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1 Introduction

Restricted Schur polynomials have been argued to form a complete orthogonal set of gauge

invariant operators for the 1/4-BPS sector of free N = 4 super Yang-Mills theory with an

SO(N) gauge group [1]. For even N , [1] employed representation theory of the symmetric

and hyper octahedral groups to construct a complete set of local operators depending on

two scalar fields. Their two-point function was computed exactly and shown to be diagonal

in the labels of these operators. More specifically, these operators were the generalisations

of the so-called restricted Schur polynomials of the U(N) gauge theory [2, 3] and [4].

Schur polynomials χR(Z) in the 1/2-BPS sector of the free U(N) gauge theory were

first studied in [5], in which these operators, labeled by irreducible representations (irreps)

R of the symmetric and unitary groups, were shown to be an exactly orthogonal basis.

Thus, these gauge invariant operators could be used as a basis to study the large N limit

of operators whose dimension scales parametrically with N . The trace basis, for example,

is no longer orthogonal in this case and computing non-planar corrections in correlation

functions is a difficult task. When the Young diagram R labelling the Schur polynomial
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has long columns, or long rows, (O(N) boxes in each row/column) the operator is dual to

a system of giant gravitons moving in the S5 or AdS5 [5–8] and [9].

By adding a different type of field to χR(Z), one can build the restricted Schur poly-

nomial. A restricted Schur may simply be thought of as a linear combination all possible

multi-matrix, multi-trace operators, where the sum is over permutations of the symmetric

group. We can add different types of complex scalar fields, fermion fields or even gauge

fields [10, 11] and [12]. For two scalar fields, the counting of restricted Schurs was shown to

match the counting of states of the free theory in [13]. Their two-point function was com-

puted exactly in [14] and was shown to be diagonal in the operator labels. [15] succeeded

in writing any multi-trace operator involving two scalar fields as a linear combination of

restricted Schurs. They also derived a product rule for these operators. This allowed

the product of any two restricted Schurs to be written in terms of restricted Schurs and

restricted Littlewood-Richardson coefficients.

At the level of summing Feynman diagrams, computing correlation functions of multi-

trace multi-matrix operators is a difficult task at finite N . This is because the non-planar

corrections are no longer suppressed and must be taken into account. The results of [14]

and [15] transformed the problem of computing correlation functions of the multi-matrix,

multi-trace operators into the problem of computing correlation functions of restricted

Schur polynomials - something we can do exactly for any N .

Other orthogonal bases for the 1/4 and 1/8-BPS sectors of the free gauge theory has

been proposed. [16] constructed operators from Z and Z†, while [17] constructed opera-

tors depending on X,Y and Z. At weak coupling some progress towards understanding

the anomalous dimensions of an orthogonal basis of the free theory, which is manifestly

covariant under the global symmetry, was achieved in [18].

Restricted Schur polynomials with n Z’s and m Y ’s are labeled by three Young di-

agram labels, R, r, s, corresponding to irreducible representations of Sn+m and Sn × Sm
respectively. When the number of Z’s and Y ’s is O(N), with n � m, these operators

again have a D-brane interpretation in the string theory. For R having long columns (or

rows), each with O(N) boxes, the operator is dual to excited giant gravitons [2]. A system

of excited giant gravitons can be thought of as a system of giants with strings attached.

Amongst the other bases found for the 1/4-BPS sector it has been argued that restricted

Schur polynomials is the most natural basis for studying open string dynamics of their

dual D-brane states [15]. To this end, the one-loop dilation operator has been diagonalised

and the spectrum of anomalous dimensions computed in [19–24]. The two-loop case was

studied in [25]. Remarkably, for the non-planar limit studied in these works the spectrum

was shown to be that of a system of decouple harmonic oscillators. This is evidence of

integrability in these non-planar sectors of the gauge theory.

A similar program has been initiated for the gauge theory with an orthogonal gauge

group in [26], and [27]. In the 1/2-BPS sector, Schur polynomials were constructed from

the basic building block which diagonalised the two-point function in the free theory

limit. Indeed, orthogonality of Schur polynomials built from a single scalar field Z is a

gauge group-independent property [28]. The counting of states, as given by the partition

function, for SO(4) and SO(6), was shown to match the number of Schur polynomials that
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could be defined. This basis was related to the trace basis and a product rule was derived

for the Schurs. These results were then extended to the theory with symplectic gauge

group, Sp(N). Sp(N) is related to SO(N) by exchanging symmetrisations of irreps and

replacing N by −N [27, 29].

This study then progressed to the 1/4-BPS sector of the free SO(N) gauge theory [1].

The counting of states, as given by the partition function, and the counting of restricted

Schur polynomials was shown to agree by restricting to a particular class of Young diagram

labels. R must have an even number of boxes in each row, while r and s are restricted to

have an even number of boxes in each column. An explicit construction of these operators

was given and their two-point function was evaluated exactly and shown to be diagonal.

Physics in the non-planar limit of SO(N) and Sp(N) gauge theory is different from that

of U(N). The SO(N) and Sp(N) gauge theories are matrix models with anti-symmetric

and symplectic matrices respectively. When evaluating correlation functions, the leading

non-planar correction comes from non-orientable Feynman diagrams with a single cross-

cap - an effect not present in the U(N) theory [27, 29, 30]. Furthermore, N = 4 super

Yang-Mills theory with an SO(N) or Sp(N) gauge group is dual to type IIB string theory

with AdS5 × RP 5 geometry. The Schur polynomials of [26, 27] and the restricted Schur

polynomials of [1] may prove useful as a basis of operators to study non-planar limits of

these gauge and dual string theories.

