −1/3. In particular, for

w = −2/3 the FRW equations can be solved analytically, leading to a scale factor that

oscillates harmonically —the “simple harmonic universe” (SHU). Our goal in this work is

to continue the analysis of this solution, and improve it in different directions.

First, the model of [4] is linearly stable only if the ratio a−/a+ between the smallest

and largest sizes of the universe is not too small. In section 2 we will show that by adding

extra matter sources (cosmic strings) it is possible to find stable solutions with a large

hierarchy a−/a+ � 1. This is an important step in order to construct realistic bouncing

cosmologies.

Secondly, we will perform in section 3 a detailed study of the linearized fluctuations,

investigating analytically their stability and discussing the role of parametric resonances.

This will establish the linearized stability of our solutions over a large range of parameter

space. This analysis extends to the quantum level by fixing the size of the initial pertur-

bation by the uncertainty principle. Nonlinearities could cut off this behavior, leading to

a finite but plausibly exponentially long lifetime. It is, however, possible that the nonlin-

earities do not lead to instabilities — the nearly static limit is argued to be very different

from usual thermodynamic systems, and it is as of yet an open question whether this class

of systems may be eternal even after the inclusion of nonlinear effects.

A universe that is stable at the linear and nonlinear level may still be subject to non-

perturbative decays, making it metastable (but exponentially long-lived). section 4 focuses

on the possible nonperturbatively suppressed decays of our cyclic cosmologies. The sim-

plest example of an instanton where the universe tunnels to nothing was found in [8, 9]. We

argue that this instability can potentially be eliminated by introducing additional sources

of energy density such as Casimir energy corrections associated with compact spatial slices.

While we do not provide a definite answer to whether these cosmologies could then be truly

eternal, and there are potentially other nonperturbative decay channels that need to be

addressed, we believe that this class of models provides a controlled setup where the issue

of the beginning of time could be further studied. Our conclusions and future directions

are presented in section 5.

2 Cyclic universes with large bounces

It is interesting to ask if a cyclic cosmology can accommodate a large ratio between the

minimum and maximum sizes of the universe which could reproduce, for instance, the

hierarchy between the GUT (or Planck) scale, and the size of our Hubble patch. However,

2Another interesting possibility, recently studied in [3], is to use translation-breaking effects.
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it was shown in [4] that in models with only one type of fluid, the linearized fluctuations with

momenta l .
√
a+/a− grow exponentially. Intuitively, the Hubble antifriction produced

by the evolution near the minimum dominates on average over the friction contribution

from the maximum, effectively inducing a tachyonic mass. For bounces with a+/a− � 1,

this leads to unacceptable instabilities in a large number of modes.

We will now show that it is possible to construct cyclic models that do not suffer from

such instabilities by adding one more matter source — e.g. a frustrated network of cosmic

strings. The additional source of energy density enables the frequency of oscillation of the

universe to be parametrically decoupled from the mass of the linearized fluctuations, which

is set by the curvature of the space-time. This freedom was absent in [4] and it permits the

frequency of the oscillations to be small compared to the mass of the fluctuations, enabling

stability.

2.1 General equations and energetic considerations

Let us begin our analysis by determining how a cyclic solution can arise from the compe-

tition of different matter and energy sources.

We consider an FRW metric with positive curvature,

ds2 = −dt2 + a(t)2

(
dr2

1−Kr2
+ r2(dθ2 + sin2 θ dφ2)

)
. (2.1)

Here the curvature K = 1 and the spatial slices are 3-spheres; we will find it useful to

keep the dependence on K explicit, to account more simply below for the effects of cosmic

strings. The FRW equations in the presence of a cosmological constant Λ and additional

matter sources are

ä

a
= −4π

3
GN (ρ+ 3p) +

Λ

3(
ȧ

a

)2

=
8π

3
GN ρ−

K

a2
+

Λ

3
. (2.2)

For simplicity, we will restrict to matter sources that behave macroscopically (but not

microscopically, as we discuss in section 2.3) as perfect fluids,

p = wρ , ρ =
cw

a3+3w
. (2.3)

To proceed, it will be useful to recast the second FRW equation in (2.2) as the vanishing

of the GR Hamiltonian3

H = −GN
3πa

(
π2
a + V (a)

)
(2.4)

where πa is the canonical momentum

πa =
∂L

∂ȧ
= − 3π

2GN
aȧ (2.5)

3Recall that the constraint H = 0 is imposed by the g00 Lagrange multiplier, which we have here

gauge-fixed to g00 = −1.
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and the effective potential

V (a) =

(
3π

2GN

)2

a2

(
K − 8π

3
GNcw a

−3w−1 − 1

3
Λa2

)
. (2.6)

Given this three-term structure, it is clear what sources are needed for a periodic solution.

