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1 Introduction

The understanding of the dynamics of SUSY gauge theories was revolutionized in the mid-

1990s due to the seminal work of Seiberg and Intriligator on N = 1 theories [1–3], and

Seiberg and Witten for N = 2 theories [4, 5]. These works show how the interplay of

holomorphy, global symmetries, instantons, anomalies, and monopoles can determine the

IR behavior of a large class of theories. Depending on the amount of matter, these theories

manifest dynamical effects such as gaugino condensation, instanton generated superpo-

tentials, confinement with or without chiral symmetry breaking, IR-free composite gauge

groups, interacting non-Abelian quantum fixed points, monopole condensation as a dual of

confinement, etc.

While the initial work focused on 4D gauge theories, Aharony, Seiberg, Intriligator

and many others extended some of these results to 3D N = 2 theories, where many of the

corresponding phenomena have also been observed [6–24]. There are many reasons why

one would investigate lower dimensional theories. 3D can be a simpler laboratory for more

complicated dynamics in 4D, for example, as a tool for understanding possible mechanisms

for confinement [25, 26]. In fact, a new mechanism for confinement from bion condensation

was proposed [27, 28] and further studied in [29–32]. Since one may generate 3D theories

from the compactification of 4D theories, one can expect that some of their behavior is

reflective of 4D properties. On the other hand, 3D quantum field theories also have novel

elements not found in 4D such as instanton-monopoles, Chern-Simons terms, topological

phases, and real masses [8, 9]. These may have applications to condensed matter systems,

see for example a recent application of 3D mirror symmetry to Fermi surfaces [33].

Over the past year, compelling derivations of many of the results obtained in [8–

11, 16, 20, 21] have emerged [34–36]. A careful sequence of compactification R4 → R3×S1

together with a real mass deformation yields purely three dimensional electric theories and

allows one to determine the magnetic duals in a controlled way.1 The main purpose of this

paper is to take the first step to extend these results to theories with more general matter.

In particular, we focus on the case with antisymmetric tensors. A careful counting of the

fermionic zero modes in instanton backgrounds leads us to conclude that the dimension of

the unlifted Coulomb branch can be larger once representations other than fundamentals

are included. The reason for this is that the charges of the moduli parameterizing the

Coulomb branch are modified in the presence of antisymmetric matter leading to fewer

directions lifted by instanton effects. In the specific example of an SU(4) gauge group

1See appendix D for a self-contained introduction to dimensional reduction of 4D dualities. Also

see [34, 37].
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we identify two unlifted directions: the standard Y direction found in the presence of

fundamental matter fields and a new Ỹ direction arising from the additional splitting of

the Coulomb branch due to massless components of the antisymmetric matter fields —

this direction is related to the unlifted Coulomb branch modulus of SO(6) theories with

vectors. Using this insight we apply the program of [34] to the simplest examples of 4D

models with antisymmetric matter and known 4D dynamics: the s-confining [38–40] SU(4)

gauge theories with either two antisymmetrics and three flavors or one antisymmetric

and four flavors. We find that for the case of two antisymmetrics, the corresponding s-

confining 3D theory with two flavors indeed requires the Ỹ operator in the description

of the IR dynamics. We perform several consistency checks, including the matching of

quantum numbers, reproducing the quantum modified constraints expected for theories on

a circle, and connecting it to theories with fewer flavors, establishing a consistent, intricate

web of IR dynamics of several SU(4) theories with antisymmetric matter and flavors. Our

experience with these theories leads us to speculate on the classification of the Coulomb

branch structure for general s-confining theories in 3D.

The paper is organized as follows. We review the dynamics of the Coulomb branch

for theories with fundamental matter fields in section 2. Section 3 contains a discussion

of the structure of the Coulomb branch in the presence of antisymmetric matter. We

apply the program of [34] to the s-confining SU(4) theories with antisymmetric matter in

section 4 to find the correct low-energy dynamics of those models, and perform various

consistency checks. In section 5 we summarize our expectations for the general behavior

of 3D s-confining theories, and finally conclude in section 6. The appendices introduce 3D

N = 2 SUSY gauge theories (appendices A and B), zero mode counting and the Callias

index theorem (appendix C), and summarize the 3D dynamics of SUSY QCD theories with

various number of flavors (appendix D).

2 Review of Coulomb branch dynamics

We summarize the behavior of the Coulomb branch in the presence of matter representa-

tions; see [8, 9] for thorough reviews. As detailed in appendix A, the 3D vector multiplet

has a scalar component, σ, which has no potential in the absence of additional matter

fields. Thus σ is a flat direction and can be diagonalized by a gauge transformation. The

general scalar VEV can be written as 〈σ〉 = σiHi, where Hi are elements of the Car-

tan subalgebra. This VEV breaks the gauge group to its maximal Abelian subgroup,

e.g. SU(N) → U(1)N−1. In order to remove the leftover gauge redundancy, one must

impose additional constraints. The most common choice is to assume

αk · σ ≥ 0 (k = 1, . . . , rG) , (2.1)

where the αk are the simple roots and rG is the rank of the group. These conditions restrict

σ to a Weyl chamber. Unless otherwise stated, we focus on SU(N), which is broken to

U(1)N−1 in the bulk Coulomb branch. In this case, the Weyl chamber is described by the

subspace

σ = diag(σ1, σ2, . . . , σN ), σ1 ≥ σ2 ≥ · · · ≥ σN . (2.2)

– 2 –
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Yi

〈σ0〉 · να1 = 0

Y ′i

〈σ0〉 · να3 = 0

Ỹ ′i

Higgs Branches

Coulomb Branches

Figure 1. In presence of matter, the Coulomb branches pinch off where they meet Higgs branches.

At these points, σ · να = 0 and there is massless matter.

The eigenvalues σi are not completely independent since σ is traceless, σ1 + · · ·+ σN = 0.

In the absence of matter, the Coulomb branch is a cylinder, R × S1, described by

(N − 1) moduli,

Yi ∼ exp
(
Φ ·αi/g2

3

)
, (2.3)

where g3 is the 3D gauge coupling and αi are the simple roots. Φ is the chiral superfield

whose lowest component contains the dual photon and the scalar σ. It is dual to the

linear superfield that encodes the gauge degrees of freedom, as reviewed in appendix A. In

the remainder of this section we show how this classical picture is modified both by the

presence of matter fields and non-perturbative corrections.

2.1 Coulomb branch pinch from matter

Matter fields, Qi and Q̄i, couple to the lowest component of the vector superfield, σ,

according to

∼
∣∣∣(σaT aQ)αβ Qβi∣∣∣2 , (2.4)

where the T a are group generators in the representation of the Q fields, α and β are gauge

indices, and i is a flavor index. On the Coulomb branch, the scalar VEV is an effective

real mass for the matter fields,∣∣∣〈σaT a〉αβQβi∣∣∣2 ∼ ∣∣〈σ〉 · ναQαi∣∣2 (no sum over α) (2.5)

where να is the weight of the αth vector in the Q representation. Due to this real mass,

the Higgs branch only intersects the Coulomb branch when σ · να = 0.

At these points, the low energy theory is governed by a particular U(1) ⊂ SU(N)

with F massless flavors. When including quantum effects, the Coulomb branch ‘pinches’

and splits into two distinct regions where it intersects the Higgs branch, see figure 1. The

two regions are σ > 0 (R+ × S1) and σ < 0 (R− × S1) [9, 41] and are described by two
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independent operators V ± [9]. We expect similar dynamics to take place in the SU(N)

case at each intersection of the Coulomb branch with a Higgs branch so that the Coulomb

branch splits along this sub-locus with different variables describing either side of each

boundary. The operators V ± are identified with a particular combination of the chiral

operators Yi in (2.3) on the two sides of each singularity.

2.2 Instanton/monopoles, Yi charges, global coordinates

The moduli Yi are not viable global coordinates for the Coulomb branch. This is a conse-

quence of the facts that the Yi are charged under global U(1) symmetries and that these

charges jump at the singularities. To see this, one may compute the charges of the moduli

by counting the fermion zero modes in 3D instanton backgrounds. To that end, note that

3D instanton solutions can be obtained by starting with 4D monopoles and compactify-

ing the Euclidean time coordinate. Thus 3D instantons are simply 4D ’t Hooft-Polyakov

monopoles with the scalar component of the vector superfield σ corresponding to the adjoint

Higgs scalar.2 To emphasize this 4D intuition, we refer to these 3D instantons as instan-

ton/monopole solutions. See appendix C or the original literature [42, 43] for details. We

thus expect a 3D instanton solution associated with each SU(2) subgroup. In particular,

SU(N) has (N −1) independent solutions, one for each SU(2) subgroup. These are labeled

by topological indices (n1, n2, . . . , nN−1) which are the charges of the independent 4D BPS

monopoles.