In this paper, we extend our results found in [1] for SO(N) to Sp(N). First, we express

the free 1/4-BPS Sp(N) partition function in terms the Littlewood-Richardson coefficients

which count the number of Sp(N) restricted Schurs. We then give a gauge invariant

construction of these operators and evaluate their two-point function. As expected, the

results are identical to those for SO(N) except the Young diagrams are transposed and N

is replaced by −N . We then relate the trace basis to the restricted Schur basis for both

gauge groups. Lastly, we derive a product rule for our operators.

2 Recap of SO(N)

With a more convenient normalisation, the restricted Schurs defined in [1] were

O
SO(N)
R(r,s)α(Z, Y ) =

1√
n!m!q!22q

∑
σ∈S2q

χ
SO(N)
R(r,s)α(σ)C4ν

I σ
I
J(Z⊗2n ⊗ Y ⊗2m)J (2.1)

where we defined the SO(N) restricted character to be

χ
SO(N)
R(r,s)α(σ) = Tr

(
OSO(N)
R(r,s)αΓR(σ)

)
, and OSO(N)

R(r,s)α = |[S]〉〈[A]r, [A]s, β|PR→(r,s)βα (2.2)

In (2.2), ΓR(σ) is the matrix representing the permutation σ ∈ S2q in irrep R. Furthermore,

we have explicitly indicated which irreps subduce the two [A]’s. Irrep r of S2n subduces irrep

[A]r of Sn[S2], and irrep s of S2m subduces irrep [A]s of Sm[S2]. β still labels the particular

copy of (r, s) subduced from irrep R of S2q. Recall that the state |[A]r, [A]s, β〉 spans the

1-dimensional carrier space of the Sn[S2]× Sm[S2] irrep ([A]r, [A]s)β, and is calculated as
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the eigenvector of PR→([A]r,[A]s)β with eigenvalue 1. The intertwiner PR→(r,s)αβ maps this

state from one copy of (r, s) to another

PR→(r,s)αβ |[A]r, [A]s, β〉 = |[A]r, [A]s, α〉 (2.3)

Thus, we can write

OSO(N)
R(r,s)α = |[S]〉〈[A]r, [A]s, α| . (2.4)

For the normalisation in (2.1), the two-point function is

〈OSO(N)
R(r,s)α(Z, Y )O

SO(N)
T (t,u)β(Z, Y )〉 = δRT δrtδsuδαβ

(2q)!

dR

∏
i ∈ odd columns

ci (2.5)

The tensor

C4ν
I = δk1k2 · · · δk2q−1k2q(σ4ν)KI = δK(σ4ν)KI (2.6)

contracts the free indices in such a way as to produce a gauge invariant operator. In [1] we

chose σ4ν = (1, 2, 3, 4) · · · (2q− 3, 2q− 2, 2q− 1, 2q). This contracted indices 1 with 4, then

2 with 3, then 5 with 8, then 6 with 7, and so on. Finally, 2q− 3 is contracted with 2q and

2q−2 is contracted with 2q−1. The permutation σ4ν = (1, 2)(3, 4) · · · (2q−1, 2q), or simply

the identity permutation, gives the same gauge invariant operator. For this permutation,

indices 1 and 2 are contracted, 3 and 4 are contracted etc, untill, finally, indices 2q− 1 and

2q are contracted. Thus, an equivalent definition for OR(r,s)α(Z, Y ) is1

O
SO(N)
R(r,s)α(Z, Y ) =

1√
n!m!q!22q

∑
σ∈S2q

χ
SO(N)
R(r,s)α(σ) δIσ

I
J(Z⊗2n ⊗ Y ⊗2m)J (2.7)

For the permutations σ ∈ S2q, δIσ
I
J(Z⊗2n ⊗ Y ⊗2m)J gives all the possible multi-trace

operators involving the two scalar fields Z and Y . For example, consider q = 4 with

n = m = 2. There are only 4 multi-trace operators we can define. Here they are for 4

examples of σ

σ = (2, 4, 6, 8, 3) gives δIσ
I
J(Z⊗4 ⊗ Y ⊗4)J = Tr(Z2Y 2) (2.8)

σ = (2, 5)(3, 4, 5) gives δIσ
I
J(Z⊗4 ⊗ Y ⊗4)J = Tr(ZY )2 (2.9)

σ = (1, 3, 2)(5, 8, 7) gives δIσ
I
J(Z⊗4 ⊗ Y ⊗4)J = Tr(Z2)Tr(Y 2) (2.10)

σ = (1, 5, 2)(3, 4, 8, 6, 7) gives δIσ
I
J(Z⊗4 ⊗ Y ⊗4)J = Tr(ZYZY ) (2.11)

3 Counting for Sp(N)

In this section, we will rewrite the partition function for the 1/4-BPS sector for free Sp(N)

gauge theory in terms Littlewood-Richardson coefficients, g(r, s, R). For a given set of labels

(r, s, R), g(r, s, R) counts the number of restricted Schur Polynomials with these labels.

Since our operators involve two scalar fields, the partition function will depend on two

variables which we denote by t1 and t2. Furthermore, the Sp(N) partition function will also

1The |[S]〉 in this operator is symmetric in boxes 1&2, 3&4 · · · , 2q − 1&2q.
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depend on the character of O ∈ Sp(N) in the adjoint representation. Denote the partition

function for the 1/4-BPS sector of free Sp(N) gauge theory by GSp(N)(t1, t2). The form of

GSp(N)(t1, t2) is [31, 32],

GSp(N)(t1, t2) =

∫
O∈Sp(N)

[dO]e

∑∞
m=1

(
tm1 +tm2

m

)
χadj(O

m)
(3.1)

where χadj(O) is the character of O in the adjoint representation of Sp(N), and [dO] is the

Sp(N)-invariant measure. We take N = 2n. In terms of the eigenvalues of O, the adjoint

character and the integration measure are [33]

χadj
Sp(N)(x) =

∑
16i<j6n

(xixj + x−1i xj + xix
−1
j + x−1i x−1j ) +

n∑
i=1

(x2i + x−2i ) + n (3.2)

and ∫
O∈Sp(N)

[dO]f(x) =
(−1)n

2nn!