At the minimum and maximum, πa = 0, which means V (a) should admit two roots a±;

furthermore V (a) < 0 between these roots so that a oscillates between a− and a+ as

determined by (2.4). We therefore need

− 1 < w < −1

3
, Λ < 0 . (2.7)

The evolution near the minimum is dominated by curvature (which tries to make the

universe expand) and the fluid (which pushes towards contraction), while near the maxi-

mum the negative cosmological constant balances against the fluid. Denoting the period

of oscillation by τ we also obtain, from the integral of the second FRW equation,

τ

2
=

∫ a+

a−

da(
8π
3 GN cwa

3|w|−1 + Λ
3 a

2 −K
)1/2 . (2.8)

Before discussing models with a large hierarchy a− � a+, we point out that the case

a− ∼ a+ is also of conceptual interest. We can tune the parameters cw and Λ in (2.6) so

that the two roots nearly coincide, a− ≈ a+, and this corresponds to the static limit of

our cyclic cosmologies. Unlike the Einstein static universe, this class of solutions does not

suffer from homogeneous instabilities, partly because it does not require tuning the initial

conditions. Therefore, the models with positive curvature and matter content (2.7) provide

a framework where many of the questions studied in the Einstein static universe can be

addressed without the danger of linearized instabilities.4 In particular, we will return to

the question of the ultimate (meta)stability of such static cosmologies in section 4.

Let us now find the conditions for a large hierarchy. Assuming a− � a+, the minimum

is approximately determined by balancing in (2.6) the curvature and fluid contributions,

a− ≈
(

3

8π

K

GNcw

) 1
3|w|−1

, (2.9)

while for the maximum we obtain

a+ ≈
(

8π
GNcw
|Λ|

) 1
3−3|w|

. (2.10)

Therefore, choosing the cosmological constant and density such that

|Λ|3|w|−1 � (8πGNcw)2

K3−3|w| (2.11)

4For work on the Einstein static universe, its stability and applications to inflationary cosmology see

e.g. [11–16].
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obtains a− � a+. Furthermore, as long as the matter density

cw �
K

(8πGN )
1+3|w|

2

, (2.12)

the smallest size of the universe will be much larger than the Planck length, guaranteeing

that classical GR remains a good approximation.

We also note that these results generalize easily to multifluid models, replacing ρ =∑
i ci a

−3(1+wi) in the expressions before. In particular, let us see what happens when we

combine a fluid with equation of state −1 < w < −1/3 with a density of cosmic strings,

w = −1/3. Since the contribution of strings is ρ = cstr/a
2, their effect is simply encoded

in a redefinition of the curvature,

Keff = K − 8π

3
GNcstr , (2.13)

and the previous equations still apply after replacing K → Keff (we can now set the

background curvature K = 1 inside Keff). Increasing the density of strings decreases the

effective curvature, and by tunning GNcstr ∼ 3/8π it is possible to nearly cancel Keff .

Now, from (2.9)–(2.11) we see that taking Keff � 1 while keeping the other parameters

fixed leads to a hierarchy a−/a+ � 1. Moreover, we will show below in section 2.3 that

a smaller Keff gives a larger mass from the angular momentum on the sphere. Therefore,

the addition of cosmic strings can simultaneously lead to solutions with large hierarchies

between the minimum and maximum size, and to a stabilization of low-lying modes that

could otherwise be unstable.

2.2 An analytic solution with domain walls and cosmic strings

We now illustrate our previous general results by studying the special (and solvable) case

of domain walls (or any w = −2/3 fluid) plus cosmic strings.

The solution to the FRW equations is a simple harmonic universe, albeit now with a

nontrivial Keff ,

a(t) =
1

ω

√
Keff√
γ

(
1 +

√
1− γ cos ωt

)
. (2.14)

The frequency of oscillations is

ω =

√
|Λ|
3
, (2.15)

and we have introduced the combination

γ =
3Keff |Λ|

(4πGNcdw)2
. (2.16)

When γ ∼ 1 the oscillatory term in (2.14) vanishes, and we obtain a static solution

with a− = a+ = 1
ω

√
Keff . On the other hand, the limit γ � 1 gives

a+ ≈
2

ω

√
Keff√
γ

, a− ≈
1

2ω

√
γKeff , (2.17)

– 5 –



J
H
E
P
0
8
(
2
0
1
4
)
1
6
3

in agreement with (2.9) and (2.10) for w = −2/3 and K → Keff . This leads to a hierarchy

a−
a+
≈ γ

4
� 1 . (2.18)

In the rest of this work we will often focus on this special case, which allows for analytic

results. However, we would like to stress that our results will apply to the more general

class of models with fluid −1 < w < −1/3. For short, we will refer to the general family of

solutions as the “simple harmonic universe”, in a slight abuse of notation.

2.3 Stability of linearized perturbations

As we mentioned before, in the limit a− � a+, cyclic universes supported by curvature,

a negative cosmological constant and a matter source with −1 < w < −1/3 are unstable

under linear perturbations. We will now argue that adding an appropriate density of cosmic

strings solves this problem.

