
J
H
E
P
0
8
(
2
0
1
4
)
0
9
9

Published for SISSA by Springer

Received: May 6, 2014

Accepted: July 20, 2014

Published: August 18, 2014

The structure of n-point one-loop open superstring

amplitudes

Carlos R. Mafraa and Oliver Schlottererb

aDAMTP, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, U.K.
bMax-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

Am Mühlenberg 1, 14476 Golm, Germany

E-mail: c.r.mafra@damtp.cam.ac.uk, olivers@aei.mpg.de

Abstract: In this article we investigate one-loop amplitudes in maximally supersymmetric

superstring theory. The non-anomalous part of the worldsheet integrand is presented for

any number of massless open-string states. The polarization dependence is organized into

the same BRST-invariant kinematic combinations which also govern the leading string

correction to tree-level amplitudes. The dimensions of the bases for both the kinematics

and the associated worldsheet integrals is found to be the unsigned Stirling number Sn−1
3

of first kind. We explain why the same combinatorial structures govern on the one hand

finite one-loop amplitudes of equal helicity states in pure Yang-Mills theory and on the

other hand the color tensors at order α′2 of the color-dressed tree amplitude.

Keywords: Scattering Amplitudes, Superstrings and Heterotic Strings

ArXiv ePrint: 1203.6215

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2014)099

mailto:c.r.mafra@damtp.cam.ac.uk
mailto:olivers@aei.mpg.de
http://arxiv.org/abs/1203.6215
http://dx.doi.org/10.1007/JHEP08(2014)099


J
H
E
P
0
8
(
2
0
1
4
)
0
9
9

Contents

1 Introduction 2

2 Review of tree-level cohomology building blocks 4

2.1 From vertex operators to OPE residues 4

2.2 From OPE residues to BRST building blocks 6

2.3 From BRST building blocks to Berends-Giele currents 7

2.4 The D = 10 SYM amplitude as a pure spinor cohomology problem 8

3 One-loop amplitudes with the minimal pure spinor formalism 9

3.1 The one-loop prescription for dα, N
mn zero mode saturation 12

4 BRST building blocks for loop amplitudes 13

4.1 Unified notation for one-loop BRST building blocks 16

4.2 Diagrammatic interpretation of the loop building blocks 17

4.3 Berends-Giele currents for loop amplitudes 18

4.4 BRST-invariant kinematics for loop amplitudes 19

4.5 Symmetry properties of the BRST invariants 21

5 One-loop amplitudes in pure spinor superspace 22

5.1 Step 1: CFT correlator in terms of building blocks 24

5.2 Step 2: Berends-Giele currents 26

5.3 Step 3: integration by parts 28

5.4 The closed-form n-point kinematic factor 31

6 One-loop kinematic factors built from tree-level data 33

6.1 Diagrammatic expansion of tree-level α′2 corrections 34

6.2 Tree-level α′2 corrections versus one-loop kinematics 38

6.3 KK-like identities for AF 4
and finite QCD amplitudes 39

6.4 BCJ-like identities for AF 4
41

7 Harmony between color, kinematics and worldsheet integrands 42

7.1 The color-dressed (n ≤ 7)-point disk amplitude at order α′2 44

7.2 Dual bases in color and kinematic space 45

7.3 Duality between one-loop integrands andMF 4

n 48

7.4 Proving total symmetry of Kn 49

7.5 Correspondence between color and kinematics inMF 4

n 50

8 Conclusions 53

A On the uniqueness of the b-ghost zero mode contribution 54

B Symmetrized traces for six- and seven-point amplitudes 55

– 1 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
9

C The higher-multiplicity BRST invariants 56

1 Introduction

In recent years the pure spinor formalism [4] allowed striking compactness in the compu-

tations of scattering amplitudes both in string theory [5, 6, 39–41, 48–50, 57, 60, 61] and

directly in its field-theory limit [6, 8, 17, 18, 58, 59]. It has been known since the work of

Nilsson [82] and Howe [36] and that the use of a pure spinor simplifies the description of

N = 1 super-Yang-Mills (SYM). With the advent of the pure spinor formalism this reward-

ing description was put into the context of the full superstring theory with a underlying

BRST symmetry and a new kind of superspace [37].

Using the ideas of [27] for the field theory amplitudes, it was suggested in [17] and

proven in [6, 8] that BRST invariance together with the propagator structure of cubic dia-

grams are sufficient to determine tree-level amplitudes of D = 10 SYM to any multiplicity.

The recursive BRST cohomology method obtained in [8] leads to compact and elegant

supersymmetric answers and makes use of so-called BRST building blocks which can be

regarded as superspace representatives of cubic diagrams. The field-theory techniques of [8]

were subsequentely exploited to also calculate the general color-ordered open superstring

tree amplitudes in [6, 7]. The punchline is that the n-point string amplitudes are written

as a sum of (n− 3)! field theory subamplitudes dressed by hypergeometric integrals [7].

The problem of computing one-loop amplitudes in open superstring theory has been

dealt with since the 1980’s, the first successful result at four-points being [76] in the NS sec-

tor and [66] in the R sector. In spite of the technical difficulties caused by the spin structure

sums required by the RNS model, [65] provides progress towards higher multiplicity up to

seven-points. In the context of heterotic theories, five- and six gluon amplitudes as well as

their implications for effective actions were analyzed in [67]. Pure spinor techniques have

been applied to one-loop scattering in [5, 9, 48, 63], superspace results up to five-points

are available from these references. As for two-loop amplitudes, after an amazing effort

by D’Hoker and Phong the four-point amplitude was computed within the RNS formalism

in [78] (see also [77]). Two-loop calculations using the pure spinor formalism can be found

in [40, 41, 49].

Can this BRST line of reasoning within the pure spinor formalism be extended to loop

amplitudes? With this intention in mind, in this paper we apply the technique of BRST-

covariant building blocks to address one-loop amplitudes in superstring theory. For any

number of massless SYM states, we determine the BRST invariant part of their worldsheet

integrand which is unaffected by the hexagon anomaly [21, 22]. The complete kinematic

factor turns out to be organized in terms of color-ordered tree-level amplitudes at order

α′2 that are dressed with worldsheet functions in a minimal basis. A beautiful harmony

in the combinatorics of both ingredients arises. However, evaluating the (worldsheet- and

modular) integrals is left for future work, in particular the extraction of field theory loop

integrals as α′ → 0 along the lines of [26].
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Superstring theory has proven to be a fruitful laboratory to learn about hidden struc-

tures in the S matrix of its low energy field theories. The open superstring did not only

inspire the color organization of gauge theory amplitudes but also provided an elegant proof

for Bern-Carrasco-Johansson (BCJ) relations among color-ordered tree amplitudes [23, 24],

based on monodromy properties on the worldsheet. Another difficult field theory problem

which found a string-inspired answer is the explicit construction of local kinematic numer-

ators for gauge theory tree amplitudes which satisfy all the dual Jacobi identities, see [28].

After these tree-level examples of cross-fertilization between superstring and field theory

amplitudes, we hope that this work helps to provide further guidelines to organize multileg

one-loop amplitudes in maximally supersymmetric SYM in both ten and four dimensions.1

Even though the low energy behaviour of the worldsheet integrals is not addressed, our re-

sult for the kinematic factor heavily constrains the form of these field theory amplitudes. In

particular, the gauge invariant kinematic building blocks C1,... to be defined later on appear

to be a promising starting point to construct kinematic numerators for higher multiplic-

ity. They could potentially generalize the crossing symmetric factor s12s23A
YM(1, 2, 3, 4)

omnipresent in multiloop four-point amplitudes of N = 4 SYM (where AYM(1, 2, . . . , n)

denotes the color-ordered n-point tree amplitude in maximally supersymmetric Yang Mills

theory).

This paper is organized as follows. In section two, we review the construction of

the n-point SYM tree amplitude from first principles. We start with the massless ver-

tex operators in terms of SYM superfields and sketch how their singularity structure give

rise to BRST building blocks representing cubic subdiagrams. As we will argue, BRST

invariance forces them to pair up such that color-ordered SYM amplitudes emerge. Sec-

tion three sets the formal foundation for the computation of one-loop amplitudes using

the minimal pure spinor formalism. It motivates the construction of a further family of

BRST building blocks which is carried out in section four. The fourth section follows a

line of reasoning similar to the tree-level review — the BRST variation of the one-loop

specific building blocks allows to a priori determine any BRST invariant to be expected in

a one-loop computation. Then in section five, these BRST invariants are derived from an

explicit conformal field theory (CFT) computation, in particular the associated worldsheet

functions are determined. Section six connects the BRST invariants with α′ corrections

to tree-level amplitudes and explains why their symmetry properties agree with those of

finite one-loop amplitudes in pure Yang-Mills theory. Finally, in the last section, we point

out that also the color factors present at the α′2 order of tree amplitudes align into the

same combinatorial patterns. This leads to a duality between the worldsheet integrand of

one-loop amplitudes and color-dressed tree amplitudes at O(α′2).

To give a brief reference to the main results of this work — the final form for the

n-point kinematic factor can be found in equation (5.34) whose notation is explained in

subsection 5.4. Subsection 6.2 contains the general conversion rule (6.17) between the

BRST invariants C1,... and color-stripped O(α′2) trees AF 4
as well as low multiplicity

1The four-dimensional N = 4 SYM theory can be obtained by standard dimensional reduction from its

ten-dimensional version with N = 1 supersymmetry [25].
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examples thereof. According to subsection 7.3, the representation (7.21) of the color-

dressed O(α′2) tree manifests a duality to the one-loop kinematic factor (5.34).

2 Review of tree-level cohomology building blocks

In this section, we shall review the construction of tree-level amplitudes in ten-dimensional

SYM, based on BRST building blocks in pure spinor superspace [8, 17, 18]. Although the

problem at hand is of purely field theoretic nature, we shall use the vertex operators and

the BRST charge of the pure spinor superstring [4] as the starting point. These ingredients

suggest a pure spinor superspace representation for color-ordered tree subdiagrams with

one off-shell leg. BRST invariance and the pole structure in the kinematic invariants

s12...p ≡
1

2
(k1 + k2 + · · ·+ kp)

2 (2.1)

turn out to be sufficient in order to determine the tree-level SYM amplitude AYM
n with any

number n of external legs [6, 8]. The compactness of the final expression

AYM(1, 2, . . . , n) =
n−2∑

j=1

〈M12...j Mj+1...n−1 V
n〉 (2.2)

(see sections 2.1 and 2.3 for the definitions of V n and M12...j , respectively) suggests to

apply a similar program at loops, we will follow these lines in section 4 and introduce

similar superspace variables.

At the level of the full-fledged superstring theory, the main virtue of the BRST building

block representation for AYM is the possibility to identify these SYM constituents within

the CFT computation of the superstring disk amplitude. The supersymmetric n-point tree

amplitude in superstring theory was shown in [6, 7] to decompose into a sum of (n − 3)!

color-ordered field theory amplitudes, each one of them being weighted by a separate

function of α′. The main result of the current work is a similar decomposition of one-loop

supersymmetric amplitudes, based on a new family of BRST building blocks.

