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1 Introduction

The Green-Schwarz (GS) superstring sigma model corresponding to a consistent 10d super-

gravity background should be one-loop UV finite when considered in conformal gauge and

restricted to on-shell values of background worldsheet fields. This applies, in particular,

to the one-loop partition function of the AdS5 × S5 superstring evaluated on a classical

string solution. Divergences may appear if one first solves for the 2d metric (i.e. starts with

Nambu-Goto-type action) or considers off-shell correlators. Then the computation of the

worldsheet S-matrix near some vacuum such as the one provided by the BMN point-like

string (usually done in a “light-cone” or mixed coordinate-momentum gauge) may not a

priori produce a UV finite result.

Indeed, past attempts of one-loop BMN S-matrix computations led to UV divergent

results. This is puzzling as one would like to provide a perturbative one-loop check of
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formal constructions of BMN vacuum S-matrices in AdSn×Sn×T 10−2n theories1 which are

based on symmetry considerations and general properties (integrability, unitarity, crossing)

and assume that the S-matrix should be UV finite. The aim of the present paper is to

resolve this problem by showing that the one-loop worldsheet S-matrix computed directly

from the superstring action and properly defined to account for non-trivial wave-function

renormalization is indeed UV finite.2

Previous work on one-loop BMN S-matrices in AdSn × Sn × T 10−2n include:

• The near flat space (NFS) limit computations (n = 2, 3, 5) [5–12]

• Constructions based on generalized unitarity (n = 3, 5) [13–15]

• Computations of some finite BMN amplitudes (n = 2, 3) [12, 16].

Below we will present the direct computation of the full near-BMN 2-particle S-matrix

not relying on truncations or assumptions. We will find that the divergences which appear

at intermediate stages may be interpreted as wave-function renormalization of the bosons

and they cancel in the S-matrix defined according to standard rules. Furthermore, there

exists a symmetry-preserving regularization scheme in which the resulting finite S-matrix

matches the (massive sector) S-matrix found previously from symmetries and crossing

considerations for n = 3, 5 theories. In the n = 2 case the perturbative S-matrix agrees

with earlier calculations performed in [12] and the recent suggestion to fix the S-matrix

using symmetries and the Yang-Baxter equation [17].

Let us summarize our main results. We are interested in the S-matrix for scattering

of massive excitations at one loop in the near-BMN expansion. A naive direct calculation

shows that some of the one-loop scattering amplitudes appear to diverge

A(naive)(zz → zz) = infinite , A(naive)(yz → yz) = finite , A(naive)(yy → yy) = infinite .

Here z and y denote theAdSn and Sn bosonic excitations respectively. However, to properly

define the amplitudes and S-matrix one needs to take into account the field (or “wave-

function”) renormalization.3 The latter is computed from the (unrenormalized) one-loop

off-shell two-point functions4

〈zz〉 =
iZz

p2 −m2
+O(g−2) , 〈yy〉 =

iZy
p2 −m2

+O(g−2) . (1.1)

1We focus on these particular examples as they are the simplest to analyze perturbatively, having for

example no cubic interaction vertices. The integrability of the string in these backgrounds was pointed out

in [1–3].
2A finite theory may still require infinite wave-function renormalization, a well known example being

N = 4 super Yang-Mills theory in dimensional regularization, see, e.g., [4] and references there.
3If it were possible to argue that the y2z2 vertices should not be renormalized, then the finiteness

of A(naive)(yz → yz) would imply that the renormalization factors of the z and y fields should obey

ZzZy = finite, i.e. that the corresponding one-loop divergences should have opposite sign.
4The masses will be set to 1 in our conventions but we keep them here for clarity.
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Explicit calculations show that the wave-function renormalization factors are given by

Zz = 1+
1

4πĝ

(
− 2

ε
+ . . .

)
, Zy = 1− 1

4πĝ

(
− 2

ε
+ . . .

)
, ĝ =

{
g for n = 3, 5

2g for n = 2
(1.2)

where g is the string tension (the effective worldsheet coupling is g−1).5 The UV divergence

comes from the tadpole integral∫
d2k

(2π)2
1

k2 −m2
→ i

4π

(
− 2

ε
+ γE + log

m2

4π

)
, (1.3)

where we evaluated the integral in dimensional regularization in 2 − ε dimensions. There

is no independent mass renormalization, which is consistent with the BMN vacuum being

1/2 BPS.

Note that the bosonic field renormalization is of opposite signs for the AdSn and the Sn

excitations. While this may appear at odds with the non-manifest BMN vacuum symmetry,

e.g. [PSU(2|2)]2 for n = 5, all that we can ask is that the S-matrix have this symmetry,

which it does.6 It is also interesting to observe that the results are universal in n assuming

that in the AdS2 case the string tension g is effectively replaced by 2g. A similar effect has

been noticed earlier at one [12] and two [11] loops.7 The two-point function of the fermions

turns out not to get renormalized at the one-loop order.

Taking this wave-function renormalization into account, the scattering amplitudes are

given by8

A(zz → zz) = (
√
Zz)

4A(naive)(zz → zz) ,

A(yz → yz) = (
√
Zy)

2(
√
Zz)

2A(naive)(yz → yz) , (1.4)

A(yy → yy) = (
√
Zy)

4A(naive)(yy → yy) ,

and these are found to be finite, implying that no other (coupling or vertex) renormaliza-

tions are indeed required.

Equivalently, given a field theory with quartic (and higher-point) interaction vertices,

one may start with a Lagrangian with Z-factors introduced for all terms. Requiring the

two-point functions to be finite determines the wave-function Z-factors as in (1.2). Next, re-

quiring that the on-shell four-point function is finite determines the Z-factors in front of the

quartic coupling. In our case their divergent part is given by Zφ1φ2φ3φ4 =
√
Zφ1Zφ2Zφ3Zφ4 .

5We will carry out the calculations in light-cone gauge, which is the special case a = 1/2 of the interpo-

lating a-gauge of [18]. In general, the renormalization factors Zy and Zz may depend on the gauge-fixing

parameter a and, because of absence of a Z2 symmetry between y and z fields, are not expected to be

related by simply changing the sign of the one-loop term.
6It is worth mentioning that, in theories in which symmetries are not manifest or realized only on

shell, fields belonging to the same representation/multiplet may still be renormalized differently without

spoiling the symmetry. An example is provided by N = 4 super Yang-Mills theory where, in a component

formulation, vector and scalar fields have different renormalization factors [4].
7It was slightly hidden there due to the fact that the string tension was called g/2 instead of g.
8For a standard definition of renormalized S-matrix elements see, e.g., [19].
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This structure implies that there is in fact no genuine renormalization of the quartic cou-

plings as this is controlled by the ratio Zφ1φ2φ3φ4/
√
Zφ1Zφ2Zφ3Zφ4 which is finite.9

While this wave-function renormalization renders the S-matrix finite one still has to be

careful with how one regularizes the divergent integrals that appear in intermediate steps:

the regularization should be consistent with underlying symmetries.10 A naive approach

based on computing all integrals in dimensional regularization gives an S-matrix which

differs from the one determined by the symmetries, i.e. this regularization breaks (or at

least gives a different realization of) the symmetries preserved by the BMN vacuum. As

we shall explain below, there is an improved regularization prescription based on first

reducing the one-loop integrals to a few divergent (tadpole) integrals by using algebraic

identities in d = 2 and then computing the latter integrals in dimensional regularization.