The operator Yi in (2.3) is associated with the ith fundamental instanton for which

nk = δik. If a fermion charged under a global U(1) has zero modes in this particular

instanton/monopole background, Yi also acquires charges under that U(1). Because the

zero mode counting changes in different Coulomb branch regions, the charges of the Yk
under the global U(1)s change as well. The holomorphic structure is different in each

region and there is no reason to assume that a given Yk is continuous across a singularity.

We therefore conclude that if, for a given index i, the number of zero modes in an nk = δik
instanton/monopole background jumps while crossing from one region to another, the

operator Yi is discontinuous at the pinch and we need two independent operators, Yi and

Y ′i , to describe the Coulomb branch on each side of the pinch.

There exists, however, a set of globally defined operators that parameterize the

Coulomb branch. One such operator is

Y =
N−1∏
i=1

Yi. (2.6)

The continuity of Y introduces an extra constraint among the Yk at each split. The number

of globally defined moduli needed to parameterize the Coulomb branch is determined both

2The same result can be seen from homotopy theory. In 3D, the classification of instantons is based on

π2(G). Since the scalar component of the vector superfield triggers the breaking SU(N) → U(1)N−1, we

expect to find (N − 1) instantons π2(G/U(1)N−1) ∼= π1(U(1)N−1) ∼= ZN−1, which makes the connection to

4D monopoles evident.
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by the number of singularities and the number of moduli whose charges jump at each of

these singularities.3

2.3 Monopole operators

3D gauge theories with U(1) factors have a topological global symmetry, U(1)J , whose

associated conserved current is Ji ≡ ∗Fi = εijkF
jk. See [9, 41] or appendix A for details.

The associated charge is

qJ =

∫
d2x j0

J =

∫
d2x F12. (2.7)

A non-vanishing charge qJ therefore introduces a magnetic flux. Operators that introduce a

magnetic flux through any sphere S2 surrounding a spacetime point x, are called monopole

operators [34, 41, 45–49]. Subject to some subtleties, these monopole operators act on the

vacuum to create BPS vortices — topologically charged states localized at a point.

As explained in appendix A, the photon of any unbroken U(1) is dual to a periodic

scalar, γ. The operator O1(x) ∼ exp [iγ(x)] creates a magnetic flux of charge qJ = 1. The

SU(N) gauge group, on the other hand, is simple and does not contain any U(1) factors.

Monopole operators can only appear on the Coulomb branch where SU(N) is broken to

U(1) subgroups. In particular, we show below that the UV monopole operators are those

that parameterize the un-lifted Coulomb branch directions.

2.4 Non-perturbative corrections

In 3D N = 2 super Yang Mills theories, instanton configurations generate non-perturbative

corrections to the superpotential. The ith fundamental instanton configuration, nk = δik,

contributes [50]

Winst ∼ Y −1
i . (2.8)

The full superpotential is given by the sum over (N − 1) instanton contributions. In the

absence of matter fields, the Coulomb branch is thus completely lifted. A simple way to

understand the origin of this superpotential is to count the fermionic zero modes in the

presence of the instanton [8]. In a pure super Yang Mills theory, each instanton supports

two gaugino zero modes and implies an instanton-generated interaction that is quadratic

in the gauginos. In the effective Lagrangian, such a term arises from the expansion of the

superpotential (2.8) in superspace coordinates.

Light matter fields change the low energy dynamics. Such fields may have zero modes

in instanton configurations. These, in turn, prevent the corresponding superpotential

term (2.8) from being generated and leave a part of the Coulomb branch unlifted [8, 9, 50]

To illustrate this effect, we review the example of 3D SUSY QCD with F flavors of funda-

3This statement requires some care. Even in absence of real masses, Y might not be globally defined in

SU(N) theories with N > 4 and with generic matter representations. Throughout the core of this paper,

Y is continuous and the statement above is true for vanishing real masses. We leave the study of N > 4

for future work [44].
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(M,B, B̄)

σi = 0

I

Q2
jQ̄

i
2

σ2 = 0

II

Q3
jQ̄

i
3

σ3 = 0

III

Q4
jQ̄

i
4

σ4 = 0

Figure 2. In the theory with fundamentals, the Coulomb branch splits at each point where σi = 0.

The total Coulomb branch is composed of (N − 1) regions.

mental matter:

SU(N) U(1)A U(1)B U(1)R

Q � 1 1 0

Q̄ � 1 −1 0

λ adj. 0 0 1

, (2.9)

where we write the global U(1) symmetry charges of the matter superfields Q, Q̄ as well

as the gaugino λ. The flavor quantum numbers are not be relevant for the immediate

discussion.

The Coulomb branch has singularities when a real mass for the matter fields vanishes.

Since the real mass for the ith component of a fundamental is proportional to σi, the

Coulomb branch splits into (N−1) regions, as shown in figure 2. The ith region is defined by

σ1 > . . . > σi > 0 > σi+1 > . . . > σN .

We review the counting of fermion zero modes using the Callias index theorem in ap-

pendix C. Here we present a more intuitive description. Each instanton/monopole solution

is associated with a particular SU(2) subgroup of SU(N), say the ith such subgroup. A

quark decomposes into a doublet and (N − 2) singlets with respect to this subgroup.

On the Coulomb branch, this SU(2) is broken to a U(1) subgroup by the corresponding

adjoint VEV which also sets the size of the instanton,

1

ρimon

=
1

2

∣∣σi − σi+1

∣∣ . (2.10)

The σ VEVs induce a real mass for the SU(2) doublet (Qi, Qi+1) in Q. Since Q is in the

fundamental representation,

mi
eff =

1

2

∣∣σi + σi+1

∣∣ . (2.11)

If the effective doublet mass is larger than the inverse size of the instanton (2.10), then

the quarks do not have zero modes in the ith instanton background. On the other hand,

if the inverse size of the instanton is larger than the effective real mass, each quark has

– 6 –
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ni zero modes, where ni is the instanton charge. For details see, for example, [51]. (2.10)

and (2.11) imply that each fundamental contributes ni zero modes in the ith instanton

background if and only if σi > 0 > σi+1.

This argument applies to any representation with an appropriate generalization

of (2.11), as can be verified by the Callias index theorem. It is important to note that

the number of zero modes depends on the fermion representation. In particular, matter

fields in larger representations may simultaneously have zero modes under different instan-

tons. Carrying out a similar calculation for gauginos, one finds 2ni zero modes under ith

instanton/monopole independent of the size of the σi. Thus there are 2
∑

i ni gaugino zero

modes everywhere on the Coulomb branch.

In summary, the Coulomb branch of an SU(N) theory with F flavors splits into (N−1)

regions and in the ith region, where σi > 0 > σi+1, there are 2Fni zero modes coming from

the fundamental and anti-fundamental fermions, as well 2
∑

i ni gaugino zero modes. Thus

the U(1) charges for the Yk in the ith region are given by

σi > 0 > σi+1 > σi+2 →
U(1)A U(1)B U(1)R

Yk 6=i 0 0 −2

Yi 2F 0 F − 2

(2.12)

We see that the presence of matter zero modes prevents the appearance of the Y −1
i term

and the effective superpotential in the ith region is

W =
∑
k 6=i

1

Yk
. (2.13)

Since this result applies to all values of i, the quantum numbers of some of the Y operators

change at each singularity. In particular, at a singularity defined by σi+1 = 0, two operators,

Yi and Yi+1 are discontinuous and one must introduce two new operators. It is helpful to

illustrate these results for an SU(4) gauge group with F flavors:

Region Zero Modes Coulomb operators W

I σ1 > 0 > σ2 > σ3 > σ4 2Fn1 Y1, Y2, Y3 Y −1
2 + Y −1

3

II σ1 > σ2 > 0 > σ3 > σ4 2Fn2 Ỹ1, Ỹ2, Y3 Ỹ −1
1 + Y −1

3

III σ1 > σ2 > σ3 > 0 > σ4 2Fn3 Ỹ1, Y
′

2 , Ỹ3 Ỹ −1
1 + Y ′−1

2

(2.14)

There are seven distinct Yk operators in total. Four of these operators appear in the

dynamical superpotential and lift parts of the Coulomb branch. The continuity of a globally

defined Y operator imposes two constraints relating the operators. It follows that the

unlifted Coulomb branch is parameterized by a single operator, Y [9].

3 The Coulomb branch with antisymmetric matter

We now take the first steps towards extending the results of the previous section to a

theory that incorporates more general matter representations. Depending on the choice

– 7 –
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of representations, the Coulomb branch may be described by more than a single chiral

operator. We concentrate on a simple example: SU(4) N = 2 SUSY gauge theory with

matter in (anti-)fundamental (Q, Q̄) and antisymmetric tensor representations (A). Many

of our conclusions, however, are general. In this section we do not fix the exact number of

antisymmetrics and fundamental flavors and instead focus on the general properties of the

Coulomb branch in the presence of these two representations.

As explained in the previous section, the number of independent chiral operators which

describe the Coulomb branch depends on the number of pinches that occur when a matter

field becomes massless. As before, we restrict the scalar VEV to a single Weyl chamber:

σ1 ≥ σ2 ≥ σ3 ≥ σ4, and σ1 + σ2 + σ3 + σ4 = 0 . (3.1)

For simplicity we suppress the flavor indices since gauge interactions are flavor diagonal.

