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1 Introduction

The discovery of a Higgs boson near 126 GeV [1, 2] has profound implications for super-

symmetry as a solution to the electroweak hierarchy problem. This is especially the case

in minimal supersymmetry, where the stops must either be unnaturally heavy (& 10 TeV)

or have a large trilinear coupling to the Higgs [3–11]. The former possibility leaves little

hope for preserving naturalness or observational signals at the LHC, so we will focus on

the latter scenario. This requires a plausible mechanism for generating such large A-terms

without introducing large flavor violation or other unwanted effects.

The lack of decisive deviations in searches for flavor and CP violation has long favored

low-scale gauge mediation by virtue of its flavor universality. However, in its minimal

form, gauge mediation is challenged by the Higgs sector, since it generates neither the
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µ and Bµ parameters necessary for electroweak symmetry breaking (EWSB), nor the A-

terms suggested by the Higgs mass measurement. These terms may be generated in a flavor

universal manner by adding interactions between the Higgs sector and the messenger sector,

W ⊃ λuOuHu + λdOdHd (1.1)

where Ou,d are messenger-sector operators. Although the µ and A-terms are obtained

trivially in such a setup, viable solutions must confront two thorny problems: the “µ/Bµ
problem” [12] and the “A/m2

H problem” [13]. Both problems arise because adding Higgs-

messenger interactions that generate a µ (A) term also tend to produce a Bµ (m2
H) term

that is too large for viable electroweak symmetry breaking.

The most stringent form of the A/m2
H problem may be resolved if the sole source of

messenger mass is a single SUSY-breaking spurion [13, 14], as in minimal gauge mediation

(MGM) [15–17]. But even in this case the µ/Bµ problem remains unaddressed, and requires

a further extension of the model. Moreover, there is a residual “little A/m2
H problem”, as

any weakly-coupled model that generates large A-terms through Higgs-messenger interac-

tions also generates contributions to the Higgs soft masses proportional to A2 [13]. Even

if these contributions do not prevent electroweak symmetry breaking, they significantly

increase the fine-tuning associated with the weak scale.

In this paper, we present an alternative framework which uses strong dynamics in the

hidden sector to economically solve both the µ/Bµ and A/m2
H problems. Two ingredients

are required for this: that there exists a hierarchy between the messenger scale M and the

SUSY-breaking scale
√
F ; and that the anomalous dimensions of the operators responsible

for SUSY-breaking are large and positive. The former property is a generic prediction

of dynamical supersymmetry breaking [18], while the latter property is constrained, but

still allowed by the conformal bootstrap [19]. If both these conditions are met, strong

renormalization effects in the hidden sector can suppress the soft masses of the scalars

(including Bµ [20–22] and m2
H [23]), an idea more generally known as “conformal seques-

tering” or “scalar sequestering” [24–26]. We will demonstrate that with such a strongly

coupled hidden sector, even the very simplest example for the messenger sector yields a

large viable parameter space. The simplicity of our model contrasts sharply with most

fully weakly-coupled solutions, which address the µ/Bµ problem by elaborately extending

either the Higgs sector or the messenger sector (or both).

In recent years, there has been tremendous progress in our understanding of 4D con-

formal field theory, starting with the work of [27]. This revival of the conformal bootstrap

program has led to strong bounds on the dimensions of operators appearing in the OPE.

Applying these bounds to the operators responsible for SUSY-breaking has in turn strongly

limited the efficacy of the conformal sequestering scenario [19]. In particular, it is now very

difficult to achieve full suppression of Bµ and m2
Hu

,

Bµ � |µ|2 and m2
Hu + |µ|2 � |Au|2. (1.2)

On the other hand, a partial suppression of the dangerous contributions such that

Bµ . |µ|2 and m2
Hu + |µ|2 . |Au|2. (1.3)
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Figure 1. Schematic representation of the various sectors and couplings. This paper we take the

messenger sector to be weakly coupled but allow for strong dynamics in the hidden sector.

is still possible and may be sufficient to facilitate electroweak symmetry breaking. In this

case the details of the hidden sector dynamics do not fully decouple from the low energy

observables, and testing for viable electroweak symmetry breaking requires a robust frame-

work to explicitly compute the MSSM soft parameters in terms of the hidden sector data

(such as the spectrum of operators, their scaling dimensions, and their OPE coefficients).

General Messenger Higgs Mediation (GMHM), developed recently in [23], provides pre-

cisely such a framework. Following [28], the idea of GMHM is to go beyond the single-sector

frameworks of [29–31] and explicitly separate the messenger sector and SUSY-breaking sec-

tor, so that it becomes possible to take
√
F �M . Specifically, we parametrize the coupling

between the messenger sector and the SUSY-breaking hidden sector via a perturbative su-

perpotential interaction as in [28]:

W ⊃ κ

Λ∆h−1
OhOm (1.4)

where Oh is an operator in the SUSY-breaking sector with dimension ∆h, Om is an operator

in the messenger sector, and Λ is the cut-off scale associated with the irrelevant operator

in (1.4). The complete setup of GMHM is shown in figure 1. By expanding in the portal

couplings κ, λu,d of (1.1) and (1.4), we can express the soft parameters in terms of products

of separate correlation functions over the messenger sector and the hidden sector. Under

the assumption that the hidden sector is near a conformal fixed point between the scales

M and
√
F , the correlators simplify dramatically. The GMHM formalism then allows, for

the first time, for a full calculation of soft masses directly in terms of hidden sector scaling

dimensions, OPE coefficients, and expectation values.

Although GMHM applies to any hidden sector and messenger sector coupled through

the portals (1.1), (1.4), in this paper we will focus on weakly-coupled messenger sectors

– 3 –
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in order to preserve calculability and predictivity.1 We will explore the phenomenology of

this entire class of models, as well as present a very simple explicit example. Concretely,

the model for the messenger sector that we consider is given by

W =
( κ

Λ∆h−1
Oh +M

)(
φ̃DφD + φ̃SφS

)
+ λuφ̃DφSHu + λdφDφ̃SHd. (1.5)

where φD, φ̃D and φS , φ̃S are SU(2) doublets and gauge singlets respectively. Although

this model is the prime example of a model that does not solve the µ/Bµ problem when the

hidden sector is trivial [12], with partial hidden-sector sequestering it becomes an elegant so-

lution to both the µ/Bµ and A/m2
H problems. We find that electroweak symmetry breaking

and mh = 126 GeV are easy to achieve in this model, and instead the most interesting con-

straints on the parameter space originate from stau tachyons. Nevertheless there is a large

viable parameter space, which can accommodate O(1) OPE coefficients and roughly 10%

suppression from conformal sequestering. The collider phenomenology is similar to that of

standard gaugino mediation [32, 33], with all the colored states above 1 TeV. The NLSP is

always long-lived, which leads to spectacular collider signatures if the NLSP is a stau.

The paper is organized as follows. Section 2 is a brief review of the mechanism of

conformal sequestering as well as the most important features of the GMHM formalism.

In section 3 we discuss the model-independent constraints on the parameter space from

weak scale requirements such as EWSB and the Higgs mass, prior to presenting a full

analysis of our explicit example in section 4. Section 5 is a short discussion of the collider

phenomenology of this class of models. Section 6 contains our conclusions, and we reserve

various technical details for the appendices.

2 Review of GMHM and conformal sequestering

2.1 The GMHM formalism

In this subsection, we review the calculation of the Higgs soft parameters µ, Bµ, Au,d
and m2

Hu,d
through the GMHM formalism. For the derivation of the various results we

refer to [23]. At the scale
√
F , conformal symmetry and supersymmetry are broken by an

F -term expectation value for the hidden sector operator Oh with dimension ∆h:

〈Q2Oh〉h ≡
√
F

∆h+1
, (2.1)

To leading order, the dimension-one soft parameters (gaugino masses, µ, and Au,d) are only

sensitive to this vacuum expectation value.