This regularization scheme leads to the same one-loop S-matrix as determined by the

symmetries and crossing equations for AdS5×S5 (n = 5) (see, e.g., [23]) and AdS3×S3×T 4

(n = 3) [24] theories. In AdS2 × S2 × T 6 (n = 2) the result is compatible with previous

calculations performed in [12] and the recent derivation of the S-matrix from symmetries

and the Yang-Baxter equation in [17].

This regularization prescription is therefore compatible with the symmetries of the

BMN vacuum and with integrability, at least up to one loop order. It also has the interesting

feature that the massless modes present in the n = 2 and n = 3 cases decouple completely

from the computation of the massive S-matrix, i.e. completely cancel out from internal lines

of one-loop graphs. In that sense the supercoset model appears to be equivalent to the full

superstring as far as the massive one-loop S-matrix is concerned. This feature should no

longer be true at two-loop order (see for example [11]).

The outline of this paper is as follows. In section 2 we shall describe the general

structure of the 10d superstring action to quartic order in fermions. In section 3 we shall

specify to the case of AdSn × Sn × T 10−2n theories and fix the light-cone gauge adapted

to the BMN vacuum. Section 4 describes our regularization procedure. The results for the

one-loop massive sector S-matrix are presented in section 5 with details in appendix B. Ap-

pendix A contains some relations between one-loop integrals. In appendix C we comment

on the computation of the near BMN S-matrix and dispersion relation in conformal gauge.

2 Superstring action

The Green-Schwarz superstring action can be expanded in powers of fermions (here g

denotes the string tension)

S = g

∫
d2ξ (L(0) + L(2) + . . .) . (2.1)

In the AdS5 × S5 case it is known to all orders in fermions [25] due to the background

being maximally supersymmetric. However, in a general 10d supergravity background it

9This is consistent with the corresponding beta-function being zero since it is determined in terms of

the same ratio Zφ1φ2φ3φ4/
√
Zφ1Zφ2Zφ3Zφ4 .

10Equivalently, preservation of symmetries (including hidden ones related to integrability) may require a

particular choice of finite counterterms, see, e.g., [20–22] for the complex Sine-Gordon theory example.
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is only known to quartic order [26]. The purely bosonic terms in the Lagrangian are

L(0) =
1

2
γijei

aej
bηab +

1

2
εijB

(0)
ij , γij =

√
−hhij , (2.2)

where we denote the bosonic vielbein pulled back to the worldsheet by ei
a (a = 0, . . . , 9; i =

0, 1) and B
(0)
ij = ei

aej
bB

(0)
ab is the lowest component in the Grassmann parameter Θ-

expansion of the NSNS two-form superfield B. For the terms involving fermions we will

follow [26] and write the expressions appropriate to type IIA supergravity, i.e. Θα will be

a 32-component Majorana spinor. At the end we will describe how to get the type IIB

expressions by performing some simple substitutions.

The terms quadratic in fermions take the form

L(2) =
i

2
ei
a ΘΓaK

ijDjΘ , Kij = γij − εijΓ11 , (2.3)

where

DΘ =

(
d− 1

4
ωabΓab +

1

8
eaMa

)
Θ , Ma = Habc ΓbcΓ11 + SΓa . (2.4)

Here ωab is the spin connection, H = dB is the NSNS three-form field strength and the

RR fields enter the action through the bispinor11

S = eφ
(

1

2
F

(2)
ab ΓabΓ11 +

1

4!
F

(4)
abcdΓ

abcd

)
. (2.5)

The quartic fermionic terms are somewhat more complicated [26]

L(4)=−1

8
ΘΓaDiΘ ΘΓaK

ijDjΘ+
i

24
ei
a ΘΓaK

ijMDjΘ+
i

192
ei
aej

b ΘΓaK
ij(M+M̃)SΓbΘ

+
1

192
ei
cej

d ΘΓc
abKijΘ (3ΘΓdUabΘ− 2ΘΓaUbdΘ)

− 1

192
ei
cej

d ΘΓc
abΓ11K

ijΘ (3ΘΓdΓ11UabΘ + 2ΘΓaΓ11UbdΘ) . (2.6)

Here M̃ = Γ11MΓ11 and we defined

Mα
β=Mα

β+M̃α
β+

i

8
(MaΘ)α (ΘΓa)β−

i

32
(ΓabΘ)α (ΘΓaMb)β−

i

32
(ΓabΘ)α (CΓaMbΘ)β,

Mα
β=

1

2
ΘTΘ δαβ −

1

2
ΘΓ11TΘ (Γ11)

α
β + Θα (CTΘ)β + (ΓaTΘ)α (ΘΓa)β, (2.7)

T =
i

2
∇aφΓa +

i

24
Habc ΓabcΓ11 +

i

16
ΓaSΓa , (2.8)

Uab=
1

4
∇[aMb] +

1

32
M[aMb] −

1

4
Rab

cd Γcd . (2.9)

The dilatino equation is Tξ = 0 while the integrability condition for the gravitino equation

is Uabξ = 0, where ξ is a Killing spinor [26, 27].

11Here φ is the dilaton and we use the convention F (n) = 1
n!
dxmn ∧· · ·∧dxm1Fm1...mn for the form fields.
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To find the corresponding type IIB string expressions the 32-component Majorana

spinor Θα should be replaced by a doublet of 16-component Majorana-Weyl spinors

Θα1,Θα2. Similarly, the 32× 32 Dirac matrices are replaced by the 16× 16 ones as follows

Γa → γa , Γ11 → σ3 , (2.10)

with one exception: Γ11T → −σ3T . Finally, instead of the bispinor S defined in (2.5) one

should use the expression appropriate to the type IIB theory12

S = −eφ
(
iσ2γaF (1)

a +
1

3!
σ1γabcF

(3)
abc +

1

2 · 5!
iσ2γabcdeF

(5)
abcde

)
. (2.11)

With these replacements all the previous expressions apply also for the superstring in a

type IIB supergravity background.