The classical vacua satisfy

σαQ
α = 0 −σαQα = 0 (σα + σβ)Aαβ = 0, (3.2)

where α, β ∈ {1, · · · 4} and there is no sum over repeated indices. The Higgs branches

pinch the Coulomb branches at σα = 0 and at σα+σβ = 0. In light of (3.1), the non-trivial

Coulomb branch singularities are σ2 = 0, σ3 = 0 and σ2 + σ3 = 0. The last singularity is

due to the presence of antisymmetric matter. The Coulomb branch splits into four distinct

regions. The Callias index theorem tells us the number of fermion zero modes in each

region and thus determines the nonperturbative contributions to the superpotential and

the number of independent Yi operators. The results are summarized in the section 3.1, with

a detailed derivation given in appendix C. The main result is that the each antisymmetric

tensor provides two additional zero modes: if σ2 + σ3 > 0 the zero modes are in the first

fundamental instanton, while for σ2 + σ3 < 0 they are in the third.4

3.1 Coulomb branch coordinates

The intuitive picture for the zero mode counting works out the same way. For example,

consider the zero modes under the first fundamental instanton/monopole, corresponding

to the SU(2) embedded into the upper left corner of SU(4). The background VEV for the

adjoint can be written as a sum of two contributions:

diag

(
σ1 − σ2

2
,−σ1 − σ2

2
, 0, 0

)
diag

(
σ1 + σ2

2
,
σ1 + σ2

2
, σ3, σ4

)
. (3.3)

the first determines the instanton size while the second is invariant under the SU(2) rota-

tions and contributes to the effective real mass [42, 43, 53]. The antisymmetric of SU(4)

decomposes into two doublets and two singlets. The doublet masses are 1
2(σ1 + σ2) + σ3,4.

Comparing the doublet masses with the inverse instanton/monopole size (2.10) we obtain

the following results:

SU(4) with FA + F
(
� + �

)
4This calculation is performed in a generic background on the Coulomb branch. This is the reason why

the result differs from the zero mode structure in [52], which was calculated assuming a center-symmetric

background instead.
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Region Zero Modes
Coulomb

operators
W

I σ1 > 0 > σ2 > σ3 > σ4 (2F + 2FA)n1 Y1, Y2, Y3 Y −1
2 + Y −1

3

II σ1 > |σ3| > σ2 > 0 > σ3 > σ4 2FAn1 + 2Fn2 Ỹ1, Ỹ2, Y3 Y −1
3

III σ1 > σ2 > |σ3| > 0 > σ3 > σ4 2Fn2 + 2FAn3 Y
′

1 , Ỹ2, Ỹ3 Y ′−1
1

IV σ1 > σ2 > σ3 > 0 > σ4 (2F + 2FA)n3 Y
′

1 , Y
′

2 , Y
′

3 Y
′−1

1 + Y ′−1
2

(3.4)

In regions II and III, the zero modes of the fundamentals and antisymmetrics are

misaligned so that fewer directions are lifted and more than a single operator Y is required

to globally describe the Coulomb branch. Indeed, only four of the nine Yi operators are

lifted. Continuity of the globally defined Y in (2.6) imposes three constraints. We thus

require two operators to describe the Coulomb branch. The first is the usual Y that we

have already introduced. The second is required to describe the novel properties in regions

II and III. One operator that is continuous between those two regions is Ỹ2. However, since

Y itself is already continuous across these regions, a combination of Ỹ2 and Y can also be

used. We demonstrate below that the most useful definition for the second coordinate of

the Coulomb branch is the combination

Ỹ =

√
Y Ỹ2 =

√
Ỹ1Ỹ 2

2 Y3 =

√
Y ′1 Ỹ

2
2 Ỹ3 . (3.5)

This has the correct quantum numbers to be identified with a meson of the dual descrip-

tion.5

The physics of these two variables can be understood as follows. In the presence of

only fundamental matter, the non-perturbative contributions to the superpotential push

the eigenvalues of the adjoint to be as far apart as possible. This leads to as many massless

matter fields as possible with a non-vanishing adjoint and the configuration

Y ↔


σ

0

0

−σ

 . (3.6)

In the presence of antisymmetric tensors, however, the dynamics is somewhat different. The

antisymmetric provides two doublets under the kth SU(2) subgroup corresponding to the

simple root αk. These behave like the doublets from a fundamental representation except

the corresponding adjoint contributions to real masses are replaced by (σi +σk, σi +σk+1),

where i 6= k nor k+ 1, rather than (σk, σk+1) for fundamentals. The effective masses of the

doublets provided by the antisymmetric can be ordered within a Weyl chamber similarly

to the masses of the doublets from a fundamental representation. The argument leading

to (3.6) can then be repeated, except the different structure of the effective real mass leads

5The same operator has been shown to be un-lifted on the Coulomb branch of SO(6) with F vectors [48].
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to a different unlifted direction in the Coulomb branch,

Ỹ ↔


σ

σ

−σ
−σ

 . (3.7)

When both anti-symmetric tensors and fundamentals are present, the un-lifted Coulomb

branch is two dimensional and can be parametrized generically as
σ1

σ2

−σ2

−σ1

 with


Y ↔ diag

(
σ1 − σ2, 0, 0, σ2 − σ1

)
Ỹ ↔ diag

(
σ2, σ2,−σ2,−σ2

) . (3.8)

Since regions I and IV have a zero mode structure similar to the case with only fundamental

matter, those regions are always described by the operator Y . In regions II and III, however,

the antisymmetric wants to align the adjoint into the Ỹ direction.

The arguments presented here are semi-classical. Depending on the specific matter

content of the theory, there may be important additional dynamical effects that modify

the semi-classical picture [54]. In the next section we investigate the dynamics of the SU(4)

theory with one and two antisymmetric tensors. We show that in theories with one anti-

symmetric, only the direction Y is present, suggesting that Ỹ=0. Both Y and Ỹ are needed

to describe the dynamics of theories with two antisymmetric tensors. We show this both

by considering the dimensional reduction of 4D theories with one and two antisymmetric

tensors, and by studying the decoupling of an antisymmetric from a 3D theory with two

antisymmetrics, which sets Ỹ = 0.

As already mentioned above, both Y and Ỹ are the low energy limits of monopole

operators. Such an identification has multiple subtleties. We address them next.

3.2 Dirac quantization condition of the monopole operators

Monopoles are subject to the Dirac quantization condition which restricts the minimal

magnetic charge that can appear in a theory. This, in turn, restricts the form of the

monopole operators that describe the un-lifted Coulomb branch directions. If there are

unbroken non-Abelian subgroups, then magnetic charges smaller than the näıve minimal

value might be allowed, as long as the monopole carries non-Abelian magnetic charge that

is screened at r ∼ Λ−1
confine. This is analogous to the well known case of GUT monopoles,

see e.g. [55]. We therefore need to check that both Y and Ỹ are the appropriate “minimal”

monopole operators allowed by Dirac quantization. In particular, the definition of Ỹ might

raise concerns since the square root would naively imply the presence of a monopole with

a fractional charge.

As it is indicated in (3.8), Y and Ỹ are associated to the breaking SU(4) → SU(2) ×
U(1)1×U(1)2 and SU(4)→ SU(2)×SU(2)×U(1)3 respectively. We can explicitly identify
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the generators of each one of the unbroken U(1)s

Y : Q1 =


1

0

0

−1

 Q2 =


1

−1

−1

1

 , (3.9)

Ỹ : Q3 =


1

1

−1

−1

 , (3.10)

where Qi generates the corresponding U(1)i. While the Y operator is associated to a

monopole operator with a minimal Dirac charge6 under U(1)1, the square root in the

definition of Ỹ in (3.5) suggests that this operator corresponds to half of the minimal

charge and therefore is not allowed [48].

However, as described above, in the presence of unbroken non-Abelian subgroups, the

Dirac quantization condition can be more subtle. We argue that Dirac quantization is, in

fact, obeyed by the state corresponding to the operator Ỹ . The key aspect is that while the

symmetry breaking pattern corresponding to Ỹ is locally SU(4)→ SU(2)× SU(2)×U(1),

there is a non-trivial identification between a discrete U(1) rotation and one of the elements

of the Z2 × Z2 center of SU(2)× SU(2). From the explicit definition above, it is clear that

exp (iπQ3) coincides with the diag(−1,−1−1,−1) element of the center of SU(2)×SU(2). In

such a case, one need not go around the entire U(1) factor to obtain a closed loop; the loop

can be closed by going halfway around and then closing through the Z2 center. In this case

the monopole picks up a discrete magnetic Z2 charge under the SU(2)×SU(2) non-Abelian

group. For cases like this, the proper formulation of the Dirac quantization condition has

been given by Preskill [55]: a magnetic charge is allowed if one can combine the charge

matrix with some of the diagonal non-Abelian generators to obtain the full magnetic charge

matrix M which has only integer elements. In our case the proper choice is

M =
1

2
Q3 + T

(1)
3 + T

(2)
3 =


1

0

0

−1

 . (3.11)

This is in accordance with our definition that the operator Ỹ carries charge 1/2 under Q3.