Meanwhile, the dimension-two soft parameters (sfermion mass-squareds, Bµ, and

m2
Hu,d

) are sensitive to the dynamics of the hidden sector. The leading contribution of

such dynamics is packaged in the hidden-sector two-point function

〈Q4[O†h(x)Oh(x′)]〉h, (2.2)

1For this reason we will assume for simplicity that ∆m = ∆u = ∆d = 2 (while allowing for arbitrary

∆h), which is well motivated for a weakly coupled messenger sector. This explains the powers of Λ or lack

thereof implicitly taken in (1.1) and (1.4).
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In the spurion limit, this correlation function simply factorizes into |〈Q2Oh〉h|2, but in a

non-trivial hidden sector this is not necessarily a good approximation. For calculable mod-

els of the supersymmetry breaking sector one could address this issue by explicitly evaluat-

ing (2.2) and then studying its effects on the low energy physics. In this paper we will take a

different approach: we will remain agnostic about the precise mechanism of supersymmetry

breaking, but instead assume that the hidden sector is approximately conformal before it

breaks SUSY. In the GMHM framework, the hidden sector correlator in (2.2) is always con-

volved with a short-distance messenger correlator, which then enforces |x−x′| ∼ 1
M � 1√

F
.

It is therefore justified to simplify (2.2) by making use of the operator product expansion:

Oh(x)O†h(x′) ∼ |x− x′|−2∆h1 + C|x− x′|∆−2∆hO∆(x) + . . . (2.3)

where the ellipses denote terms with higher dimension and/or spin. The supercharges

annihilate the unit operator such that the correlation function is reduced to

〈Q4[Oh(x)O†h(x′)]〉h ≈ C|x− x′|∆−2∆h〈Q4O∆〉h (2.4)

where we only keep the leading non-vanishing term in the OPE. Dimensional analysis then

demands that the D-term expectation value of O∆ takes the form 〈Q4O∆〉 ≡ ξ∆F
(∆+2)/2,

where ∆ is the scaling dimension of O∆ and ξ∆ is a dimensionless number. The parameters

ξ∆ and C are degenerate at the level of our analysis, and to facilitate the notation we thus

introduce an ‘effective OPE coefficient’:

Ĉ ≡ Cξ∆. (2.5)

Note that ξ∆ (and therefore Ĉ) is a real number, but can have either sign.

To leading order in λu,d, the µ term and the A-terms are given by

µ = −λuλdκ
√
F

∆h+1

Λ∆h−1

∫
d4y d4x〈O†m(y)QαOu(x)QαOd(0)〉m (2.6)

Au,d = |λu,d|2κ
√
F

∆h+1

Λ∆h−1

∫
d4yd4x〈O†m(y)Q̄2

[
O†u,d(x)Ou,d(0)

]
〉m (2.7)

The Higgs sector soft masses are specified by the correlators

Bµ=−λuλdκ2Ĉ

√
F

∆+2

Λ2∆h−2

∫
d4y d4y′ d4x |y−y′|γ

〈
Om(y)O†m(y′)Q2Ou(x)Q2Od(0)

〉
m

(2.8)

m̂2
Hu,d

=−|λu,d|2κ2Ĉ

√
F

∆+2

Λ2∆h−2

∫
d4y d4y′ d4x |y−y′|γ

〈
Om(y)O†m(y′)Q2Ou,d(x)Q̄2O†u,d(0)

]〉
m

(2.9)

with γ ≡ ∆− 2∆h. Here we have introduced the following notational convenience:

m̂2
Hu,d
≡ m2

Hu,d
+ |µ|2 (2.10)

where the m2
Hu,d

are the usual soft masses for the Higgs fields.
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Although the Higgs sector parameters are generated by the portal (1.1), for the rest

of the MSSM soft parameters we need a different source. In this paper, we assume that

these arise through standard gauge mediation, i.e. the messenger sector in figure 1 also

couples to the MSSM through gauge interactions. For completeness, let us exhibit the

usual gauge-mediated contributions to the soft masses. These can be assembled from the

GGM correlators [29, 30]:

Mi = g2
iBi

m2
f̃

=
3∑
i=1

g4
i c2(f, i)Ai (2.11)

where f labels the matter representations of the MSSM, and c2(f, i) is the quadratic Casimir

of f with respect to the gauge group i. In the GMGM formalism the Bi and Ai correlators

can be written as a convolution of a messenger sector correlator with a hidden sector

correlator [28]. Crucially, the hidden sector correlator appearing in the expression for the

Ai is precisely (2.2). Using the OPE, the expressions for Bi and Ai then reduce to

Bi =
κ

4

√
F

∆h+1

Λ∆h−1

∫
d4y d4x〈Q2O†m(y)Ji(x)Ji(0)〉m (2.12)

Ai = − κ2

128π2
Ĉ

√
F

∆+2

Λ2∆h−2

∫
d4y d4y′ d4x |y − y′|γ

〈
Q4
[
Om(y)O†m(y′)

]
Ji(x)Ji(0)

〉
m

log[M2x2]

(2.13)

The Ji(x) are the bottom components of the current superfields through which the messen-

gers couple to gauge group i. In contrast with (2.8) and (2.9), the expression for sfermion

mass-squareds in (2.13) is suppressed by an extra loop factor, in addition to any loop

factors that may be generated by the messenger correlator itself.

2.2 Conformal sequestering

For a generic weakly-coupled messenger sector, all the messenger correlators in equa-

tions (2.6)–(2.9) are non-zero at one loop, which implies that Bµ and m̂2
Hu,d

are too large

to facilitate viable electroweak symmetry breaking. However just by applying naive dimen-

sional analysis on the correlators in the previous section, we can already identify several

possible avenues to address the problem:

Bµ
µ2
∼ 16π2

λuλd

Ĉ

N

(√
F

M

)γ
m̂2
Hu,d

|Au,d|2
∼ 16π2

|λu,d|2
Ĉ

N

(√
F

M

)γ
(2.14)

A well known method to mitigate the infamous loop factor is to increase the messenger

number, which we denote by N . However, this is limited by Landau poles in the gauge

couplings and cannot be responsible for completely suppressing the loop factor. Secondly,

if γ > 0 and
√
F � M , the last factor on each line of (2.14) can in principle suppress the

– 6 –
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loop factor. This is the conformal sequestering mechanism. Finally, one could consider an

SCFT with Ĉ � 1, such that the effective OPE coefficient provides the desired suppression

factor, possibly in combination with some suppression from sequestering.

Meanwhile, from equations (2.11)–(2.13) we see that since the gaugino and sfermion

masses are generated through gauge mediation, they satisfy:

m2
f̃

M2
i

∼ Ĉ

N

(√
F

M

)γ
(2.15)

In particular, the sfermion masses come with an extra loop factor with respect to Bµ and

m̂2
Hu,d

, but are subject to the same suppression from the hidden sector. This implies that

the sfermion masses are always suppressed with respect to the gaugino masses if the µ/Bµ
and A/m2

H problems are solved. The phenomenology will therefore be similar to that of

gaugino mediation [32, 33].

The idealized cases where γ � 1 or Ĉ → 0 lead to the extremely simple boundary

conditions at the scale
√
F :

Bµ ≈ m̂2
Hu,d
≈ m2

f̃
≈ 0 (2.16)

Interestingly, this part of the UV boundary conditions becomes completely model-

independent. The sensitivity of these parameters to the details of the hidden sector and

messenger sector has been completely erased.

Unfortunately this scenario is severely challenged in several ways. First, it has been

known for some time that achieving suitable EWSB is nontrivial for these boundary condi-

tions [34, 35]. Second, even if one succeeds in breaking electroweak symmetry, the amount

of sequestering through the factor
(√

F
M

)γ
is now severely limited by powerful upper bounds

on γ from the internal consistency of the hidden sector SCFT [19].

To see this, consider some reference values in table 1, taken from figure 7 of [19]. The

bounds are clearly very strong for low values of ∆h, but could going to larger ∆h allow

for enough sequestering? (This is indeed suggested by figure 9 of [19].) In fact, increasing

∆h runs into a competing constraint. Because the messenger sector portal (1.4) becomes a

higher-dimension operator, it becomes increasingly challenging to achieve realistic gaugino

masses.2 These are given by (2.11) and (2.12):

Mi =
g2
i

16π2
N

√
F

∆h+1

MΛ∆h−1
. (2.17)

Requiring TeV-scale gaugino masses leads to the following rough limit on the suppression

that can be achieved from conformal sequestering:(√
F

M

)γ
&

(
100 TeV

Nε∆h−1
√
F

) γ
∆h

(2.18)

where we made the rough order of magnitude estimate 16π2

g2
i
Mi ∼ 100 TeV and defined ε ≡

M
Λ < 1. Figure 2 shows this as a function of

√
F and ∆h (with γ saturating the bootstrap

2An identical argument applies to µ and Au,d, which implies that this constraint cannot be be simply

circumvented by arranging the gaugino masses to arise from a separate source of supersymmetry breaking.