The superstring action simplifies in the cases we are considering in this paper as all

RR background fields are constant (and there is no NSNS flux, Habc = 0)13

AdS5×S5 : F (5)=4e−φ(ΩAdS5 + ΩS5) ,

AdS3×S3×T 4 : F (4)=2e−φdx9 ∧ (ΩAdS3 + ΩS3) , (2.12)

AdS2×S2×T 6 : F (2)=e−φΩAdS2 , F (4)=−e−φΩS2∧
(
dx5∧dx4+dx7∧dx6+dx9∧dx8

)
Here the AdSn and Sn radii are set to be 1. We also find from (2.5), (2.11) and (2.8)

AdS5 × S5 : S = −4iσ2γ01234 , T = 0 ,

AdS3 × S3 × T 4 : S = −4P16Γ0129 , T = − i
2

Γ0129(1− P16) ,

AdS2 × S2 × T 6 : S = −4P8Γ01Γ11 , T =
i

2
Γ01Γ11(1− P8) ,

(2.13)

where we have defined the following three projection operators, with the dimension of the

subspace they project on, i.e. the number of supersymmetries preserved by the background,

indicated

P16 =
1

2
(1 + Γ012345) , P8 =

1

4
(1− Γ4567 − Γ4589 − Γ6789) . (2.14)

We will take the metric of AdSn in the form

ds2AdSn = −
(

1 + 1
2 |zI |

2

1− 1
2 |zI |2

)2

dt2 +
2|dzI |2

(1− 1
2 |zI |2)2

I = 1, . . . , (n− 1)/2 , (2.15)

where the spatial coordinates are grouped together into two complex coordinates in AdS5,

one in AdS3 and one real coordinate x1 =
√

2z in AdS2. Similarly, the Sn metric is

ds2Sn =

(
1− 1

2 |yI |
2

1 + 1
2 |yI |2

)2

dϕ2 +
2|dyI |2

(1 + 1
2 |yI |2)2

I = 1, . . . , (n− 1)/2 . (2.16)

Again, we use x2 =
√

2y for the real coordinate in S2.

12Here σn are Pauli matrices. For more details and definitions of the gamma-matrices see [26].
13We follow the conventions of [27]. Note that for the AdS2 and AdS3 case we give the fluxes of the type

IIA solution. The corresponding type IIB solution is obtained by T-duality in a torus direction. For the

AdS5 case the full superstring action is known in the form of a supercoset model [25]. This supercoset model

coincides with the GS action described above up to quartic order in Θ provided the coset representative is

chosen as g = ex
mPmeΘαQα [28]. Since we will need the Θ6-terms for the one-loop S-matrix in the fermionic

sector we will use the supercoset model for our calculations in this case.
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3 Near BMN expansion of the AdSn × Sn × T 10−2n string action

Given the form of the background fields we can now expand the string action around the

BMN vacuum t = ϕ = τ [29]. We shall fix the light-cone gauge and the corresponding

kappa symmetry gauge as

x+ ≡ 1

2
(t+ ϕ) = τ , Γ+Θ = 0 , (3.1)

where the complete gauge fixing also includes the conditions

p+ ≡ −1

2

∂L
∂ẋ−

= 1 ,
∂L
∂x−′

= 0 . (3.2)

In this gauge the worldsheet metric in (2.2) takes the form γij = ηij+ γ̂ij , where γ̂ij denotes

higher order corrections to be determined from the above conditions.14

Next, let us consider the near BMN expansion of the action, i.e. in powers of the

transverse coordinates and fermions. Scaling all transverse fields with a factor g−1/2 yields

L = L2 +
1

g
L4 +

1

g2
L6 + . . . ,

where the subscript denotes the number of transverse coordinates in each term. Note that

only terms with an even number of fields appear in the expansion. This fact simplifies the

perturbative expansion in the AdSn×Sn case compared to more complicated backgrounds.

The quadratic Lagrangian L2 takes the form15

L2 = |∂izI |2 − |zI |2 + |∂iyI |2 − |yI |2 + |∂iuI′ |2 + iχ̄rL∂−χ
r
L + iχ̄rR∂+χ

r
R − χ̄rLχrR − χ̄rRχrL

+ iχ̄r
′
L∂−χ

r′
L + iχ̄r

′
R∂+χ

r′
R . (3.3)

The field content of the n = 5, 3, 2 theories is summarized in table 1 and the U(1) charges

are summarized in tables 2–4. For the interaction terms we will only give the bosonic terms

quartic in fields due to the length of the expressions:

LB4 =
1

2
(|yI |2 − |zI |2)

(
|∂0zI |2 + |∂1zI |2 + |∂0yI |2 + |∂1yI |2 + |∂0uI′ |2 + |∂1uI′ |2

)
+ |zI |2|∂izI |2 − |yI |2|∂iyI |2 . (3.4)

4 Regularization procedure

For the AdSn × Sn × T 10−2n backgrounds under consideration the string Lagrangian ex-

panded near the BMN vacuum contains fourth and sixth order interaction vertices. The

one-loop contribution to the two-point function comes from tadpole diagrams with topology

(4.1)

14The Virasoro constraints can be used to solve for x− whose explicit form we will not need here.
15Here ∂± = ∂0 ± ∂1 and massless modes have a primed index.
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m = 1 m = 0

AdS Sphere Fermions Torus Fermions

AdS5 × S5 z1, z2 y1, y2 χ1,2,3,4 — —

AdS3 × S3 × T 4 z1 y1 χ1,2 u1, u2 χ3,4

AdS2 × S2 × T 6 x1 x2 χ1 u1, u2, u3 χ2,3,4

Table 1. Summary of the field content. All fields are complex except (x1, x2) =
√

2(z, y) in the

AdS2×S2×T 6 case. The massive fields (m = 1) come from the supercoset model while the massless

ones (m = 0) are only present in the full 10d superstring theory.

y1 y2 z1 z2 χ1 χ2 χ3 χ4

U(1)1 −1 0 0 0 −1/2 1/2 1/2 1/2

U(1)2 0 −1 0 0 1/2 −1/2 1/2 1/2

U(1)3 0 0 −1 0 1/2 1/2 −1/2 1/2

U(1)4 0 0 0 −1 1/2 1/2 1/2 −1/2

Table 2. Summary of U(1) charges for AdS5 × S5.

y1 z1 u1 u2 χ1 χ2 χ3 χ4

U(1)1 −1 0 0 0 −1/2 1/2 1/2 1/2

U(1)2 0 −1 0 0 1/2 −1/2 1/2 1/2

U(1)3 0 0 −1 0 1/2 1/2 −1/2 1/2

Table 3. Summary of U(1) charges for AdS3×S3×T 4. The U(1)’s associated to T 4 are compatible

with the fluxes in (2.12) assuming u1 = 1√
2
(x6 + ix7) and u2 = 1√

2
(x8 + ix9).

x1, x2 u1 u2 u3 χ1 χ2 χ3 χ4

U(1)1 0 −1 0 0 −1/2 −1/2 1/2 1/2

U(1)2 0 0 −1 0 −1/2 1/2 −1/2 1/2

U(1)3 0 0 0 −1 −1/2 1/2 1/2 −1/2

Table 4. Summary of U(1) charges for AdS2×S2×T 6. The U(1)’s associated to T 6 are compatible

with the fluxes in (2.12) assuming u1 = 1√
2
(x4 + ix5), u2 = 1√

2
(x6 + ix7) and u3 = 1√

2
(x8 + ix9).

while the contribution to the four-point function comes from the three (s, t and u-channel)

bubble diagrams

+ + (4.2)

– 8 –
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and one tadpole diagram arising from the sixth order interaction term

(4.3)

We will now describe how we evaluate these.