A more physical way of describing the above argument is to only consider the theory

at large distances. When considering the breaking pattern described by Ỹ , an SU(4)

6The magnitude of the magnetic charge depends on the normalization of the U(1) generators. However,

this normalization also affects the minimal allowed electric charge so that a more meaningful quantity is the

magnetic charge in units of the minimal electric charge. This quantity is independent of the normalization

of the generators.
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fundamental decomposes into a (2, 1) ⊕ (1, 2) under the unbroken SU(2) × SU(2). At low

energies, both of the SU(2)s are still strongly interacting and the only physical states are

composite objects. This requires at least two doublets originating from two fundamentals

under SU(4). The minimal charge under the U(1)3 is thus double the one näıvely given by

a fundamental, and therefore the minimal Dirac charge at low energy is in fact a half of the

näıve result. This provides an additional explanation for the presence of the square root

in the definition of Ỹ . This is similar to the argument that is usually given for why the

fractional electric charges of quarks do not forbid the appearance of a minimally charged

Dirac monopole in GUT extensions of the Standard Model. It is also clear that such

an argument cannot be applied for the breaking associated with Y : when considering a

fundamental, during the breaking of SU(4) to SU(2) × U(1) × U(1), one component of

the fundamental is only charged under the U(1) with the minimal charge. The possible

presence of this state leads to the usual Dirac quantization without any subtleties.

4 Duals of 3D theories with antisymmetrics

We now discuss the dynamics of the 3D SU(4) theories with antisymmetric tensors. First we

consider a 3D N = 2 SUSY gauge theory with two antisymmetric tensors and two flavors.

The corresponding theory in 4D has three flavors and the anomaly-free symmetries:

SU(4) SU(2) SU(3)L SU(3)R U(1) U(1)′ U(1)R

A � 1 1 0 -3 0

Q � 1 � 1 1 2 1
3

Q � 1 1 � -1 2 1
3

(4.1)

It is well-known that this theory is s-confining in 4D [38–40]: it is dual to a theory of

gauge singlets with the following non-trivial superpotential, which is smooth everywhere

including the origin:

Wdyn =
1

Λ7

(
T 2M3

0 − 12THH̄M0 − 24M0M
2
2 − 24HH̄M2

)
(4.2)

where the composite fields have the following charge assignment under the global symme-

tries:

SU(4) SU(2) SU(3)L SU(3)R U(1) U(1)′ U(1)R

M0 = QQ̄ 1 1 � � 0 4 2
3

M2 = QA2Q̄ 1 1 � � 0 -2 2
3

H = AQ2 1 � � 1 2 1 2
3

H̄ = AQ̄2 1 � 1 � -2 1 2
3

T = A2 1 1 1 0 -6 0

(4.3)
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4.1 3D duality for SU(4) with 2 and 2 (� + �)

Based on the rules established in [34] one can obtain a dual pair on R3 × S1 by adding to

the superpotential an ηY term generated by KK monopoles on both sides of the duality.7

In the presence of antisymmetric tensors, this statement requires more care. In a KK

monopole background, matter in a generic representation can provide extra zero modes

and prevent a contribution to the superpotential. It is known that fundamentals have

no zero modes in the KK monopole background but an antisymmetric generically does.

Yet this only happens for SU(N) with N > 4 but not for SU(4). This statement can be

checked in two equivalent ways.

1. One can explicitly compute the number of the antisymmetric zero modes in the KK

monopole configuration using the appropriate index theorem on R3 × S1 [56] which

has been very nicely fleshed out recently by Poppitz and Unsal [53]. The result of the

index theorem counting is that the antisymmetric has no KK monopole zero modes

in any of the four regions.

2. One can exploit the important property of the ordinary SU(N) instanton: compact-

ified on a circle it can be thought of as a composite of the (N − 1) fundamental

instanton/monopoles and the KK monopole [57–62]. Thus the total number of zero

modes in R3 × S1 for all N independent monopole solutions (instanton/monopoles

plus the KK monopole) should match the number of zero modes of the one 4D in-

stanton given by the Atiyah-Singer index theorem. Therefore the number of zero

modes in the KK monopole for a given representation is given by the difference of

the 4D instanton zero modes and the sum of zero modes in the (N − 1) independent

3D instanton/monopoles. The latter can be obtained directly from the 3D Callias

index theorem. We can see from (3.4) that in each of the four regions of the Coulomb

branch, the total number of zero modes of the antisymmetric matches the number of

zero modes in the four dimensional instanton solution. Thus, for SU(4) the antisym-

metric does not have any zero modes in the KK monopole which, in turn, generates

a non-trivial superpotential in each of the 4 regions of the Coulomb branch.

To obtain the pure 3D dual pair one can remove the ηY term by introducing a real mass

term for one flavor. This can be most easily carried out on the dual pair by weakly gauging

the
[
SU(3)L×SU(3)R

]
D
×U(1) subgroup of the global symmetries. One can then introduce

constant scalar backgrounds in the U(1) and along the λ8 direction of the diagonal SU(3) in

such a way that the first two generations remain massless while the third generation quarks

Q3 and Q̄3 acquire real masses mR and −mR respectively. Such a background configuration

breaks the global SU(3)L×SU(3)R×U(1) to SU(2)L×SU(2)R×U(1)1×U(1)2. Furthermore

in the limit mR →∞, the ηY term decouples [34]. Thus on the electric side we flow to an

7In an s-confining theory, such a term is only added to the electric descriptions since there are no

monopoles in the dual (low energy) theory.
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SU(4) gauge theory with no superpotential and the following matter content:

SU(4) SU(2) SU(2)L SU(2)R U(1)1 U(1)2 U(1)′ U(1)R

A � 1 1 0 0 -3 0

Q � 1 � 1 1 0 2 1
3

Q � 1 1 � 0 -1 2 1
3

(4.4)

It is just a 3D SU(4) theory with two antisymmetric tensors and two flavors.

In order to find the effect of these background scalars on the dual we need to carefully

identify their effects on the composites. We find that the following dual fields remain

massless:

M ia
0 → M ia

0 i, a = 1, 2, M 33
0 (4.5)

M ia
2 → M ia

2 i, a = 1, 2, M 33
2 (4.6)

HIi → HI3 (4.7)

H̄Ia → H̄I3 (4.8)

As expected, almost all composites containing a third generation quark or antiquark decou-

ple, except for M33
0 and M33

2 : since the real masses of the quark and the antiquark are of

opposite sign, these fields remain in the spectrum. Using the field identification HI3 ≡ hI ,
H̄I3 ≡ h̄I , M 33

0 ≡ M̃0, M 33
2 ≡ M̃2 we find the low-energy matter content of the dual

theory to be

SU(2) SU(2)L SU(2)R U(1)1 U(1)2 U(1)′ U(1)R

M0 1 � � 1 -1 4 2
3

M2 1 � � 1 -1 -2 2
3

h � 1 1 2 0 1 2
3

h � 1 1 0 -2 1 2
3

T 1 1 0 0 -6 0

M̃0 1 1 1 -2 2 4 2
3

M̃2 1 1 1 -2 2 -2 2
3

(4.9)

with the superpotential (we don’t explicitly write an overall scale needed on dimensional

grounds)

Wdyn = M̃0

(
3T 2 detM0 − 12Thh− 24 detM2

)
+ M̃2

(
2M0M2 + hh

)
(4.10)

Most of the chiral operators in (4.9) and (4.10) are easily identified as meson operators

of the electric theory (4.4), yet for both M̃0 and M̃2 such identification fails. This is not a

new feature. In the SU(N) SQCD case, one of the meson operators of the magnetic theory

is identified with the chiral operator describing the unlifted region of the Coulomb branch

of the electric theory. Such identification is explained in more detail in [34]. We claim
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that similar dynamics takes place in the present case and that the mesons M̃0 and M̃2 are

identified with the Coulomb branch moduli Y and Ỹ of the electric theory:

M̃0 → Y, M̃2 → Ỹ . (4.11)

4.2 Consistency checks of the duality

4.2.1 Matching charges of the Coulomb branch operators

The first check on the proposed duality is simply a matching of the quantum numbers of

the Coulomb branch operators. Using the zero mode counting summarized in table (3.4)

together with the quantum numbers of the elementary fields in (4.4) we can explicitly

compute the charge assignment for the Coulomb branch operators, which correspond to

the global charges carried by the fermionic zero modes in a given one-instanton background.