The key point is that in the presence of cosmic strings the effective curvature becomes

an adjustable parameter [see (2.13)], and using this extra degree of freedom we can keep

the ratio a−/a+ and the period of oscillation τ fixed, while the overall scale
√
a−a+ is

decreased.5 Since the masses of linear fluctuations are inversely proportional to this scale,

a sufficiently small Keff can overcome the tachyonic contribution from Hubble antifriction,

leading to linearly stable perturbations.

Let us illustrate this effect of cosmic strings in the analytic SHU model of section 2.2.

It is convenient to change to conformal time, dη2 = dt2/a(t)2, which yields a scale factor

a(η) =

√
γKeff

ω

1

1−
√

1− γ cos(
√
Keffη)

. (2.19)

As a simple and generic example of linear perturbation, we analyze a probe scalar field φ

in the FRW background,

d2φ

dη2
+ 2

da/dη

a

dφ

dη
−∇2

S3φ = 0 . (2.20)

Redefining

η̂ ≡
√
Keffη (2.21)

obtains
d2φ

dη̂2
+ 2

da/dη̂

a

dφ

dη̂
− 1

Keff
∇2
S3φ = 0 . (2.22)

In this form, the only dependence on Keff appears in the S3 Laplacian term. It is now

clear that Keff � 1 enhances the positive contribution to the mass squared for modes with

nonzero momentum.

5For instance, in the analytic solution of section 2.2, this is achieved by fixing Λ and γ, and decreasing

Keff and cdw in a correlated way. For more general w, the cosmological constant also needs to be changed

together with the other parameters.

– 6 –



J
H
E
P
0
8
(
2
0
1
4
)
1
6
3

20 40 60 80
Η

-40

-20

20

40

Φ

20 40 60 80
Η
`

-2

-1

1

2

Φ

Figure 1. Evolution of the l = 2 harmonic mode in a SHU with γ = 0.225. In the first plot there

are no cosmic strings, and this mode grows exponentially. The second plot shows how the mode

becomes stable in the presence of a density of cosmic strings with Keff = 0.2.

We can simplify this equation further by expanding in spherical harmonics and redefin-

ing the field to cancel the term linear in derivatives. Doing this for the lth harmonic obtains

ψ′′l +m2
l ψl = 0 , m2

l =
l(l + 2)

Keff
− a′′

a
. (2.23)

The largest tachyonic contribution from the time evolution of the scale factor occurs near

η̂ ≈
√

5γ
3 and is of order a′′

a ≈
9

8γ . Thus, tuning the density of cosmic strings cstr in (2.13)

such that

Keff . γ (2.24)

the linearized perturbations for generic values of the momentum l will be stable even in the

regime γ � 1. We show an example of this in figure 1. We should stress that for special

values of l there may exist additional instabilities due to resonances with the oscillations

of the scale factor; such effects will be analyzed in section 3.

There are some effects, however, which are not captured by (2.20). In particular, we

need to take into account that the fluctuations of the matter sources may have speed of

sound cs 6= 1, and that they also source gravitational fields. An important aspect here is

that if the equation of state for the perfect fluid were to remain valid at short distances, the

speed of sound c2
s = w < 0, and there would be instabilities at arbitrarily large momenta.

Fortunately, as discussed in [4], this can be avoided by having solids that behave, on

cosmological scales, as perfect fluids with negative w, but which nevertheless have c2
s > 0

and are stable. For the models discussed here, we need stable networks of domain walls

and cosmic strings. See [10] for more details.

The effects from gravitational backreaction also turn out to be important. Incorporat-

ing the scalar metric perturbations and assuming a speed of sound c2
s > 0 one obtains the

following equation for the adiabatic mode, for the lth spherical harmonic (see e.g. [4]):

ψ′′ +m2
l ψ = 0 , m2

l =
(l + 3)(l − 1)c2

s − 1

Keff
− 7 + 9c4

s

4

(
a′

a

)2

− 3c2
s − 1

2

a′′

a
. (2.25)

To avoid introducing instabilities for the low-lying harmonics when c2
s(l + 3)(l − 1) < 1

we wish to keep cs an O(1) fraction of the speed of light.6 The l = 1 spherical harmonic

6We also need to replace (2.24) by the stronger condition Keff � c2sγ.
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of the scalar metric perturbation is unstable due to a cancellation between terms in the

equation of motion [4] once we include backreaction. When there is only a single adiabatic

perturbation sourced by one kind of matter this mode is pure gauge and can be redefined

away; however, when multiple sources or fields are present — as in our case — this is no

longer possible. We can nevertheless project out this mode (and a few more of the low-

lying spherical harmonics, if needs be) by orbifolding along the Hopf fiber of the S3. This

orbifold will also remove Bianchi IX or Mixmaster perturbations, where the scale factor

changes in a manner that is homogeneous but not isotropic.

3 Stability and analytic considerations

Cyclic cosmologies have a potentially new type of instability that is not present in ex-

panding universes. Due to the oscillatory behavior of the scale factor, it is possible to

have resonances from modes whose momenta are close enough to integer multiples of the

frequency of oscillation of the universe. In a flat infinite model there is a continuum of

momentum modes and this always leads to instabilities. However, momenta on S3 are

quantized, and so it is possible that none of the modes lie within an instability band. This

is the question that we now address. Specifically, we will show that there exists a set of

parameters Keff , γ for which there are no parametric resonances, and we discuss how the

stability argument may be generalized beyond linear order using KAM theory.