In the calculation of the one-loop Feynman diagrams involving only massive fields one

encounters the following bubble integrals, corresponding to the diagrams in eq. (4.2),

Br,s(P ) ≡
∫

d2k

(2π)2
kr+k

s
−

(k2 −m2)((k − P )2 −m2)
, (4.4)

where P is a combination of the external momenta, and also the tadpole integrals (corre-

sponding to eq. (4.3))

T r,s(P ) ≡
∫

d2k

(2π)2
kr+k

s
−

(k − P )2 −m2
. (4.5)

Many of these integrals are UV-divergent and need to be regularized. For the two-point

function determining the wave function renormalization we only have a tadpole contribution

in eq. (4.1) which we simply evaluate in dimensional regularization.

Given a sum of loop integrals one has several options to evaluate it. One may simply

introduce Feynman parameters and evaluate the integrals one by one in, e.g., dimensional

regularization. In the presence of power-like divergences this is typically dangerous as

dimensional regularization amounts to an uncontrolled subtraction of such divergences

which may include finite terms as well. A safer alternative is to employ the reduction to

master integrals. In this approach one uses algebraic identities as well as identities valid

only after integration to express the original regularized integrals as linear combinations

of a smaller set of integrals which are in some sense linearly independent (e.g. they do not

have overlapping branch cuts). For the same reason as before, use of integral identities for

dimensionally-regulated power-divergent integrals may lead to an uncontrolled elimination

of finite terms with rational momentum dependence. Here we will use a variant of this

approach which makes use of only algebraic identities and is similar in spirit to what is

sometimes called “implicit regularization”. It proceeds in the following steps:16

1. Use algebraic identities on the integrands to reduce the result to a minimal set of

divergent integrals, in our case tadpole integrals.17

2. Evaluate these in a suitable regularization scheme consistent with the algebraic iden-

tities used in the first step and the symmetries we want to preserve; in our case this

regularization is dimensional regularization.

16A similar procedure was used in [16] but tadpoles were written in terms of bubbles instead of the other

way around. We have checked that our present procedure does not change any of the results obtained there.
17There is typically no standard choice for this set of integrals. One simply has to find (if possible) a set

which leads to a result compatible with the symmetries one wants to preserve. Note also that we do not

allow shifts of loop variables as this can be problematic in divergent integrals.
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Let us now apply this procedure to the integrals appearing in the problem of two-particle

scattering. The first step will be to use the identity k+k− = k2 −m2 +m2, which implies

Br,s(P ) = T r−1,s−1(P ) +m2Br−1,s−1(P ) . (4.6)

This allows us to reduce all relevant bubble integrals to the following set

Br,0(P ) , B0,s(P ) , r, s = 0, 1, 2, 3 . (4.7)

These are still (potentially) divergent18 for r, s ≥ 2 so we want to reduce them further.

This can be done by using the identity

1

(k − P )2 −m2
=

1

k2 −m2
+

2k · P − P 2

((k − P )2 −m2)(k2 −m2)
, (4.8)

which implies

P−B
r+1,s(P ) + P+B

r,s+1(P ) = T r,s(P )− T r,s(0) + P 2Br,s(P ) . (4.9)

Combining this with the previous identity (4.6) we can reduce all bubble integrals to B00

and B01, which are finite without any regularization, and tadpole integrals.

So far we have used only algebraic identities and made no shifts in loop variables. The

next step is to note that since B01 is finite we are allowed to shift the integration variable.

Making the shift k → −k + P gives

B01(P ) =
1

2
P−B

00(P ) . (4.10)

We now note the important fact that for this identity to be consistent with eq. (4.9) for

(r, s) = (0, 0) we must have

T 00(P )− T 00(0) = 0 , (4.11)

i.e. we should be allowed to shift the loop variable in the T 00 tadpole integral. It is then

consistent to also allow shifts of loop variables in other tadpole integrals19 which reduces

them further to an even smaller set.

In the end we are left only with B00(P ), T 11(0) and T 00(0) (see appendix A). The two

tadpole integrals T 11(0) and T 00(0) can be computed in dimensional regularization which

respects (4.11) and the remaining bubble integral B00(P ) is manifestly finite.20

Let us note that the fact that computing all integrals in dimensional regularization

(without using any algebraic identities) gives a different answer can be seen by looking, for

18In a Lorentz-invariant regularization scheme such as dimensional regularization they are finite. Here,

however, we are not interested in preserving Lorentz invariance but rather a non-relativistic symmetry of

the BMN vacuum.
19We could of course instead just compute them directly in dimensional regularization.
20One reason for using dimensional regularization in this last step is that it removes the quadratic diver-

gence in T 11(0). This quadratic divergence appears not to be consistent with the symmetries of the BMN

vacuum. In general, there may be additional quadratically divergent terms coming from the measure and

local field redefinition factors, and use of dimensional regularization allows us to ignore them too.

– 10 –



J
H
E
P
0
8
(
2
0
1
4
)
1
6
0

example, at T 01(P ) which is linearly divergent. In dimensional regularization we can shift

the loop variable to get

T 01(P ) = T 01(0) + P−T
00(0) = P−T

00(0) . (4.12)

On the other hand, we could use the algebraic identities (4.9) and (4.6) to write

T 01(P ) = P−T
00(P ) + P+B

02(P ) +

(
m2 − 1

2
P 2

)
P−B

00(P ) . (4.13)

The right hand sides in these two expressions are not equal in dimensional regularization

— they differ by rational terms coming from B02(P ).21 We find it natural to require that

algebraic identities should always hold and only allow shifts in loop momenta when it is

consistent with this requirement.

In the AdS3 × S3 × T 4 and AdS2 × S2 × T 6 cases we also have massless modes in

the near-BMN action which means that we will have integrals of the form (4.4) and (4.5)

with m = 0. Note that no bubble integrals involving different masses appear in one-loop

diagrams contributing to the two-particle S-matrix with all massive external states.22

The integrals which appear can be reduced in the same way as described above (using

essentially the same identities). We shall treat IR-divergent integrals by introducing a

small regulator mass. In the end it turns out that the massless modes give no contribution

and thus could be truncated away from the beginning, i.e. the supercoset sigma model

gives the full answer for the massive S-matrix even though it is not in general equivalent

to the full superstring theory (at least not in the AdS2×S2×T 6 case where the supercoset

model cannot be obtained by kappa symmetry gauge-fixing of the full 10d superstring

action though it is a consistent classical truncation [3]).

This decoupling of the massless modes only holds in the regularization described above,

i.e. is not true in general. For example, if one computes the S-matrix in the near-flat-

space limit one gets the correct result by just using dimensional regularization but in that

regularization the massless modes give a non-vanishing contribution (see, for example, [12]).

If one used the regularization described above one would find again that they decouple,

with the final result still being the same.