2.1 From vertex operators to OPE residues

One of the major tasks in computing the open string tree-level amplitude is the evaluation

of the CFT correlation function

〈V 1(z1)V
n−1(zn−1)V

n(zn)U
2(z2) . . . U

n−2(zn−2)〉 (2.3)

where V 1 and U2 denote the vertex operators for the gluon multiplet with conformal-weight

zero and one, respectively. They are conformal fields on the worldsheet parametrized

by a complex coordinate z. The 8+8 physical degrees of freedom are described by the

superfields2 Aα, A
m,Wα and Fmn of D = 10 SYM [19]

V 1 = λαA1
α, U i = ∂θαAi

α +ΠmAi
m + dαW

α
i +

1

2
F i
mnN

mn, (2.4)

2Throughout this work, SO(1, 9) vector indices are taken from the middle of Latin alphabet m,n, p, . . . =

0, 1, . . . , 9 whereas Weyl spinor indices α, β, . . . = 1, 2, . . . 16 are taken from the beginning of the Greek

alphabet.
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where λα denotes the pure spinor ghost subject to (λγmλ) = 0 [4]. The remaining ingredi-

ents ∂θα,Πm, dα and Nmn of (2.4) are conformal weight-one fields on the worldsheet. The

ten-dimensional superfields Aα, A
m,Wα and Fmn, depending on the bosonic and fermionic

superspace variables xm and θα, obey the following equations of motion [19, 47],

2D(αAβ) = γmαβAm

DαFmn = 2k[m(γn]W )α

DαAm = (γmW )α + kmAα

DαW
β =

1

4
(γmn) β

α Fmn.
(2.5)

As shown in [45, 46], their θ expansions can be computed in the gauge θαAα = 0 and

read [44]

Aα(x, θ)=
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α −

1

32
Fmn(γpθ)α(θγ

mnpθ) + · · ·

Am(x, θ)=am − (ξγmθ)−
1

8
(θγmγpqθ)Fpq +

1

12
(θγmγpqθ)(∂pξγqθ) + · · ·

Wα(x, θ)=ξα−
1

4
(γmnθ)αFmn+

1

4
(γmnθ)α(∂mξγnθ)+

1

48
(γmnθ)α(θγnγ

pqθ)∂mFpq+ · · ·

Fmn(x, θ)=Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγpqθ)∂n]Fpq +

1

6
∂[m(θγ pq

n] θ)(ξγqθ)∂p + · · ·

(2.6)

where am(x) = emeik·x, ξα(x) = χαeik·x are the gluon and gluino polarizations and Fmn =

2∂[man] is the linearized field-strength.

The equations of motion (2.5) imply that the vertex operators in (2.4) obey QV i =

0 and QU j = ∂V j . Since their ingredients V i and
∫
U j are BRST closed, superstring

amplitudes (and in particular their field theory limit) should inherit this property.

The correlator (2.3) can be computed by integrating out the conformal worldsheet

fields of unit weight within the U j vertex operator. This amounts to summing over all

worldsheet singularities in zi → zj which the fields in question can produce. In any CFT,

this information is carried by operator product expansions (OPEs), the first example being

V 1(z1)U
2(z2) →

L21

z21
. (2.7)

This defines a composite superfield L21 associated with the degrees of freedom of the states

with labels 1 and 2, respectively. By iterating this OPE fusion, we define a family of

superfields of arbitrary rank [8]

L21(z1)U
3(z3) →

L2131

z31
, L2131...l1(z1)U

m(zm) →
L2131...l1m1

zm1
(2.8)

which will be referred to as OPE residues.3 After the fields with conformal weight one

have been integrated out using their OPEs, the zero modes of the pure spinor λα and θα

are integrated using the 〈(λ3θ5)〉 = 1 prescription reviewed in [6].

3It turns out that even if OPE contractions are firstly carried out among U i(zi)U
j(zj) and then merged

with V 1, the result is still a combination of L2131...m1 permutations. In other words, at tree-level the OPE

U i(zi)U
j(zj) does not introduce any independent composite superfields.

– 5 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
9

2.2 From OPE residues to BRST building blocks

A major shortcoming of the OPE residues L2131...m1 is their lack of symmetry under ex-

change of labels 1, 2, 3, . . . ,m. However, the obstructions to well-defined symmetry proper-

ties can be shown to conspire to BRST-exact terms. As a simple example, the symmetric

rank-two combination is

L21 + L12 = −Q(A1 ·A2) (2.9)

where Q = λαDα denotes the BRST operator of the pure spinor formalism [4] and Am
i

is the vectorial superfield of D = 10 SYM. Using the BRST transformation properties of

L2131..., these BRST-exact admixtures have been identified in [6, 8] up to rank five, and

their removal leads to a redefinition of the OPE residues4

T12 ≡ L21 −
1

2
(L21 + L12) = L[21], T123...m ≡ L2131...m1 − corrections . (2.10)

The outcome of (2.10) is an improved family of superfields T123...m which we call BRST

building blocks. They are covariant under the action of the BRST charge, e.g.

QT1 = 0

QT12 = s12 T1 T2

QT123 = (s123 − s12)T12 T3 − s12 (T23 T1 + T31 T2)

QT1234 = (s1234 − s123)T123 T4 + (s123 − s12) (T12 T34 + T124 T3)

+ s12 (T134 T2 + T13 T24 + T14 T23 + T1 T234)

QT12...k =
k∑

j=2

∑

α∈P (βj)

(s12...j − s12...j−1)T12...j−1,{α}Tj,{βj\α}

(2.11)

where V1 ≡ T1. The set βj = {j + 1, j + 2, . . ., k} encompasses the k− j labels to the right

of j, and P (βj) denotes its power set. In other words, Q acting on a BRST building block

of higher rank yields products of two lower rank analogues together with a Mandelstam

variable.

As discussed in [6], at each rank the BRST building blocks obey one new symmetry in

its labels while still respecting all the lower-rank symmetries. For example, since the rank-

two building block satisfies T(12) = 0 all higher-order building blocks also obey T(12)34... = 0.

At rank-three there is one new symmetry T[123] = 0 which is respected by all higher-order

ranks, T[123]4...m = 0 and so forth. The generalization to rank m ≥ 3 is given by [6],

m = 2p+ 1 : T12...p+1[p+2[...[2p−1[2p,2p+1]]...]] − 2T2p+1...p+2[p+1[...[3[21]]...]] = 0

m = 2p : T12...p[p+1[...[2p−2[2p−1,2p]]...]] + T2p...p+1[p[...[3[21]]...]] = 0,
(2.12)

and leaves (m − 1)! independent components at rank m. It turns out that the above

symmetries are shared by color factors of nonabelian gauge theories formed by contracting

structure constants f ijk of the gauge group. At lowest ranks, we have

0 = f (12)3 ↔ T(12) = 0, 0 = f [12|af3]4a ↔ T[123] = 0, (2.13)

4We define (anti-)symmetrization of p indices to include 1
p!
, e.g. L[21] =

1
2
(L21 − L12).

– 6 –
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Figure 1. The correspondence of tree graphs with cubic vertices and BRST building blocks.

which states their total antisymmetry and Lie algebraic Jacobi identities, and similarly

0 = f12afa[3|bf b|4]c + f34afa[1|bf b|2]c ↔ T12[34] + T34[12] = 0. (2.14)

In general, the symmetries of a rank m building block are the same as those of a string of

structure constants with m+ 1 labels,

f12a2 fa23a3 fa34a4 . . . fam−1mam ↔ T1234...m , (2.15)

where the free color index am reflects an off-shell leg m+1 in the associated cubic diagram.

Therefore the basis of rank m building blocks being (m− 1)!-dimensional is equivalent

to the well-known fact that the basis of contractions of structure constants with p free

adjoint indices has dimension (p− 2)! after Jacobi identities.

This similarity of building blocks with color factors as well as their BRST variations

suggest a diagrammatic interpretation for T123...m in terms of tree subdiagrams with cubic

vertices [27] as seen on figure 1. Firstly, the color structure of this diagram is given by (2.15)

via Feynman rules and secondly each propagator can be cancelled by one of the Mandelstam

variables in the BRST variation QT123...m → s12, s123, s1234, . . . , s1234...m. In other words,

the role of the BRST operator is to cancel propagators.

2.3 From BRST building blocks to Berends-Giele currents

Given the dictionary between cubic tree subdiagrams and BRST building blocks, the next

challenge is to combine different diagrams in order to arrive at BRST-invariant SYM am-

plitudes. The next hierarchy level of building blocks consists of superspace representations

M123...m of so-called Berends-Giele currents [43] which can be thought of as color-ordered

SYM tree amplitudes with one leg off-shell. They encompass all the cubic diagrams present

in the associated SYM tree and consist of kinematic numerators T123...m dressed by their

propagators (s12s123 . . . s12...m)−1, e.g.

M12 =
T12

s12
, M123 =

T123

s12s123
+

T321

s23s123
(2.16)

corresponding to the three- and four-point amplitudes with one leg off-shell. At rank four,

M1234 =
1

s1234

(
T1234

s12s123
+

T3214

s23s123
+

T3421

s34s234
+

T3241

s23s234
+

2T12[34]

s12s34

)

(2.17)

– 7 –
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Figure 2. (a) The cubic graphs with one leg off shell which compose the rank three Berends-Giele

current M123. (b) The factorization of the current M12...m under the action of the BRST charge.

The right-hand side involves the sum over all partitions of m legs which is compatible with the

color ordering set by {1, 2, . . . ,m}.

collects the five cubic diagrams of a color-ordered five-point amplitude. The two diagrams

present in M123 are shown in figure 2.

The necessity to combine BRST building blocks to full-fledged Berends-Giele currents

can be seen from their Q variation: their fine-tuned diagrammatic content makes sure that

also the M123...m are covariant under the BRST charge, i.e. (where for rank one, M1 ≡ V1)

QM1 = 0

QM12 = M1M2

QM123 = M12M3 +M1M23

QM1234 = M123M4 +M12M34 +M1M234 .

(2.18)

In contrast to QT123...m as given by (2.11), there are no explicit Mandelstam variables

in (2.18) because the rank m current already incorporates m− 1 simultaneous poles. The

generalization of (2.18) to higher rank,

QM12...m =
m−1∑

j=1

M12...j Mj+1...m (2.19)

involves all partitions of the m on-shell legs on two Berends-Giele currents which are

compatible with the color ordering. The situation is depicted in figure 2b.

2.4 The D = 10 SYM amplitude as a pure spinor cohomology problem

Using the Berends-Giele currents reviewed in the previous subsection, a method to recur-

sively compute the ten-dimensional SYM tree-level scattering amplitudes was developed

– 8 –
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in [8]. It was later shown in [6] that the expressions found in [8] also follow from the field

theory limit of tree-level superstring amplitudes computed with the pure spinor formalism.

The method relies on finding an expression in the cohomology of the pure spinor BRST

charge, i.e. which is BRST-closed but non-exact,

QAYM(1, 2, . . . , n) = 0, AYM(1, 2, . . . , n) 6= 〈QXn〉.