In this section we focus, for simplicity, on the simple harmonic universe solution based

on domain walls and cosmic strings; however, our conclusions are expected to be valid for

the more general family of cosmologies discussed in section 2.1.

3.1 Hill’s equation and parametric resonance

Let us consider the stability of the solutions to the scalar field equation of motion (2.23),

ψ′′ + f(η̂)ψ = 0, (3.1)

where the forcing term for the lth spherical harmonic is

f(η̂) =
l(l + 2)

Keff
+

2
√

1− γ cos η̂ + (1− γ)(−3 + cos 2η̂)

2(1−
√

1− γ cos η̂)2
. (3.2)

Recall that the rescaled conformal time is given by η̂ =
√
Keffη, in terms of which the

oscillating cosmology has period 2π. The generalization to the full equation for adiabatic

perturbations including gravitational backreaction will be discussed later.

This class of equations, with a general periodic forcing term, are known as Hill’s

equations in mathematics, and are equivalent to a Schrödinger/Bloch wave problem in

physics. A special and well-known case is the Mathieu equation, corresponding to f(η̂) =

δ+ ε cos η̂. Stability of the solutions to Hill’s equation has been extensively and rigorously

studied; see for instance [17–19]. The solutions are known to be of the form

ψ(η̂) = ψ1(η̂)eµ1η̂ + ψ2(η̂)eµ2η̂, (3.3)

– 8 –
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where ψ1, ψ2 have period 2π and µ1µ2 = 1. More specifically, µ1, µ2 are either real recip-

rocals, in which case the solution is unstable without fine-tuning the initial conditions, or

complex conjugates of unit magnitude, in which case the solution is stable for all time.

Intuition from quantum mechanics suggests that the solutions should be stable in the

limit where the forcing term changes adiabatically:

f ′(η̂)/f(η̂)3/2 � 1, (3.4)

which holds in the static limit (1 − γ) � 1 and in the large bounce limit as long as

Keff � γ. More generally, when Keff/γ is large, the harmonics with l � (Keff/γ)1/2 are

in the adiabatic regime. This intuition is nearly correct; however, there will be ‘instability

bands’ in parameter space when the system has a parametric resonance between the free

and driven oscillations. To find a perturbatively stable bouncing universe, these instability

bands must be avoided for all harmonics under consideration.

For a forcing term of the form

ψ′′ + ω(ω − ε

π
p(η̂))ψ = 0, (3.5)

where
∫ 2π

0 p(x)dx = 1, ε� 1, as ω →∞ the solution will pass through an infinite number of

instability bands where the system approaches a parametric resonance point and becomes

unstable. Many asymptotic estimates exist for the width ∆ωn of the nth instability band —

in [18] it was shown that the width of the band is closely related to the nth Fourier coefficient

of the forcing term p(η̂). Specifically, the solution will be unstable within a range

ωn =
n

2
+

ε

2π
(1± |cn|) +O(ε2) (3.6)

as long as the nth Fourier coefficient

cn =
1

2π

∫ 2π

0
p(η̂)e−inη̂dη̂

is nonzero. For the forcing term in the simple harmonic universe, cn → 0 exponentially in

n as n → ∞, as we will check below, and at first glance we might worry that the linear

estimate for the size of the gap will eventually become smaller than the quadratic remainder

term in 3.6. However, it is easy to confirm using the proof in [18] that the O(ε2) correction

to the width of the instability interval remains subleading at large n. More generally, when

the forcing term is infinitely differentiable ∆ωn → ε
π |cn| faster than any inverse power of

n [19]. The position of the instability band will also receive corrections order by order in

powers of ε — these, however, have a power-law falloff in 1/n.

We will therefore use the estimate ∆ωn ≈ ε
π |cn| to show that there exists a set of values

for the parameters Keff , γ such that we can avoid the instability bands for all values of n

and l. For the simple case of the Mathieu equation it is possible to give a constructive proof

of stability, showing explicitly how to choose the values of Keff that avoid all parametric

resonances –see e.g. [20]. However, our forcing term is not just a cosine function and this

– 9 –
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complicates an explicit calculation of the stable values of Keff .7 We will instead follow a

different approach: starting with a continuous set of Keff we discard the values that hit

an instability band for the first spherical harmonic, then the ones that hit an instability

interval for the second band, and so on, until we are left with the values that never hit an

instability for any harmonic. We will show below that this process converges, and that the

fraction of values of Keff that lead to instabilities is bounded and exponentially small both

in the large bounce and quivering limits.