5 One-loop massive sector S-matrix

Having established the notation and the regularization scheme we now turn to the pertur-

bative computation of the worldsheet S-matrix,

S = 1+ iT, T =
1

g
T

(0) +
1

g2
T

(1) +O(g−3) , (5.1)

21The integral B02(P ) contains a divergence which happens to be a total derivative. In dimensional

regularization this term gives no contribution but in a regularization which keeps surface terms it will

contribute additional rational terms. This is the origin of the regularization ambiguity.
22Bubble integrals with one massive and one massless internal propagator appear in the calculation of

the two-point function of massive fields in conformal gauge discussed in appendix C.2.
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where the superscripts (0) and (1) denote the tree-level and one-loop contributions, respec-

tively. The T-matrix maps a two-particle in-state to a corresponding two-particle out-state

T|A(p)B(q)〉 = TCDAB |C(p)D(q)〉 , (5.2)

where the capital letters denote any type of bosonic or fermionic excitation. We will ignore

the imaginary terms in TCDAB since they are completely determined in terms of tree-level

amplitudes via the optical theorem and are not sensitive to regularization. Furthermore,

for an integrable system in two dimensions the energy-momentum conservation implies

that the outgoing momenta are at most a permutation of the incoming momenta p and q.

The specific in- and out-states that we will consider consist of massive bosonic and

fermionic excitations. For the n = 5 or n = 3 theories where the worldsheet fields are

complex, we will denote the two-particle asymptotic states as

|zI±(p)zJ±(q)〉 , |zI±(p)yJ±(q)〉 , |zI±(p)χr±(q)〉 , |yI±(p)χr±(q)〉 , |χr±(p)χs±(q)〉 , (5.3)

where r, s = 1, . . . , 4 or r, s = 1, 2, I, J = 1, 2 or I, J = 1 and the ± subscript refers to

the U(1) charge of a particle (see tables 2 and 3). For the n = 2 theory, on the other hand,

we have real bosons and the relevant states will be denoted as

|xk(p)xl(q)〉 , |xk(p)χ1
±(q)〉 , |χ1

±(p)χ1
±(q)〉 , k, l = 1, 2 . (5.4)

Having set up the notation let us now present the results of the computations. We will start

with the n = 5 case where we will first compute the amplitudes directly, without imple-

menting the wave function renormalization (1.2), and then show how the UV divergences

cancel in the properly defined S-matrix elements (1.4).

5.1 AdS5 × S5

Let us start with processes where we scatter z and y particles separately. Evaluating the

amplitude, which is given by a sum of the topologies (4.2) and (4.3) we get

T|zI±(p)zI±(q)〉 = `z1|zI±(p)zI±(q)〉, T|yI±(p)yI±(q)〉 = `y1|y
I
±(p)yI±(q)〉 , (5.5)

`z1 = −1

g
l1 +

1

g2

(
2ΘHL +

1

2π
γ(ε)l1

)
, `y1 =

1

g
l1 +

1

g2

(
2ΘHL +

1

2π
γ(ε)l1

)
, (5.6)

where l1 is the corresponding tree-level amplitude, ΘHL is the one-loop contribution cor-

responding to the well known Hernandez-Lopez phase [30, 31] and

γ(ε) = −2

ε
+ γE − log 4π . (5.7)

The terms with γ(ε) are arising from the integral (1.3) evaluated in dimensional regular-

ization. For the explicit representation of the HL phase term in our conventions see (B.2).

As was mentioned above, we are ignoring imaginary terms in `z1, `
y
1.

Implementing the wave-function renormalization (1.2) we see that the above ampli-

tudes become finite. At the same time, the scattering amplitude mixing equal numbers of
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z and y particles also remains finite as the contributions from the wave-function renormal-

ization cancel each other out. Indeed, we find

T|zI±(p)yJ±(q)〉 = `2|zI±(p)yJ±(q)〉+fermions , `2 = −1

g
l2 +

1

g2
2ΘHL . (5.8)

For the scattering amplitudes involving two fermions in the final state we get

T|zI±(p)zI∓(q)〉 =

4∑
r=1

`r3,z|χr±(p)χr∓(q)〉+ . . . , (5.9)

T|yI±(p)yI∓(q)〉 =
4∑
r=1

`r3,y|χr±(p)χr∓(q)〉+ . . . , (5.10)

`r3,z =

(
− 1

g
l3 +

1

g2
1

4π
γ(ε)l3

)
δI+2,r , `r3,y =

(
1

g
l3 +

1

g2
1

4π
γ(ε)l3

)
δIr . (5.11)

The fermions should not be renormalized (as implied by the off-shell finiteness of the two-

point functions of fermions), and taking into account the wave-function renormalization of

the bosons the corresponding S-matrix elements become finite.

In order to provide a further consistency check of our regularization method, let us

consider a few more amplitudes. For example, for the diagonal scattering

T|zI±(p)χr±(q)〉I+2=r=̀
zχ
4 |z

I
±(p)χr±(q)〉+. . . , T|yI±(p)χr±(q)〉I=r = `yχ4 |y

I
±(p)χr±(q)〉+. . . ,

T|zI±(p)χr±(q)〉I+26=r=̀
zχ
5 |z

I
±(p)χr±(q)〉+. . . , T|yI±(p)χr±(q)〉I 6=r = `yχ5 |y

I
±(p)χr±(q)〉+. . . ,

we find

`zχ4 = −1

g
l4 +

1

g2

(
2ΘHL +

1

4π
γ(ε)l4

)
, `yχ4 =

1

g
l4 +

1

g2

(
2ΘHL +

1

4π
γ(ε)l4

)
, (5.12)

`zχ5 = −1

g
l5 +

1

g2

(
2ΘHL +

1

4π
γ(ε)l5

)
, `yχ5 =

1

g
l5 +

1

g2

(
2ΘHL +

1

4π
γ(ε)l5

)
, (5.13)

which again correspond to finite S-matrix elements after renormalization of only bosonic

legs.

This also implies that all two-fermion scattering amplitudes should be finite at one-

loop level. To check this explicitly the superstring action to sixth order in fermions is

needed. In the AdS5 × S5 the action is given by the supercoset construction to all orders

in fermions (see e.g. [23]). After some work we indeed find a finite result

T|χr±(p)χs±(q)〉 = `rs6 |χr±(p)χs±(q)〉+ . . . , `rs6 = −1

g
l6(1− δrs) +

2

g2
ΘHL . (5.14)

Here r, s = 1, 2 or 3, 4 and the Kronecker delta indicates that only scattering with different

fermionic flavors have a non-zero tree-level term.23

To summarize, taking the wave-function renormalization (1.2) into account the one-

loop contributions to the diagonal S-matrix elements are finite and completely captured

by the HL phase term:

`z1 = −1

g
l1 +

2

g2
ΘHL, `y1 =

1

g
l1 +

2

g2
ΘHL, `2 = −1

g
l2 +

2

g2
ΘHL

23For scattering processes with r = 1, 2 and s = 3, 4 the tree-level amplitudes vanish identically.
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`zχ4 = −1

g
l4 +

2

g2
ΘHL, `yχ4 =

1

g
l4 +

2

g2
ΘHL, `zχ5 = −1

g
l5 +

2

g2
ΘHL,

`yχ5 =
1

g
l5 +

2

g2
ΘHL, `rs6 = −1

g
l6(1− δrs) +

2

g2
ΘHL . (5.15)

Additional imaginary parts of S-matrix elements, which as mentioned in the beginning of

section 5 we ignored in our calculation, may be restored through the optical theorem. Also,

the renormalized off-diagonal elements are

`r3,z = −1

g
l3δI+2,r , `r3,y =

1

g
l3δIr . (5.16)

The off-diagonal amplitudes are finite and the one-loop contribution is purely imaginary,

i.e. fully determined via unitarity by tree-level amplitudes. All the resulting amplitudes

are in complete agreement with the predictions (see, e.g., [23])24 coming from symmetries

and integrability.