– 7 –
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∆h (γ)max

1.20 0.1

1.45 0.4

2.00 0.7

Table 1. Maximum allowed value of γ for selected values of ∆h, as extracted from figure 7 of [19].

bound), for two choices of ε. For larger ∆h, the hierarchy between the messenger and hidden

sector scales is greatly reduced in comparison to the hierarchy that one would obtain in

the spurion limit. In combination with the upper bound on γ from [19], this severely limits

the amount of sequestering that can be achieved. Some more comments on this result:

• Equation (2.18) and the requirement that M >
√
F also provide a rough lower bound

on
√
F & 100 TeV

Nε∆h−1 . This is the same type of lower bound as found for any model with

weakly coupled messengers, except that in the case at hand the bound is further

strengthened for smaller values of ε and larger values of ∆h.

• For ∆h & 1.7, increasing ∆h barely improves the sequestering, because of the com-

peting effects described above.

• The estimate in (2.18) also shows that the achievable sequestering somewhat improves

for higher N , however the gain is limited due to the
√
F -dependent upper bound on

N from Landau poles in the gauge couplings.

By comparing figure 2 with figure 9 of [19], we see that the bound on the sequestering

has been strengthened considerably by accounting for TeV scale gaugino masses and by

factoring in the UV scale Λ, here parametrized by the variable ε. In particular, a full loop

factor suppression is only feasible for
√
F & 1011 GeV. In this case the separation with the

weak scale may be sufficiently high such that MSSM RG-running could suffice to generate

a large A-term, without the need for Higgs mediation [7]. Moreover, such a high scale of

supersymmetry breaking introduces various subtleties in the model: firstly, the gravitino

is no longer the LSP. While this is interesting if the new LSP is a neutralino [22, 36, 37],

it is a disaster if the new LSP is a stau. Secondly, for
√
F & 1011 GeV, contributions

from anomaly and/or gravity mediation may not be negligible. Especially the latter could

be problematic, as they generically induce large flavor violation in the A-terms and the

sfermion masses. (On the other hand, it is possible that the very same mechanism of con-

formal sequestering may help to suppress dangerous flavor violation [24–26].) While these

are certainly interesting issues, we do not wish to confront them in this paper. For simplic-

ity we therefore restrict our discussion to
√
F < 1010 GeV, to ensure that the gravitino is

always the NLSP and that gravity-induced flavor violation is always automatically small.

From figure 2 we then conclude that for
√
F < 1010 GeV conformal sequestering is not

sufficiently powerful to achieve the fully suppressed boundary conditions in (2.16). The

– 8 –
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(a) ε = 1. (b) ε = 0.1.

Figure 2. Contours of the maximal suppression factor that can be achieved from conformal seques-

tering as a function of ∆h and
√
F for various values of ε with N = 5. The dashed contour indicates

the suppression needed to precisely overcome the factor 16π2 that constitutes the µ/Bµ and A/m2
H

problems. The gray region corresponds to the unphysical case
√
F > M . The contours should be

taken as a rough estimate using (2.18). The precise value of the sequestering is model-dependent.

best we can hope for is to achieve a partial suppression from sequestering given by(√
F

M

)γ
∼ 0.01− 0.1. (2.19)

This may be sufficient — especially in combination with some additional suppression from

Ĉ < 1 and/or N > 1 — to achieve viable EWSB, provided that the boundary conditions

at the scale
√
F still satisfy

Bµ . |µ|2 and m̂2
Hu . |Au|2, (2.20)

rather than the overly stringent requirement in (2.16). Such partially suppressed boundary

conditions imply that the details of the dynamics in the hidden and messenger sectors

are not erased at the scale
√
F . Instead, both sectors should leave an observable imprint

on the low energy spectrum. Using the GMHM formalism developed in [23], we are able

for the first time to explicitly evaluate this imprint for a weakly messenger sector of our

choice. We will present an explicit example in section 4, but before doing so, it is useful

to study the available parameter space in a (semi) model-independent way. This will be

the subject of the next section.

3 Exploring the parameter space

The correlator formalism described in the previous section a priori involves a very large

parameter space; in the most general case the boundary conditions are described by no less

– 9 –
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Parameters: M1 M2 m̂2
Hd

Ad m̂2
Hu

Bµ M3 Au

Constraints: Stau tachyons Messenger parity EWSB
mh ∼ 125 GeV
mt̃ ∼ 1 TeV

Figure 3. Schematic representation of the various constraints and how they impact the parameter

space. We use the electroweak symmetry breaking conditions to eliminate Bµ in favor of tanβ. Our

assumption regarding the action of the messenger parity on the operators Ou and Od allows us to

eliminate Ad as an independent variable and to constrain m̂Hd
to be positive.

than 10 free parameters:

M1, M2, M3, Au, Ad, µ, Bµ, m̂
2
Hu , m̂

2
Hd
,
√
F . (3.1)

with m2
f̃
≈ 0. (Recall from the discussion around equation (2.15) that the sfermion masses

are suppressed at the scale
√
F .) Here and onwards, the parameters in (3.1) are always

to be thought of as evaluated at the scale
√
F , unless indicated otherwise. Following the

discussion of the previous section, to maximize the impact of the conformal sequestering we

choose
√
F = 109 GeV. At the end of section 4 we briefly comment on lower values for

√
F .

Before even writing down a specific UV model, we can restrict this parameter space

through phenomenological considerations in the IR such as EWSB and the Higgs mass.

This approach has a double advantage: it serves as a valuable intermediate step in the full

analysis and provides some model independent information about the UV soft parameters.

Despite the restrictions from the IR boundary conditions, the remaining parameter space

in (3.1) is still rather daunting to analyze in full generality. In this paper, we instead

choose to impose one more condition on the UV soft parameters purely for simplicity. This

condition — an extension of messenger parity to the Higgs-messenger portal — renders the

parameter space in (3.1) manageable. Moreover it is a property of a broad class of models,

and it is motivated in particular by the model we will study in section 4. The impact of

each of the constraints on the soft parameters is summarized in figure 3, and in this section

we will describe each one in turn.

3.1 Simplifying assumptions for the UV soft parameters

In GGM, a standard ingredient is that the hidden sector possesses a “messenger parity”

symmetry that forbids dangerous hypercharge tadpoles [29, 38]. To reduce the size of

the parameter space here, we choose to extend this symmetry to the Higgs-messenger

interactions. Specifically, we assume that messenger parity exchanges Ou and Od. This

greatly simplifies our analysis, since it implies that the correlators for Au and Ad in (2.7)

must be identical. The same is true for the correlators for m̂2
Hu

and m̂2
Hd

in (2.9). The soft
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parameters must therefore obey the following relation at the scale
√
F :

Ad
Au

=
m̂2
Hd

m̂2
Hu

=
|λd|2
|λu|2

> 0. (3.2)

We can conveniently use this constraint to eliminate Ad as a free parameter, and thus

reduce size of the parameter space. In addition, (3.2) determines the relative sign of Au
and Ad, as well as the relative sign of m̂2

Hu
and m̂2

Hd
. We emphasize that this extension of

messenger parity to Ou and Od is motivated purely on the grounds of convenience; although

messenger parity is usually included in the definition of gauge mediation, in general it does

not need to act on Ou and Od in this specific way.

For any concrete model, the UV soft parameters must be realized in terms of the

underlying parameters of the model, which generally leads to additional restrictions on

top of (3.2). For example, a minimal messenger sector with only messengers in a 5-5̄

representation of an SU(5) GUT yields the following relation between the gaugino masses:

M1 =
3

5

g2
1

g2
2

M2 +
2

5

g2
1

g2
3

M3. (3.3)

In this section we discuss this special case as well as the more general case where all three

gaugino masses are independent. Any further restrictions on the UV boundary conditions

are typically highly model-dependent, and we deal with them only when we commit to a

specific example in section 4.