Before proceeding to our analysis of the large bounce and static limits, let us collect a

few useful expressions. For the system at hand, the free oscillation is given by

ω2 =
l(l + 2)

Keff
, (3.7)

the parameter ε is equal to

ε =

√
Keff

l(l + 2)

(
2π2

√
γ
− 2π2

)
, (3.8)

and the normalized forcing term is given by

p(η̂) = − 1

2π

√
γ

1−√γ
2
√

1− γ cos η̂ + (1− γ)(−3 + cos 2η̂)

2(1−
√

1− γ cos η̂)2
. (3.9)

The nth Fourier coefficient is given by

cn = −3(1− γ)

2
an +

√
1− γ
2

(an−1 + an+1) +
1− γ

4
(an−2 + an+2) , (3.10)

where

an =
1

√
γ − 1

(√
1− γ

1 +
√
γ

)|n| (1 + |n|√γ)

γ
. (3.11)

For |n| ≥ 2 this expression simplifies to

cn = −
2|n|√γ − 1

1−√γ

(√
1− γ

1 +
√
γ

)|n|
. (3.12)

3.2 Large bounce limit

In the large bounce limit γ � 1, we consider the regime Keff � γ. Since the instability

intervals we have to avoid obey n & 1/
√
Keff , n

√
γ is large. Using (3.12), the leading term

in the Fourier coefficient in this limit can be checked to be

cn → −2n
√
γ e−n

√
γ + . . . (3.13)

The size of the nth instability interval is then

∆ωn ≈
ε

π
|cn| ∼

√
Keff

l(l + 2)
n e−n

√
γ . (3.14)

7One source of difficulties, absent in the Matthieu equation, is that the positions of the instability

bands (3.6) receive corrections in 1/n that cannot be neglected when estimating the closeness of ω to

parametric resonances.
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We see then that the lengths of the instability bands are exponentially small in the regime

of interest Keff � γ. We will next use this to argue that most values of Keff in such a

range avoid all the resonant instabilities.

Consider Keff to be a continuous parameter varying within a narrow interval I =[
K0

eff ,K
0
eff + δKeff

]
around a small value K0

eff . By narrow we mean that δKeff/K
0
eff � 1.

For a particular spherical harmonic l = l∗, as Keff varies over I, the function ωl∗(Keff) =√
l∗(l∗+2)
Keff

will vary over a corresponding range [ω0, ω0 + δω] that includes potentially many

instability bands. The region δl∗Keff of I such that ω lies in an instability interval can be

estimated using
δl∗Keff

δKeff
∼ ∆ωn , (3.15)

which implies that the fraction of I such that ωl∗ lies in an instability band is approximately

δl∗Keff

δKeff
∼ ∆ωn ∼ e−

√
l∗(l∗+2)

√
γ/K0

eff . (3.16)

The total fraction of the Keff that hit an instability band for some value of l as l ranges

from 1 to ∞ is therefore bounded by the expression

∞∑
l=1

e−
√
l(l+2)

√
γ/K0

eff (3.17)

which is exponentially small as long as K0
eff � γ. Therefore in the parametric region Keff �

γ, most values of Keff will avoid instability bands for all n and l, and the proof is done.

Note that while the fraction of Keff that avoid all parametric resonances is nearly one

in a measure theoretic sense, the set of Keff that will hit an instability band eventually for

some large but finite l is dense, meaning that any neighborhood around a ‘good’ choice will

contain infinitely many bad choices. Finding an explicit working set of values and assessing

how ‘naturally’ they are tuned depends on the context of the specific model used, while

our aim here has been to show that there is a set of parameters that are free of resonant

instabilities. In practice, for the purposes of perturbative stability it suffices only to show

stability for a finite (though potentially very large) set of modes, since for l above a certain

cutoff value lc the modes have Planck scale masses, in which case the classical instability

will be replaced by nonperturbative particle or black hole production. Under these relaxed

criteria it is possible to find (exponentially small) open neighborhoods of the parameter

Keff that avoid the finite collection of instabilities for l < lc.

3.3 Static limit

As we discussed before, the static, or ‘quivering’ limit (1 − γ) � 1 is also conceptually

interesting, especially for the possibility of constructing an eternal universe. Linearized

fluctuations were found to be numerically stable in [4] already with Keff = 1. We now

show that it is also possible to avoid parametric resonances for most choices of parameters.

The Fourier coefficients of the normalized forcing term p(η̂) in the static limit are

given by

cn = − 2

1− γ

(√
1− γ
2

)n
(2n− 1) + . . . (3.18)
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for n ≥ 1, and c0 = 1. The size of the nth instability band can therefore be estimated as

∆ωn ∼
ε

π
|cn| ∼

(√
1− γ
2

)n
|(2n− 1)|

√
Keff

l(l + 2)
(3.19)

for n ≥ 1, and ∆ωn=0 ∼ (1− γ).