5.2 AdS3 × S3 × T 4

For AdS3 × S3 × T 4 we will for simplicity restrict consideration to purely bosonic in- and

out-states and we will implement the wave-function renormalization (1.2) from the start.

Here we have, in total, one transverse (complex) boson in AdS3 and one in S3. Looking at

processes not mixing the two we get25

T|z1±(p)z1±(q)〉 = `z1|z1±(p)z1±(q)〉, T|y1±(p)y1±(q)〉 = `y1|y
1
±(p)y1±(q)〉 ,

`z1 = −1

g
l1 +

2

g2
Θ±± , `y1 =

1

g
l1 +

2

g2
Θ±± , (5.17)

where the phases Θ++ = Θ−− and Θ+− = Θ−+ are the two BOSST [32–35] phases,

see (B.4).

For scattering of bosonic particles with opposite U(1) charges we find

T|z1±(p)z1∓(q)〉 = `z2|z1±(p)z1∓(q)〉+ . . . , T|y1±(p)y1∓(q)〉 = `y2|y
1
±(p)y1∓(q)〉+ . . .

`z2 = −1

g
l2 +

2

g2
Θ±∓, `y2 =

1

g
l2 +

2

g2
Θ±∓ , (5.18)

24Their su(2|2)2-covariant fields are related to ours as follows:

Zαα̇ =
1√
2

(
z1

+ z2
−

−z2
+ z1
−

)
, Y aȧ =

1√
2

(
y1

+ y2
−

−y2
+ y1
−

)
,

ηαȧ =
1− i

2

(
χ1
R + χ1

L −χ2
R − χ2

L

χ̄2
R − χ̄2

L χ̄1
R − χ̄1

L

)
, θaα̇ =

1− i
2

(
χ3
R + χ3

L χ̄4
R − χ̄4

L

−χ4
R − χ4

L χ̄3
R − χ̄3

L

)
,

as can be seen by matching the U(1)-charges and comparing the quadratic terms in the action. Note that

the requirement that our fermions have a standard kinetic term breaks the su(2|2)2-covariance and causes

the S-matrix elements involving fermions to take a slightly different form then in [23].
25These amplitudes diverge before field renormalization.
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which is again finite after the wave-function renormalization (1.2). Finally, for processes

mixing the two bosonic coordinates we find26

T|z1±(p)y1∓(q)〉 = `+−3 |z
1
±(p)y1∓(q)〉+ . . . , T|z1±(p)y1±(q)〉 = `++

3 |z
1
±(p)y1±(q)〉+ . . .

`+−3 = −1

g
l3 +

2

g2
Θ±± , `++

3 = −1

g
l3 +

2

g2
Θ±∓ . (5.19)

This amplitude is finite even before using eq. (1.2), as expected from the fact that it mixes

z and y particles.

5.3 AdS2 × S2 × T 6

The difference compared to the n = 5, 3 cases is that here the massive bosons, which we

parameterize with two real coordinates x1 and x2, are neutral under the U(1) symmetries

left after the light-cone gauge fixing.

For the amplitudes with bosonic in-states we find

T|x1(p)x1(q)〉 = `x1
1 |x

1(p)x1(q)〉+ `x1
3 |χ

1
±(p)χ1

∓(q)〉+ . . . ,

T|x2(p)x2(q)〉 = `x2
1 |x

2(p)x2(q)〉+ `x2
3 |χ

1
±(p)χ1

∓(q)〉+ . . . ,

T|x1(p)x2(q)〉 = `2|x1(p)x2(q)〉+ `4|χ1
±(p)χ1

∓(q)〉+ . . . ,

where

`x1
1 = −1

g
l1 +

4

g2
ΘHL, `x2

1 =
1

g
l1 +

4

g2
ΘHL, (5.20)

`x1
3 = −1

g
l3, `x2

3 =
1

g
l3, `2 = −1

g
l2 +

4

g2
ΘHL, `4 = −1

g
l4 . (5.21)

Here we have already implemented the wave-function renormalization (1.2) (which, as was

already mentioned earlier, differs by a factor of 2 from the n = 5, 3 cases).

The mixed BF → BF amplitudes are also finite after wave-function renormalization,

T|x1(p)χ±(q)〉 = `x1
5 |x

1(p)χ±(q)〉 , T|x2(p)χ±(q)〉 = `x2
5 |x

2(p)χ±(q)〉 ,

`x1
5 = −1

g
l5 , `x2

5 =
1

g
l5 . (5.22)

6 Conclusions

We have addressed the long standing question of how to properly compute the one-loop

S-matrix of the AdSn × Sn × T 10−2n superstring around the BMN vacuum. By analyzing

separately the one-loop 1-PI contribution to the two-particle scattering amplitude and

the off-shell one-loop two-point functions of massive fields we demonstrated that the UV-

divergences that appear should be interpreted as wave-function renormalization for the

bosonic coordinates. Once this is taken into account the final expression for the one-loop

S-matrix is UV finite.

26Note that in our conventions y1
+ and z1

+ have the same sign of the charge which differs from the

convention used in [34].
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We have also outlined a regularization scheme which is consistent with the classical

worldsheet symmetries. One-loop computations in this scheme fully reproduce all known

results about the massive S-matrix predicted by symmetries and integrability. For the

n = 2, 3 theories we found that the massless loop contributions to massive two-particle

scattering amplitudes cancel out at one loop order. Thus, somewhat surprisingly, the

massive sector S-matrix of the full superstring coincides with the one obtained from

the AdSn × Sn supercoset sigma-model. Our result lends support to the generalized

unitarity-based prescription of [15] which also leads to a decoupling of massless modes at

one loop for strings in AdS3 × S3 × T 4.

We initiated a comparative study of the light-cone and conformal gauge approaches

to the one-loop S-matrix. While the former is well studied, the latter remains largely

unexplored. A technical problem in conformal gauge is the presence of the unphysical

massless longitudinal modes whose correct treatment remains to be understood. However,

for the SU(2) sector of the S-matrix we found evidence that accounting for the massless

modes should be equivalent to passing from the BDS S-matrix (with no phase) to the

S-matrix dressed with the standard AFS/HL/BES phase.

In conformal gauge the one-loop two-point function for the bosons happens to receive

a finite correction on-shell. This stands in contrast to the vanishing result in the light-cone

gauge and suggests that the symmetries of the BMN vacuum have a different realization in

the conformal gauge. For example, in conformal gauge the worldsheet energy is no longer

related to the target space energy and thus to the spin chain magnon dispersion relation of

the dual gauge theory. The two-dimensional symmetries preserved by the BMN solution

may lead to an extension of the non-local symmetries generated by the Lax connection and

may ultimately determine the exact worldsheet spectrum, perhaps along the lines of [36, 37].

