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arguments for gallileons. Furthermore, within this class we find a stealth Schwarzschild and
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constant associated to the time dependent scalar field.
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1 Introduction

Scalar-tensor theories present a generic and well-defined classical alternative to Einstein’s

General Relativity. Furthermore, recent observational data point towards the tantalizing

possibility that GR may be modified at large distances. Indeed, in order for FLRW cos-

mology to be in accord with observations one needs to assume the presence of a very tiny

yet non-zero cosmological constant providing the observed acceleration of the Universe. A

tiny cosmological constant is the most economic way to fuel late acceleration, its origin

and magnitude however remains a complete puzzle for theoretical physics. In a combined

effort to attack the large cosmological constant problem in the context of scalar tensor

theories [1, 2] it was realized that the most general classical effective scalar-tensor theory

was that proposed by Horndeski [3]. Horndeski constructed his theory by brute force early

on in the 70’s but the same result was obtained by studying Galileons in a more intuitive

manner in [4–6]. Either way we are now in full knowledge of the general scalar tensor

theory (with no more than second order derivatives in the equations of motion) but very

little is known about black hole solutions of Horndeski theories [7, 8]. Apart from the fact

that such solutions are technically difficult to find, generically scalar-tensor theories do not

admit black hole solutions where the scalar field is non-trivial and regular. The difficulty

can be summarized in the idea that black holes do not have hair; they are bald objects

once they reach a stationary phase having expelled or eaten up all matter surrounding

them (see e.g. [9]). They are characterized by specific charges, electric, magnetic, angular

momentum, charges which can be measured by an observer at infinity. In this paper we

will use higher order scalar tensor interactions whose relevant complexity will allow us to

evade no hair arguments and construct in a relatively simple manner analytic black hole

solutions where the scalar field will seen to be non trivial and regular.

2 Constructing Galileon black holes

Let us consider part of the Horndeski action,

S =

∫

d4x
√−g

[

ζR− η (∂φ)2 + βGµν∂µφ∂νφ− 2Λ
]

, (2.1)
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where R is the Einstein-Hilbert term, Gµν is the Einstein tensor, φ is a scalar field, Λ is

a cosmological constant term, and ζ > 0, η and β are constants.1 The above action has

shift symmetry with respect to the scalar field, φ → φ+const. The presence of the third

term, which was referred to as John in [1, 2], of higher order in derivatives, presenting an

interaction in between curvature and scalar will be essential for our discussion.

The variation of the action (2.1) with respect to the metric gives,

ζGµν − η

(

∂µφ∂νφ− 1

2
gµν(∂φ)

2

)

+ gµνΛ

+
β

2

(

(∂φ)2Gµν + 2Pµανβ∇αφ∇βφ

+gµαδ
αρσ
νγδ ∇γ∇ρφ∇δ∇σφ

)

= 0,

(2.2)

where Pαβµν is the double dual of the Riemann tensor, Pαβµν = −1
4ǫαβρσR

ρσγδǫµνγδ. The

variation of the action with respect to φ can be rewritten in the form of a current conser-

vation, as a consequence of the shift symmetry of the action,

∇µJ
µ = 0, Jµ = (ηgµν − βGµν) ∂νφ. (2.3)

Note that (2.3) contains a part of the metric field equations, namely, an Einstein-Hilbert

plus cosmological constant term. With this definition at hand it is interesting to discuss two

regularity conditions. The first stems from a no-hair argument for Galileons, [11] where,

the static spherically symmetric configurations of certain Galileons with shift invariance

were argued to admit a no-hair theorem (see also [12]). The key point in their argument

is the physical requirement that the square of the Noether current, J2 ≡ JµJ
µ, does not

diverge at the horizon. This fixes the only nontrivial component Jr, to zero, and then by

use of translation invariance it can be argued that φ =const everywhere. In our case we

also have a conserved current and for φ =const, Jµ = 0. There is, however, a second option

yielding J2 finite at the horizon where by imposing,

βGrr − ηgrr = 0, (2.4)

for a static configuration. This condition is, rather conveniently as we will see, one of the

Einstein plus cosmological constant equations of motion. The condition (2.4) automatically

kills the Jr component of the current without implementing a constraint on the scalar field.