AllowingKeff to vary in a narrow band I =
[
K0

eff ,K
0
eff + δKeff

]
around some small value

K0
eff , for a given mode l = l∗ the set δl∗Keff of values for Keff such that ω2

l∗
(Keff) = l∗(l∗+2)

Keff

lies within some nearby instability band can be estimated as

δl∗Keff

δKeff
≈
(√

1− γ
2

)√l∗(l∗+2)/K0
eff

∣∣∣∣∣2
√
l∗(l∗ + 2)

K0
eff

− 1

∣∣∣∣∣
√

K0
eff

l∗(l∗ + 2)
(3.20)

and so the total fraction of the set of Keff that hits an instability band for some value of l

as l ranges from 1 to ∞ is controlled by

∞∑
l=1

(√
1− γ
2

)√l(l+2)/K0
eff

∣∣∣∣∣∣2−
√

K0
eff

l(l + 2)

∣∣∣∣∣∣ (3.21)

which is exponentially small as long as (1 − γ) � 1. Once again, measure theoretically

speaking, given a value of γ in the quivering limit, most values of Keff will do the trick, and

this time we do not need to worry about having Keff � 1. Actually, we do not even need

the parameter Keff in this limit: treating (1 − γ) as the free parameter to be varied in a

narrow range around a small value, the argument above carries through almost unmodified

to show that for (1−γ)� 1 most values of (1−γ) will avoid the entire infinity of resonances.

3.4 Incorporating backreaction

As we discussed in section 2.3, density perturbations from the domain walls and/or cosmic

strings are not precisely described by the equation of motion for a free massless scalar. The

main differences are that these fluctuations may have cs 6= 1, and also metric perturbations

become important. Let us now briefly comment on the stability for this case.

Incorporating gravitational backreaction on the scalar metric perturbations and as-

suming a speed of sound c2
s > 0 for the adiabatic mode one obtains a Hill equation with

forcing term

f(η̂) =
(l + 3)(l − 1)c2

s − 1

Keff
− 7 + 9c4

s

4

(
a′

a

)2

− 3c2
s − 1

2

a′′

a
. (3.22)

The exact value of c2
s depends on the shear resistance and is model-dependent — but as

we discussed in the previous section, in order to avoid introducing unstable modes when

csl . 1 we wish to keep it an O(1) fraction of the speed of light. Then the arguments from

before can be easily generalized to prove the existence of choices for the parameters Keff ,

γ such that we have stability in the large bounce and quivering limits.

We can also generalize the discussion to give a more realistic treatment of the network

dynamics, including effects such as shear modes, as occur in the solid dark matter model
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of [10]. It is also straightforward to generalize the discussion to include isocurvature per-

turbations when multiple components are present. However, we do not expect these points

to qualitatively alter our conclusions.

3.5 Nonlinearities

We have shown that we can have oscillating cosmologies that are stable at the linear level. It

is possible that this stability is violated by non-linear couplings between the oscillating scale

factor and the perturbative modes discussed above. Much like the linear case, instabilities in

the non-linear regime occur when a combination of the mode frequencies coupled together

by a non-linear interaction fall into an instability band of the scale factor. When this

occurs, the oscillations of the scale factor will resonantly excite these modes, leading to

an instability.

It is beyond our means to prove the eternal stability of our solutions in the presence of

such non-linear instabilities. But, for the following reasons, we believe that our solutions

might be stable for a long time and may in fact be truly eternal at the linear and at the

nonlinear level.8 A general way to study non-linear instabilities is to use KAM theory — see

e.g. [21] for a review. The applicability of KAM theory though is limited by the requirement

that the frequency of the excitable modes depend non-trivially on their amplitude. For a

free theory, this condition is obviously not satisfied. But, in an interacting theory, there

will in general be non-linear interactions between these excitable modes (for example, a

quartic interaction for a probe scalar). At leading order, these interactions will not couple

to the oscillating scale factor and are thus not a source of new instabilities. Their presence

however will lead to a non-trivial dependence between the frequency of the mode and its

amplitude, permitting the application of KAM theory.

The KAM conditions boil down to ensuring that linear combinations of the excitable

modes do not come sufficiently close to a resonant multiple of the oscillating scale factor.

When these conditions are satisfied, KAM theory guarantees the eternal stability of the

solution, even in the non-linear regime. Further, as shown in [22], when the KAM con-

ditions fail, the non-linear solution will remain close to the (stable) linear solution for an

exponentially long time, with a lifetime that depends upon the size of the failure of the

KAM conditions. Unfortunately, we do not have the expertise to mathematically perform

the KAM analysis on our cosmological solutions. But this result suggests that even if our

cosmology was not eternally stable, it should still survive for an exponentially long time.

A physical reason to expect the demise of these cosmologies due to non-linearities is

continuous entropy production. This is simply a re-statement of the above mathematical

issue — the oscillations of the scale factor may resonantly excite modes, leading to the

generation of entropy. The produced entropy will back react on the metric, potentially

leading to runaway behavior. But, these processes will not occur if these modes are far

from the bands of instability of the system, and are thus subject to the results of a KAM-

type analysis. In most physical systems, thermodynamic intuition suggests that the system

will have these kinds of instabilities. Indeed, we except a disturbance of the system to

8Nonperturbative decays are discussed below in section 4.
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dissipate through such excitations. This intuition though is based on the fact that a

typical thermodynamic system has a large number of modes that are nearly degenerate

with the disturbance, making it easy for a linear combination of these frequencies to lie

within the band of instability of the disturbance.