3.2 IR boundary conditions

The restrictions on the IR soft masses are purely given by phenomenological considerations,

and as such they are independent of the precise composition of the messenger sector. In

particular, we demand that a realistic spectrum at the weak scale satisfies the following

requirements:

1. Viable electroweak symmetry breaking.

2. mh ≈ 126 GeV and TeV-scale stops.

3. Charge, color and CP must be unbroken in the vacuum on cosmological time scales.

In what follows, we will go step by step through the IR constraints mentioned above, and

use them to reduce the size of the parameter space until it becomes tractable. More details

on our numerical procedure are given in appendix B.

3.2.1 Constraints from EWSB

As usual, the tadpole equations in the Higgs sector allow us to eliminate m̂2
Hu

and Bµ at

the weak scale in favor of mZ and tanβ. In order not to exacerbate the fine-tuning, we

only consider |µ| ≤ 500 GeV, but this is by no means essential. This assumption has the

additional benefit that the parameter µ now has little impact on the IR spectrum, with the

exception of course of the mass of the Higgsino, which may be the NLSP. A small number

of discrete choices therefore suffices to obtain a good qualitative picture of the parameter

space. In addition, we fix tanβ = 10.
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3.2.2 Constraints from the Higgs mass

The parameters Au and M3 are the most important parameters as far as the mass of the

lightest CP even Higgs is concerned, as they set the stop A-term as well as the stop masses.

To appreciate the latter, consider the system of RG equations

16π2 d

dt
m2
Q3

= 2y2
t (m̂

2
Hu +m2

Q3
+m2

u3
+ |Au|2)− 32

3
g2

3|M3|2 − 6g2
2|M2|2

16π2 d

dt
m2
u3

= 4y2
t (m̂

2
Hu +m2

Q3
+m2

u3
+ |Au|2)− 32

3
g2

3|M3|2 (3.4)

16π2 d

dt
m̂2
Hu = 6y2

t (m̂
2
Hu +m2

Q3
+m2

u3
+ |Au|2)− 6g2

2|M2|2

where we neglected contributions proportional to yb and g1. We also dropped the depen-

dence on the µ parameter, since we assumed it to be smaller than the other soft masses.

The key fact is that the stop masses and m̂2
Hu

are essentially zero at the scale
√
F (due to

sequestering) and at the weak scale (due to EWSB), respectively. Therefore, the running

of the stops and m̂2
Hu

must be determined primarily by the sources M3, M2 and Au. Of

these parameters, the effect of M2 is typically subleading compared to the other two. It

is therefore justified to fix the parameters Au and M3 by insisting on mh ≈ 126 GeV with

TeV-scale stop masses.3 This is illustrated in figure 4 for some representative values of M2.

Given both the theory and the experimental errors on the Higgs mass, this is necessarily a

somewhat loose constraint, and for the purpose of our analysis, we simply choose a repre-

sentative point in the allowed region, indicated with a star in figure 4. Other choices are

certainly possible, but the qualitative features of what will follow are preserved.

3.2.3 Constraints from tachyons and (meta)stability

Having fixed Au and M3 from requiring TeV-scale stops and mh ≈ 126 GeV, we are left

with just the independent parameters M1, M2 and m̂2
Hd

(see figure 3). All of these will

be constrained by requiring the absence of slepton tachyons. Since the Yukawa interaction

pushes the sleptons down in the RG running, the third generation is always the most

constraining. The relevant RG equations are4

16π2 d

dt
m2
L3

= 2y2
τ |Ad|2 − 6g2

2|M2|2 −
6

5
g2

1|M1|2 −
3

5
g2

1S (3.5)

16π2 d

dt
m2
e3 = 4y2

τ |Ad|2 −
24

5
g2

1|M1|2 +
6

5
g2

1S (3.6)

with

S = Tr[Yim
2
φi

]. (3.7)

3A priori, a large Au may cause our vacuum to decay to a lower, color-breaking vacuum on a time scale

shorter than the age of the universe. The recently improved empirical constraint on this process [39] does

not impact the parameter space plotted in figure 4. (See also [40, 41] for similar recent results.)
4Keep in mind that m̂2

Hd
does not exhibit strong RG running and can usually be approximated fairly

well by its UV value. The story is very different for the stau masses: although in absolute terms their RG

running is small as well, their UV threshold value is highly suppressed and the running therefore provides

the dominant contribution to the IR stau masses.
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(a) M2 = 0.5 TeV. (b) M2 = 2 TeV.

(c) 5-5̄ messengers.

Figure 4. Contours of the pole masses (in GeV) of the lightest stop (red) and the gluino (black),

as a function of M3 and |Au|/M3, for different choices of M2. The other parameters are fixed to

tanβ = 10, µ = 200 GeV,
√
F = 109 GeV, M1 = 1.2 TeV and mA0 = 1.5 TeV. The pseudoscalar

pole mass mA0 was used instead of m̂2
Hd

for purely technical reasons; all other parameters are

defined at the scale
√
F . The blue region represents 123 GeV < mh < 129 GeV; the green region is

ruled out by stau tachyons. The star indicates the benchmark point plotted in figure 5.

At the scale
√
F , S ≈ m̂2

Hu
−m̂2

Hd
, since all sfermion masses are small. Given that y2

τ � g2
1,

we neglect all the terms proportional to y2
τ , except for |Ad|2, which may be very large. The

right-handed stau is the more fragile of the two staus, since its mass is not sensitive to the
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upwards pull of M2. Moreover recall that m̂2
Hu

and Ad have already been fixed by EWSB

plus the Higgs mass constraint and the extension of messenger parity, respectively. The

most interesting slicing of the parameter space is therefore in terms of M1 and m̂2
Hd

. This

is shown in the plots in figure 5, and we now proceed to discuss these plots in more detail.5

Let us first consider the case where M2 is held fixed, as shown in figure 5a and figure 5b

for two representative values of M2.

• Since m̂2
Hd

pushes down m2
L3

in the RGE, as m̂2
Hd

is increased, it eventually results

in a snutau tachyon. This is indicated by the red shaded region in figure 5a. This

is less of an issue for larger M2, which is why there is no analogous constraint from

snutau tachyons in figure 5b.

• For smaller M1, either the S-term or the |Ad|2 term drives the right-handed stau

tachyonic. This is indicated by the green shaded regions in figure 5.

• Another interesting feature in figure 5a and figure 5b is that Ad is fairly independent

of M1 and monotonically increases as a function of m̂2
Hd

. This is a direct consequence

of (3.2) and the fact that (as we just discussed) m̂2
Hu

is basically constant in these

plots.

• A final noteworthy special case occurs if M2 � M1, as the lightest stau mass eigen-

state may be predominantly composed out of the left-handed stau, due to the smaller

coefficient for the |M1| term in (3.5) compared to its analogue in (3.6).

In models with only 5-5̄ messengers, M2 is a function of M1 and M3 rather than an

independent variable. The constraints on this case are shown in figure 5c.

• We see from figure 5c that M2 is always larger than M1, so snutau tachyons no longer

constrain the parameter space, as a stau tachyon is always generated first.

• The relation between the gaugino masses has some interesting implications on Ad and

the lightest stau as shown in figure 5c. In particular, the Ad contours bend downwards

for large values of M2. This is again easily understood from (3.2) and (3.4): for

large values of M2, m̂Hu is smaller at the scale
√
F , which in turn leads to a large

and negative Ad. Since Ad pulls the staus down, the stau contours eventually start

tracking the Ad contours for sufficiently large Ad, and ultimately a stau tachyon is

induced. Interestingly, this leads to an upper bound on M1 from stau tachyons, a

priori a somewhat counterintuitive notion.

• Also note that the special scenario where all the gaugino masses unify at the GUT

scale (dashed blue line in figure 5c) is only viable in a small sliver of the parameter

space for m̂Hd ∼ 2 TeV.

5Note that in these plots we have considered only positive m̂2
Hd

. This is because m̂2
Hu

(at the scale√
F ) is positive for our choices of M3, M2 and Au, and our simplifying assumption about messenger parity

relates the sign of m̂2
Hd

to that of m̂2
Hu

through equation (3.2).
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(a) M2 = 0.5 TeV. (b) M2 = 2 TeV.

(c) 5-5̄ messengers.