∫
Tn

n∏
j=1

dxj
2πxj

n∏
j=1

(xj − x−1j )2∆(x + x−1)2f(x) (3.3)

where Tn = S1 × S1 · · · × S1 and f(x), x = (x1, x2 · · ·xn), is any symmetric function.

Using (3.2) the exponential in (3.1), after some algebra, becomes

e

∑∞
m=1

(
tm1 +tm2

m

)
χadj(O

m)

= e

∑∞
m=1

(
tm1 +tm2

m

)∑
16i<j6n(x

m
i x

m
j +x−m

i xmj +xmi x
−m
j +x−m

i x−m
j )+

∑n
i=1(x

2m
i +x−2m

i )+n

=
2∏

k=1

∏
16i<j6n

1

(1− tkxixj)(1− tkx−1i xj)(1− tkxix−1j )(1− tkx−1i x−1j )

× 1

(1− tk)n
∏

16i6n

1

(1− tkx2i )(1− tkx
−2
i )

(3.4)

Changing variables

yi = xdi/2e for odd i (3.5)

y2i = x−1i for even i (3.6)

the exponential becomes

e

∑∞
m=1

(
tm1 +tm2

m

)
χadj(O

m)
=

2∏
k=1

∏
16i6j6N

1

1− tkyiyj
(3.7)

=
2∏

k=1

(∑
λ

s2λ(
√
tky1,

√
tky2 · · ·

√
tkyN )

)
(3.8)

=
∑
µ

∑
λ

(t1)
|2λ|/2(t2)

|2µ|/2s2λ(y1, · · · yN )s2µ(y1, · · · , yN ) (3.9)
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To expand the expression in (3.7) in terms of Schur functions, and thus proceed to (3.8),

we used an identity found in [34]. Using the product rule for Schur polynomials, (3.9) may

be written in terms of the Littlewood-Richardson coefficients

e

∑∞
m=1

(
tm1 +tm2

m

)
χadj(O

m)
=
∑
ξ

∑
µ

∑
λ

(t1)
|2λ|/2(t2)

|2µ|/2g(2λ, 2µ, ξ)sξ(y1, · · · , yN ) (3.10)

The partition function (3.1) becomes

GSp(N)(t1, t2) =
∑
ξ

∑
µ

∑
λ

(t1)
|2λ|/2(t2)

|2µ|/2g(λ, µ, ξ) (3.11)

× (−1)n

2nn!

∫
Tn

n∏
j=1

dxj
2πxj

n∏
j=1

(xj − x−1j )2∆(x + x−1)2sξ(x1, x
−1
1 , · · · , xn, x−1n )

The integral in (3.11) is 1 for partitions ξ that have even multiplicity, i.e., an even number

of boxes in each column, and 0 otherwise [35, 36]. Therefore we write ξ2 for this partition

and obtain

GSp(N)(t1, t2) =
∑
ξ2

∑
µ

∑
λ

(t1)
|2λ|/2(t2)

|2µ|/2g(2λ, 2µ, ξ2) (3.12)

for the partition function. As we did for SO(N), we succeeded in writing the partition

function for Sp(N) gauge theory in terms of the Littlewood-Richardson coefficients. Only

partitions 2µ and 2λ, with an even number of boxes in each row, and ξ2, with an even

number of boxes in each column, contribute to GSp(N). The Littlewood-Richardson coeffi-

cients g(2λ, 2µ, ξ2) count the number of restricted Schur polynomials that can be defined

for labels (2λ, 2µ, ξ2). Thus, the counting of restricted Schur polynomials for this class of

Young diagram labels matches the counting of states in the free Sp(N) gauge theory.

4 Sp(N) restricted Schurs

4.1 Constructing the operators

We now give an explicit construction of restricted Schurs for Sp(N) gauge theory. We

continue to consider only N = 2n. The group Sp(N) is the set of N × N matrices, S,

satisfying

STJS = J, J =

(
0 IN/2

−IN/2 0

)
. (4.1)

The matrix fields living in the adjoint representation of the sp(N) algebra satisfy

ZTJ + JZ = 0, or ZT = JZJ. (4.2)

Our Sp(N) restricted Schurs must match the counting found in (3.12). Since (r, s)α has

an even number of boxes in each row, the irrep ([S]r, [S]s)α of Sn[S2] × Sm[S2] may be

subduced. To match the counting, we construct our operators using the state |[S]r, [S]s, α〉.
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Furthermore, because R has an even number of boxes in each column, the irrep [A] of Sq[S2]

may be subduced. This leads us to a natural definition for the Sp(N) restricted characters

χ
Sp(N)
R(r,s)α = Tr

(
OSp(N)
R(r,s)αΓR(σ)

)
(4.3)

where

OSp(N)
R(r,s)α = |[A]〉〈[S]r, [S]s, α| = |[A]〉〈[S]r, [S]s, β|PR→(r,s)βα (4.4)

The Sp(N) restricted character in (4.3) clearly has the property

χ
Sp(N)
R(r,s)α(σ)sgn(ξ) = χ

Sp(N)
R(r,s)α(ησξ) ξ ∈ Sq[S2], η ∈ Sn[S2]× Sm[S2]. (4.5)

This function, and its SO(N) counterpart (2.2), resembles the bi-spherical functions dis-

cussed in [28, 37], where one of the hyperoctahedral groups in (4.5) is now a subgroup

of the other. We construct the restricted Schurs to be invariant under sending σ → ησξ.