Our oscillating cosmologies are interestingly different from such thermodynamic sys-

tems. Here, we are interested in excitations caused by the oscillating scale factor which is

the lowest frequency in the system. The potentially problematic excitable frequencies all

correspond to higher harmonics on the sphere, making it easier to evade the degeneracies

encountered in thermodynamic systems. In fact, for sufficiently high frequencies, we expect

notions of decoupling to become important — a low frequency oscillation (such as that of

the scale factor) cannot efficiently excite high frequency oscillations. This implies that

the most problematic excitations will be low lying spherical harmonics that are roughly

degenerate with the scale factor. While it is unclear if these modes lead to instabilities,

we note that they could be projected out by considering more complex geometries such as

orbifolds of S3 by a freely acting group. Orbifolding will not change the equations of mo-

tion, but will project out modes from the spectrum (such a possibility was also considered

in [4] and in section 2.3 to project out linear instabilities). In particular, it will preserve

the frequency of the oscillating scale factor but can eliminate low lying modes that are

roughly degenerate with it. The resulting system is expected to be more stable since the

potentially problematic modes are all at high frequencies compared to that of the scale

factor. Another possibility is to introduce additional sources of energy density such as a

frustrated network of strings. As we have seen in section 2, these sources can parametri-

cally make the frequencies of the fluctuations higher than the frequency of the scale factor.

This should also enhance the non-linear stability of the system. It is an interesting open

question whether such strategies could produce a cosmology that is eternal to all orders in

perturbation theory.

4 Comments on nonperturbative decays

A simple harmonic universe that is stable at the linear and nonlinear level may still be

vulnerable to nonperturbative decays on exponentially long timescales [4]. An interesting

example of such a process was found by Mithani and Vilenkin [8, 9], who used the effective

potential of the scale factor to construct an instanton that mediates tunneling to zero size.

Here we wish to add a few comments on this decay channel and show how it can potentially

be avoided using well-controlled corrections that become important at short scales.

The main point is that the endpoint of the instability is singular and both its amplitude

and its existence may be sensitive to the physics operating near a ∼ lPl. While [8, 9]

assumed that the effective GR description is valid all the way up to the Planck scale, it

is very plausible that other effects (higher derivative terms, quantum corrections, etc.),

which become important before reaching MPl, will modify the Mithani-Vilenkin instanton.

We will provide a simple example of this, namely the Casimir energy from a collection

of scalar fields associated to the compact S3 of the SHU, in a controlled regime where
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our semiclassical approximation is valid. We will also comment briefly on other possible

decay modes.

Let us begin by reviewing the solution of [8, 9] and then discuss the effects of Casimir

energy from scalar fields. In the minisuperspace approximation, the Wheeler-de Witt

wavefunction for the SHU obeys (ignoring ordering ambiguities)(
− d2

da2
+ V (a)

)
ψ(a) = 0 (4.1)

where

V (a) =

(
3π

2GN

)2

a2

(
Keff −

8πGN
3

(cdw a+ Λa2)

)
. (4.2)

This follows from (2.4) and (2.6).

Setting Keff = 1 and tuning for simplicity parameters {cdw,Λ} so that the Lorentzian

solution is in the static limit astat = 1
ω , the Euclidean Friedmann equations admit the

solution

a(τ) =
1

ω
(1− e−ωτ ) (4.3)

and the Euclidean action is given by

|Sinst| =
∫ ∞

0
dτa[ȧ2 + (ωa− 1)2] =

3

32G2
N |Λ|

. (4.4)

This assumes that (4.2) is valid even for very small values of a. Mithani and Vilenkin

interpret this as a tunneling amplitude to zero scale factor, and check that the amplitude

agrees with the WKB amplitude one calculates from V (a):∫ astat

0

√
V (a)da =

3

32G2
N |Λ|

(4.5)

The solution is singular at the point of vanishing scale factor, and will be sensitive to

the physics resolving the singularity as well as to other sources and corrections which may

become important before reaching a Planckian size. In particular a contribution to the

energy such that δV (a) ∝ an≤0 would lift the minimum of V (a) at zero scale factor and

may prevent the Mithani-Vilenkin process from taking place. It is interesting that for the

SHU there is a very natural contribution of this type, namely the Casimir energy associated

to the compact spatial slices. More specifically, the Casimir contribution from N massive

scalar fields has the right parametrics (and the correct sign, as checked e.g. in [23, 24]) to

accomplish this:

δV (a) ∼
(

3π

2GN

)2

a2

(
8πGN

3

N

a2

)
(4.6)

We have included multiple fields and general Keff so that when the Casimir energy begins

to dominate V (a) at around a ∼
√

8πGNN/Keff , we can still be well within the semi-

classical regime as long as N/Keff � 1. There will also be additional terms containing

time derivatives in the equation of motion; however, when Keff � 1 these will become rel-

evant only closer to the singular point of the Euclidean solution.9 Furthermore, the results

9We thank A. Mithani and A. Vilenkin for calling our attention to these terms, and for sharing with us

their work in progress which further analyzes the effects of Casimir energy and related terms.
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of section 3 imply that the introduction of these additional scalars does not lead to new

linearized instabilities.