Figure 5. The pole mass of the lightest stau in GeV (black) and Ad in TeV (gray) as a function

of M1 and m̂Hd
. M3 = 2.0 TeV and Au = −3.2 TeV and were chosen such that a mh ≈ 126 GeV

is achieved with TeV-scale stop masses (see the red star on figure 4). The other parameters were

fixed to |µ| = 400 GeV,
√
F = 109 GeV and tanβ = 10. All soft parameters are defined at the scale√

F . The green (red) shaded region indicates a stau (snutau) tachyon. If the µ < 0, the purple

region is ruled out by an A0 tachyon. The blue dashed line in 5c indicates the slice of parameter

space where the gaugino masses unify at the GUT scale.

Finally, we verified using Vevacious-1.0.11 [42] that there are no further significant

constraints from metastable vacuum decay to a charge breaking minimum (even with such

large Ad). However, the parameter space is constrained by demanding the absence of CP-

breaking vacua. If µ < 0 and |Au| �M2, the pseudoscalar may end up tachyonic by virtue

of a large radiative correction. This constraint is indicated by the purple region in figure 5.
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3.3 Summary of the constraints

This concludes the discussion of the (semi) model-independent constraints on the parameter

space. Since the discussion was rather lengthy and involved, a brief summary is appropriate:

• Our assumptions on the extension of messenger parity let us eliminate Ad as a free

parameter through (3.2) and restrict m̂2
Hd

to be positive at the scale
√
F .

• Through the EWSB conditions we eliminate m̂2
Hu

and trade Bµ for tanβ. Except for

the Higgsino mass, the IR physics has little sensitivity to the µ parameter.

• Requiring mh ≈ 126 GeV for a minimal SUSY scale roughly fixes M3 and Au. As an

extra consequence, this requirement also more or less determines m̂2
Hu

at the scale√
F .

• The absence of a charge and CP breaking vacuum imposes restrictions on the param-

eters M1, M2 and m̂2
Hd

. Roughly speaking, this leads to a lower bound on M1 and

an upper bound on m̂2
Hd

.

Now that we have exhausted all (semi) model-independent constraints, we will write

down an explicit example and compute the associated UV boundary conditions using

GMHM. These boundary conditions then yield a prediction for the conformal sequestering

and the effective OPE coefficient Ĉ.

4 A minimal example

Perhaps the simplest example of a messenger sector which generates both µ and Au at one

loop is

W =
( κ

Λ∆h−1
Oh +M

)(
φ̃DφD + φ̃SφS

)
+ λuφ̃DφSHu + λdφDφ̃SHd. (4.1)

where the φD and φS are a SU(2) doublet and a gauge singlet respectively. In the spurion

limit this model notoriously yields the disastrous relation Bµ ∼ 16π2µ2 [12]. However, as

we will show, when hidden sector effects are accounted for this is not necessarily the case.

To obtain a complete model we embed the doublet messengers in 5-5̄ representations of

SU(5) and exploit the full parametric freedom of the model. The full superpotential is then

W =
Oh

Λ∆h−1

(
κT φ̃TφT + κDφ̃DφD + κSφ̃SφS

)
+MT φ̃TφT +MDφ̃DφD +MSφ̃SφS

+ λuφ̃DφSHu + λdφDφ̃SHd (4.2)

where the φT , φ̃T are SU(3) triplets. Note that they do not participate in the Higgs

mediation; their sole purpose is to complete the SU(5) multiplet and to give a mass to the

gluino through standard gauge mediation. MT , MD and MS can all be chosen positive

without loss of generality. As is conventional, we allow for N identical copies of these

messengers, as long as no Landau poles are introduced below the GUT scale.
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4.1 UV boundary conditions

The threshold contributions to the gaugino masses are the usual ones in gauge mediation,

and may be obtained from (2.11) and (2.12):

M3 =
g2

3

16π2
ΛT

M2 =
g2

2

16π2
ΛD (4.3)

M1 =
3

5

g2
1

16π2
ΛD +

2

5

g2
1

16π2
ΛT

with

ΛD,T = NκD,T

√
F

∆h+1

MD,TΛ∆h−1
. (4.4)

Since the messenger sector consists out of 5-5̄ messengers, the only two out of the three

gaugino masses are independent and the relation in (3.3) is satisfied.

At one loop, the threshold corrections to the Higgs sector obtained from integrating

out (4.2) are symmetric under interchange of (κS , MS) ↔ (κD, MD). This symmetry is

made manifest if we introduce the notation:

κ =
√
κDκS , M =

√
MDMS , a =

√
MD

MS
, b =

√
κD
κS

(4.5)

and

ΛH ≡ Nκ
√
F

∆h+1

MΛ∆h−1
(4.6)

Then the symmetry becomes a → 1/a, b → 1/b with κ, M and ΛH unchanged. The soft

parameters can be written as:

µ =
λuλd
16π2

fµ(a, b)ΛH (4.7)

Au,d =
|λu,d|2
16π2

fA(a, b)ΛH (4.8)

The dimensionless functions fµ and fA can be obtained from explicit computation of the

appropriate correlation functions in section 2:

fµ(a, b) =
ab

(a4 − 1)2

(
1− a4 + 4 log a

)
+

(
a↔ 1

a
, b↔ 1

b

)
(4.9)

fA(a, b) =
a3b

(a4 − 1)2

(
1− a4 + 4 log a

)
+

(
a↔ 1

a
, b↔ 1

b

)
(4.10)

Similarly, the dimension two soft parameters are given by

Bµ =
λuλd
16π2

fB(a, b, γ)
Ĉ

N

(√
F

M

)γ
Λ2
H (4.11)

m̂2
Hu,d

=
|λu,d|2
16π2

fmH (a, b, γ)
Ĉ

N

(√
F

M

)γ
Λ2
H (4.12)
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where Ĉ is the effective OPE coefficient as defined in section 2, the suppression factor(√
F
M

)γ
is the result of the conformal sequestering, and

fB(a, b, γ)=
π3/2 csc

(πγ
2

)
Γ
(γ

2 + 2
)

Γ
(γ

2

)
4 (a4 − 1)2 Γ

(
−γ

2

)
Γ
(
γ+3

2

) (b2a−γ (γ − a4(γ + 4)
)

+ 2
(
a4 + 1

)
aγ+2

− 2
(
a4−2a2b2+1

)
aγ+2

2F1

(
γ

2
,
γ+2

2
; γ+2; 1−a4

))
+

(
a↔ 1

a
, b↔ 1

b

)
(4.13)

fmH (a, b, γ)=
π3/2 csc

(πγ
2

)
Γ
(γ

2 + 1
)

Γ
(γ

2 + 2
)

2 (a4 − 1)2 γΓ
(
−γ

2

)
Γ
(
γ+3

2

) (
4aγ+4 − a6−γb2(γ + 2) + a2−γb2(γ − 2)

+ 2
(
a4b2−2a2+b2

)
aγ+2

2F1

(
γ

2
,
γ+2

2
; γ+2; 1−a4

))
+

(
a↔ 1

a
, b↔ 1

b

)
(4.14)

In the limit γ → 0 the hidden sector reduces to the spurion limit and the formulas simplify

drastically. In this limit the model was first discussed in [12], and was later leveraged as a

weakly coupled solution to the A/m2
H problem in the special case where a = b = 1 [13, 43].

Another interesting special case occurs if a = 1 and b = i (corresponding to MD = MS

and κD = −κS), in which case a symmetry argument forbids both Au,d and µ at one loop.

Both of these special limits serve as important consistency checks of our formulas. We

elaborate on them further in appendix A.

4.2 Solutions to the UV boundary conditions

As is usual in models with factorizable messenger and hidden sectors, there are some degen-

eracies in the parametrization of the soft masses in terms of the fundamental parameters

of the model. Concretely, all soft masses are left invariant by three different reparametriza-

tions of the fundamental parameters

κT → xκT , MT → xMT

κD → yκD, MD → yMD, κS → yκS , MS → yMS , Ĉ → yγĈ

MD,T → zMD,T , Λ→ z
1

1−∆h Λ (4.15)

where the x, y and z are arbitrary real constants. As we will see in a moment, these

degeneracies are relevant when we attempt to map soft parameters onto the various model-

specific couplings and mass scales.

One important subtlety is that the conformal sequestering and the effective OPE coef-

ficient would seem to be degenerate, as can be seen from (4.11), (4.12), and the second line

of (4.15). It would seem to imply that a small effective OPE coefficient with little or no se-

questering can be traded for a larger OPE coefficient with more sequestering and vice versa,

without affecting the soft parameters. However in practice, the effect of this rescaling is lim-

ited by the requirement that the κD,S are perturbative and that
√
F < Min[MT ,MD,MS ].