The resulting charges are

U(1)1 U(1)2 U(1)′ U(1)R

Y1 -2 2 4 14
3

Y2 0 0 0 -2

Y3 0 0 0 -2

Ỹ1 0 0 12 2

Ỹ2 -2 2 -8 2
3

Ỹ3 0 0 12 2

Y ′1 0 0 0 -2

Y ′2 0 0 0 -2

Y ′3 -2 2 4 14
3

Y =
∏
i Yi -2 2 4 2

3

Ỹ =

√
Y Ỹ2 -2 2 -2 2

3

(4.12)

We can see that the charges of Y, Ỹ indeed match with those of M̃0, M̃2 from table (4.9).

4.2.2 Matching the quantum constraints on a circle

The second consistency check is to reproduce the dynamics of the theory on a circle

(R3 × S1). To obtain the description on the circle from 3D theories, we need to add the

contribution of the KK monopole8 (see [57–59] or appendix D). In our model, a calculation

à la Polyakov gives the KK monopole contribution of the form

WKK = ηY ∼ Λ8Y . (4.13)

This modifies the superpotential to

Wdyn = Y
(

3T 2 detM0 − 12Thh− 24 detM2

)
+ ηY + Ỹ

(
2M0M2 + hh

)
(4.14)

8The KK monopole contribution can be lifted by matter zero modes. But, as described in section 4.1,

in the presence of antisymmetric tensors, this only happens for SU(N), with N > 4.
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On the other hand, the theory on the circle can be obtained directly from the 4D description

by compactifying one of the spatial directions both for the electric and magnetic sides of

the 4D duality. It is well-known that the physics of the 4D SU(4) gauge theory with

2 flavors and 2 antisymmetrics is described by a set of gauge invariant fields satisfying

two constraints, one of which is quantum modified while the other is not [38–40]. These

constraints can be captured by the superpotential

W = λ
(
3T 2 detM0 − 12Thh̄− 24 detM2 − Λ8

)
+ µ

(
2M0M2 + hh̄

)
(4.15)

where λ and µ are Lagrange multipliers enforcing the constraints. A comparison of (4.14)

and (4.15) suggests an identification of the Lagrange multipliers with the Coulomb branch

moduli, λ → Y and µ → Ỹ . Indeed, integrating out Y and Ỹ from (4.14) reproduces the

constraints imposed by (4.15).

4.3 Duality for SU(4) with and 3(� + �)

We can also connect the theory investigated above to the sequence obtained from SU(4)

with a single antisymmetric tensor and flavors. The 4D s-confining version of this sequence

with one antisymmetric is the model with 4 flavors. Carrying through the steps of com-

pactification on a circle and adding a real mass we arrive the 3D s-confining version of the

theory with a single antisymmetric and three flavors, given by the superpotential

W = Y
(
T det M +HMH̄

)
(4.16)

where T = A2,M = QQ̄,H = AQ2 and H̄ = AQ̄2. Note, that this theory has a single

Coulomb branch operator Y appearing in its low energy dynamics. Giving a complex mass

µ to one more flavor from this theory we obtain a low energy description with a quantum

modified constraint given by the superpotential

W = λ
[
Y (T detM +HH̄)− µ

]
(4.17)

As a consistency check we can verify whether this quantum modified constraint is obtained

when a holomorphic mass term µA2
2 is added to one of the antisymmetric fields of the

model discussed in section 4.1:

Wdyn = Y
(

3T 2 detM0 − 12Thh− 24 detM2

)
+ Ỹ

(
2M0M2 + hh

)
+ µT22 . (4.18)

Indeed the T22 equation of motion will provide precisely the constraint in (4.17) while

together with the equations of motion for the other fields containing A2 the entire super-

potential will be set to zero. In particular, any reference to the variable Ỹ disappears

(without having to take the equation of motion for Ỹ ). This suggests that the Coulomb

branch dynamics in regions II and III changes when one goes from two antisymmetrics to

a single one: in the latter case the fundamental will dominate the dynamics and a single

variable will be sufficient to describe the entire Coulomb branch. We propose a tentative

explanation for it in the next section.
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4.4 Low energy description on the Coulomb branch

Another important check of the duality involves the analysis of the low energy physics on

the Coulomb and Higgs branches of the theory. While we leave the detailed analysis for

future work [44], let us point out some qualitative features of this regime. On the electric

side, at large Ỹ the SU(4) gauge group is broken to an SU(2) × SU(2) × U(1). Let us

concentrate on the dynamics of the SU(2) × SU(2) ∼= SO(4) group. Components of the

fundamental fields charged under this group obtain large real masses and are expected

to decouple from the low energy physics while the light degrees of freedom in the anti-

symmetric tensors transform as vectors of the SO(4).

On the magnetic side there is no gauge group and thus no Coulomb branch. Ỹ only

appears as a chiral superfield, therefore we expect that the effect of decoupling the funda-

mentals will be taken care of by the non-trivial superpotential in (4.10). This expectation

is in fact accurate. At large Ỹ , all composite fields containing electric fundamental degrees

of freedom acquire a mass through (4.10) and become heavy. Integrating them out we

find that the IR degrees of freedom are Y , Ỹ , and T , while the superpotential vanishes.

This also agrees with the results of [21] where it was found that in the SO(4) theory with

two vectors, the IR superpotential vanishes, the classical moduli space is not modified

quantum mechanically, but the classical singularity at the origin is smoothed out. The

massless degrees of freedom in these two theories match once the dependence of the SO(4)

coupling on Ỹ is taken into account.

It is also interesting to consider the Coulomb branch dynamics of a theory with a single

antisymmetric. In the electric theory, along the Ỹ direction, an effective superpotential is

generated for the modulus YSO of the unbroken SO(4) subgroup of the form [21]

W =
1

Y 2
SOT

. (4.19)

Matching YSO to the operators of the full SU(4) theory one can see that the fields are

pushed towards the Y branch while the Ỹ direction is lifted. This resolves a puzzle we en-

countered in the previous subsection — while the counting of the instanton-monopole zero

modes suggest a possibility of two unlifted moduli, the correct magnetic description (4.16)

found through the reduction of the 4D theory involves only Y . Such considerations are

independent of the number of flavors present in the theory. It is therefore reasonable to

assume that the presence of a single unlifted Coulomb branch direction parametrized by

Y is a generic feature of SU(4) theories with a single antisymmetric tensor.

5 Classification of 3D s-confining theories

We can now briefly outline how the previous discussion generalizes to all three dimensional

s-confining theories. We only make preliminary comments and leave a general classification

of 3D s-confinement to subsequent work [44].
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Anomaly matching techniques cannot be used in 3D,9 yet it has been argued in [41, 66]

that a necessary condition for confinement in 3D is that the Witten index Tr(−1)F equals

1. The Witten index [67] for an SU(N) gauge theory with Chern-Simons number k and

generic matter content in the rf representation has been recently computed to be [41, 68]:

Tr(−1)F =
(k′ +N − 1)!

(N − 1)!k′!
, k′ = |k| − T2(adj.) +

∑
f

T2(rf ) (5.1)

where the sum is over the matter fields in representation rf , and T2(rf ) is the Dynkin

index normalized to 1/2 for fundamentals. (5.1) implies that 3D s-confining theories

satisfy [41, 66]:

k′ = 0 ⇒ |k| = T2(adj.)−
∑
f

T2(rf ). (5.2)

Let us now focus on the case with vanishing Chern-Simons index, k = 0. In such a

case, (5.2) reduces to the condition for a 4D theory to exhibit a quantum modified con-

straint. Such theories can often be obtained by decoupling one flavor from 4D s-confining

theories. In order to derive an explicit expression for the superpotential 3D s-confining

theories, one must first dimensionally reduce the 4D s-confining theory which has an extra

flavor compared to its 3D s-confining partner. Next one must make a real mass deformation

to remove one flavor and set the Witten index to 1. This also removes the ηY term from

the electric superpotential. During this process, the IR description of the 3D theory is

always under control and one is be able to explicitly write down the superpotential.

Based on the examples presented in this paper as well as the original case of 3D

SQCD [8, 9, 34], we expect the following structure to emerge. The matter content of the

s-confining 3D theories correspond to 4D models with quantum moduli spaces described

by several constraints among the gauge invariant fields, one of which is quantum modified,

while the others are not. We expect that the number of unlifted Coulomb branch directions

should match the number of constraints present in the 4D theory. In other words, the

surviving Coulomb branch operators are identified with the Lagrange multipliers of the 4D

theory once these are promoted to dynamical fields.