If we additionally require this cohomology element to reproduce the kinematic poles of a

color-ordered SYM subamplitude, the result is uniquely determined to be

AYM(1, 2, . . . , n) =
n−2∑

j=1

〈M12...j Mj+1...n−1 V
n〉. (2.20)

In order to show that the right-hand side is in the BRST cohomology first note that

QVn = 0, whereas

Q
n−2∑

j=1

M12...j Mj+1...n−1 = 0 (2.21)

follows from (2.19). And secondly, in the momentum phase space of n massless particles

where the Mandelstam variable s12...n−1 vanishes,
∑n−1

j=1 M12...j Mj+1...n−1 can not be writ-

ten as QM12...n−1 since M12...n−1 contains a divergent propagator 1/s12...n−1. This rules

out BRST-exactness of (2.20).

The number of cubic diagrams in the color-ordered n-point tree amplitude is given

by the Catalan number Cn−2, see [62], which satisfies the recurrence relation Cp+1 =
∑p

i=0CiCp−i with C0 = 1. By its diagrammatic construction, M12...j gathers Cj−1 pole

channels, so the number of poles in the expression (2.20) for the n-point subamplitude

is given by
∑n−3

i=0 CiCn−3−i, which is precisely the recursive definition of Cn−2. The ex-

pression (2.20) therefore contains the same number of cubic diagrams as the color-ordered

n-point amplitude, and the fact that Berends-Giele currents have a notion of color ordering

guarantees that the pole channels in (2.20) are precisely those of AYM(1, 2, . . . , n). The

factorization properties of the expression (2.20) are depicted in figure 3, and the reader is

referred to [6] for more details.

3 One-loop amplitudes with the minimal pure spinor formalism

This section sketches the prescription towards one-loop amplitudes within the minimal pure

spinor formalism. The main goal is to make the one-loop zero mode saturation rule (3.8) for

the correlator 〈V 1
∏n

j=2 U
j〉 plausible instead of giving an exhaustive review. The reader

is referred to [5] for the details omitted in the following discussion.

The prescription to compute n-point one-loop amplitudes for open superstrings is [5]

A1−loop
n =

∑

top

Ctop

∫

Dtop

dt 〈(µ, b)

10∏

P=2

ZBP
ZJ

11∏

I=1

YCI
V1(z1)

n∏

j=2

∫

dzjU
j(zj)〉, (3.1)

where µ is the Beltrami differential, t is the Teichmüller parameter and b is the b-ghost

whose contribution will be discussed below. The sum runs over all one-loop open string

– 9 –
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Figure 3. Diagrammatic interpretation of the expression
∑n−2

j=1 〈M12...jMj+1...n−1V
n〉 for the n-

point SYM tree amplitudes. The j sum runs over all partitions of the first n − 1 legs among two

Berends-Giele currents.

worldsheet topologies, i.e. over planar and non-planar cylinder diagrams as well as the

Moebius strip, see [13]. The integration domain Dtop for t has to be adjusted accordingly,

and the associated color factors Ctop are single- or double traces over Chan-Paton genera-

tors associated with the external states. Both the Chan-Paton traces and the integration

region for the zj must reflect the cyclic ordering of the vertex operators on the boundaries

of the genus one worldsheet. The main focus of this work is the simplification of the t

integrand in (3.1), so we do not specify further details of Dtop and Ctop or comment on the

interplay between the topologies.

In order to introduce the remaining elements appearing in (3.1), note that the com-

putation of the CFT correlator at one-loop starts by separating off the zero mode of the

conformal weight one variables. The role of the picture-changing operators ZB, ZJ and YC
is to ensure that the zero modes of bosonic and fermionic variables are absorbed correctly,

see [5]. The angle brackets 〈. . .〉 in (3.1) initially denote the path integral over all the

worldsheet variables in the pure spinor formalism. The non-zero modes are integrated out

using their OPEs as described below and we will follow a procedure where the zero modes

of dα, N
mn and the ghost current J are integrated out first, leaving those of λα and θα for a

last step in the computation, e.g. after the superfield expansions of (2.6) are substituted in

the expressions of various building blocks. And since general group theory arguments will

be used to determine the integrals over zero modes of dα, N
mn and J the precise details of

the zero-mode measures of [5] will not be needed.

So unless otherwise stated, every appearance of the pure spinor angle brackets 〈. . .〉

in this paper denotes the zero-mode integration of λα and θα only and will be taken as

the definition of pure spinor superspace [37]. This integration can be performed using

symmetry arguments alone and follows from the tree-level prescription 〈(λ3θ5)〉 = 1 of [4].

Since this tedious process has been mostly automated in [14] we will restrict ourselves to

presenting our one-loop results in compact pure spinor superspace form as in the tree-level

approach of [6]. Furthermore, the correlation function of the matter variables xm(z, z) and

Πm(z) is computed as in [10, 20] and will receive no special treatment in the following.
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The non-zero-modes are integrated out using their OPEs [10]

dα(zi)θ
β(zj)→ ηijδ

β
α, Πm(zi)x

n(zj , zj)→ −ηijδ
n
m. (3.2)

Singularities in colliding worldsheet positions enter through the function ηij which is defined

on a given Riemann surface as the derivative of the bosonic Green’s function

ηij :=
∂

∂zi
〈x(zi, zi)x(zj , zj)〉 .

It behaves as z−1
ij as the positions approach each other but respects the periodicity prop-

erties required by a higher-genus Riemann surface. The representation in terms of Jacobi

theta functions will not be needed in the following discussions, only its antisymmetry

ηij = −ηji will play a fundamental role.

In the amplitude prescription (3.1), the b-ghost is a composite operator whose form is

given schematically by [5, 30],

b = (Πd+N∂θ + J∂θ) d δ(N) + (w∂λ+ J∂N +N∂J +N∂N)δ(N)

+ (NΠ+ JΠ+ ∂Π+ d2)(Πδ(N) + d2δ′(N))

+ (Nd+ Jd)(∂θδ(N) + dΠδ′(N) + d3δ′′(N))

+ (N2 + JN + J2)(d∂θδ′(N) + Π2δ′(N) + Πd2δ′′(N) + d4δ′′′(N))

(3.3)

where δ′(x) = ∂
∂xδ(x) is defined through integration by parts and the precise index con-

tractions are being omitted. It will be argued in the appendix A that the zero-mode

contribution from the b-ghost is unique and given by an expression of the form d4δ′(N).

Furthermore, the result of the zero-mode integrations in this case is fixed by group theory

up to an overall constant, and this is the contribution which will concern us in this paper.

We do not have a constructive proof that the b-ghost does not contribute via OPE

contractions (i.e. via nonzero modes), but an indirect argument based on total symmetry

of the kinematic factor will follow in subsection 7.4.

In general, the evaluation of the one-loop amplitude (3.1) involves two separate chal-

lenges summarized by the formula5

A1−loop
n =

∑

top

Ctop

∫

Dtop

dt
n∏

j=2

∫

dzj

〈
n∏

i=1

eiki·x(zi,zi)

〉

×Kn .

Firstly, the computation of the kinematic factorKn in pure spinor superspace whose generic

form is given by

Kn = ηn−4〈f(λα, θα; 1, 2, . . . , n)〉 (3.4)

(where 1, 2, . . . , n denote the physical degrees of freedom of the n external states), and

secondly, the evaluation of the integrals over vertex operator positions on the boundary of

5Since the Koba Nielsen factor KN=
〈

∏n

i=1 e
iki·x(zi,zi)

〉

due to the plane wave correlator is a universal

prefactor, we define the kinematic factor Kn not to contain KN. Nevertheless, its presence is relevant for

integration by parts relating different worldsheet functions, see subsection 5.3.
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the Riemann surface as well as the modular parameter t. The form of the kinematic part

is unique to the pure spinor formalism and will be dealt with in the following sections. Its

BRST invariant ingredients will be identified and related to the α′2 terms in the expansion

of the corresponding tree-level amplitudes. The expressions for the integrals over the

Riemann surface are exactly like in RNS or Green-Schwarz [11, 12] formalisms and will not

play a role in this article. Extracting information on the integrals — in particular their

field theory limits — will be left for future work.

3.1 The one-loop prescription for dα, N
mn zero mode saturation

When the number of external states is four, the saturation of dα zero modes in

A1−loop
4 =

∑

top

Ctop

∫

Dtop

dt〈(µ, b)
10∏

P=2

ZBP
ZJ

11∏

I=1

YCI
V1(z1)

4∏

j=2

∫

dzjU
j(zj)〉, (3.5)

is unique and determines the amplitude up to an overall coefficient [5, 63]. The picture

changing operators, the b-ghost and the external vertices provide ten, four and two dα zero-

modes, respectively, thereby saturating all the sixteen zero modes of dα. Furthermore, as

mentioned after (3.3), the terms with four dα zero modes from the b-ghost also contain

factors which absorb extra zero modes ofNmn, either 1, 2 or 3. For the four-point amplitude

the only possibility is the absorption of one zero mode of Nmn through an overall factor of

δ′(N). Summing it all up, the contribution from the external vertices is proportional to

1

2
V1(dW

2)(dW 3)F4
mnN

mn + cyclic(234) (3.6)

and the remaining zero mode integration is given schematically by

K4 =

∫

[Dλ][DN ] d16θ d16d (λ)10 (d)14 (θ)11 δ11(λ) δ10(N) δ(J) δ′(N)

×
1

2
V1(dW

2)(dW 3)F4
mnN

mn + cyc(234).

(3.7)

As one can check in the expressions given in [5], the measure factor [DN ] has ghost-

number -8. Therefore the integration of
∫
[DN ] d16d(λ)10(d)14δ10(N)δ(J)δ′(N) in (3.7)

with ten powers of λ has the net effect of replacing dαdβN
mn from the external vertices

by a λ bilinear. The tensor structure is uniquely determined by group theory since the

decomposition of dα⊗dβ⊗Nmn contains only one component in the SO(10) representation

(00002) of a chiral pure spinor bilinear:

dαdβN
mn −→ (λγ[m)α(λγ

n])β (3.8)

Consequently, (3.6) leads to the following kinematic factor for the four-point one-loop

amplitude

K4 =
1

2
〈V1(λγmW2)(λγnW3)F

mn
4 〉+ cyclic(234) (3.9)

whose BRST invariance one can easily check using the pure spinor constraint (λγmλ) = 0

and elementary corollaries (λγm)α(λγ
m)β = 0 and (λγmγpqλ) = 0.
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According to the arguments in appendix A, the replacement rule (3.8) still applies

to one-loop amplitudes with n ≥ 5 legs. It passes the superspace kinematic factor built

from one unintegrated and n − 1 integrated vertex operators to the tree-level zero mode

prescription 〈λ3θ5〉 = 1:

Kn ≡ 〈V
1(z1)U

2(z2)U
3(z3) . . . U

n(zn)〉dαdβNmn−→(λγ[m)α(λγn])β

Studying the interplay of (3.8) with the non-zero modes of the conformal fields in U j is

the subject of the next section. Integrating out all but three weight one fields dαdβN
mn

obviously requires n− 4 OPEs, and we will see that they give rise to new families of BRST

building blocks.