The two other degeneracies in (4.15) are restricted by similar consistency conditions.

In general, the model-independent restrictions discussed in section 3 are supplemented

by the additional requirement that the soft parameters can all be realized in terms of the
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fundamental parameters of the model. In other words, one must establish that there exists

a solution to the set of 10 boundary conditions for the soft parameters

M1,M2,M3, Au, Ad, µ,Bµ, m̂
2
Hu , m̂

2
Hd

and
√
F (4.16)

in terms of a realistic choice for the 13 continuous ‘fundamental’ parameters

λu, λd, κT , κD, κS ,MT ,MD,MS , Ĉ,∆h, γ,
√
F and Λ (4.17)

plus the discrete messenger number N . Of the 10 soft parameters, only 9 are really in-

dependent since we imposed a messenger parity that related Ad to Au, m̂Hu and m̂Hd .

Naively this system of equations appears to be underconstrained, and one would expect

that generically a solution should exist. However the situation is bit more subtle.

First, we have used the results of the conformal bootstrap program (summarized in

table 1) to choose the maximum γ allowed for a given ∆h, so they are no longer independent.

Secondly, 3 out of the 12 remaining continuous fundamental parameters are degenerate as

in (4.15). For definiteness, we break the degeneracies6 in (4.15) by fixing κT = κD = 2 and

Λ = 2 max[MT ,MD,MS ]. This choice attempts to maximize the impact of the conformal

sequestering, while preserving perturbativity in κD,T . (Even more sequestering, and thus

larger Ĉ, can be obtained from (4.15) if one is willing to tolerate a larger value for κD.)

After fixing the degeneracies, we are left with only with 9 independent fundamental

parameters to determine 9 independent soft parameters. Since the boundary conditions are

highly non-linear in some of the fundamental parameters, a solution is not guaranteed, and

requiring its existence can further constrain the acceptable range of the soft parameters

in (4.16). Such solutions must be obtained numerically; details on our algorithm are

provided in appendix B. We do not attempt to find all possible solutions for a given set of

soft parameters, but are content with a single viable solution per set of soft parameters.

A ‘viable’ solution in this context means that all masses, couplings and the effective OPE

coefficient are real, that the couplings λu, λd and κS are perturbative and that
√
F <

Min[MT ,MD,MS ]. The latter will turn out to be a stringent condition if
√
F ≤ 107 GeV.

Table 2 contains an example of a point and its solution in terms of the fundamental

parameters for various choices of γ. Unsurprisingly, conformal sequestering is not efficient

for γ = 0.1 and the effective OPE coefficient must be very small to accommodate a

solution. For γ = 0.4 and γ = 0.7 on the other hand, conformal sequestering provides

roughly an order of magnitude suppression for the one-loop contributions to Bµ and

m̂2
Hu,d

.7 Moreover, if we choose N = 6 the 1
N factor in (4.11) and (4.12) in combination

with conformal sequestering provides a sufficient amount of suppression to facilitate an

O(1) effective OPE coefficient.

6Our choice for Λ corresponds to the most optimistic case as far as the impact of the sequestering is

concerned. For a different choice of Λ the messenger scale and the sequestering can be obtained by the

rescaling in (4.15).
7Notice that the sequestering for γ = 0.7 is essentially the same as the sequestering for γ = 0.4, despite

the higher anomalous dimension of the former. We have encountered this already in figure 2. It is due to

the competing effects of increased sequestering from larger γ, but decreased sequestering from larger ∆h.
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soft parameters fundamental parameters
√
F 109 GeV γ 0.1 0.4 0.7

M1 1.75 TeV ∆h 1.20 1.45 2.00

M2 3.53 TeV N 6 6 6

M3 2.0 TeV λu 0.66 0.68 0.70

Au -3.2 TeV λd 0.60 0.62 0.63

Ad -2.6 TeV κS -0.19 -0.25 -0.30

µ 400 GeV MT 4.3× 1012 GeV 9.0× 1011 GeV 1.6× 1011 GeV

m̂Hu 1.66 TeV MD 1.5× 1012 GeV 3.2× 1011 GeV 4.0× 1010 GeV

m̂Hd 1.50 TeV MS 2.4× 1011 GeV 6.4× 1010 GeV 9.7× 109 GeV

Bµ 0.35 TeV2
(√

F
M

)γ
0.53 0.14 0.12

Ĉ 0.071 0.30 0.30

Table 2. An example of a point with its interpretation in terms of the fundamental parameters,

for various values of γ. For this point tanβ = 10.

More generally, the solutions for the effective OPE coefficient as a function of M1 and

m̂Hd are shown in figure 6 for various values of γ. Almost all of the viable parameter space

in figure 5c of the previous section can be covered by our example, except for a small region

for low m̂2
Hd

where our numerical method fails to converge on a suitable solution. It is con-

ceivable that these points may be recovered with a more sophisticated numerical procedure.

This result suggests that it should be possible to cover the full parameter space with weakly

coupled models for the messenger sector; however this is beyond the scope of this work.

It is interesting to compare the precise effectiveness of the conformal sequestering in

our model as a function of
√
F with our rough estimates in figure 2. The sequestering

as computed in our example is shown in figure 7, as well as the effective OPE coefficient

needed to obtain viable EWSB. In fairly good agreement with our rough estimate in fig-

ure 2, conformal sequestering becomes less efficient for lower
√
F , and its effect completely

disappears for
√
F ∼ 106 GeV. As we have seen, the reason is that for a fixed gaugino mass

and lower
√
F , the separation between M and

√
F must decrease, limiting the capabilities

of the sequestering.

From the left-hand panel of figure 7 one also learns that increasing the messenger num-

ber has a double advantage: on the one hand it provides an extra 1
N suppression in (4.11)

and (4.12). In addition, a larger N in (4.3) allows for a slightly larger splitting between

MD and
√
F and thus slightly more efficient suppression from conformal sequestering. For

low N and low
√
F , a smaller Ĉ is needed to compensate for the loss in sequestering and

messenger number suppression. This is illustrated in the right-hand panel figure 7, where

for completeness we added the extreme limit of γ = 0, which corresponds to no contribution

from sequestering.
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(a) γ = 0.1. (b) γ = 0.4.

(c) γ = 0.7.

Figure 6. Ĉ as a function of M1 and m̂Hd
for N = 6. The light gray area indicates the region

where our algorithm does not converge on a suitable solution for the UV boundary conditions. All

other parameters and colors are as in figure 5c.

5 Collider phenomenology

In this section we briefly discuss the collider phenomenology and the current constraints

on the model. Since all the sfermion masses are suppressed at the scale
√
F , their IR

values are primarily set through gaugino mediation. We emphasize once more that this is a

general property of models that attempt to address the µ/Bµ and the A/m2
H problems with

strong hidden sector dynamics. This implies a number of generic features of the low energy

spectrum which are independent of the precise content of the hidden and messenger sectors:
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Figure 7. Plots of
(√

F
M

)γ
and Ĉ as a function of log10

√
F for mA0 = 1.5 TeV, M1 = 1.2 TeV,

µ = 400 GeV and tanβ = 10. For each value of
√
F , M3 and Au are fixed such that

√
mt̃1

mt̃2

is minimized under the constraint mh > 125 GeV. Dashed lines represent N = 1, full lines

represent N = 6. The various curves are cut off at the point where the consistency condition√
F < Min[MT ,MD,MS ] is no longer satisfied.

• The gluino tends to be heavier than the squarks, the wino tends to be heavier than

the left-handed sleptons, and the bino tends to be heavier than the right-handed

sleptons.

• The colored sfermions are typically heavier than the electroweak sfermions, because

only the former are pulled up by M3. One exception is the lightest stop, which may

be pushed down due to mixing effects.

• The NLSP is a stau or a Higgsino and is sufficiently long-lived8 to escape the detector,

except if
√
F ∼ 106 GeV, in which case it decays through a displaced vertex.

• The LSP is the gravitino if
√
F . 1010 GeV as we have assumed in this paper. (If√

F > 1010 GeV, the gravitino mass may be lifted to the extent that it is no longer

the LSP [22, 36, 37].)