The SU(4) model with 2 + 2(� + �) in this paper is part of a sequence of theories

SU(N)
(

+
)

+ 2(� + �) which satisfiy (5.2) and are expected to s-confine. The 4D

description is well known, and the number of constraints are expected to indicate the

number of unlifted Coulomb branch operators:

SU(2N) with
(

+
)

+ 2
(
� + �

)
→ N constraints (5.3)

SU(2N + 1) with
(

+
)

+ 2
(
� + �

)
→ N constraints (5.4)

9In odd dimensions, gauge invariance can require the addition of a classical Chern-Simons term which

breaks parity. This is referred to as the parity anomaly [63–65].
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For SU(4), SU(5) and SU(6) the Coulomb branch operators corresponding to the directions

of the various constraints can be identified in the following way:

SU(4) Y4 → diag(σ, 0, 0,−σ) Ỹ → √Y Y2 → diag(σ, σ,−σ,−σ)

SU(5) Y5 → diag(σ, 0, 0, 0,−σ) Ỹ5 →
√
Y Y2Y3 → diag(σ, σ, 0,−σ,−σ)

SU(6) Y6 → diag(σ, 0, 0, 0, 0,−σ) Ỹ6 →
√
Y Y2Y3Y4 → diag(σ, σ, 0, 0,−σ,−σ)

Ŷ6 → (Ỹ 2
1 Y3)

1
3 → diag(σ, σ, σ,−σ,−σ,−σ)

(5.5)

with an obvious generalized pattern for even and odd N . The quantum numbers of these

operators exactly match the quantum numbers of the “extra” meson operators which re-

main massless after the real mass deformation and suggest that these Coulomb branch

operators are identified with the extra mesons.

We now argue for the validity of these operators. All of these operators correspond to

monopole configurations and satisfy the Dirac quantization condition. The SU(5) case is

very similar to SU(4) with respect to these monopole operators. In fact, it can be checked

that the direction described by Ỹ5 breaks SU(5) →
(
SU(2)2 × U(1)2

)
/Z2. Half-integer

charged monopoles are allowed and therefore justify the square root in the definition of the

monopole operator. A similar discussion applies for Ỹ6.

New features arise when considering Ŷ6 operator in an SU(6) theory. Along the

this direction, the symmetry breaking is locally SU(6) → SU(3)2 × U(1), with the U(1)

direction generated by

Q6 = diag

(
1

3
,
1

3
,
1

3
,−1

3
,−1

3
,−1

3

)
. (5.6)

There are multiple identifications among the U(1) orbit and the Z3 × Z3 cen-

ter of SU(3) × SU(3), thus modifying the global structure of the breaking into

SU(6) →
(
SU(3)2 × U(1)

)
/Z3. We therefore expect fractionally charged monopole,

in particular with 1/3 of the minimal Dirac charge.

6 Conclusions

In this paper we initiated the study of the dynamics of 3D N = 2 supersymmetric theories

with matter fields in generic representations. Already in the simplest extension of 3D

SQCD obtained by adding antisymmetric matter, we have found interesting new features.

While previously studied theories have at the most one unlifted Coulomb branch direc-

tion, we have shown that the physics is very different when antisymmetric tensors are added

to the theory because multiple directions along the Coulomb branch could remain unlifted.

We have examined the case of SU(4) with flavors and one or two anti-symmetric tensors.

By performing a careful analysis of fermionic zero modes in monopole backgrounds and

matching to the dynamics of 4D theories, we showed that theories with two antisymmetric

tensors have two unlifted Coulomb branch directions. We also identified the additional

Coulomb branch modulus Ỹ with a fractionally charged monopole operator.

We analyzed the flow to a 3D s-confining theory with two flavors and two anti-

symmetric tensors by performing a dimensional reduction of 4D s-confining dualities
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and decoupling a flavor through a real mass deformation. The quantum numbers of

the two Coulomb branch operators, Y and Ỹ , exactly match the quantum numbers

of certain meson operators which naturally appear in the superpotential obtained by

the dimensional reduction. This is strong evidence that our Coulomb branch analysis

is correct. Furthermore we identify both Y and Ỹ as monopole operators associated

to particular monopole configurations in the UV. In particular Ỹ is associated with a

fractionally charged monopole and is allowed because of the non-trivial global topology of

the unbroken group along the particular Coulomb branch direction described by Ỹ .

We provide multiple checks for our dualities. The 3D magnetic dual correctly repro-

duces the behavior expected on R3 × S1, which can be obtained by compactifying the 4D

SU(4) theory with two antisymmetric tensors and two flavors. It is known that in 4D, this

theory is described in the IR by a quantum modified and a classical constraint. From a

3D perspective, the quantum modification of one of the classical constraints arises from

the ηY operator generated by the dynamics of the KK monopole. A similar analysis in

SU(4) s-confining theories with a single antisymmetric suggests that only a single Coulomb

branch direction remains in such a theory, while the Ỹ direction is lifted. While a detailed

explanation of this phenomenon is beyond the scope of this paper, we provided a tentative

explanation of such dynamics looking at the ADS-like superpotential generated along the

Ỹ direction.

Finally we also presented initial comments on the description of more general 3D s-

confining theories. The details of the general analysis is left for future work.
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A Elements of N = 2 SUSY in three dimensions

3D N = 2 supersymmetry can be obtained by dimensional reduction of familiar 4D N = 1

SUSY. We review aspects of N = 2 SUSY in 3D and introduce the notation used in this

manuscript. Most of the material presented here follows the treatment in [8, 9, 41, 50]

A.1 3D spinors and the N = 2 SUSY algebra

A convenient representation of the Clifford algebra in 3D with metric ηij = (−,+,+) is

γi=0,1,2
α,β = (iσ2, σ3, σ1). (A.1)
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Note that the generators of the Lorentz group, Sij = εijk
1
2γ

k, are pure imaginary and thus

generate a real group. The fundamental fermion representation in (2+1)-dimensions is

therefore a 2-component Majorana fermion, ψM . Under parity, this transforms as

P : ψM → ±γ1ψM . (A.2)

As usual, spinor indices are contracted, raised and lowered with εαβ or εαβ.

From the usual 4D N = 1 algebra, the 3D N = 2 SUSY algebra is{
Qα, Q̄β

}
= 2γiαβPi + 2iεαβZ, (A.3)

where the central charge Z is identified with momentum along xµ=2 in the 4D picture.

The realization of (A.3) as differential operators acting on superspace follow from the 4D

formalism. From this one may read off the 3D N = 2 SUSY multiplets.

A.2 Chiral superfields

In 4D, a chiral superfield Q may be written as

Q = φQ + θψ + θ2F (A.4)

where φQ is a complex scalar, ψ is a Weyl fermion which decomposes into two independent

real Majorana fermions in 3D, and F is an auxiliary field.

A.3 Vector superfields and the Coulomb branch

Similarly, a 4D vector superfield may be written as

V = −iθθ̄σ − θγiθ̄Ai + iθ2θ̄λ− iθ̄2θλ+
1

2
θ2θ̄2D, (A.5)

where we have explicitly separated the 3D vector Ai from the gauge scalar σ ∼ A3 and the

γi are defined in (A.1). Unlike the chiral superfield, the 3D N = 2 vector superfield differs

from its 4D N = 1 counterpart in that it carries components which may acquire vacuum

expectation values (VEVs) that form the Coulomb branch of the moduli space.

The scalar component σ may acquire a VEV which breaks the gauge group to its

maximal abelian subgroup. For SU(N), 〈σ〉 6= 0 induces the breaking SU(N)→ U(1)N−1.

This, however, is not the only scalar that may acquire a background value. A 3D vector

carries a single propagating degree of freedom and may be dualized into a scalar, γ. For

simplicity, consider a U(1) theory — e.g. one of the (N − 1) U(1) factors in a generic

point of the Coulomb branch. In 3D, the Hodge dual of the field strength tensor, ?F , is a

one-form which may locally be written with respect to a scalar γ,

[?F ]i = [dγ]i . (A.6)

The field γ is known as the dual photon and encodes the degrees of freedom of Ai. Due to

charge quantization, γ is periodic and thus takes values on S1. From this it follows that

the topology of the 3D N = 2 Coulomb branch for a U(1) gauge theory is R × S1. It is

useful to combine the scalars into a complex modulus,

φ = σ + iγ. (A.7)
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A.4 Linear superfields and duality

Recall that the dual field strength J = ?F is a one-form (A.6). Maxwell’s equations

further imply that J is divergence free, ∂iJi = 0, so that 3D gauge theories carry a global

topological symmetry, U(1)J , whose conserved current is exactly Ji. In SUSY, conserved

currents belong to a linear superfield, Σ, which satisfy D2Σ = D̄2Σ = 0. Because the

U(1)J is generated by the ?F , we may describe the vector superfield (A.5) with an

equivalent linear superfield,

Σ ≡ − i
2
εαβD̄αDβV = σ+ θλ̄+ θ̄λ+

1

2
θγiθ̄Ji + iθθ̄D+

i

2
θ̄2θγi∂iλ−

i

2
θ2θ̄γi∂iλ̄+

1

4
θ2θ̄2∂2σ.