The second regularity condition is that the scalar field does not explode at the horizon.

A typical example where this latter condition is not met is the BBMB black hole [13, 14].

There the black hole geometry is everywhere regular (apart from the central singularity)

but the scalar field explodes at the horizon location. As we will see below, our first condition

is in general not sufficient to satisfy the second. In fact to meet both requirements we will

have to additionally assume that the scalar field is also time-dependent φ = φ(t, r), unlike

the metric which we will assume to be static and spherically symmetric,

ds2 = −h(r)dt2 + dr2

f(r)
+ r2dΩ2. (2.5)

1In the cosmological context this type of action was studied, e.g. in [10].
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Allowing scalar time dependence modifies the no hair argument as now the time component

of the Noether current will generically be non-zero,

J t =
(

ηgtt − βGtt
)

φ̇(t, r), (2.6)

and can potentially source regularity problems for the current. The aim of this paper is

to construct non-trivial black holes that satisfy the above two conditions, i.e. allow for a

regular current and non trivial regular scalar field in a static and spherically symmetric

black hole geometry.

For the ansatz (2.5) the tr component of (2.2) reads,

βφ′

r2

(

rfh′

h
+

(

f − 1− ηr2

β

)

φ̇− 2rfφ̇′
)

= 0, (2.7)

where dot = ∂/∂t and prime = ∂/∂r. Apart from the obvious φ′ = 0, the expression inside

the parentheses can be integrated to give,

φ(t, r) = ψ(r) + q1(t)e
X(r), (2.8)

where,

X(r) =
1

2

∫

dr

(

1

r
− 1

rf
− ηr

βf
+
h′

h

)

. (2.9)

and we note that, βGrr − ηgrr = −2βf2X ′/r. With this result at hand, substituting (2.8)

with (2.9) into (2.3), it is easy to show that q1(t) satisfies the ODE,

q̈1(t) = C1q1(t) + C2, (2.10)

with C1 and C2 integration constants. Setting q1(t) = 0 and assuming the trivial config-

uration for the scalar, φ′ = 0, the scalar field equation (2.3) is straightforwardly satisfied,

while the Einstein equations (2.2) are satisfied by the Schwarzschild metric. This is similar

to what happens in most scalar-tensor theories and in particular, in Brans-Dicke theory.

Let us now turn to non-trivial solutions where we note that, setting (2.4) and q1(t) = qt

render the scalar field equation, ∂t
(√−gJ t

)

+ ∂r (
√−gJr) = 0, redundant. One can also

think of this Ansatz as switching off the constant associated to primary scalar hair of φ.

Note that the linear dependence of φ(t, r) on time “passes through” the equations of motion,

leaving ODEs rather than the original PDEs due to the shift symmetry of the Lagrangian.

Under these observations we consider the following subclass of (2.8),

φ(t, r) = q t+ ψ(r) (2.11)

with (2.4) which gives X(r) =const, in (2.9). The same ansatz has been applied for the

study of test galileon fields in various physical setups [15–17]. Note that, (2.11) and (2.4)

satisfy both the tr component (2.7) and the scalar field equation. Using (2.4) we get,

f =
(β + ηr2)h

β(rh)′
. (2.12)

– 3 –
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Since in general q 6= 0, the time component of the Noether current (2.6), is also non-

zero, and one may worry that J2 is in fact diverging at the horizon. However using (2.12)

gives,

J t =

(

2ηrh− 2βh′ − r(β + ηr2)h′′
)

q

r(rh)′2
. (2.13)

Therefore, at the horizon, where h = 0, we have J2 = gttJ
tJ t = 0 for the ansatz (2.11)

unless (rh)′ = 0 (as is the case for an extremal black hole).