4 BRST building blocks for loop amplitudes

As reviewed in section 2, tree-level BRST building blocks T12...k are defined by a two step

procedure. Its starting point have been the residues of the single poles in iterated OPEs

of integrated vertex operators U(zj) with the unintegrated one V (z1). As a second step,

the BRST trivial components of these residues had to be subtracted to obtain symmetry

properties suitable for a diagrammatic interpretation. On the genus zero worldsheet gov-

erning tree-level amplitudes, conformal fields of weight +1 have no zero modes, so all of dα
and Nmn are completely integrated out in generating the residues entering BRST building

blocks. However, this is no longer the case at one-loop.

As seen in the previous section, the kinematic factor at one-loop comes from the terms

in the external vertices which contain two zero modes of dα and one of Nmn. Hence, we

have to integrate out weight one fields from the n− 1 integrated vertex operators until we

are left with the combination (d)2N which requires a total of n− 4 OPE contractions. In

doing so, one is naturally led to define the composite superfields J̃mn
12 , K̃α

12 and higher rank

generalizations J̃mn
12...k, K̃

α
12...k as the remaining single-pole terms ∼ dα or ∼ Nmn in nested

OPEs of multiple integrated vertex operators:

U1(z1)U2(z2) −→
J̃mn
12 Nmn

z21
+

dαK̃
α
12

z21
+ · · ·

U1(z1)U2(z2) . . . Uk(zk) −→
J̃mn
12...kNmn

zk,k−1 . . . z32z21
+

dαK̃
α
12...k

zk,k−1 . . . z32z21
+ · · ·

(4.1)

The ellipsis · · · indicates terms with Πm and ∂θα as well as double poles in individual zij ,

they do not contribute to the end result for one-loop amplitudes. Given the prescription

dαdβN
mn 7→ (λγ[m)α(λγ

n])β , the quantity of interest built from the K̃α superfield is

K̃m
12...k ≡ (λγm)αK̃

α
12...k. (4.2)

As a rank k = 2 example, let us consider the OPE of two integrated vertices. It contains
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single and double poles

U1(z1)U2(z2) −→
1

z21

[

(k2 ·A1)U
2 +

1

2
(W1γ

mW2)Π
m + (k1 ·Π)(A1W2) + ∂θαDαA

1
βW

β
2

+
1

4
(dγmnW2)F

1
mn + k1m(W1γnW2)N

mn −
1

2
F1
mpF

2p
n Nmn − (1↔ 2)

]

+
1 + (k1 · k2)

z221

[

(A1W2) + (A2W1)− (A1 ·A2)
]

(4.3)

with U2 = ∂θαA2
α +ΠmA2

m + dαW
α
2 + 1

2NmnF
mn
2 , and one can read off

K̃m
12 =

1

4
(λγmγpqW2)F

1
pq + (k2 ·A1)(λγ

mW2) − (1↔ 2) (4.4)

J̃mn
12 =

1

2

[
(k2 ·A1)F

mn
2 + F

[m
2 p F

n]p
1 + k

[m
12 (W1γ

n]W2)
]
− (1↔ 2) (4.5)

from the superfields contracted with dα and Nmn, respectively.

The definitions in (4.1) lead to the following rank ≤ 3 expressions

K̃m
1 = (λγmW1) (4.6)

K̃m
12 =

1

4
(λγmγpqW2)F

1
pq + (k2 ·A1)(λγ

mW2) − (1↔ 2) (4.7)

K̃m
123 = −

1

2
(k12 ·A3) K̃

m
12 − (λγmW1) k

1
p (W2γ

pW3) +
1

2
(λγmW3) k

3
p (W1γ

pW2)

+
1

4
(k1 ·A2)

[

(λγmγpqW1)F
3
pq − (λγmγpqW3)F

1
pq − 4(k3 ·A1) (λγ

mW3)
]

+
1

2
(λγmγpqW2) k

1
p (W1γqW3)−

1

4
(λγmγpqW3)F

1 r
p F

2
qr

+
1

16
(λγmγpqγrsW1)F

3
pq F

2
rs − (1↔ 2) (4.8)

J̃mn
1 =

1

2
Fmn
1 (4.9)

J̃mn
12 =

1

2

[
(k2 ·A1)F

mn
2 + F

[m
2 p F

n]p
1 + k

[m
12 (W1γ

n]W2)
]
− (1↔ 2) (4.10)

J̃mn
123 = −

1

2

[
(k12 ·A3) J̃

mn
12 −(k1 ·A2)(k3 ·A1)F

mn
3

]
+F

[m
1 pF3 q

n]Fpq
2 +(k1 ·A2)F

[m
1 r F

n]r
3

+ k1p F
p[m
2 (W1γ

n]W3)− k
[m
1 F

n]p
2 (W1γpW3) + (k2 ·A1) k

[m
23 (W2γ

n]W3)

+
1

2

[
(W1γ

[mW2)F
n]p
3 k12p − k

[m
12F

n]p
3 (W1γpW2) + kp2 (W1γpW3)F

mn
2

]
(4.11)

+
1

4

[
(k

[m
12 (W1γ

n]γpqW3)F
2
pq+(W2γ

pqγ[mW3)F
1
pq+kp3 (W1γpW2)F

mn
3

]
−(1↔2)

where kmij := kmi + kmj . Expressions for the rank four building blocks K̃m
1234 and J̃mn

1234 are

available from the authors upon request.

Similar to their tree-level counterparts T12...k [6], the new composite superfields have

two essential virtues: on the one hand, they have symmetry properties which reduce the

independent rank k components to (k− 1)! and thereby suggest an interpretation in terms
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of tree-level subdiagrams with one off-shell leg. On the other hand, they possess covariant

BRST variations,

QK̃m
1 = 0,

QK̃m
12 = s12

(

T1K̃
m
2 − T2K̃

m
1

)

,

QK̃m
123 = s13 L21 K̃

m
3 − s23 L12 K̃

m
3 + s12

[
L31 K̃

m
2 − L32 K̃

m
1

]

− (s13 + s23)T3 K̃
m
12 + s12

[
T1 K̃

m
23 − T2 K̃

m
13

]
.

(4.12)

However, the appearance of the OPE residue L21 in the right-hand side of QK̃m
123 instead

of the BRST building block T12 signals the need for a redefinition of K̃m
123 analogous to

the redefinitions of L2131... to T̃123... at tree-level, see subsection 2.2. In order to justify

this, let us recall the following general lesson from the tree-level analysis: quantities whose

Q variation contains BRST exact constituents such as L(21) = −
1
2Q(A1 · A2) combine to

BRST trivial parts of the amplitude. It is economic to remove these terms in an early step

of the computation, i.e. to study the BRST building block

Km
123 ≡ K̃m

123 +
1

2

[
(s13−s23) (A1 ·A2)K

m
3 + s12 ((A1 ·A3)K

m
2 − (A2 ·A3)K

m
1 )
]
(4.13)

from now on whose BRST transformation gives rise to T12 rather than L21:

QKm
123 = (s13 + s23)(T12K

m
3 − V3K

m
12) + s12

[
T13K

m
2 − V2K

m
13 − T23K

m
1 + V1K

m
23

]
(4.14)

Also the higher rank cases Km
12...k = K̃m

12...k + . . . and Jmn
12...k = J̃mn

12...k + . . . at k ≥ 4 require

modification to ensure BRST building blocks T12...k rather than the OPE residues L21...k1

(with BRST exact components) in their Q transformation. However, in contrast to the tree-

level redefinitions T12...k = L21...k1 + . . . , the symmetry properties of loop-specific building

blocks are already present in OPE residues K̃m and J̃mn. For instance, we already have

an antisymmetric residue K̃m
12 = K̃m

[12] at rank two whereas the OPE residue L21 has to be

projected on its antisymmetric part T12 = L21 − L(21).

Rank three is the first instance where modifications QK̃m
123 = s13L21K̃

m
3 + . . . are

necessary to avoid BRST trivial admixtures L(21) = −
1
2Q(A1 · A2) in the Q variation and

to instead arrive at QKm
123 = s13T12K̃

m
3 + . . . with L21 7→ T12. Hence, the loop-specific

OPE residues K̃m
12...k are more closely related to their BRST building blocks Km

12...k than

the tree-level cousins L21...k1 ↔ T12...k.

The BRST variations of OPE residues J̃mn
12...k associated with Nmn lead to similar

conclusions. Redefinitions J̃mn
12...k → Jmn

12...k are needed in order to trade Lji... and J̃mn
ij...

present in QJ̃mn
12...k for Tij... and Jmn

ij... in QJmn
12...k. However, when computing their BRST

variations one must take into account that the building blocks Jmn
12...k (or J̃mn

12...k) always

appear contracted with (λγm)α(λγ
n)β because of the rule (3.8). So even though one might

naively concludeQJ̃mn
1 = k

[m
1 (λγn]W1) 6= 0, the effective contribution of its BRST variation

to an amplitude is (λγm)α(λγn)βQJ̃mn
1 = 0. For any QJ̃mn

... or QJmn
... displayed in the

following, terms that vanish under contraction with Km
...K

n
... ∼ (λγm)α(λγ

n)β are omitted.

In summary, the Q variations of the BRST building blocks which will appear in loop

amplitudes are given by (2.11) and

QKm
12 = s12

(
T1K

m
2 − T2K

m
1

)
(4.15)
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QKm
123 = (s123 − s12)

(
T12K

m
3 − T3K

m
12

)

+ s12
(
T1K

m
23 + T13K

m
2 − T23K

m
1 − T2K

m
13

)
(4.16)

QKm
1234 = (s1234 − s123)

(
T123K

m
4 − T4K

m
123

)

+ (s123 − s12)
(
T12K

m
34 + T124K

m
3 − T34K

m
12 − T3K

m
124

)

+ s12
(
T134K

m
2 + T13K

m
24 + T14K

m
23 + T1K

m
234 − T2K

m
134

− T24K
m
13 − T23K

m
14 − T234K

m
1

)
(4.17)

QJmn
12 = s12

(
T1J

mn
2 − Jmn

1 T2

)
(4.18)

QJmn
123 = (s123 − s12)

(
T12J

mn
3 − Jmn

12 T3

)

+ s12
(
T1J

mn
23 + T13J

mn
2 − Jmn

1 T23 − Jmn
13 T2

)
(4.19)

QJmn
1234 = (s1234 − s123)

(
T123J

mn
4 − Jmn

123T4

)

+ (s123 − s12)
(
T12J

mn
34 + T124J

mn
3 − Jmn

12 T34 − Jmn
124T3

)

+ s12
(
T134J

mn
2 + T13J

mn
24 + T14J

mn
23 + T1J

mn
234

− Jmn
134T2 − Jmn

13 T24 − Jmn
14 T23 − Jmn

1 T234

)
. (4.20)

The BRST variations QKm
12...k and QJmn

12...k of the new families can be obtained from QT12...k

by replacing either the first or the second Tij... on the right hand side by the corresponding

Km
ij... or Jmn

ij.... This doubles the number of terms in QKm
12...k and QJmn

12...k compared to

QT12...k, and the two ways of replacing a T... in the BRST variation by Km
... or Jmn

... enter

with a relative minus sign (where the tree-level building block T... is always understood to

be placed on the left of Km
... and Jmn

... ).