One interesting extension of our work is to the two-loop order of the light-cone gauge-

fixed superstring around the BMN vacuum. A first step in this direction is the computation

of the two-loop correction to the two-point function. Apart from checking the strong

coupling expansion of the magnon dispersion relation, this should give a valuable insight

into the extension of our regularization procedure to higher loops. It should also shed

light on the issue of (non)decoupling of massless modes at higher loops. Unitarity-based

arguments suggest that the massless modes are no longer decoupled at three loops [14] in

the S-matrix. Two-loop dispersion relation calculations in the near flat space limit [11]

suggest that massless modes may not decouple already at the two-loop level.

It would also be very interesting to extend the analysis of this paper to the AdS3×S3×
T 4 superstring with mixed NSNS and RR-flux [38–42]. In [14, 15] the one-loop dressing

phase for this theory was obtained via generalized unitarity methods. It would be very

interesting to reproduce this result from an explicit worldsheet calculation and thus justify

in the mixed flux case the prescription for the treatment of the singular cuts.
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A Reduction of one-loop integrals

Using the identities (4.6) and (4.9) together with the assumption that we are allowed to

shift the loop variable in T rs(P ), we can rewrite the tadpole integrals as

T 12(P ) = P−T
11(0) + P−P

2T 00(0), T 21(P ) = P+T
11(0) + P+P

2T 00(0),

T 11(P ) = T 11(0) + P 2T 00(0), T 01(P ) = P−T
00(0), T 10(P ) = P+T

00(0) . (A.1)

For the bubble integrals27 with only left- or right-moving momenta in the numerator we get

B03(P ) =
P 2
−

2P+

(
P 2 − 3m2

)
B00(P ), B30(P ) =

P 2
+

2P−

(
P 2 − 3m2

)
B00(P ),

B02(P ) = −P−
P+

(
m2 − 1

2
P 2

)
B00(P ), B20(P ) = −P+

P−

(
m2 − 1

2
P 2

)
B00(P ),

B01(P ) =
1

2
P−B

00(P ), B10(P ) =
1

2
P+B

00(P ) . (A.2)

Here we only recorded relations for the integrals that appear in the actual amplitudes

(after using (4.6)).

B Expressions appearing in the light-cone gauge S-matrix

Here we collect the explicit expressions for the amplitudes discussed in section 5. We will

write some amplitudes in terms of ωp =
√
p2 + 1 and p, while others are written in terms

of right-moving momenta p− = ωp − p.

B.1 AdS5 × S5

For the tree-level amplitudes we have:

l1 =
1

2

(p+ q)2

ωqp− ωpq
, l2 =

1

2

(
ωqp+ ωpq

)
, l3 = −1

4

(1−p2−)(1−q2−)
√
p−q−(p−+q−)

, (B.1)

l4 =
1

4

(1−p−q−)(1−q2−)

(p− − q−)q−
, l5 =

1

4

(1+p−q−)(1−q2−)

(p− + q−)q−
, l6 =

1

2

(1−p2−)(1−q2−)

p2− − q2−
.

The one-loop Hernandez-Lopez phase term in our notation is

ΘHL =
1

16π

(1− p2−)2(1− q2−)2(p2− + q2−)

p−q−(p2− − q2−)2
log

p−
q−
− 1

16π

(1− p2−)2(1− q2−)2

p−q−(p2− − q2−)
. (B.2)

27Note that for bubble-type integrals in the light-cone gauge, the two virtual particles always come with

the same mass.
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B.2 AdS3 × S3 × T 4

The tree-level amplitudes are

l1 =
1

2

(p+ q)2

ωqp− ωpq
, l2 =

1

2

(p− q)2

ωqp− ωpq
, l3 =

1

2

(
ωpq + ωqp

)
. (B.3)

The two one-loop phases, written in our notation, are

Θ±± =
1

32π

(1−p2−)2(1−q2−)2

p−q−(p−−q−)2
log

p−
q−
− 1

64π

(p−+q−)(1−p2−)(1−q2−)(1−p−q−)2

p2−q
2
−(p− − q−)

, (B.4)

Θ±∓ =
1

32π

(1− p2−)2(1− q2−)2

p−q−(p− + q−)2
log

p−
q−

+
1

64π

(p− − q−)(1− p2−)(1− q2−)(1 + p−q−)2

p2−q
2
−(p− + q−)

,

which satisfy

Θ±± + Θ±∓ = ΘHL . (B.5)

For the expressions relevant to the AdS2 × S2 × T 6 case we refer to [12].

C Comments on near BMN S-matrix in conformal gauge

While the relation between worldsheet S matrix and gauge theory anomalous dimensions

of “long” operators described by the asymptotic Bethe ansatz is best understood in

a physical light-cone type “mixed” gauge adapted to the BMN vacuum (with p+ or

BMN charge being fixed in a uniform way) it is nevertheless interesting to explore if

a similar relation may be formulated in the conformal gauge. There is a conceptual

problem in establishing such a relation stemming from the fact that, in conformal gauge,

the worldsheet theory has two unphysical (longitudinal) massless modes. Their correct

treatment (should they be integrated out or should they be considered as external states

of the S-matrix, etc.) remains to be understood. In this appendix we shall present results

of some computations that may help clarify these issues.

Our tree-level S-matrix calculations below suggest that, at least in the SU(2) sector,

the correct treatment of the massless modes should be equivalent to passing from the

(strong coupling limit of the) “phaseless” BDS [43] S-matrix to the S-matrix dressed with

the AFS/BES [44, 45] phase.

C.1 Tree-level bosonic S-matrix in the AdSn × Sn × T 10−2n theory

Let us start with fixing the conformal gauge in the string action (2.2)
√
−hhij = ηij (C.1)

and then expand the Lagrangian around the BMN solution x+ ≡ 1
2(t + ϕ) = τ 28 with

x−, zm, ym = 0. To quartic order the bosonic Lagrangian becomes the sum of three terms

LB2 =
1

2
( ∂izm∂

izm + ∂iym∂
iym − z2 − y2 ) (C.2)

28As is well known, the x+ = τ condition cannot be viewed as an analog of flat-space l.c. gauge that fixes

remaining conformal reparametrizations as it does not solve the string equations for generic “transverse”

string coordinates of AdSn × Sn space.
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LB3 = −∂0t zmzm − ∂0φ ymym (C.3)

LB4 = −1

2
∂it∂

it z2 − 1

2
∂iφ∂

iφ y2 +
1

4

[
z2 ∂izm∂

izm − ∂iym∂iym y2 − (z2)2 + (y2)2
]
(C.4)

where z2 ≡ zmzm, etc., and the index m runs over the transverse directions. We choose the

fields to be real to interpolate easily between theories with different dimensions of AdS×S.