The first regularity condition satisfied we can now move on, substituting (2.12)

and (2.11) into the rr component of (2.2) in terms of ψ′, to get,

ψ′ = ±
√
r

h(β + ηr2)

(

q2β(β + ηr2)h′ − λ

2
(h2r2)′

)1/2

. (2.14)

where we introduced a notation λ ≡ ζη+βΛ. Finally, substituting (2.11), (2.12) and (2.14)

in the tt component of the Einstein equation (2.2), one obtains a non-linear second order

ODE on h(r). Under the substitution,

h(r) = −µ
r
+

1

r

∫

k(r)

β + ηr2
dr, (2.15)

where µ is an integration constant (2.15) can be further integrated to give k(r) as a solution

of the third order algebraic equation,

q2β(β + ηr2)2 −
(

2ζβ + (2ζη − λ) r2
)

k + C0k
3/2 = 0, (2.16)

where C0 is the second integration constant. To sum up the equation (2.16), together

with (2.15), (2.14), (2.12) and (2.11) gives a class of solutions for the considered theory

satisfying non-trivially the first of the two regularity criteria.

The regularity of the metric and the scalar field at the horizon can be conveniently

checked by use of the generalized Eddington-Finkelstein coordinates, with the advanced

time coordinate, v,

v = t+

∫

(fh)−1/2dr. (2.17)

One finds from (2.5) and (2.17),

ds2 = −hdv2 + 2
√

h/f dvdr + r2dΩ2. (2.18)

For our class of solutions, eq. (2.12) is satisfied, therefore the metric (2.5) is regular provided

that (rh) is not zero.2

We are now ready to attack regularity of the scalar field on the horizon. Note that

although the radial part of the solution (2.14) seems to be divergent at the horizon, the

same holds for coordinate time t. Hence given the time dependence the correct way to see

the horizon behavior of φ is to use the regular coordinates (v, r) (see e.g. [18–20]), in which

2Note that β + ηr2 = 0 and h 6= 0 implies a coordinate singularity rather than a physical one. By

changing the radial coordinate the metric can be transformed into a regular form. This can also be checked

by direct calculation of curvature invariants.
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the metric takes the form (2.18). We can rewrite the scalar (2.11) with (2.14), and then,

using (2.17), and expanding near the horizon, h = 0, we find the value of the scalar at the

horizon, φhor,

φhor = qv + const

− q

2

√

βr

h′(β + ηr2)

(

1 +
λr2h′

q2β(β + ηr2)

)

∣

∣

∣

hor
,

(2.19)

where the last term is evaluated at the future horizon h = 0 for the plus sign in (2.14).

One sees then that for time-dependent solutions, q 6= 0, the scalar field is actually regular

(provided also that h′(β+ ηr2) 6= 0 at the horizon). Implicitly we know analytically all the

solutions belonging to this class. Let us concentrate on some explicit and simple solutions.

Stealth Schwarzschild black hole. We start by a subset of Fab 4 theory [1, 2] where

Λ = η = 0 and the scalar field acquires dynamics via the Gµν∂µφ∂νφ (John) term. In this

case (2.16) does not depend on r and k =const which is just a gauge choice. Choosing

k = β, we obtain from (2.15) and (2.12),

f = h = 1− µ

r
, (2.20)

and the metric is isometric to a Schwarzschild metric! However, the scalar field is not

trivial and also regular. Indeed from (2.14) we obtain, ψ′ = ±q√µr/(r − µ). Integrating

ψ′, and taking into account (2.11) gives,

φ± = qt± qµ

[

2

√

r

µ
+ log

√
r −√

µ√
r +

√
µ

]

+ φ0 (2.21)

One can explicitly check that the solution (2.21) with the plus sign does not diverge on the

future horizon (whereas the solution with the minus sign is regular on the past horizon).