The above variations generalizes as follows to rank k:

QT12...k =
k∑

j=2

∑

α∈P (βj)

(s12...j − s12...j−1)T12...j−1,{α}Tj,{βj\α}

QKm
12...k =

k∑

j=2

∑

α∈P (βj)

(s12...j − s12...j−1)
(
T12...j−1,{α}K

m
j,{βj\α}

− Tj,{βj\α}K
m
12...j−1,{α}

)

QJmn
12...k =

k∑

j=2

∑

α∈P (βj)

(s12...j − s12...j−1)
(
T12...j−1,{α}J

mn
j,{βj\α}

− Tj,{βj\α}J
mn
12...j−1,{α}

)

(4.21)

where Vi ≡ Ti. The set βj = {j + 1, j + 2, . . ., k} encompasses the k − j labels to the right

of j, and P (βj) denotes its power set.

4.1 Unified notation for one-loop BRST building blocks

For each contraction pattern among integrated vertex OPEs, there are three kinematic

factors associated with the same zi → zj singularity structure. This corresponds to the

three ways of extracting the worldsheet fields dαdβN
mn from three nested U j OPEs a

la (4.1). In other words, we have to sum three different possibilities (d, d,N), (d,N, d) and

(N, d, d) to convert the U j vertices after n−4 OPE fusions into building blocks KmKnJmn
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via dαdβN
mn 7→ (λγm)α(λγ

n)β

T i
a1...ap T

j
b1...bq

T k
c1...cr ≡

2

3
(Km

a1...ap K
n
b1...bq J

mn
c1...cr +Km

a1...ap J
mn
b1...bq K

n
c1...cr

+ Jmn
a1...ap K

m
b1...bq K

n
c1...cr) .

(4.22)

Note that (4.22) is completely symmetric in i, j, k and under moving the T i, T j and T k

(which represent either Km
... or Jmn

... ) across each other, i.e. T i
a1...apT

j
b1...bq

= T j
b1...bq

T i
a1...ap .

As can be seen from the Km
...K

n
... ∼ (λγm)α(λγ

n)β in the definition (4.22), the combination

T iT jT k has ghost-number two. In combination with the unintegrated vertex V 1 (or OPE

contractions thereof with U j), we arrive at the total ghost number three, as required by

the 〈λ3θ5〉 = 1 prescription.

In the notation (4.22), the BRST variations QKm
12...k and QJmn

12...k can be written in a

unified way as

QT i
12...k =

k∑

j=2

∑

α∈P (βj)

(s12...j − s12...j−1)
(
T12...j−1,{α} T

i
j,{βj\α}

− Tj,{βj\α} T
i
12...j−1,{α}

)
.

Of course, it has to be kept in mind that only expressions containing a full triplet T i
...T

j
...T

k
...

of loop building blocks are well defined. Recall that the set βj = j + 1, j + 2, . . . , n encom-

passes n− j labels to the right of j, and P (βj) denotes its power set.

4.2 Diagrammatic interpretation of the loop building blocks

According to our discussion above, the T i
... share the symmetry properties and the structure

of their Q variation (in particular the Mandelstam variables therein) with the tree-level

building blocks T.... So we also think of T i
12...k together with the s−1

12 , s
−1
123, . . . , s

−1
12...k prop-

agators as representing a cubic tree subdiagram.

Since the conformal weight-one fields from Ui can also be contracted with the V1

vertex, the correlator of (3.1) additionally involves tree-level building blocks Td1...ds . Hence,

every superspace constituent for the open string loop amplitude encompasses four tree-level

subdiagrams T...T
i
...T

j
...T

k
..., attached to a central vertex with four legs. As a reminder that

this is the kinematic factor of a stringy one-loop diagram, we represent this quartic vertex

as a box, see figure 4.

We should comment on the shortcoming of the diagrammatic representation figure 4

of 〈Td1...ds T
i
a1...ap T

j
b1...bq

T k
c1...cr〉 that it does not take the asymmetric role of the tree-level

BRST building block Td1...ds into account, i.e. the lack of (a1 . . . ap)↔ (d1 . . . ds) symmetry.

Moving the one-loop building blocks (i.e. the i, j, k superscripts) to different positions

amounts to reshuffling contact terms due to the quartic gluon vertex in the SYM action

between cubic graphs. For instance, the difference 〈(T12T
i
3 − T3T

i
12)T

j
4T

k
5 〉 is proportional

to s12 when evaluated in components and therefore cancels the propagator present in the

common diagram.6

6In order to see this, consider the two terms on the right hand side of

0 = 〈QM i
123T

j
4T

k
5 〉 =

1

s12
〈(T12T

i
3 − T3T

i
12)T

j
4T

k
5 〉+

1

s23
〈(T1T

i
23 − T23T

i
1)T

j
4T

k
5 〉 ,
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Figure 4. Interpretation of 〈Td1...ds
T i
a1...ap

T j
b1...bq

T k
c1...cr

〉 as the kinematic factor of a box diagram.

The four tree subdiagrams at the corners are identified with building blocks T and T i.

A particular motivation for the suggestive box notation comes from the low energy

limit of superstring amplitudes. After dimensional reduction to four dimensions, they are

supposed to reproduce amplitudes of N = 4 SYM— see e.g. [26] for a derivation of the four-

point box integral in field theory from aD-dimensional superstring computation in the α′ →

0 limit. The fact that only quadruple T... and no triple T... enter the superspace kinematics

in the string computation reminds of the “no triangle” property of the underlying field

theory [52]. In view of these matching structures in loop diagrams of SYM and kinematic

constituents of string amplitudes, we found it natural to represent the central tetravalent

vertex gluing together the T...T
i
...T

j
...T

k
... as a box. However, this does not claim a one-to-one

correspondence between a particular superspace kinematic factor and a box coefficient in

field theory. The systematic reproduction of N = 4 SYM amplitudes via α′ → 0 limits of

the present results is not addressed in this paper and left for future work instead.

4.3 Berends-Giele currents for loop amplitudes

As the next hierarchy level of building blocks we define loop-level Berends-Giele currents,

M i
12...p encompassing several tree subdiagrams described by T i

a1...ap . They are closely related

with the field-theory Berends-Giele currents of [43], as thoroughly explained (with exam-

ples) in [6]. The collections of subdiagrams M12...p =
∑

Ta1...ap/s
p−1 which were present

in the superspace representations of tree-level amplitudes can be literally carried over to

the CFT ingredients of loop amplitudes. In other words, the tree-level formulae (2.16)

and (2.17) directly translate into loop-level analogues

M i
12 =

T i
12

s12
(4.23)

M i
123 =

T i
123

s12 s123
+

T i
321

s23 s123
(4.24)

M i
1234 =

1

s1234

(
T i
1234

s12s123
+

T i
3214

s23s123
+

T i
3421

s34s234
+

T i
3241

s23s234
+

2T i
12[34]

s12s34

)

. (4.25)

see section 4.3 for the definition of M i
123. Cancellations between the first term ∼ s−1

12 and the second one

∼ s−1
23 require that the numerators vanish on the residues of the poles, i.e. 〈(T12T

i
3 − T3T

i
12)T

j
4T

k
5 〉 ∼ s12.

This argument can be easily extended to higher multiplicity by virtue of 0 = 〈QM i
1234T

j
5T

k
6 〉 and related

expressions.
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It is a necessary condition for BRST invariance that the kinematic factor in loop amplitudes

combines the T i
... to full-fledged Berends-Giele currents M i

.... This can be seen from their

covariance under Q with no additional Mandelstam factors

QM i
a1...ap M

j
b1...bq

Mk
c1...cr =

p−1
∑

ℓ=1

(
Ma1...aℓ M

i
aℓ+1...ap

−Maℓ+1...ap M
i
a1...aℓ

)
M j

b1...bq
Mk

c1...cr

+

q−1
∑

ℓ=1

(
Mb1...bℓ M

j
bℓ+1...bq

−Mbℓ+1...bq M
j
b1...bℓ

)
M i

a1...ap M
k
c1...cr

+

r−1∑

ℓ=1

(
Mc1...cℓ M

k
cℓ+1...cr

−Mcℓ+1...cr M
k
c1...bℓ

)
M i

a1...ap M
j
b1...bq

(4.26)

in close analogy to (2.19) at tree-level. Apart from their simple Q variations (4.26) and

their matching with the cubic diagram content of SYM trees, the definitions (4.23) to (4.25)

can be motivated by worldsheet integral manipulations (5.15) and (5.16). As detailed in

section 5.2, the M i
12...p naturally build up once the Green functions are arranged into a

form which facilitates integration by parts.

One could also have defined Berends-Giele currentsMm
12...k andMmn

12...k for the individual

building blocks Km
12...k and Jmn

12...k to later define M i
12...k by combining them following the

pattern seen in (4.22):

M i
a1...ap M

j
b1...bq

Mk
c1...cr ≡

2

3
(Mm

a1...ap M
n
b1...bq M

mn
c1...cr +Mm

a1...ap M
mn
b1...bq M

n
c1...cr

+Mmn
a1...ap M

m
b1...bq M

n
c1...cr).

(4.27)

The combinatorics of zero mode saturation implies that the end result for amplitudes

always involves a sum of all the three terms on the right hand side. That is why we will

always use the notation on the left hand side of (4.27) in the rest of this work.

4.4 BRST-invariant kinematics for loop amplitudes

Amplitudes computed with the pure spinor formalism give rise to superspace kinematic fac-

tors in the cohomology of the BRST operator. We have motivated K and J building blocks

from their appearance in the iterated OPEs of integrated vertex operators (along with the

dα and Nmn worldsheet fields) and argued that their combinations M i
a1...apM

j
b1...bq

Mk
c1...cr

have covariant BRST variations (4.26) connecting different pole channels. Given the strong

constraints which BRST invariance imposes on tree-level SYM amplitudes — see subsec-

tion 2.4 — it is natural to explore the Q cohomology using the one-loop building blocks. In

this subsection we will write down BRST invariants constructed from the above elements

dictated by the minimal formalism. This amounts to anticipating the admissible kinematic

structure in the result of the CFT computation of one-loop scattering amplitudes.

As mentioned in subsection 4.2, the one-loop prescription (3.1) containing one unin-

tegrated vertex operator V1 implies that one tree-level building block T1... (combined to a

Berends-Giele current M...1...) has to appear in these BRST invariants, in addition to three

one-loop constituents M i
...M

j
...M

k
.... Hence, Q invariant loop kinematics must be built from
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Figure 5. Interpretation of 〈Md1...ds
M i

a1...ap
M j

b1...bq
Mk

c1...cr
〉 as four Berends-Giele currents (i.e.

collections of tree subdiagrams guided by color-ordered tree-level amplitudes), glued together by a

central quartic “box”-vertex.