(A.8)

In fact, the complex scalar (A.7) may be understood as the lowest component of a chiral

superfield Φ that is dual to the linear superfield (A.8). To see this, write the effective

Lagrangian for a linear superfield is a real function

Leff =

∫
d4θf(Σ). (A.9)

Leff can further be written as a function of a general real superfield Σ′ with the addition

of Lagrange multiplier chiral superfields Φ and Φ†

Leff =

∫
d4θ

(
f(Σ′)− (Φ + Φ†)

Σ′

2π

)
. (A.10)

The equations of motion for Φ and Φ† simplify enforce the linear superfield conditions on

Σ, D2Σ = D̄2Σ = 0. If one instead performs the path integral over Σ′, one obtains the

condition

Φ + Φ† = 2π
∂f(Σ′)
∂Σ′

(A.11)

from which one may write

Leff =

∫
d4θ K(Φ + Φ†), (A.12)

where K is the Legendre transform of f . This is now a dual description of the vector

superfield — encoded into a linear superfield — in terms of a chiral superfield whose

lowest components are(
Φ + Φ†

)
|θ=0 = 2Re[φ] ≡ 2ϕ

(
Φ− Φ†

)
|θ=0 = 2iIm[φ] ≡ 2iγ. (A.13)

At tree level, f(Σ) ∼ Σ2/g2 and the duality straightforwardly reproduces the results above,

ϕ ∼ 2πσ/g2 ∂iγ ∼ εijkF jk. (A.14)

In other words, the scalar component of the vector superfield is identified with the real part

of the complex scalar in Φ, while its imaginary part can be identified with the dual photon.

The above discussion can naturally generalize to the “bulk” of the Coulomb branch of

non-Abelian theories where SU(N) → U(1)N−1. There we can define (N − 1) topological

U(1)s and (N − 1) dual photons. Therefore in the bulk of an SU(N) Coulomb branch the

vector superfield (A.5) is dual to (N − 1) chiral superfields.
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B 3D Lagrangians

In this section we summarize actions for matter and gauge superfields.

B.1 Gauge fields

From a vector superfield V (A.5) one may use the gauge-invariant combination Wα =

−1
4D̄

2e−VDαe
V to construct the Yang-Mills action

SYM =
1

g2

∫
d3x d2θ (TrWαW

α + c.c.) (B.1)

=
1

g2

∫
d3x Tr

(
1

4
FijF

ij + DiσD
iσ +D2 + λ†γiDiλ

)
.

As explained above, one may use an equivalent description in terms of the linear superfield

Σ (A.8) for which the action is,

SYM =
1

g2

∫
d3x d4θ Σ2 (B.2)

This is completely equivalent to (B.1) once the d4θ integral is performed.

In 3D, the Yang-Mills action is not the only gauge invariant combination of the gauge

fields. Chern-Simons terms can also be added to the action. While we do not discuss

theories with non-vanishing Chern-Simons terms in any detail, we remark that the super-

symmetric generalization of these Chern-Simons terms is

SCS =

∫
d3x Tr

[
εijk
(
Ai∂jAk + i

2

3
AiAjAk

)
+ 2Dσ − λ†λ

]
, (B.3)

which, in the Abelian case, can be written in a simple form involving both the vector and

the linear multiplet:

SCS ≡
∫
d3x d4θ ΣV. (B.4)

The existence of such terms in the theory drastically changes the physics. We refer to [41]

for a recent detailed study of such theories. Fayet-Iliopoulos terms behave in the same way

as they do in 4D and can be written for Abelian 3D theories.

B.2 Matter fields

The action for chiral superfields Q is

Schiral =

∫
d3x d4θ K(Q,Q†) +

∫
d3x

[
d2θW (Q) + c.c.

]
(B.5)

for Kähler potential K(Q,Q†) and superpotential W (Q). In particular, for SUSY gauge

theories the Kahler potential is QeVQ† so that the kinetic term is

Lkin. = |DiφQ|2 + φ†Qσ
2φQ + iφ†QDφQ + iψ†γiDiψ − iψ†σψ + iφ†Qλ

†ψ − iψ†λφQ + |F |2 ,
(B.6)

where Di is the Dirac operator and the subscript φQ indicates the lowest scalar component

of the chiral superfield Q. We note that 〈σ〉 6= 0 induces a supersymmetric mass term for Q.
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B.3 Real and complex masses

In 3D there are two different types of mass terms one may write for a chiral superfield Q.

For vector-like theory we can write down a holomorphic mass adding a quadratic term to

the super potential:

WmC = mCQQ̄ (B.7)

because mC is complex, this is known as a complex mass term and is the analog of the usual

mass term in four dimensions. Alternately, as noted in (B.6), we may introduce a mass

when 〈σ〉 6= 0. This is known as a real mass term and can be understood by modifying the

Kähler potential,∫
d3xd4θQemRθ

2
Q† ∼

∫
d3x

(
m2

R
2
|φQ|2 + imRε

αβψ̄αψβ

)
. (B.8)

Observe that the complex mass preserves parity while the real mass breaks parity, (A.2).

The physical mass of the chiral superfield is m =
√
m2

R +m2
C.

A real mass can be induced by weakly gauging an exact global symmetry and fixing

the weakly gauged vector superfield Ṽ into a SUSY-preserving background configuration

σ̃ = i
mR
g
, Ãi = λ̃ = ˜̄λ = D̃ = 0. (B.9)

Because the global symmetries of dual theories must coincide, one may perform a real mass

deformation on one theory and straightforwardly map it to the dual theory. This is used

extensively in this paper and is explained thoroughly in section 4.

C Zero modes and Callias index theorem

Counting fermionic zero modes in an instanton/monopole background is a very useful tool

to study the Coulomb branch of 3D N = 2 SUSY gauge theories. In this appendix we

detail how to count these zero modes and derive (3.4).

C.1 Instanton/monopole backgrounds

The scalar component σ of the vector superfield (A.5) plays the role of and adjoint Higgs

and admits nontrivial 3D instanton configurations. These 3D instantons can be understood

as 4D monopoles. For an SU(2) gauge group in 4D with an adjoint Higgs σ, the ’t Hooft-

Polyakov monopole in singular gauge is

σ = f(r, v)τ3, f(r, v) = v coth vr − 1

r
(C.1)

Ai = ωi(r, v)τ3, ωi(r, v) = εij3r̂
j

(
1

r
+

v

sinh vr

)
(C.2)

where τ3 = diag(1,−1) is the third Pauli matrix to avoid ambiguity with the adjoint Higgs.

The asymptotic behavior of the solution is

σ
∣∣
∞ = v

(
1− 1

vr

)
τ3 +O

(
1

r2

)
, Ai

∣∣
∞ = εij3

r̂j

r
τ3 +O

(
1

r2

)
. (C.3)

– 24 –



J
H
E
P
0
8
(
2
0
1
4
)
1
4
1

The SU(2) monopole solution generalizes straightforwardly to SU(N) [42, 43]. There

are (N − 1) independent monopoles which are labeled by integers (n1, n2, . . . , nN−1), indi-

cating the monopole charges. The asymptotic behavior is

σ
∣∣
∞ = σ0 −

1

r

N−1∑
I=1

nI

(
αI ·HI

)
+O

(
1

r2

)
, Ai

∣∣
∞ = εij3

r̂j

r

N−1∑
I=1

nI

(
αI ·HI

)
+O

(
1

r2

)
,

(C.4)

where σ0 ≡ diag(σ1, σ2, . . . , σN ) =
∑
σI0HI . Here HI are the generators of the Cartan sub-

algebra, αI are simple roots, and αI ·HI = diag(0, 0 . . . , 1,−1, . . . , 0). Further defining g0 ≡∑
nI
(
αi ·HI

)
= diag

(
n1, n2−n1, . . . ,−nN−1

)
, one may write (C.4) in a more concise form

σ
∣∣
∞ = σ0 −

g0

r
+O

(
1

r2

)
, Ai

∣∣
∞ = εij3

r̂j

r
g0 +O

(
1

r2

)
(C.5)

upon rotating the time-coordinate in Euclidean spacetime onto the direction that is to

be compactified and then dimensionally reducing to 3D, the solutions above become 3

dimensional instantons. We refer to these configurations as instanton/monopole solutions.

C.2 Callias index theorem

We may now state the Callias index theorem. For a fermion in representation R with

weights wi, the number of zero modes in an instanton/monopole background, (C.5), is

N =
1

2

∑
i

sign(wi · σ0)(wi · g0). (C.6)

For a careful proof see the original paper [69] or [8] for a more physical derivation. From

the sign function one can see that conjugate representations have the same number of zero

modes.

C.3 Fundamental representation

Let us computer the number zero modes of a fermion in the fundamental representation.

We indicate the weights of the fundamental as {νi}, where i = 1, . . . , N . In this case we have

νi · σ0 = σi, νi · g0 =
(
g0

)
i

= ni − ni−1 with n0 = nN = 0. (C.7)

The number of zero modes is

N� =
1

2

N∑
i=1

sign(σi)
(
ni − ni−1

)
, (C.8)

which is the standard result that each fundamental fermion has ni zero modes in the region

σi > 0 > σi+1 [8, 9, 53]. In each region only the i-th fundamental instanton/monopole

configuration contributes to the number of zero modes. Thus, in (3.4), each � and �
provide n1 zero modes in region I, n2 zero modes in region II and III, and n3 in region IV.
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C.4 Adjoint representation

Now consider the number of gaugino zero modes. The weights of the adjoint representation

are the roots βij ≡ νi − νj , which we have expressed in terms of the fundamental weights,

νi. The number of zero modes is

Nadj =
1

2

N∑
i,j=1

sign(σi − σj)
[
(ni − ni−1)− (nj − nj−1)

]
(C.9)

=

N−1∑
i=1

N−1∑
j=1

ni [sign(σi − σj)− sign(σi+1 − σj+1)] (C.10)

=

N−1∑
j=1

2nj . (C.11)

Therefore the number of gaugino zero modes is independent of the values of the σi. This

result matches with [8, 9, 53].