In the presence of Casimir energy, there still exists a Euclidean solution interpolating

between the static universe and a = 0.10 This solution has finite action but the instan-

ton has a singular geometry, with a(τ) ∝ τ1/2 as the Euclidean time τ → 0, as long as

Casimir energy dominates. It is therefore not clear that this solution should be allowed.11

The question of which singularities are physical in GR is an important open problem that

requires a theory of quantum gravity. Without such an understanding here, the standard

approach of only path-integrating over smooth configurations implies that this instanton

does not contribute. This illustrates again our main point that discussing the behavior

near a → 0 requires a UV complete theory of gravity, where various new effects are ex-

pected to become important at or before Planckian scales. As another example, higher

order curvature corrections may become important as well, and it would be interesting to

understand which way these can push.

A smiliar set of questions could be asked of the mild curvature singularity appearing in

the solution (4.3); of course, in this case it is also possible to imagine scenarios where this

can be resolved and the decay process can be present. For instance, [8, 9] proposed that

the singularity may be a coordinate singularity from the projection of a higher-dimensional

model [25], in which case the UV completion comes from the physics of the extra dimensions

and need not affect the amplitude of the four-dimensional instanton. The solution can also

be regularized by adding a small amount of dust or radiation, such that the endpoint of

the tunneling process occurs at small but nonzero scale factor; the instanton is no longer

singular, but the amplitude will be nearly unchanged [8, 9, 26].

On the other hand, there may also be other nonperturbative processes that domi-

nate the decay rate. For instance, these may involve black hole nucleation or collapse of

the metastable string and/or wall network. While the rate of these processes is model-

dependent, we would expect them to progress more rapidly than the gravitational decay

modes. It would be interesting to explore the rates and tunabilities of various decay modes

in the context of an explicit model, either in field theory or in string theory.

In any case, we believe that the modification of the SHU that we just described,

together with the seemingly special thermodynamic properties of the static limit, make

it a promising candidate for exploring the theoretical limits on the (meta)stability of an

eternal universe, an issue to which we hope to return in the future.

5 Conclusions and future directions

In this work we have extended the model and results of [4] to allow for solutions with large

hierarchies between the minimum and maximum sizes of the universe, and studied their

stability properties. Stable oscillating universes with a large hierarchy were obtained by

combining a network of frustrated cosmic strings, matter with −1 < w < 1/3, a negative

cosmological constant, and positive curvature. We have found that these cosmologies can

10We thank A. Guth and A. Vilenkin for pointing this out to us.
11As a simpler example, in gauge theories only very special singularities are allowed, such as certain

singular monopoles from ’t Hooft lines.
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be made fully stable at the linearized level, and we ruled out the possibility of parametric

resonances in a large range of parameter space. A point worth stressing once again is

that while for analytic simplicity we have focused on the simple harmonic universe (SHU),

where a frustrated network of domain walls contributes w = −2/3, we expect our results

can be extended to this more general class of models.

The simple harmonic universe could suffer from non-perturbative instabilities, which

would lead to a metastable and exponentially long-lived, though not eternal, universe.

While there are processes that lead to such instabilities [8, 9], we have shown that the

simplest of these can be cured through suitable modifications of short distance physics

that are naturally present in our model. We have not ruled out the possibility of non-

perturbative decay more generally, but it is not yet clear to what extent this question is

model-dependent, and whether the limitations are universal or specific. A broader class

of instabilities may arise from continuous entropy production. While we were unable to

show that these instabilities do not exist in our model, we also could not find concrete

arguments that establish their existence. It would be interesting to further study these

classes of instabilities.

It would also be instructive to develop further a microscopic realization of the simple

harmonic universe, in the context of string theory or even at the level of field theory.

Furthermore, while have not pursued the inclusion of inflation and the hot Big Bang phase

into the simple harmonic universe, it would definitely be interesting to do so. Decays of

the SHU into inflating universes may also lead to new possibilities in the string landscape,

an alternative that we plan to analyze in the future. It would also be worth pursuing more

general questions regarding the structure of GR, in particular whether there are quantum

counterparts of the singularity theorems, or more general notions about the arrow of time

and the definition of entropy in such a setup.

Finally, it is of interest to understand whether an eternal universe may be possible on

general grounds — see [27, 28] for an interesting discussion of spontaneous breaking of time

translation at the classical and quantum level. Recent work arguing for the existence of a

past singularity and a ‘beginning of time’ [8, 9, 29–32] in the context of the universe has

focused on the generation and role of entropy or on the presence of specific decay modes.

It is not clear, however, that these arguments apply to our class of solutions, particularly

in the static limit and with the addition of Casimir energy described in section 4. We hope

that our study of these models will stimulate further discussion of these issues.
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