Md1...dsM
i
a1...apM

j
b1...bq

Mk
c1...cr with 1 ∈ {d1, . . . , ds}. The diagrammatic interpretation of

such a term follows from the fact that Berends-Giele currents represent color-ordered tree

amplitudes with one off-shell leg, see figure 5.

As explained before at the level of T...T
i
...T

j
...T

k
..., this diagram does not take the asym-

metry in Md1...dsM
i
a1...ap ↔ Ma1...apM

i
d1...ds

into account. The difference between the two

(M...,M
i
...) assignments corresponds to a reshuffling of contact terms in the cubic subdia-

grams at the corners of the box.

In the following, we shall give a list of BRST invariants built from M...M
i
...M

j
...M

k
...

up to seven-points. They are denoted by C1,a1...ap,b1...bq ,c1...cr according to their first term

V 1M i
a1...apM

j
b1...bq

Mk
c1...cr where the unintegrated vertex is unaffected by OPEs:

C1,2,3,4 = M1M
i
2M

j
3 M

k
4 (4.28)

C1,23,4,5 = M1M
i
23M

j
4 M

k
5 + M12M

i
3M

j
4 M

k
5 + M31M

i
2M

j
4 M

k
5 (4.29)

C1,234,5,6 = M1M
i
234M

j
5 M

k
6 + M123M

i
4M

j
5 M

k
6 + M412M

i
3M

j
5 M

k
6

+ M341M
i
2M

j
5 M

k
6 + M12M

i
34M

j
5 M

k
6 + M41M

i
23M

j
5 M

k
6 (4.30)

C1,23,45,6 = M1M
i
23M

j
45M

k
6 + M12M

i
3M

j
45M

k
6 − M13M

i
2M

j
45M

k
6

+ M14M
i
23M

j
5 M

k
6 − M15M

i
23M

j
4 M

k
6 + M413M

i
2M

j
5 M

k
6

+ M512M
i
3M

j
4 M

k
6 − M412M

i
3M

j
5 M

k
6 − M513M

i
2M

j
4 M

k
6 (4.31)

C1,2345,6,7 = M1M
i
2345M

j
6 M

k
7 + M512M

i
34M

j
6 M

k
7 +

[
M12M

i
345 + M123M

i
45

+ M1234M
i
5 + M5123M

i
4 − (2, 3↔ 5, 4)

]
M j

6 M
k
7 (4.32)

C1,234,56,7 = M1M
i
234M

j
56M

k
7 + M214M

i
3M

j
56M

k
7 + (M15M

i
6 − M16M

i
5)M

j
234M

k
7

+
[
M12M

i
34 + M123M

i
4 + (2↔ 4)

]
M j

56M
k
7 +

{ [
M612M

i
34M

j
5

+ M6123M
i
4M

j
5 + M5124M

i
3M

j
6 + (2↔ 4)

]
− (5↔ 6)

}
Mk

7 (4.33)
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C1,23,45,67 = M1M
i
23M

j
45M

k
67 +

[
(M12M

i
3 − M13M

i
2)M

j
45M

k
67 + cyc(23, 45, 67)

]

+
{ [

M217M
i
3M

j
6 − (2↔ 3) − (6↔ 7)

]
Mk

45 + cyc(23, 45, 67)
}

+
[
(M7135 +M7153)M

i
2M

j
4 M

k
6 − (2↔ 3) − (4↔ 5) − (6↔ 7)

]
.

(4.34)

Eight-point amplitudes contain four topologies C1,23456,7,8, C1,2345,67,8, C1,234,56,78 and

C1,234,567,8 of BRST invariants. They are expanded in appendix C.

4.5 Symmetry properties of the BRST invariants

In this subsection, we examine the symmetry properties of the BRST invariants of the

previous subsection and determine the number of independent permutations (at least under

linear relations with constant coefficients). In particular, we will argue that the C1,...

with label “1” in the first entry form a suitable basis. This ties in with the one-loop

prescription (3.1) for string amplitudes: the special role of the unintegrated vertex V1

implies that only C1,... can appear in the CFT computation, and these ingredients must be

able to capture any permutation Ci 6=1,... via linear combination.

In order to see that the reduction to C1,... is possible, first note that the invariants

C1,a1...ap,b1...,bq ,c1...cr inherit the symmetry properties of the Berends-Giele currents for each

of individual three sets of labels (a1, . . . , ap), (b1, . . . , bq) and (c1, . . . , cr), i.e.

M i
12...p = (−1)p−1Mp...21, M{β}1{α} = (−1)nβ

∑

σ ∈OP({α},{βT })

M i
1{σ} (4.35)

directly carry over to

C1,a1a2...ap,b1...bq ,c1...cr = (−1)p−1C1,ap...a2a1,b1...bq ,c1...cr

C1,{β}i{α},b1...bq ,c1...cr = (−1)nβ

∑

σ ∈OP({α},{βT })

C1,i{σ},b1...bq ,c1...cr .
(4.36)

The notation for the sets α, β, σ is the usual one appearing in the Kleiss-Kuijf relation [42].

The latter implies the subcyclic property (or photon decoupling identity)

∑

σ∈cyclic

C1,σ(a1a2...ap),b1...bq ,c1...cr = 0. (4.37)

However, the above symmetries do not relate Ci,... to Cj 6=i,... (with different labels i, j in

the first slot). Equations of that type follow from the BRST cohomology of pure spinor

superspace, i.e. from the vanishing of BRST exact terms at ghost number three,

〈QM i
a1...ap M

j
b1...bq

Mk
c1...cr〉 = 0. (4.38)

The left hand side is always organized into linear combinations of C’s, let us illustrate this

by examples: the four-point BRST invariant turns out to be totally symmetric,

0 = 〈QM i
12M

j
3 M

k
4 〉 ⇒ C1,2,3,4 = C2,1,3,4, (4.39)
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and five-point invariants can be reduced to C1,ij,k,l = C[1,ij],k,l by means of

0 = 〈QM i
123M

j
4 M

k
5 〉 ⇒ C1,23,4,5 = −C3,21,4,5

0 = 〈QM i
12M

j
34M

k
5 〉 ⇒ C2,34,1,5 − C1,34,2,5 + C4,12,3,5 − C3,12,4,5 = 0.

(4.40)

At six-points, there are three different topologies of BRST exact quantities

0 = 〈QM i
1234M

j
5 M

k
6 〉 ⇒ C1,234,5,6 = C4,321,5,6

0 = 〈QM i
123M

j
45M

k
6 〉 ⇒ C1,23,45,6 + C3,21,45,6 + C4,123,5,6 − C5,123,4,6 = 0

0 = 〈QM i
12M

j
34M

k
56〉 ⇒ C1,34,56,2 − C2,34,56,1 + C3,12,56,4 − C4,12,56,3

+ C5,12,34,6 − C6,12,34,5 = 0,

(4.41)

and the resulting equations are sufficient to decompose any given Ci,jk,lm,n or Ci,jkl,m,n

into a basis of C1,.... A similar recursive argument applies at seven-points due to four types

of equations:

0 = 〈QM i
12345M

j
6 M

k
7 〉 ⇒ C1,2345,6,7 = −C5,4321,6,7

0 = 〈QM i
1234M

j
56M

k
7 〉 ⇒ C5,1234,6,7 − C6,1234,5,7 + C1,234,56,7 − C4,321,56,7 = 0

0 = 〈QM i
123M

j
456M

k
7 〉 ⇒ C1,456,23,7 + C3,456,21,7 + C4,123,56,7 + C6,123,54,7 = 0

0 = 〈QM i
123M

j
45M

k
67〉 ⇒ C1,23,45,67 + C3,21,45,67 + C4,123,67,5 − C5,123,67,4

+ C6,123,45,7 − C7,123,45,6 = 0

(4.42)

In order to count the number of independent C1,a1...ap,b1...,bq ,c1...cr , one should keep in mind

that there are (p − 1)! independent components in (a1 . . . ap) due to Berends-Giele sym-

metries, the same number of cyclically inequivalent configurations. Hence, the number of

independent C1,a1...ap,b1...,bq ,c1...cr in n-point amplitudes (where p+q+r = n−1) is given by

the number of ways to distribute n− 1 elements to three cycles (a1 . . . ap), (b1 . . . , bq) and

(c1 . . . cr). This is the defining property of the unsigned Stirling numbers of first kind Sn−1
3 ,

#(C1,a1...ap,b1...,bq ,c1...cr)
∣
∣
∣
p+q+r=n−1

= Sn−1
3

= 1, 6, 35, 225, 1624, 13132, 118124, 1172700, 12753576, 150917976, . . . n ≥ 4,
(4.43)

and the following table gathers examples of how individual topologies (i.e. different triplets

of p, q, r with constant sum) contribute to the Stirling numbers:

5 One-loop amplitudes in pure spinor superspace

The pure spinor BRST cohomology of building blocks will now be used to deduce the form

of the n-point one-loop open superstring amplitudes. Apart from the four- and five-point

amplitudes which were previously computed without explicit use of building blocks [5, 9,

63], the results for higher-points are strongly guided by their cohomology properties.

From the discussion of section 3, the n-point kinematic factor for one-loop amplitudes

is given, up to OPE terms with the b-ghost, by the following correlator

Kn = 〈V1U2(z2)U3(z3) . . . Un(zn)〉ddN (5.1)
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n C-topology # components

4 C1,2,3,4 1 = 1

5 C1,23,4,5

(
4
2

)
= 6

6 C1,234,5,6

(
5
2

)
· 2 = 20

6 C1,23,45,6 5 · 3 = 15

7 C1,2345,6,7

(
6
2

)
· 6 = 90

7 C1,234,56,7

(
6
3

)
· 3 · 2 = 120

7 C1,23,45,67 5!! = 15

8 C1,23456,7,8

(
7
2

)
· 24 = 504

8 C1,2345,67,8

(
7
3

)
· 3 · 6 = 630

8 C1,234,56,78

(
7
3

)
· 3 · 2 = 210

8 C1,234,567,8
1
2 · 7 ·

(
6
3

)
· 2 · 2 = 280

Table 1. The number of independent components of C topologies up to n = 8.

where the subscript ddN is a reminder that the substitution rule (3.8) must be applied.

It is easy to see that n − 4 OPE contractions among the vertex operators will have to be

performed before the zero-mode combination dαdβN
mn can be extracted. Throughout this

section, we will immediately trade all the OPE residues L2131...ℓ1 and K̃m
ℓ+1...p, J̃

mn
ℓ+1...p for

the corresponding BRST building blocks T12...ℓ and Km
ℓ+1...p, J

mn
ℓ+1...p. Experience with the

tree-level computation [6, 17, 18] shows that their difference can only contribute to BRST

trivial kinematics and drops out through total worldsheet derivatives.