Define

O
Sp(N)
R(r,s)α(Z, Y ) =

1√
n!m!q!22q

∑
σ∈S2q

χ
Sp(N)
R(r,s)α(σ) JIσ

I
J

(
(JZ)⊗2n ⊗ (JY )⊗2m)J (4.6)

where

JI = Ji1i2Ji3i4 · · · Ji2q−1i2q (4.7)

The quantity JI(σ)IJ
(
(JZ)⊗2n ⊗ (JY )⊗2m)J indeed gives all the possible multitrace oper-

ators for n Z’s, m Y ’s and for the permutations of S2q. For example, for 2 Z’s and 2 Y’s

we still have only 4 possible multi-trace operators,

Tr(Z2Y 2), Tr(ZYZY ), Tr(Z2)Tr(Y 2) and Tr(ZY )2 (4.8)

Indeed, JI(σ)IJ
(
(JZ)⊗4 ⊗ (JY )⊗4)J generate all of these for σ ∈ S8. Next, we note that

JI(σ)IJ
(
(JZ)⊗2n ⊗ (JY )⊗2m)J has the desired symmetry property when σ → ησξ. Since

the J ’s are anti-symmetric under transposition, ξ acting on JI gives sgn(ξ)JI , and since

(JZ) and (JY ) are symmetric under transposition, η leaves the tensor invariant. The state

|[A]〉 is calculated as the eigenvector of

P[A] =
1

q!2q

∑
ξ∈Sq [S2]

sgn(ξ)ΓR(ξ). (4.9)

with eigenvalue 1. The |[S]r, [S]s, α〉 is calculated as the eigenvector of

PR→([S]r,[S]s)α = PR→(r,s)ααP[S,S], P[S,S] =
1

n!m!

∑
η∈Sn[S2]×Sm[S2]

ΓR(η). (4.10)

with eigenvalue 1.
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4.2 Two-point function

Now consider evaluating the two-point function of the operators in (4.6). First, it is

straightforward to show that〈(
(JZ)⊗2n ⊗ (JY )⊗2m

)J(
(JZ)⊗2n ⊗ (JY )⊗2m

)
L

〉
=

∑
η∈Sn[S2]×Sm[S2]

ηJL (4.11)

Using (4.11), the evaluation of the two-point function is analogous to that of the SO(N)

case [1]. Following the same steps, we arrive at

〈OSp(N)
R(r,s)αO

Sp(N)
T (t,u)β〉 = δRT δrtδsuδαβ

(2q)!

dR

∑
ψ∈Bq

Tr
(
P[A]ΓR(ψ)

)
JIJ

M (ψ)IM (4.12)

where Bq is again the set of representatives of the coset S2q/Sq[S2], chosen to be the

permutations
q−1∏
j=0

2j+1∏
i=1

(i, 2j + 1) (4.13)

For the permutations in (4.13), JIJ
M (ψ)IM gives exactly the same result as δIδ

J(ψ)IJ . The

identity permutation, for example, gives

Ji1i2Ji3i4 · · · Ji2q−1i2qJ
i1i2J i3i4 · · · J i2q−1i2q = (JTJ)i1i1(JTJ)i3i3 · · · (J

TJ)
i2q−1

i2q−1
(4.14)

= δi1i1δ
i3
i3
· · · δi2q−1

i2q−1
(4.15)

= N q (4.16)

A two-cycle (i, 2j + 1) returns N q−1. For example, consider q = 4 and (3, 5). This gives

(JTJ)i1i1(JTJJTJ)i3i3(JTJ)i7i7 = δi1i1δ
i3
i3
δi7i7 = N3 (4.17)

For (4, 7), we get

(JTJ)i1i1(J2J2)i3i3(JTJ)i5i5 = δi1i1δ
i3
i3
δi7i7 = N3 (4.18)

For any ψ ∈ Bq, JIJM (ψ)IM always consists of products of (JTJ) and an even number of

J2’s. If p is the number of two-cycles in ψ, then JIJ
M (ψ)IM gives N q−p. After summing

over Bq, equation (4.12) becomes

〈OSp(N)
R(r,s)αO

Sp(N)
T (t,u)β〉 = δRT δrtδsuδαβ

dR
(2q)!

〈[A]|
q−1∏
j=0

(N + J2j+1)|[A]〉 (4.19)

Instead of giving a product of weights coming from the odd columns in R, as it did for

SO(N), (4.19) now gives the product of weights coming from the odd rows of R. The

two-point function for the Sp(N) restricted Schurs is

〈OSp(N)
R(r,s)αO

Sp(N)
T (t,u)β〉 = δRT δrtδsuδαβ

(2q)!

dR

∏
i ∈odd rows in R

ci (4.20)

This gives precisely the same result as the SO(N) case, but with N → −N , as expected.

Thus, to calculate the two-point function of operators in Sp(N), calculate instead the

two-point function of operators in SO(N), but with all Young diagrams conjugated (or

transposed), and then replace N by −N in the result. This gives the result for Sp(N). As

a check of these conclusions, we present two examples in appendix B.
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5 Exact multi-trace correlators with two scalar fields

In this section, we express any multi-trace operator involving Z’s and Y ’s as a linear combi-

nation of the SO(N) and Sp(N) restricted Schur polynomials, (2.1) and (4.6). Thereafter,

we derive a product rule for these operators.