C.5 Antisymmetric representation

For antisymmetric matter, the weights can be labelled with two indices (wanti)ij = νi + νj
with i 6= j. The number of zero modes is thus

Nanti =
1

2

N∑
i 6=j

sign(σi + σj)
[
(ni − ni−1) + (nj − nj−1)

]
. (C.12)

This depends on the sign of σi + σj . Referring to (3.4), in regions I and II (σ1 + σ2;σ1 +

σ3;σ1 + σ4) > 0 and (σ2 + σ3;σ2 + σ4;σ3 + σ4) < 0. Therefore each antisymmetric fermion

has N I, II
anti = 2n1 zero modes. In regions III and IV both σ2 + σ3 and σ1 + σ4 flip sign.

Inserting this into the above formula yields N III, IV
anti = 2n3. The zero mode counting for the

fundamental and the adjoint representations matches the results in the literature. On the

other hand, our results for antisymmetrics are obtained in a generic point on the Coulomb

branch and are thus expected to differ from the conclusions of [52] where the zero mode

counting is performed at a center-symmetric point.

D Dimensional reduction of 4D dualities

We summarize the main features of the dimensional reduction of 4D dualities [34, 35] fo-

cusing in particular on dimensional reduction of s-confining theories. Consider a 4D duality

between an ‘electric’ theory A4 and a ‘magnetic’ theory B4. One may then dimensionally

reduce each theory in two steps:

1. Compactify a space-like dimension: R4 → R3 × S1.

2. Reduce the size of the compact dimension to zero R3 × S1 −−−→
r→0

R3

– 26 –



J
H
E
P
0
8
(
2
0
1
4
)
1
4
1

This procedure indeed reduces the 4D theories into 3D theories. However the 3D theories

so obtained, (A3, B3), are not duals of one another. This can be understood intuitively

when A4 and B4 are Seiberg duals. These are related by an infrared duality that is valid

at energies much lower than the confinement scales of the dual theories,10

E � ΛA4 ,ΛB4 Λ = µ e
− 8π2

g2(µ)b . (D.1)

After compactification, the effective 3D gauge coupling depends on the size of the compact

dimension, g2
4 = 2πrg2

3. The limit r → 0 thus corresponds to ΛA4 ,ΛB4 → 0. This means

that the IR limit E � ΛA4,B4 is not valid in the näıve compactification and the duality

does not hold.

In order to find a 3D version of 4D Seiberg duality, one must examine the compactified

theory at finite radius,

E � ΛA4 ,ΛB4 �
1

r
. (D.2)

The theories on R3 × S1 are intrinsically different from the näıve dimensional reduction

because the compact S1 direction allows an extra topological configuration that is dis-

tinct from the purely 3D topology described in section 2 and appendix C. This additional

configuration is a a Kaluza-Klein (KK) monopole that wraps around the circle with a

twist [57–59]. Like the other instanton/monopole configurations, the KK monopole also

generates a non-perturbative contribution to the superpotential [50],

WS1 = ηY, η = Λb, Y = exp

(
σ1 − σN
g2

3

+ i(a1 − aN ))

)
, (D.3)

where Y is the chiral operator introduced in (2.6). The superpotential WS1 must be

included in the compactified theory to preserve the duality. In the r → 0 limit, η → 0 and

this term in the superpotential disappears [70]. In SQCD with F > N , the resulting IR

duality between intermediate compactified theories is

SU(N) with F (� + �)

W = ηY
←→ SU(F −N) with F (� + �)

W = qMq̄ + η̃Ỹ
, (D.4)

with η η̃ = (−1)F−N . The superpotential term from the KK monopole configuration can

also be decoupled. This can be done by decoupling one flavor in the compactified theory

with a real mass deformation [34].

S-confining theories are a particular set of dual 4D supersymmetric theories where the

electric theory, A4, confines and the magnetic degrees of freedom describe the resulting

composite degrees of freedom. The dual theory, B4¡ has no gauge group. These have the

following properties [39, 40]:

1. The IR physics is described exactly by gauge invariant composites.

10We implicitly assume that both theories are asymptotically free. This assumption plays no role in what

follows and the conclusions apply also to the case where the magnetic theory is IR free.
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s-confining UV theory

s-confining UV theory
+ ηY

s-confined IR theory
with superpotential W

s-confined IR theory
with superpotential
W , no η′Y ′

4D

3D

Figure 3. If we reduce s-confining theories, there is no η̃Ỹ in the magnetic side.

2. A confining superpotential is dynamically generated.

3. The origin of the classical moduli space, where all the global symmetries of the electric

theory are unbroken, is also an IR vacuum in the quantum theory.

For these theories, the dimensional reduction algorithm follows as it did above with the

R3 × S1 magnetic theory having no η̃Ỹ term as the magnetic theory has no gauge group,

as shown in figure 3. One may perform consistency checks for the resulting 3D duality. In

what follows, we set Λ = 1 for notational simplicity.

D.1 Check 1

From the procedure above, SQCD with F = N + 2 flavors on R3 × S1 is dual to SU(2)

with F = N + 2 flavors and a superpotential

W = q̄Mq + η̃Ỹ . (D.5)

Deforming the electric theory by a complex mass (B.7) for one flavor then leads to SQCD

with F = N+1 and W = (η/m)Y |F=N+1 ≡ η′Y ′. From figure 3 we expect that this theory

is described in the IR by the 4D s-confining superpotential with no extra η̃Ỹ term:

SU(N) with W = η′Y ′ & F = N + 1 ←→ W = BMB̄ − detM. (D.6)

To see how this correspondence arises in a 3D description, we note that a holomorphic mass

for the (N+2)th electric quark flavor maps onto a tadpole for the (N+2)th diagonal element

of the magnetic meson. As a result the last flavor of dual quark acquire a VEV qN+2q̄N+2 =

−m completely breaking magnetic SU(2) group. After identifying the remaining dual

quarks with the baryons of N + 1 flavor theory, the low energy superpotential becomes11

W = BMB̄ + η̃Ỹ . (D.7)

An interpretation of η̃Ỹ term generated by the KK instanton is somewhat non-trivial

because SU(2) is completely broken. Comparing to 4D physics, we know that this term is

proportional to detM since it must reproduce the effect of 4D instanton. It is, however,

instructive to obtain this result from a purely 3D perspective. To this end, consider a limit

11Unless explicitly noted, from now on M refers only to meson composites of light electric quarks.
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of small m and large M , such that12 rankM = N + 1. In this regime, the low energy

physics is described by a single flavor SU(2). It is known that such a theory has a quantum

modified constraint Ỹlow = 1/(qN+2q̄N+2) [9]. Matching quantum KK instanton-monopole

operators of the high and low energy theories, we find

Ỹ = detM Ỹlow . (D.8)

Finally, holomorphy guarantees that this result is also valid in the large m regime where

qN+2q̄N+2 = −m. Thus, after appropriate rescalings, the superpotential (D.7) becomes

W = BMB̄ − detM , (D.9)

in full agreement with (D.6).

D.2 Check 2

A second non-trivial check is to start instead with SU(N) with (N+1) flavors and W = ηY .

Because of the lack of the KK monopole, such theory should be dual to an s-confined theory

with super-potential

Wmag = BiM j
i B̄j − detM. (D.10)

Adding a real mass to Q and Q̄ and taking mR →∞ decouples the instanton term in the

electric theory (for more details see the appendix or [34] ). In order not to induce extra

Chern-Simons term, we need to assign mQR = −mQ̄R . This is easily done by weakly gauging[
SU(N + 1)L × SU(N + 1)R

]
D
×U(1)B. The masses induced in the magnetic theory are:

mB =


mR

0
...

0

 mB̄ =


−mR

0
...

0

 mM =

(
0 6= 0

6= 0 0

)
(D.11)

Identifying the (N+1)×(N+1)-th component of the meson field with the Coulomb branch

operator of the electric theory, and decoupling the massive fields, we obtain

Wmag = Y (BB̄ − detM) (D.12)

which matches the known IR description of the SU(N) with N flavors. Therefore again the

initial assumption of no η̃Ỹ in the magnetic theory is consistent from a fully 3D perspective.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

12Since classical constraints are not modified quantum mechanically in this theory, one must have

rank(M) ≤ N in the vacuum. Thus, a superpotential for M must be generated dynamically.
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