The calculation of the kinematic factor will be divided into three steps:

1. Express the correlator (5.1) in terms of BRST building blocks

2. Group these building blocks into Berends-Giele currents

3. Use integration by parts to combine different currents to BRST invariants C1,...

Starting from six-points, we will use BRST invariance as an extra input in steps 1 and

2 to fix certain parts of the correlator: this concerns the failure of ηijηjk products to

obey the partial fraction identity (zijzjk)
−1 + cyc(ijk) = 0 from tree-level. This relation

plays an important role for the basis reduction of worldsheet integrals at tree-level, see [7].

After these steps are performed the correlator (5.1) becomes a linear combination of the

BRST invariants C1,... constructed in subsection 4.4, which we can regard as the one-loop

analogue of the tree-level subamplitudes AYM. Hence, up to the aforementioned partial

fraction subtlety, the one-loop strategy follows the same logical step as the calculation of

the n-point tree amplitude in [6].

Imposing BRST invariance from the beginning makes us blind to the hexagon anomaly

in D = 10 dimensions arising from the boundary of the t integration [21, 22], so in our

method we are not able to reproduce the superspace anomaly computed in [74]. In other

words, we compute the non-anomalous or BRST-invariant part of the amplitude.
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Although our final result for Kn won’t include leg one on the same footing as all the

others, we will prove its hidden total symmetry in subsection 7.4. The basis choice C1,...

for the kinematic constituents reflects the special role played by leg one entering the com-

putation through the unintegrated V 1 vertex. New cross-connections to color structures at

tree-level will be pointed out in section 7 which trivialize the outstanding symmetry proof.

5.1 Step 1: CFT correlator in terms of building blocks

Using the definitions of the building blocks, the CFT correlator (5.1) will encompass all

possible combinations of building blocks allowed by its total permutation symmetry in

(234 . . . n). As mentioned before, n − 4 OPE contractions must be performed before the

ddN zero-modes can be extracted and leave a triplet of building blocks T i
...T

j
...T

k
... behind.

As a trivial starting example, the four-point kinematic factor does not require any

OPE and can be written down immediately using the definitions (4.6), (4.9) and (4.22)

K4 = 〈V1U2U3U4〉ddN = 〈V1T
i
2T

j
3T

k
4 〉 . (5.2)

The ten possible OPEs in the five-point kinematic factor give rise to two classes of terms,

depending on whether the contraction involves the unintegrated vertex or not:

K5 = 〈V1U2U3U4U5〉ddN

= 〈V1 U2 U3
︸ ︷︷ ︸

U4 U5 〉 + 5permutations (23↔ 24, 25, 34, 35, 45)

+ 〈V1 U2
︸ ︷︷ ︸

U3 U4 U5〉 + 3permutations (2↔ 3, 4, 5)

(5.3)

The resulting BRST building blocks are

〈V1 U2
︸ ︷︷ ︸

U3 U4 U5〉 = η12 〈T12 T
i
3T

j
4T

k
5 〉 (5.4)

〈V1 U2 U3
︸ ︷︷ ︸

U4 U5 〉 = η23 〈V1 T
i
23T

j
4T

k
5 〉, (5.5)

and the validity of the replacement L21 7→ T12 follows from BRST-closedness of T i
3T

j
4T

k
5 .

Applying this kind of analysis to the six-point correlator leads to an ambiguity:

K6 = 〈V1U2U3U4U5U6〉ddN

= 〈V1 U2 U3
︸ ︷︷ ︸

U4 U5 U6 〉+ 〈V1 U2
︸ ︷︷ ︸

U3 U4
︸ ︷︷ ︸

U5 U6 〉

+ 〈V1 U2 U3 U4
︸ ︷︷ ︸

U5 U6 〉+ 〈V1 U2 U3
︸ ︷︷ ︸

U4 U5
︸ ︷︷ ︸

U6 〉

+ permutations + ηijk(. . .).

(5.6)

We firstly find those contractions which closely resemble the tree-level procedure (up to

z−1
ij 7→ ηij and the new building blocks T i

...T
j
...T

k
...)

〈V1 U2 U3
︸ ︷︷ ︸

U4 U5 U6 〉 = η12η23 〈T123 T
i
4T

j
5T

k
6 〉 (5.7)

〈V1 U2
︸ ︷︷ ︸

U3 U4
︸ ︷︷ ︸

U5 U6 〉 = η12η34 〈T12 T
i
34T

j
5T

k
6 〉 (5.8)
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〈V1 U2 U3 U4
︸ ︷︷ ︸

U5 U6 〉 = η23η34 〈V1 T
i
234T

j
5T

k
6 〉 (5.9)

〈V1 U2 U3
︸ ︷︷ ︸

U4 U5
︸ ︷︷ ︸

U6 〉 = η23η45 〈V1 T
i
23T

j
45T

k
6 〉. (5.10)

But in addition to that, the correlator could contain terms with worldsheet functions

ηijk = ηij ηik + ηji ηjk + ηki ηkj , (5.11)

which are invisible in the zi → zj limit since (zijzik)
−1 + cyc(ijk) = 0. These parts of the

CFT correlator cannot be fixed on the basis of the leading OPE singularity and symmetry

arguments in (23 . . . n). Instead, we will keep them undetermined for the moment and use

BRST invariance in the following subsections to argue their absence in the end result. The

precise way to combine permutations will be discussed in the next subsection.

Similarly, the seven-point kinematic factor receives contributions from

K7 = 〈V1U2U3U4U5U6U7〉ddN

= 〈V1 U2 U3 U4
︸ ︷︷ ︸

U5 U6U7 〉+ 〈V1 U2 U3
︸ ︷︷ ︸

U4 U5
︸ ︷︷ ︸

U6 U7 〉+ 〈V1U2
︸ ︷︷ ︸

U3 U4 U5
︸ ︷︷ ︸

U6 U7 〉

+ 〈V1U2
︸ ︷︷ ︸

U3 U4
︸ ︷︷ ︸

U5 U6
︸ ︷︷ ︸

U7 〉+ 〈V1 U2U3 U4 U5
︸ ︷︷ ︸

U6 U7 〉+ 〈V1 U2U3 U4
︸ ︷︷ ︸

U5 U6
︸ ︷︷ ︸

U7 〉

+ 〈V1 U2U3
︸ ︷︷ ︸

U4 U5
︸ ︷︷ ︸

U6 U7
︸ ︷︷ ︸

〉+ permutations + ηijk(. . .),

(5.12)

where the seven different types of OPEs yield

〈V1 U2 U3 U4
︸ ︷︷ ︸

U5 U6U7 〉 = η12η23η34〈T1234T
i
5T

j
6T

k
7 〉

〈V1 U2 U3
︸ ︷︷ ︸

U4 U5
︸ ︷︷ ︸

U6 U7 〉 = η12η23η45〈T123T
i
45T

j
6T

k
7 〉

〈V1U2
︸ ︷︷ ︸

U3 U4 U5
︸ ︷︷ ︸

U6 U7 〉 = η12η34η45〈T12T
i
345T

j
6T

k
7 〉

〈V1U2
︸ ︷︷ ︸

U3 U4
︸ ︷︷ ︸

U5 U6
︸ ︷︷ ︸

U7 〉 = η12η34η56〈T12T
i
34T

j
56T

k
7 〉

〈V1 U2U3 U4 U5
︸ ︷︷ ︸

U6 U7 〉 = η23η34η45〈V1T
i
2345T

j
6T

k
7 〉

〈V1 U2U3 U4
︸ ︷︷ ︸

U5 U6
︸ ︷︷ ︸

U7 〉 = η23η34η56〈V1T
i
234T

j
56T

k
7 〉

〈V1 U2U3
︸ ︷︷ ︸

U4 U5
︸ ︷︷ ︸

U6 U7
︸ ︷︷ ︸

〉 = η23η45η67〈V1T
i
23T

j
45T

k
67〉.

(5.13)

These six- and seven-point cases give an idea of the general pattern for the n-point cor-

relator: the kinematic factor Kn encompasses all tree-level building blocks involving the

unintegrated vertex η12η23 . . . ηℓ−1,ℓT12...ℓ, multiplied with all the possible topologies of

(ηp−ℓ−1T i
ℓ+1...p)(η

q−p−1T j
p+1...q)(η

n−q−1T k
q+1...n) of the remaining n−ℓ legs where zero modes

of dαdβN
mn are extracted:

〈V1(z1)U2(z2)U3(z3) . . . Un(zn)〉ddN

= 〈
n−3∑

ℓ=1

(η12 . . . ηℓ−1,ℓ T12...ℓ)
∑

ℓ+1≤p<q<n

(ηℓ+1,ℓ+2 . . . ηp−1,p T
i
ℓ+1...p)

× (ηp+1,p+2 . . . ηq−1,q T
j
p+1...q) (ηq+1,q+2 . . . ηn−1,n T

k
q+1...n)

+ permutations + ηijk(. . .) 〉.

(5.14)
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The next tasks to be addressed in the following subsections are to trade the BRST building

blocks for Berends-Giele currents and to resolve the ambiguity about the ηijk terms.

5.2 Step 2: Berends-Giele currents

In the n-point tree amplitude computations of [6] the worldsheet integrands combine the

BRST building blocks with zij poles via T12...p ↔ (z12z23 . . . zp−1,p)
−1. The essential step

for further simplification lies in trading T... for Berends-Giele currentsM... using the identity

T12...p

z12 z23 . . . zp−1,p
+ sym(23 . . . p) = M12...p

p
∏

k=2

k−1∑

m=1

smk

zmk
+ sym(23 . . . p) (5.15)

It has already been proven at tree-level [8] that the Berends-Giele currents are the natural

objects to describe the SYM amplitudes. The identity (5.15) was the key step in identify-

ing the n-point superstring amplitude as sum of (n − 3)! SYM amplitudes [6] dressed by

hypergeometric worldsheet integrals [7]. To what extent can the tree-level identity (5.15)

and its corollaries be generalized to one-loop?

In order to answer this question note that the tree-level proof of (5.15) required two

assumptions: the symmetries of the building blocks and the partial fraction identities

(zijzjk)
−1 + cyc(ijk) = 0. As the loop building blocks T i,j,k

... obey the same symmetry

identities as their tree-level counterparts, the only obstacle against a direct one-loop gener-

alization of (5.15) comes from the fact that the functions ηijηik do not obey a similar partial

fraction identity in general. That is why we have defined the totally symmetric function

ηijk = ηijηik+ηjiηjk+ηkiηkj measuring the failure of the tree-level partial fraction identity

to hold at higher genus. With this definition at hand, the one-loop generalization of (5.15) is

η12 η23 . . . ηp−1,p T12...p + sym(23 . . . p) = M12...p

p
∏

k=2

k−1∑

m=1

smk ηmk

+ sym(23 . . . p) + ηijk(. . .) .

(5.16)

Of course, the same identity holds for the loop cousins (T...,M...) 7→ (T i
...,M

i
...) since the T

i
...

enjoy the same symmetry properties as the tree-level building blocks T... and the definition

of M i
... in terms of T i

... incorporates the same functional dependence as M... expressed in

terms of T....