5.1 Relating trace operators to restricted Schurs

First, let’s discuss SO(N). Define the ‘dual restricted character’

χ
R(r,s)α
SO(N) (σ) ≡ dR

√
n!m!q!22q

(2q)!
Tr
(
OTR(r,s)αΓR(σ−1)

)
(5.1)

The aim is to use (5.1) to express any multi-trace operator in terms of the restricted Schurs

in (2.1). The calculation is analogous to that in [15]. Calculate∑
R,r,s,α

χ
R(r,s)α
SO(N) (σ)Tr

(
OR(r,s)αΓR(τ)

)
=

√
n!m!q!22q

(2q)!

∑
R,r,s,α

dRTr
(
OTR(r,s)αΓR(σ−1)

)
Tr
(
OR(r,s)αΓR(τ)

)
(5.2)

The Γ’s may be expanded in the R basis in the following way

ΓR(σ) =
∑
I,J

|R, I〉〈R, J | ΓR(σ)IJ (5.3)

where I labels a particular state in carrier space of irrep R. Using this, the trace

Tr
(
OR(r,s)αΓR(τ)

)
may be written as

Tr
(
OR(r,s)αΓR(τ)

)
=
∑
K

〈R,K| OR(r,s)αΓR(τ) |R,K〉 (5.4)

=
∑
K,L

〈R,K| OR(r,s)α |R,L〉ΓR(τ)LK (5.5)

Then,
∑

r,s,α Tr
(
OTR(r,s)αΓR(σ−1)

)
Tr
(
OR(r,s)αΓR(τ)

)
in (5.2) becomes∑

r,s,α

Tr
(
OTR(r,s)αΓR(σ−1)

)
Tr
(
OR(r,s)αΓR(τ)

)
=
∑
r,s,α

(∑
I,J

〈R, I| OTR(r,s)α |R, J〉ΓR(σ−1)JI

)

×
(∑
K,L

〈R,K| OR(r,s)α |R,L〉ΓR(τ)LK

)
=
∑
r,s,α

∑
I,J,K,L

ΓR(σ−1)JIΓR(τ)LK

×〈R, I|[A]r, [A]s, α〉〈[S]|R, J〉〈R,K|[S]〉〈[A]r, [A]s, α|R,L〉

=
∑
r,s,α

∑
I,J,K,L

ΓR(σ−1)JIΓR(τ)LK

×〈R,K|[S]〉〈[S]|R, J〉 〈R, I|[A]r, [A]s, α〉〈[A]r, [A]s, α|R,L〉 (5.6)

– 9 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
7

In the above equation, we recognise the following projectors

P[S] =
1

q!2q

∑
ξ∈Sq [S2]

ΓR(ξ) = |[S]〉〈[S]| (5.7)

P[A,A] =
1

n!m!2q

∑
η∈Sn[S2]×Sm[S2]

sgn(η)ΓR(η) (5.8)

=
∑
r,s,α

|[A]r, [A]s, α〉〈[A]r, [A]s, α| (5.9)

In appendix A, we discuss going from (5.8) to (5.9) in more detail. Equation (5.6)

then becomes∑
r,s,α

Tr
(
OTR(r,s)αΓR(σ−1)

)
Tr
(
OR(r,s)αΓR(τ)

)
=

1

n!m!q!22q

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

∑
I,J,K,L

×sgn(η)ΓR(σ−1)JIΓR(τ)LKΓR(ξ)KJΓR(η)IL

=
1

n!m!q!22q

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

sgn(η)χR(σ−1ητξ) (5.10)

Using (5.10), equation (5.2) becomes∑
R,r,s,α

χ
R(r,s)α
SO(N) (σ)Tr

(
OR(r,s)αΓR(τ)

)
=

1√
n!m!q!22q

∑
R

dR
(2q)!

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

sgn(η)χR(σ−1ητξ) (5.11)

In this expression, we are summing over all possible R ` 2q. In this sum, terms for which

R does not have an even number of boxes in each row vanish.2∑
R,r,s,α

χ
R(r,s)α
SO(N) (σ)Tr

(
OR(r,s)αΓR(τ)

)
=

1√
n!m!q!22q

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

sgn(η)
∑
R

dR
(2q)!

χR(σ−1ητξ)

=
1√

n!m!q!22q

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

sgn(η)δ(σ−1ητξ) (5.12)

where we used the well-known group theoretic result [38]∑
R`n

dR
n!
χR(σ) = δ(σ) (5.13)

2This is a simple consequence of the fact that only R having even rows is capable of subducing the Sq[S2]

irrep [S].
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We now use result (5.12) to write any multi-trace operator in terms of OR(r,s)α(Z, Y ).

Consider∑
R(r,s)α

χ
R(r,s)α
SO(N) (σ)OR(r,s)α(Z, Y )

=
1√

n!m!q!22q

∑
τ∈S2q

[ ∑
R(r,s)α

χ
R(r,s)α
SO(N) (σ)Tr

(
OR(r,s)αΓR(τ)

)]
× C4ν

I τ
I
J (Z⊗2n ⊗ Y ⊗2m)J

=
1

n!m!q!22q

∑
τ∈S2q

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

sgn(η)δ(σ−1ητξ)

× C4ν
I τ

I
J (Z⊗2n ⊗ Y ⊗2m)J (5.14)

Summing over τ , δ(σ−1ητξ) sets τ = η−1σξ−1. Thus∑
R(r,s)α

χ
R(r,s)α
SO(N) (σ)OR(r,s)α(Z, Y )

=
1

n!m!q!22q

∑
ξ∈Sq [S2]

∑
η∈Sn[S2]×Sm[S2]

sgn(η)C4ν
I (η−1σξ−1)IJ(Z⊗2n ⊗ Y ⊗2m)J (5.15)

The tensor C4ν
I , acted on by the permutation ξ ∈ Sq[S2], is invariant, and η ∈ Sn[S2] ×

Sm[S2] acting on the ZY tensor picks up a sgn(η). After summing over ξ and η, we obtain

our desired expression∑
R(r,s)α

χ
R(r,s)α
SO(N) (σ)OR(r,s)α(Z, Y ) = C4ν

K σ
K
L (Z⊗2n ⊗ Y ⊗2m)L (5.16)

Each σ gives some multi-trace operator. Using the restricted Schurs in (2.1) for the

S8 irreps,

,
(

,
)

,
(

,
)

,
(

,
)

(5.17)

,
(

,
)

we have checked formula (5.16) for a large number of permutations σ. We present two

examples in appendix C.