Unsurprisingly, this class of models is subject to a variety of collider constraints. Con-

ceptually, it is important to distinguish constraints on the colored part of the spectrum

from constraints on the electroweak part. Regarding the former, the masses of the col-

ored sparticles are almost exclusively controlled by M3 and Au. As we saw in section 3.2.2,

these two parameters are determined by the requirement of a 126 GeV Higgs with TeV-scale

stops. Therefore, we expect robust predictions on the typical masses of the colored sparti-

cles. As shown in figure 4, the lightest stop is always the lightest colored state and must be

heavier than 750 GeV, while the minimum gluino mass is roughly 2 TeV. The masses of the

electroweak states on the other hand are controlled by the bino and wino masses, and may

be as light as several hundreds of GeV. The phenomenology of these electroweak states is

8This is assuming R-parity conservation. If R-parity is violated, the NLSP could still decay promptly

despite a high supersymmetry breaking scale.
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Figure 8. The spectrum for the point in table 2, with Higgsino NLSP. The spectrum with stau

NLSP is nearly identical, since the µ parameter has only a small effect on the other masses.

very rich and radically different depending on the nature of the NLSP. In what follows we

discuss stau and Higgsino NLSP separately.9 A typical spectrum is shown in figure 8.

Since the NLSP is nearly always detector-stable in these models, there are already

very powerful collider constraints if the stau is the NLSP. In particular, CMS has excluded

such long-lived staus with a cross section above 0.3 fb [45]. (A slightly weaker limit from

ATLAS is also available [46].) This translates to a lower limit on the mass of 339 GeV.

As can be seen from figure 5, this constraint implies that the stau NLSP scenario is now

experimentally disfavored.

Since these searches are inclusive, they are also likely to be sensitive to the production

of the entire superpartner spectrum, and not just to the staus themselves (see e.g. the

discussion in [47, 48]). By comparing their production cross sections [49] with the CMS

limit, one can estimate the bounds on the masses of other sparticles. For instance, we

find that the gluino and the stops should be heavier than ∼ 1400 GeV and ∼ 1000 GeV

respectively. According to the preceding discussion of the colored spectrum (see again

figure 4), this is not a very stringent constraint on these models, where the gluinos and stops

are already heavy to begin with. Meanwhile, the Higgsino is excluded below ∼ 600 GeV,

where we estimated the production cross section with Prospino 2.1 [50]. In the discussion

in section 3 we restricted ourselves to |µ| < 500 GeV for simplicity, however we verified

that Higgsino masses which evade the constraint can easily be obtained.

9In a narrow corner of the parameter space the sneutrino can be the NLSP. For a discussion on the

phenomenology of this scenario we refer to [44].
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The collider phenomenology of a detector stable Higgsino NLSP is essentially iden-

tical to that of a Higgsino LSP in gravity mediation models. Unsurprisingly, from an

experimental point of view a long-lived Higgsino NLSP is much more challenging than

a long-lived stau NLSP. If the other states decouple, the only robust bound comes from

LEP, and requires the charged Higgsino component to be heavier than 92.4 GeV [51].

Since the sfermion masses are generated through gaugino mediation, the next state in

the spectrum is typically the lightest stau mass eigenstate, possibly degenerate with the

right-handed light flavor sleptons. With a Higgsino heavier than the LEP bound, there is

currently no bound on these right-handed sleptons if they are Drell-Yan produced [52, 53].

The left-handed sleptons on the other hand have a higher production cross section and are

constrained to be heavier than 300 GeV if the Higgsino is lighter than 160 GeV [52, 53],

however this bound does not yet significantly constrain our minimal model with 5-5̄

messengers. The lightest colored state is always the lightest stop and is always outside

the reach of the 8 TeV LHC, but its direct production could be a promising channel at

the 14 TeV run. Although the spectrum is not natural in the strict sense, this signature

is covered by existing “Natural SUSY” search strategies.

6 Discussion and outlook

Strong hidden sector dynamics may provide an elegant framework in which both the

µ/Bµ and the A/m2
H problems can be addressed through a single mechanism. Rather

than relying on a cleverly designed messenger sector, this class of models counters the

disastrous 16π2 enhancement of Bµ and m2
H by a suppression from strong dynamics in the

hidden sector. This suppression can arise from conformal sequestering, a small effective

OPE coefficient, large messenger number, or a combination of all three. We provide a

simple example of a complete model, as well as the first explicit calculation of the low

energy observables in terms of scaling dimensions, vacuum expectation values and OPE

coefficients of the leading operators in the hidden sector. The essential tool enabling this

calculation is the GMHM framework [23].

Accounting for the bounds on the anomalous dimension from the conformal bootstrap

program [19], we make a general estimate of the impact of conformal sequestering for this

class of models and validate our estimate in an explicit example. In either case, conformal

sequestering is insufficient to produce a full loop factor suppression, but a suppression

of roughly one order of magnitude is possible if
√
F ∼ 109 GeV. In this case viable

electroweak symmetry breaking can be achieved for effective OPE coefficients roughly

between 1 and 0.1, depending on the details of the messenger sector. It is still an open

question whether the upper bound on γ from the bootstrap program can be saturated, as

currently no examples are known. Such an example would necessarily need to be strongly

coupled, as weakly coupled SCFT’s were shown not to produce the required inequalities

for the scaling dimensions of the operators [54].

An important and generic feature of this class of models is that the suppression from

conformal sequestering is only appreciable for
√
F as high as roughly 109 GeV. From this

fairly high scale of supersymmetry breaking one would expect a degree of fine-tuning of
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roughly 1 in 103 at best, and a priori the tuning may be aggravated by large cancellations in

the UV boundary conditions, as is the case in Higgs mediation models without appreciable

hidden sector dynamics. In most of the parameter space of our example such large cancel-

lations do not occur, indicating that the tuning estimates from the high scale RG running

are a fair estimate of the total tuning of the model. The model therefore constitutes a

solution to the “little A/m2
H problem” as presented in [13], although a moderate price in

tuning had to be paid from the higher supersymmetry breaking scale.

This problem would be alleviated to some degree by considering lower values
√
F ,

where the suppression of the loop factor must be obtained from the smallness of the effective

OPE coefficient rather than from the conformal sequestering.10 At this point it is not clear

whether such small OPE coefficients can be achieved in a realistic model. The conformal

bootstrap program has resulted in interesting lower bounds on OPE coefficients, provided

that there is a gap in the spectrum of operators [19]. Implicitly, we assumed the existence

of such a gap by truncating the OPE after the leading term, and it seems plausible that our

scenario may be constrained from this end as well.11 A detailed quantitative analysis of

this type of constraint is beyond the scope of this paper, but is certainly worth exploring.

Even if very small OPE coefficients could be made compatible with the bootstrap

constraints, within our simple example, we found it very challenging to find viable

solutions with
√
F ∼ 106 GeV. But we strongly suspect that even extending the model

slightly would allow for many more solutions with low
√
F . A broader question which

is also interesting is whether it is possible to completely cover the rest of the parameter

space in (3.1). It is encouraging that even with our simple example we were able to

sample a large part of it. We therefore suspect that it should be possible to cover the full

parameter with a set of perturbative messenger models. Here are some promising ideas in

this direction. First we could relax our assumption on the action of the messenger parity

on Ou and Od. For instance, one could consider multiple portals between the messenger

sector and the MSSM Higgs sector, of the form:

W ⊃
∑
i

λ(i)
u O

(i)
u Hu +

∑
i

λ
(i)
d O

(i)
d Hd (6.1)

Another idea would be to allow for portals of the form

W ⊃ λSHuHd (6.2)

where S is a gauge singlet. This is interesting since the singlet portal does not generate

Au,d and m̂2
Hu,d

at the same loop order as µ and Bµ [31] and therefore provides a clean

way to untangle these two soft parameters from the others. Finally, in our simple model

we assumed 5-5̄ messengers. A model including 10-10 messengers (as in [35]) would offer

more parametric freedom.