Indeed the transformation (2.17) in the case (2.20) reads, v = t + r + µ log(r/µ − 1), and

using (2.21) one finds,

φ+ = q

[

v − r + 2
√
µr − 2µ log

(
√

r

µ
+ 1

)]

+ const, (2.22)

which is manifestly regular at the horizon, r = µ. Hence the scalar field does not back-

react on the metric and the current is zero. The derivatives of the scalar field which are the

relevant terms appearing in the action (2.1) are also finite at infinity.3 Such a configuration,

where the absence of pathologies depends on the background solution, is typical for non-

canonical theories, including Galileons. We have thus constructed a regular Fab 4 black

hole with GR geometry and a regular interacting scalar.

Schwarzschild black hole in an Einstein static universe. Let us choose the pa-

rameters of the Lagrangian so that η 6= 0 and Λ 6= 0, with λ = ζη + βΛ = 0. In what

follows we do not restrict ourselves to the case η > 0 — the would-be healthy kinetic term

3For flat spacetime, µ = 0, φ = qt the scalar degree of freedom is in fact strongly coupled. For non-zero

mass µ, however, the above solution avoids this problem.

– 5 –
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in the absence of the John term. As we already mentioned above, the spin-0 degree of

freedom also acquires dynamics via the kinetic mixing with the spin-2 graviton, thanks to

the John term. Therefore the condition for the solution to be ghost-free is different from

the standard case. See e.g. [21], where a galileon model has been shown to be stable on

cosmological solutions, although the standard kinetic term has a ‘wrong’ sign. We also

take C0 = 0 in (2.16) for simplicity (other algebraic solutions are tedious but also easily

obtained). The scalar now backreacts on the geometry. Indeed we find

h = 1− µ

r
, f =

(

1− µ

r

)

(

1 +
ηr2

β

)

, (2.23)

whereas the radial part of the scalar field is given by

ψ′ = ± q
h

√

µ

r(1 + η
β r

2)
(2.24)

where q2 = 2ζ/β is fixed while the current vanishes only at the horizon since J t = 2η. The

metric is therefore regular apart from r = 0. The solution is not asymptotically usual. In

fact in the absence of the central mass, µ = 0 and βη < 0 the metric (2.23) is the Einstein

static universe with Gaussian curvature −η/β > 0. With non-zero µ this solution therefore

describes a Schwarzschild black hole embedded in a static Einstein universe. Provided η < 0

and β > 0 the scalar field is regular everywhere, apart from the 2-sphere at r =
√

−β/η,
where φ has a cusp ∼ (r −

√

−β/η)1/2.
On the other hand, for η > 0 and β > 0, the metric (2.23) describes a static universe

with a negative constant curvature. The metric (2.23) and the scalar field (2.24) are regular

everywhere but r = 0.

Self-tuned Schwarzschild-de-Sitter. It is interesting to seek solutions of de Sitter or

anti de Sitter asymptotics.4 In order to achieve this we can ask for h(r) = f(r) which in

turn using (2.15) and (2.12) means that k(r) = (β+ηr2)2

β . This turns out to be solution

of (2.16) by taking q2 = λ/(βη) and C0 = (2ζη−λ)
√
β/η. The metric coefficients take the

following form,

f = h = 1− µ

r
+

η

3β
r2, (2.25)

which is just a (a)dS-Scharzschild metric for an effective cosmological constant Λeff =

−ζη/β! The solution for the scalar then becomes,

ψ′ = ± q
h

√
1− h. (2.26)

Let us take for definiteness η > 0 (standard kinetic term), then the above expression makes

sense when β < 0 and λ < 0. The first condition implies positive effective cosmological

constant Λeff = ζη/|β| in (2.25), while a negative λ insures that (2.26) is real.