Due to the presence of cubic interaction terms involving one massless longitudinal

field, the t-channel contribution to the S matrix is singular on shell. We regularize this

singularity as follows:

1. introduce a small regulating mass (as for one-loop IR-divergent integrals)

2. compute the off-shell four-point Green’s function

3. put the Green’s function on shell and amputate

4. take the regulating mass to zero

The result of this prescription is a finite tree-level S-matrix.

The “transverse” SO(n − 1) × SO(n − 1) symmetry of the Lagrangian as well as the

decoupling of the AdSn and Sn fluctuations in the conformal gauge require that the S-

matrix takes the general form

T|zm(p)zn(q)〉 = (Aδmk δ
n
l +Bδnk δ

m
l + Cδmnδkl)|zk(p)zl(q)〉

T|ym(p)yn(q)〉 = −(Aδmk δ
n
l +Bδnk δ

m
l + Cδmnδkl)|yk(p)yl(q)〉

T|ym(p)zn(q)〉 = 0 . (C.5)

Using the above prescription for the massless modes and a relativistic normalization for

the S-matrix the free coefficients in (C.5) are given by

A = 0 , B = −C = 4pq . (C.6)

With a non-relativistic normalization and with a manifestly solved momentum-conservation

constraint the above coefficients become

A = 0 , B = −C =
4pq

pωq − qωp
. (C.7)

This S-matrix is, of course, consistent with the classical Yang-Baxter equation.

In the case of AdS5 × S5, integrability together with the fact that SO(4) ' SU(2) ⊗
SU(2) require that

T = 1⊗ T + T⊗ 1 , (C.8)

where 1 and T act on SU(2) indices from the decomposition of the two SO(4) factors as

1
cd
ab = δdb δ

c
a , P cdab = δcbδ

d
a . (C.9)

It is not difficult to see that the non-zero entries of T may be written as

T|z(p)z(q)〉 = −
[
B1⊗ 1−B(1⊗ P + P ⊗ 1)

]
|z(p)z(q)〉
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T|y(p)y(q)〉 =
[
B1⊗ 1−B(1⊗ P + P ⊗ 1)

]
|y(p)y(q)〉 . (C.10)

This is indeed consistent with the factorized structure (C.8).

Longitudinal states appear to scatter trivially off the massive states. This may be un-

derstood in two steps. First, the cubic terms may be eliminated by a non-local field redefini-

tion. While potentially worrisome, the effect of the non-locality is only to generate effective

quartic interaction terms between massive fields which correspond to the Feynman graphs

with exchange of longitudinal fields. The second step is to notice that momentum conser-

vation implies that the S-matrix elements following from the quartic terms are proportional

to the dispersion relation for the longitudinal fields and thus vanish on shell. Such trivial

scattering of longitudinal modes may not be unexpected given that for massless fields it is

notoriously difficult to define a consistent scattering theory that has a perturbative regime.

Clearly, the S-matrix (C.5) is different from the one obtained in the “light-cone” a-

gauge [46]. While the latter has nontrivial yz → yz matrix elements, the former does not.

Such matrix elements may be generated at loop level through fermion loops as well as loops

of longitudinal modes. The non-zero matrix elements are also different; while the difference

is proportional to the identity operator, 1⊗ 1, it is not only an overall phase as it affects

differently the scattering of AdS and S fluctuations:

δTz(p)z(q)→z(p)z(q) =
1

2

[
(1− 2a)(pωq − qωp) +

p2 + q2

pωq − qωp

]
1⊗ 1

δTy(p)y(q)→y(p)y(q) =
1

2

[
(1− 2a)(pωq − qωp)−

p2 + q2

pωq − qωp

]
1⊗ 1 . (C.11)

Through generalized unitarity tree-level differences imply [14] that the one-loop S matrix

in conformal gauge is also different from the one-loop S matrix in the a-gauge.

It is interesting to note that, when restricted to the SU(2) sector, the S-matrix (C.5)

is the same as the BDS S-matrix in the small momentum limit. It was suggested in [47, 48]

that the dressing phase may be understood as a consequence of a nontrivial vacuum in the

Bethe equations based on the BDS S-matrix. This may be viewed as a hint that the differ-

ence between the conformal gauge S-matrix and the light-cone gauge S-matrix from the per-

spective of the usual asymptotic Bethe ansatz may be due to a nontrivial choice of vacuum

for the longitudinal excitations once a consistent scattering theory is defined for the latter.

A somewhat similar suggestion was made for the non-transverse excitations of a principal

chiral model on R×S3 [49] and of some conformal sigma models [50]. In our case this inter-

pretation is also supported by the fact that in the presence of the longitudinal fields the mas-

sive fields are potentially unstable, loosing energy by emitting low energy massless quanta.

C.2 One-loop bosonic dispersion relation

Apart from the S-matrix, the other essential ingredient of a Bethe ansatz is the exact dis-

persion relation for the elementary excitations. To one-loop order the quantum corrections

to dispersion relation vanish in the a = 1/2 gauge. As discussed in the main text, comput-

ing the off-shell two-point functions leads to a nontrivial wave-function renormalization. It

is interesting to carry out a similar study in the conformal gauge.
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Let us compute the one-loop two-point function by directly expanding around the

BMN vacuum. We will describe the calculation for the AdS5× S5 case and then comment

on extension to lower-dimensional cases. Apart from the bosonic action to quartic order

given in appendix C.1, we also need terms bilinear in fermions and up to quadratic order

in bosons. They are obtained from the AdS5 × S5 action in section 2 by imposing the

κ-symmetry light-cone gauge Γ+Θ = 0.

There are in principle four graphs contributing to the two-point function of massive

bosons: a bosonic bubble and a tadpole and also a fermionic bubble (which in our case

vanishes identically) and a tadpole. The bosonic and fermionic contributions are separately

divergent off shell, but the divergence is proportional to the classical equation of motion

(p+p−− 1) so they are finite on shell. There is a finite momentum dependent contribution

to the two-point function which arises entirely from the the bosonic bubble graph:

iΠ(1) = 2ε

∫
d2q

(2π)2
q2+ + q2−

q2((q + p)2 − 1)
(C.12)

where ε = ±1 for the transverse AdS and sphere fluctuations, respectively. These integrals,

while logarithmically divergent by power counting, are finite in dimensional regularization.

Evaluating them leads to29

Π(1)(p+, p−) =
ε

4π

p20 + p21
p+p−

(
1− 1− p+p−

p+p−
ln

1− p+p−
p+p−

)
. (C.13)

These expressions are non-vanishing on shell and they lead to a correction to the tree-level

dispersion relation:

ω2 = 1 + p2 +
ε

4πg
(1 + 2p2) . (C.14)

The meaning of this correction and its effect on the symmetries of the S-matrix remain to

be clarified.

To extend the above AdS5 × S5 calculation to other AdSn × Sn × T 10−2n cases we

notice that the only non-vanishing contribution comes from the bosonic bubble graph

whose internal-line field content is uniquely fixed by the choice of the external field. Thus,

we conclude that the same two-point function should appear in all other cases.

Open Access. This article is distributed under the terms of the Creative Commons
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