10Alternatively, we could conceivably avoid the loop factors altogether with a strongly-coupled messenger

sector. Although such a setup may greatly alleviate the fine-tuning by allowing for lower
√
F , it may also

lose much of its predictivity and calculability.
11We thank David Simmons-Duffin for bringing this to our attention.
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In our analysis we restricted ourselves to
√
F < 1010 GeV in order to avoid problems

with charged LSPs and to automatically eliminate Planck-induced flavor violation. How-

ever it is conceivable that with enough assumptions about the hidden sector, conformal

sequestering could also suppress dangerous Planck-induced operators [24–26]. If this is

true, then our model could be extended beyond
√
F ∼ 1010 GeV (at least with the Hig-

gsino being the LSP). Such a scenario deserves further study, especially since with larger√
F , the impact of the conformal sequestering can be further enhanced beyond what we

have found in this paper.

The collider phenomenology in this class of models is generically similar to the phe-

nomenology of gaugino mediation with large A-terms and depends strongly on the nature

of the NLSP. If the NLSP is the Higgsino, the phenomenology is similar to that of a neu-

tralino LSP. The constraints on this scenario are currently rather weak and prospects for

the 14 TeV run depend heavily on the spectrum of the colored states. On the other hand,

if the NLSP is a stau, our model is already strongly constrained by current searches. More-

over, in this case direct stop production would be a spectacular channel at the 14 TeV run

of the LHC, which should allow us to definitively test this scenario.
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A Simplifying limits

The boundary conditions for Bµ and m̂Hu,d for our example in section 4 simplify dramat-

ically in the spurion limit (γ → 0 and Ĉ → 1). Specifically, the dimensionless functions

reduce to:

fB(a, b, 0) =
1

(a4 − 1)3

[
b2
(
−a8 + 8a4 log a+ 1

)
(A.1)

− a2
(
a4 + 1

) (
1− a4 + 2

(
a4 + 1

)
log a

)]
+ (a↔ 1/a, b↔ 1/b)

fmH (a, b, 0) = −2a2(a2 − b2)

(a4 − 1)3

(
1− a4 + 2

(
a4 + 1

)
log a

)
+ (a↔ 1/a, b↔ 1/b) (A.2)

If in addition we take a = b, the model reduces to the model first presented by Dvali,

Giudice and Pomarol [12] and we can verify that in this limit our results agree with theirs.

Concretely, the dimensionless functions further reduce to

fµ(a, a) =
a2 log a4

1− a4
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fA(a, a) = −1

fB(a, a, 0) =
a2 log a4

1− a4

fmH (a, a, 0) = 0 (A.3)

Observe that m̂Hu and m̂Hd vanish at one loop; this was the basis of the weakly coupled

solution to the A/m2
H problem presented in [13]. In that paper we considered the special

limit λd = 0 which ensures that µ, Bµ, Ad and m̂Hd vanish. In such a setup, the µ/Bµ
problem is postponed and must dealt with separately, for instance by extending the MSSM

with an extra singlet.

For the case a 6= b, DGP also provide an expression for m̂2
Hu,d

.12 Their notation is

somewhat different from ours, and the Λ1 and Λ2 in equation (22) of [12] correspond to

Λ1 =
a

b
ΛH and Λ2 =

b

a
ΛH (A.4)

With this change of notation in (A.2), our expression for m̂2
Hu,d

becomes

m̂2
Hu,d

=
|λu,d|2
16π2

(Λ1 − Λ2)2g(a) (A.5)

with

g(a) = −a4 1− a4 + (1 + a4) log(a4)

(1− a4)3 (A.6)

The magnitude of our expression agrees with equation (22) in [12], however we disagree on

the sign. We find m̂2
Hu,d

> 0 and since the Higgs fields can be considered as pseudomoduli

in a model with only fields of R-charge 0 and 2, we have confidence in our result [55, 56].

The second interesting special limit is when a = 1 and b = i, as in this case µ and Au,d
vanish at one loop. The superpotential reduces now to

W = κ
Oh

Λ∆h−1

(
φ̃DφD − φ̃SφS

)
+M

(
φ̃DφD + φ̃SφS

)
+ λuφ̃DφSHu + λdφDφ̃SHd. (A.7)

with κ ≡ κD = −κS and M ≡ MD = MS . The model now has an enhanced discrete

symmetry:

φD ↔ φ̃S φ̃D ↔ φS Oh → −Oh (A.8)

which forbids the correlators (2.6) and (2.7) at the one loop level13 since the operator Om
is odd under (A.8). This feature may be useful when attempting to cover the full GMHM

parameter space with weakly coupled models for the messenger sector.

12To 1 loop order, the distinction between m̂2
Hu,d

≡ m2
Hu,d

+ |µ|2 and m2
Hu,d

is moot.
13Of course the discrete symmetry does not commute with the gauge symmetry, and is therefore not a

symmetry of the full theory. However for the 1 loop Higgs mediated contributions the gauge charge of φD
is irrelevant.
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B Numerical procedure

Our general philosophy is to front-load the part of the calculation that involves integrating

the RGE’s, and delay the implementation of the model-specific boundary conditions as long

as possible. This allows us to study various tachyons and EWSB requirements in terms of

the familiar soft parameters, rather than the somewhat unintuitive parameters λu,d, Ĉ etc.

This approach also should allow for a more straightforward generalization to other models,

since the model-independent, more time consuming steps are performed first. Concretely,

we parametrize our scan in terms of the independent variables

M1,2,3, Au, Ad, tanβ, µ,mA(pole) and
√
F (B.1)

where all parameters are specified at the scale
√
F , except the pole mass of the pseudoscalar

mA. We choose the latter rather than m̂Hd such that our scan is maximally compatible

with the inputs that must be provided to SOFTSUSY-3.3.9 [57]. For the case where the

messengers fit into 5-5̄ representations, we solve for M2 from the outset by using (3.3).

Our method can be further broken down in the following steps:

1. For a given choice of (B.1), SOFTSUSY-3.3.9 computes the RG-running and imposes

the EWSB conditions, a procedure which results in a value for m̂2
Hu

and m̂2
Hd

at the

scale
√
F . Furthermore we determine Ad as a function of the other soft parameters by

imposing (3.2). Since (3.2) involves m̂2
Hu

and m̂2
Hd

, this must be done through an it-

erative procedure, which we repeat until convergence is achieved. At this point we are

done with integrating the RGE’s, and there is no more need to run SOFTSUSY-3.3.9

in the remainder of the calculation.

2. At this stage we can express ΛH as a function of M2, a and b. At the level of finding a

solution for the boundary conditions, the variables Ĉ, N and
(√

F
M

)γ
are degenerate.

We therefore define an auxiliary variable

C̃ ≡ Ĉ

N

(√
F

M

)γ
(B.2)

to simplify the solution finding procedure. Solving the UV boundary conditions

specified in (4.7), (4.8), (4.11) and (4.12) thus corresponds to solving 6 algebraic

equations in terms of the 5 variables λu,d, a, b and C̃. In the previous step we already

eliminated Ad by solving (3.2) through the iterative procedure. This leaves us with 5

equations with 5 unknowns, and a much better chance of obtaining a viable solution

than if we would have attacked all 6 equations at once. This translates into a much

improved computation time per point than if we would have performed a brute force

scan over λu,d, a, b and C̃. Next we can isolate a simple set of two equations by

taking a clever combination of the boundary conditions:

µ2

AuAd
=

(
fµ(a, b)

fA(a, b)

)2
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B2
µ

(µ2 +m2
Hu

)(µ2 +m2
Hd

)
=

(
fB(a, b, γ)

fmH (a, b, γ)

)2

(B.3)

This system of equations is independent of λu,d and C̃ and can be solved analytically

for b. At this point we have to commit to a concrete choice of γ, after which we can

solve the remaining equation for a numerically.

3. Now that we have solved for a and b for a given choice of γ, it is trivial to solve the

remaining boundary conditions for λu,d and C̃. At this point we discard the solution

if any of these parameters does not have a real solution, if |λu| > 3, if |λd| > 3 or if

C̃ > 100. These cuts are chosen arbitrarily to ensure no non-physical solutions where

kept. We verified that the results are not sensitive to the precise value of these cuts.

4. In the final step we recover MD from (4.3) and table 1, and use this to unpack C̃ in

terms of the suppression factor from conformal sequestering and the effective OPE

coefficient Ĉ. At this step we also must commit to a choice of messenger number N .

By delaying an explicit choice for γ and N as long as possible we gained in both

flexibility and computation speed.

Open Access. This article is distributed under the terms of the Creative Commons
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