The solution (2.25) and (2.26) has certain self-tuning properties since it hides from the

space-time metric the vacuum cosmological constant Λ. The value of q is fixed by the bare

4We thank Tony Padilla for discussions on this particular topic.
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cosmological constant, q2η = Λ−Λeff > 0, leaving Λeff a geometrical quantity. However, the

effective cosmological constant is given by geometric coupling constants in the action essen-

tially the Einstein Hilbert and John term. In order for Λeff to be small one creates an hier-

archy or fine tuning inevitably due to the small value of the observed cosmological constant.

Static-scalar solution. Here we give a solution which has J2 = 0, but at the same time

does not satisfy the second condition. For this solution φ is not regular at the horizon. This

is essentially due to the fact that we set q = 0, so that the solution is time-independent.

Similar to the case of the stealth Schwarzschild solution above, the constant C0 in (2.16)

amounts for a gauge choice. Taking for convenience C0 =
√

β(4ζ2η2 − λ2)/η, we obtain,

h = 1− µ

r
+

η

3β

2ζη − λ

2ζη + λ
r2

+
λ2

4ζ2η2 − λ2
arctan(r

√

η/β)

r
√

η/β
,

(2.27)

and f can be computed from (2.27) and (2.12). The scalar field is,

ψ′2 = −ζη
3r2

(

2ζβ + (2ζη − λ)r2
)2

β(4ζ2η2 − λ2)(β + ηr2)3h
. (2.28)

This solution is a generalization of the solution found in [8] for non-zero Λ. By construction,

the current does not diverge at the horizon, J2 = 0, but the scalar field does (therefore

this solution is not in contradiction with [12], where the scalar field was assumed to be

non-divergent).

3 Conclusions

In summary, we have given here a novel class of scalar-tensor black holes that present several

surprising properties that to our knowledge have not been encountered before. They can

have pure GR space-time geometry in the simplest of cases but also a more complex form as

solutions of the third order polynomial equation (2.16). This is a subject of further study.

When the solutions have GR space-time geometry, there is no Vainshtein radius associated

with the scalar tensor solution, which in the case of minimal coupling of the scalar field to

matter is a general property, since matter feels a pure GR metric. The black hole geometry

is GR-like everywhere. In fact for the stealth Schwarzschild and for the self-tuning de Sitter

it would be impossible to make the difference in between a GR and a scalar tensor black

hole, without perturbations and of course assuming that we are in the physical frame and

thus matter only couples to the metric. Perturbation theory will inevitably re-emerge the

scalar field, giving in principle differing phenomenology in between the two. Furthermore,

it will tell us of the stability of these black holes. One may wonder if this GR stealth config-

uration is the stable one. The second property is that the scalar field although non-trivial

is regular especially where other scalar tensor black holes fail [13, 14], at the future horizon.

At infinity the scalar itself, diverges but not its derivatives which are the ones present at the

action. They are finite at asymptotic infinity. The situation for the Schwarzschild solution

– 7 –
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we depict here is somewhat similar to the axionic black holes of [22] where the only effect

of the axion is at asymptotic infinity and the bulk solution is a Schwarzschild black hole.

Finally the scalar can be space and time dependent whereas space-time is static. More

importantly the time dependence here is linear and given the translational invariance of

the action, no time derivatives appear whatsoever. This effect is also similar to axionic

solutions with non zero axionic charge found recently in adS space-time [23]. There, the

axionic fields have linear time dependence in the flat horizon coordinates and a careful

Hamiltonian analysis shows the existence of axionic charge at infinity. If this is the case

here for the effect of the constant q then this would be qualified as hair rather as a novel

scalar charge measured out at infinity and associated to the shift symmetry of the teary. It

is thus difficult to really qualify these solutions as hairy or non-hairy. As we saw, to evade

no hair arguments we switch off the radial scalar charge by imposing a geometric condition

that renders the scalar field equation redundant. Time dependence, however, provides a

new integration constant q that makes the scalar non-trivial and also regular. We could

qualify this as secondary hair since the scalar couples non-trivially to space-time geometry

via the Gµν∂µφ∂νφ (John) term. These and other questions we leave for further study.
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