The calculation is exactly the same for Sp(N). Defining the Sp(N) ‘dual re-

stricted character’

χ
R(r,s)α
Sp(N) (σ) =

dR
√
n!m!q!22q

(2q)!
Tr
(
OSp(N)T
R(r,s) ΓR(σ−1)

)
, (5.18)

we find that any multi-trace operator may be written as∑
R,r,s,α

χ
R(r,s)α
Sp(N) (σ)O

Sp(N)
R(r,s)α(Z, Y ) = JI(σ)IK

(
(JZ)⊗2n ⊗ (JY )⊗2m

)K
(5.19)

We are now able to express any multi-trace operator, involving two scalar fields, in the free

SO(N) and Sp(N) theory in terms of our restricted Schur basis.

– 11 –
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5.2 A product rule

A product rule for operators O
SO(N)
R(r,s)α(Z, Y ) in terms of restricted Littlewood-Richardson

coefficients is easily derived. The basic idea is exactly the same as in [15]. We multiply two

restricted Schurs, one having labels R1(r1, s1)α1 and the other R2(r2, s2)α2, to produce a

linear combination of restricted Schurs with labels R1 +R2, (r1 + r2, s1 + s2)β. R1 and R2

are irreps of S2q1 and S2q2 respectively. (r1, s1) and (r2, s2) are irreps of S2n1 × S2m1 and

S2n2×S2m2 respectively, where qi = ni+mi (i = 1, 2). α1 and α2 are the multiplicity labels

for the two respective subgroup irreps. Thus, Ri(ri, si)αi defines a restricted Schur having

ni Z’s and mi Y ’s. R1+R2 is an irrep of S2q1+2q2 , r1+r2 is an irrep of S2n1+2n2 and s1+s2
is an irrep of S2m1+2m2 . β simply labels the (r1 + r2, s1 + s2) copy subduced from R1 +R2.

The set of labels {R1 + R2, (r1 + r2, s1 + s2), β} defines a restricted Schur having n1 + n2
Z’s and m1 +m2 Y ’s. As in [15], it is convenient to streamline the notation. Thus, denote

{i} ≡ Ri(ri, si)αi and {1 + 2} ≡ {R1 +R2, (r1 + r2, s1 + s2)β}. Also, write n12 = n1 + n2,

m12 = m1 +m2 and q12 = q1 + q2. Thus, for example, (2.7) may be written as

O
SO(N)
{1+2} (Z, Y ) =

1√
n12!m12!q12!22q12

∑
ρ∈S2q12

χ
SO(N)
{1+2} (ρ)δIρ

I
J

(
Z⊗2n12 ⊗ Y ⊗2m12

)J
(5.20)

In the following derivation, we use the operators defined in (2.7) which are equivalent to

the ones defined in (2.1). The factorisation we need in our product rule occurs naturally

for the operators defined using the δI tensor, rather than the C4ν
I tensor. The following

derivation is for SO(N). The derivation for Sp(N) is completely analogous. Define the

restricted Littlewood-Richardson coefficients to be

f
{1+2}
{1},{2} =

1√
n1!m1!n2!m1!m2!22q1+2q2

∑
σ1∈S2q1

∑
σ2∈S2q2

χ
SO(N)
{1} (σ1)χ

SO(N)
{2} (σ2)χ

{1+2}
SO(N)(σ1 · σ2)

(5.21)

where χ
{1+2}
SO(N) is the dual restricted character defined in (5.1). We want to show that

∑
{1+2}

f
{1+2}
{1},{2}O

SO(N)
{1+2} (Z, Y ). (5.22)

is given by the product of two restricted Schurs, one labeled by {1}, and the other by {2}.
To evaluate (5.22), we use equation (5.12) to write

∑
{1+2}

χ
{1+2}
SO(N)(σ1 · σ2)χ

SO(N)
{1+2} (ρ) =

1√
n12!m12!q12!2q12!

∑
ξ∈Sq12 [S2]

∑
η∈Sn12 [S2]×Sm12 [S2]

sgn(η)

× δ(σ−11 ·σ
−1
2 ηρξ) (5.23)

Summing over ρ sets ρ = η−1σ1σ2ξ
−1. As before, ξ acting on δI is invariant and η acting

on the ZY tensor gives back an extra sgn(η). Summing over ξ and η then cancels the

– 12 –
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normalisation factor in (5.20), and thus we write∑
{1+2}

f
{1+2}
{1},{2}O

SO(N)
{1+2} (Z, Y )

=
1√

n1!m1!n2!m1!m2!22q1+2q2

∑
σ1∈S2q1

∑
σ2∈S2q2

χ
SO(N)
{1} (σ1)χ

SO(N)
{2} (σ2)

δI(σ1 · σ2)IJ
(
Z⊗2n12 ⊗ Y ⊗2m12

)J
(5.24)

By σ1, we mean the permutation that acts on the first 2n1 Z indices and first 2m1 Y

indices. By σ2, we mean the permutation that acts on the second 2n2 Z indices and second

2m2 Y indices. The second line in (5.24) factories and we may write∑
{1+2}

f
{1+2}
{1},{2}O

SO(N)
{1+2} (Z, Y )

=
1√

n1!m1!q1!22q1

∑
σ1∈S2q1

χ
SO(N)
{1} (σ1)δI1(σ1)

I1
J1

(
Z⊗2n1 ⊗ Y ⊗2m1

)J1
× 1√

n2!m2!q2!22q2

∑
σ2∈S2q2

χ
SO(N)
{2} (σ2)δI2(σ2)

I2
J2

(
Z⊗2n2 ⊗ Y ⊗2m2

)J2
(5.25)

Thus, we have achieved the desired result∑
{1+2}

f
{1+2}
{1},{2}O

SO(N)
{1+2} (Z, Y ) = O

SO(N)
{1} (Z, Y )O

SO(N)
{2} (Z, Y ). (5.26)

In appendix D, we check this product with a simple example.

6 Discussion

In this work, we have defined a basis for the 1/4-BPS sector of the free super Yang-Mills

theory with a symplectic gauge group. These operators are very similar to those defined

for the theory with orthogonal gauge group. The difference between the two cases is that

the symmetrisations of the irreducible representations defining the operators have been

exchanged, as expected. The two-point function for the symplectic gauge theory operators

was related to its orthogonal gauge theory counterpart by replacing N by −N .

The results of this work make it possible to compute correlation functions of any kind

of multi-matrix, multi-trace operators involving two scalar fields. In such a correlation

function, each trace operator may be expressed in terms of restricted Schur polynomials.

Using the product rule derived above, computing the correlation function of many restricted

Schurs may be transformed into a simple two-point function computation, the formula for

which is given in (2.5) and (4.20).

Studying the spectrum of anomalous dimensions of our restricted Schurs is an inter-

esting problem, especially in the limit that these operators become dual to excited giant

gravitons. Such a study may yield new insights into the non-perturbative physics of their
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D-brane duals. Pursuing this direction may also allow us to make some concrete statements

about whether or not integrability is preserved in non-planar limits of the SO(N) or Sp(N)

gauge theory.

Acknowledgments

I would like to thank Prof. Robert de Mello Koch whose guidance and support has made

this work possible.

A An expression for P[A,A]

In this section, we try prove that

P[A,A] =
1

n!m!2q

∑
η∈Sn[S2]×Sm[S2]

sgn(η)ΓR(η) =
∑
r,s,ν

|[A]r, [A]s, ν〉〈[A]r, [A]s, ν| (A.1)

Since η1 · η2 ∈ S2n × S2m, we can write [38]

ΓR(η1 · η2)IJ =
∑
r,s,ν

∑
j1j2k1k2

〈R, I|R(r, s)ν; j1, j2 〉Γr(η1)j1k1Γs(η2)j2k2〈R(r, s)ν; k1, k2|R, J〉

(A.2)

Writing out the IJ-th matrix element of P[A,A],

(P[A,A])IJ = 〈R, I|
(∑
r,s,ν

(P[A]r)j1k1(P[A]s)j2k2 |R(r, s)ν; j1, j2〉〈R(r, s)ν; k1, k2|
)
|R, J〉

(A.3)

where we wrote

P[A]r =
1

n!2n

∑
η1∈Sn[S2]

sgn(η1)Γr(η1) (A.4)

with a similar expression for P[A]s . Since P[A]r and P[A]s are projectors, i.e., P 2
[A]r

= P[A]r

(and similarly for P[A]s), this matrix element becomes

(P[A,A])IJ = 〈R, I|
(∑
r,s,ν

(P[A]r)j1l1(P[A]r)l1k1(P[A]s)j2l2(P[A]s)l2k2 |R(r, s)ν; j1, j2〉〈R(r, s)ν; k1, k2|

)
|R, J〉

(A.5)

We then have

(P[A,A])IJ = 〈R, I|

(∑
r,s,ν

∑
l1l2

|[A]r, [A]s, ν; l1l2〉〈[A]r, [A]s, ν| ; l1l2

)
|R, J〉

=
∑
r,s,ν

〈R, I|[A]r, [A]s, ν〉〈[A]r, [A]s, ν|R, J〉 (A.6)

To get the last line, we used the fact that ([A], [A]) is a 1-dimensional irrep.
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B Sp(N) two-point function examples

First, consider for Sp(N)

R = , (r, s) =
(

,
)

(B.1)

The restricted Schur (4.6) for this operator was calculated to be

O
Sp(N)

( , ) = −
√

6Tr(ZY ) (B.2)

It’s two-point function is

〈OSp(N)
( , )O

Sp(N)
( , )〉 = 12N(N + 1). (B.3)

Firstly, this agrees with (4.20) and secondly, we compare this to the SO(N) two-point

function for

Rc = , (rc, sc) =
(

,
)

(B.4)

The restricted Schur for SO(N), as given in equation (2.1), is (see [1])

O
SO(N)

( , ) =
√

6Tr(ZY ) (B.5)

with two-point function

〈OSO(N)
( , )O

SO(N)
( , )〉 = 12N(N − 1). (B.6)

Clearly, sending N to −N gives us the Sp(N) result (B.3).

Next, consider for Sp(N)

R = , (r, s) =
(

,
)

(B.7)

The restricted Schur was calculated to be

O
Sp(N)

( , ) = 2
√

30
(

Tr(ZY )2 + 2Tr(ZYZY )
)

(B.8)

Its two-point function is

〈OSp(N)
( , )O

Sp(N)
( , )〉 = 2880N(N + 1)(N + 2)(N + 3), (B.9)

agreeing with (4.20). We now compare this with the SO(N) two-point function for

Rc = , (rc, sc) =
(

,
)

(B.10)

The restricted Schur (2.1) is

O
SO(N)

( , ) = 2
√

30
(

Tr(ZY )2 − 2Tr(ZYZY )
)

(B.11)

with two-point function

〈OSO(N)
( , )O

SO(N)
( , )〉 = 2880N(N − 1)(N − 2)(N − 3). (B.12)

Sending N → −N , yields the Sp(N) result.
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C Examples of multi-trace operators

In this appendix, we give two examples of our formula (5.16). Recall from [1], we calculated

(with the normalisation of (2.1))

O ,( , ) =
√

30
(

2Tr(ZY )2 + 2Tr(ZYZY ) + Tr(Z2)Tr(Y 2) + 4Tr(Z2Y 2)
)

(C.1)

O ,( , ) =
√

6
(

2Tr(ZY )2 + 2Tr(ZYZY ) + 3Tr(Z2)Tr(Y 2)− 12Tr(Z2Y 2)
)

(C.2)

O ,( , ) = 2
√

30
(

Tr(ZY )2 − 2Tr(ZYZY )
)

(C.3)

O ,( , ) = 2
√

6
(
− Tr(ZY )2 − Tr(ZYZY ) + Tr(Z2)Tr(Y 2) + Tr(Z2Y 2)

)
(C.4)

Let σ = (1, 3, 5)(4, 8, 6, 7). The dual restricted characters evaluated to

χ
( , )

SO(N) (σ) =
1

6
√

30
(C.5)

χ

( , )

SO(N) (σ) =
1

30
√

6
(C.6)

χ

( , )

SO(N) (σ) =
1

6
√

30
(C.7)

χ
( , )

SO(N) (σ) = − 1

15

√
2

3
(C.8)

Then adding the four operators with these coefficients, we found

1

6
√

30
O

SO(N)
( , )+

1

30
√

6
O

SO(N)
( , )+

1

6
√

30
O

SO(N)
( , )−

1

15

√
2

3
O

SO(N)
( , ) = Tr(ZY )2 (C.9)

We then calculated the right-hand-side of (5.16) and found

C4ν
I (σ)IJ

(
Z⊗4 ⊗ Y ⊗4

)
= Tr(ZY )2 (C.10)

For one more example, Let σ = (3, 4, 7, 8). The dual restricted characters evaluated to

χ
( , )

SO(N) (σ) =
1

12
√

30
(C.11)

χ

( , )

SO(N) (σ) =
−1

20
√

6
(C.12)

χ

( , )

SO(N) (σ) = 0 (C.13)

χ
( , )

SO(N) (σ) =
1

30
√

6
(C.14)

Adding the 4 Schurs with these coefficients, we found

1

12
√

30
O

SO(N)
( , ) −

1

20
√

6
O

SO(N)
( , ) +

1

30
√

6
O

SO(N)
( , ) = Tr(Z2Y 2) (C.15)
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We then calculated the right-hand-side of (5.16) and found

C4ν
I (σ)IJ

(
Z⊗4 ⊗ Y ⊗4

)
= Tr(Z2Y 2) (C.16)

D Example of the product rule

In this appendix, we give one simple example of our product rule in (5.26). We try evaluate

the following product: O , ( , )(Z, Y )O , ( , )(Z, Y ). For the definition in (2.7),

O , ( , )(Z, Y ) = −
√

6Tr(ZY ) (D.1)

This means that

O , ( , )(Z, Y )O , ( , )(Z, Y ) = 6Tr(ZY )2 (D.2)

According to (5.26), this product should also be given as a sum over restricted Schurs, each

multiplied by restricted Littlewood-Richardson coefficients, corresponding to the labels

in (5.17). The operators for these labels evaluated to

O ,( , ) =
√

30
(

2Tr(ZY )2 + 2Tr(ZYZY ) + Tr(Z2)Tr(Y 2) + 4Tr(Z2Y 2)
)

(D.3)

O ,( , ) =
√

6
(

2Tr(ZY )2 + 2Tr(ZYZY ) + 3Tr(Z2)Tr(Y 2)− 12Tr(Z2Y 2)
)

(D.4)

O ,( , ) = 2
√

30
(

Tr(ZY )2 − 2Tr(ZYZY )
)

(D.5)

O ,( , ) = −2
√

6
(
− Tr(ZY )2 − Tr(ZYZY ) + Tr(Z2)Tr(Y 2) + Tr(Z2Y 2)

)
(D.6)

Only the last operator differs from the operators defined in (2.1) and the difference is a

minus sign. Here, n1 = m1 = n2 = m2 = 1, and q1 = q2 = 2. The restricted Littlewood-

Richardson coefficients evaluated to

f
,( , )

,( , ) ; ,( , ) =
1√
30

(D.7)

f

,( , )

,( , ) ; ,( , ) =
1

5
√

6
(D.8)

f

,( , )

,( , ) ; ,( , ) =
1√
30

(D.9)

f
,( , )

,( , ) ; ,( , ) =
2

5

√
2

3
(D.10)

In the f ’s above, there were two sums over the permutation group S4. The first sum was

over permutations that permuted 1, 2, 5, 6 amongst themselves, and the second sum was

over permutations that permuted 3, 4, 7, 8 amongst themselves. For the coefficients in (D.7)

to (D.10) and operators (D.3) to (D.6), we found

f
,( , )

,( , ) ; ,( , )O ,( , )(Y, Z) + f

,( , )

,( , ) ; ,( , )O ,( , ) (D.11)

+f

,( , )

,( , ) ; ,( , )O ,( , ) + f
,( , )

,( , ) ; ,( , )O ,( , ) = 6Tr(ZY )2

precisely as expected.
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