We will show in the following subsection that discarding ηijk corrections in both (5.16)

and (5.14) yields BRST-invariant kinematic factors describing non-anomalous terms in the

amplitude.7 Let us see some examples. For the four-point correlator (5.2) the trading

identity is trivial in view of V1 = T1 = M1 and T i
2 = M i

2,

K4 = 〈V1T
i
2T

j
3T

k
4 〉 = 〈M1M

i
2M

j
3M

k
4 〉. (5.17)

7In fact, ηijk terms are related to the gauge anomaly discussion of [21, 22] in a subtle way. As pointed

out by Michael Green [85] and elaborated in future work, the associated BRST non-invariant kinematic

factors responsible for the hexagon anomaly might leave gauge-invariant fingerprints in certain subsectors

of the amplitude.
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In order to prevent overcrowding in the formulæ below the following shorthand notation

will be used

Xij ≡ sijηij . (5.18)

The five-point correlator (5.3) is also rather trivially converted to Berends-Giele currents

M12 = T12/s12 andM i
23 = T i

23/s23. The permutations generated by (5.4) and (5.5) combine

to ten terms

K5 = 〈X12M12M
i
3M

j
4 M

k
5 +X13M13M

i
2M

j
4 M

k
5 +X14M14M

i
2M

j
3 M

k
5

+X15M15M
i
2M

j
3 M

k
4 +X23M1M

i
23M

j
4 M

k
5 +X24M1M

i
24M

j
3 M

k
5

+X25M1M
i
25M

j
3 M

k
4 +X34M1M

i
34M

j
2 M

k
5 +X35M1M

i
35M

j
2 M

k
4

+X45M1M
i
45M

j
2 M

k
3 〉.

(5.19)

The six-point amplitude is the first instance where the identity (5.16) finds non-trivial

application. Dropping the terms proportional to ηijk in lines with the BRST reasoning,

the six-point topologies (5.7)—(5.10) give rise to

K6 =〈 10 terms
[
M123X12(X13 +X23) + (2↔ 3)

]
M i

4M
j
5 M

k
6

+ 30 terms X12M12X34M
i
34M

j
5 M

k
6

+ 15 terms M1X23M
i
23X45M

j
45M

k
6

+ 10 terms M1

[
M i

234X23(X24 +X34) + (3↔ 4)
]
M j

5 M
k
6 〉.

(5.20)

At this point, we shall be more explicit about the permutations within the correlator.

As mentioned before, the correlator must be symmetric in all the legs (23 . . . n) of inte-

grated vertices, but the last term in K6 only contains 2× 10 out of the 60 possible terms

M i
pqrXpq(Xpr +Xqr) with p, q, r ∈ {2, 3, 4, 5, 6}. It turns out that by the symmetry prop-

erties of Berends-Giele currents (e.g. M i
234 = M i

432 and M i
234 + cyc(234) = 0 in the rank

three case at hand), the expression

M i
23...p

(
p
∏

k=3

k−1∑

m=2

Xmk

)

+ sym(34 . . . p) (5.21)

is secretly totally symmetric8 in (23 . . . p) even though only the smaller symmetry in

(34 . . . p) is manifest. That is why each of the ten choices to single out three legs from

{2, 3, 4, 5, 6} realizes two out of six possible terms only, without spoiling the overall (23456)

symmetry.

8The same hidden symmetry occurs in the representation [29]

MYM
n ∼

∑

σ∈Sn−2

f1σ(2)a faσ(3)b fbσ(4)c . . . fyσ(n−2)z fzσ(n−1)n AYM(

1, σ(2, 3, . . . , n− 1), n
)

of the color-dressed SYM amplitude: the structure constant contractions (fbcd)n−2 share the symmetry

properties of the integrand
∏p

k=3

∑k−1
m=2 Xmk and the rank p Berends-Giele current taking the role of a

(p + 1)-point SYM amplitude with one off-shell leg guarantees that the color-ordered AYM
n have the same

symmetry properties as the M i
.... Hence, the total symmetry of MYM

n implies that of (5.21) by virtue of

the dictionary explained above.
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It is crucial to note the symmetry properties of the two sides of the T... ↔M... trading

identity (5.15). The left-hand side is totally symmetric at tree-level, even in trading leg one

for one of the others. But this makes use of partial fraction relations that cause extra terms

∼ ηijk at loops. The zi dependence on the right hand side, however, is built from combina-

tions sij/zij where it is obvious from the Mandelstam factors that there are no partial frac-

tions at work to see the symmetries. Only the right hand side of (5.15) stays totally sym-

metric in (12 . . . p) under the loop-conversion sij/zij → sijηij = Xij of worldsheet functions.

For these reasons, the following expression for the seven-point kinematic factor,

K7 =〈 15 terms M1

[
M i

2345X23 (X24 +X34)(X25 +X35 +X45) + sym(345)
]
M j

6 M
k
7

+ 60 terms M1

[
M i

234X23 (X24 +X34) + (3↔ 4)
]
X56M

j
56M

k
7

+ 15 terms M1X23M
i
23X45M

j
45X67M

k
67

+ 20 terms
[
M1234X12 (X13 +X23)(X14 +X24 +X34) + sym(234)

]
M i

5M
j
6 M

k
7

+ 90 terms
[
M123X12 (X13 +X23) + (2↔ 3)

]
X45M

i
45M

j
6 M

k
7

+ 60 terms X12M12

[
M i

345X34 (X35 +X45) + (4↔ 5)
]
M j

6 M
k
7

+ 90 terms X12M12X34M
i
34X56M

j
56M

k
7 〉

(5.22)

is totally symmetric even though only those six M i
σ(2345) permutations σ ∈ S4 with fixed

point σ(2) = 2 occur.

The n-point generalization of the above patterns is given by

Kn = 〈
n−3∑

ℓ=1

M12...ℓ

(
ℓ∏

k=2

k−1∑

m=1

Xmk

)
∑

ℓ+1≤p<q<n

M i
ℓ+1...p

(
p
∏

k=ℓ+2

k−1∑

m=ℓ+1

Xmk

)

× M j
p+1...q





q
∏

k=p+2

k−1∑

m=p+1

Xmk



 Mk
q+1...n





n∏

k=q+2

k−1∑

m=q+1

Xmk





+ permutations 〉 .

(5.23)

5.3 Step 3: integration by parts

In this step the number of one-loop worldsheet integrals will be reduced using partial

integration identities. These manipulations have been crucial in the computation of the

n-point disk amplitude [6, 7] and had already found appearance in the string inspired rules

towards field theory amplitudes [83, 84]. As emphasized in the references, integration by

parts allows to eliminate double derivatives of the bosonic Green function.

After this reduction is performed the kinematic factor for the one-loop amplitude

becomes a sum over manifestly BRST invariant objects multiplied by n− 4 powers of Xij ;

schematically, this means Kn =
∑

Xn−4 〈C1,...〉.

In order to see how these partial integrations can be performed note that the worldsheet

integrands at any loop order contain a universal factor proportional to the correlation

function of the plane wave exponential factors, the so-called Koba-Nielsen factor

KN ≡
〈 n∏

i=1

eiki·x(zi,zi)
〉

∝ exp
( n∑

i<j

sij 〈x(zi, zi)x(zj , zj)〉
)

. (5.24)
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The precise form of the bosonic Green’s function 〈x(zi, zi)x(zj , zj)〉 in terms of Ja-

cobi theta functions is irrelevant for the analysis in the following. What matters is

its appearance in the Koba-Nielsen factor and the antisymmetry of its derivative ηij =
∂
∂zi
〈x(zi, zi)x(zj , zj)〉 = −ηji which can be viewed as the one-loop generalization of the

1/zij single pole at tree-level. The form (5.24) of the Koba-Nielsen factor implies that the

combinations Xij = sijηij can be integrated by parts

0 =

∫
∂

∂zi
KN =

∫
∑

j 6=i

sij ηij KN. (5.25)

Boundary terms at zi = zi+1 do not contribute to (5.25) because the Koba-Nielsen factor

vanishes for real and positive si,i+1 as |zi−zi+1|
si,i+1 . Analytic continuation in the complex

si,i+1 plane allows to extend this argument to generic kinematic regimes.

This identity still holds in presence of further ηpq factors in the integrand as long as

none of the p, q labels coincides with the differentiation leg i, for instance

∫

KN X12 (X13 +X23) =

∫

KN (X34 +X35 + · · ·+X3n) (X23 +X24 + · · ·+X2n)

∫

KN

p
∏

k=2

k−1∑

m=1

Xmk =

∫

KN

p
∏

k=2

n∑

m=k+1

Xkm.

(5.26)

The ubiquitous
∏p

k=2

∑k−1
m=1Xmk products in equation (5.23) for Kn turn out to be

maximally partial-integration-friendly. This has already been exploited in tree-level

computations [6].

Once we have removed any appearance of z1 from Xij via integration by parts (5.26),

the remaining terms in the correlator will build up various BRST invariants C1,.... This is

a trivial statement in the four-point correlator (4.28),

K4 = 〈M1M
i
2M

j
3M

k
4 〉 = 〈C1,2,3,4〉 (5.27)

whereas the five-point kinematic factor requires X12 = X23+X24+X25 and (2345) permu-

tations thereof (which is valid under integration against KN only). After eliminating the

X1j at j = 2, 3, 4, 5 in (5.19), we find the manifestly BRST-invariant expression

K5 = X23〈M1M
i
23M

j
4M

k
5 +M12M

i
3M

j
4M

k
5 +M31M

i
2M

j
4M

k
5 〉

+X24〈M1M
i
24M

j
3M

k
5 +M12M

i
4M

j
3M

k
5 +M41M

i
2M

j
3M

k
5 〉

+X25〈M1M
i
25M

j
3M

k
4 +M12M

i
5M

j
3M

k
4 +M51M

i
2M

j
3M

k
4 〉

+X34〈M1M
i
34M

j
2M

k
5 +M13M

i
4M

j
2M

k
5 +M41M

i
2M

j
3M

k
5 〉

+X35〈M1M
i
35M

j
2M

k
4 +M13M

i
5M

j
2M

k
4 +M51M

i
2M

j
3M

k
4 〉

+X45〈M1M
i
45M

j
2M

k
3 +M14M

i
5M

j
2M

k
3 +M51M

i
2M

j
3M

k
4 〉

= X23〈C1,23,4,5〉+X24〈C1,24,3,5〉+X25〈C1,25,3,4〉

+X34〈C1,34,2,5〉+X35〈C1,35,2,4〉+X45〈C1,45,2,3〉

(5.28)
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which agrees with the expression from [9] when its component expansion is evaluated [14].

The total worldsheet derivatives are suppressed in (5.28) and in all subsequent kinematic

factors.

The general lesson to learn from the five-point computation concerns the choice of

integral basis and the role of the M12...p terms in (5.23) with leg one attached and p ≥ 2.

Once we eliminate z1 from every Xrs in the integrand, the remaining Xn−4 polynomials are

guaranteed to be minimal under (5.25) and the superfield prefactors must be BRST closed

C1,.... The superfields associated with the integrands X1j outside the desired basis have

in common that leg one is attached to a rank p ≥ 2 Berends-Giele current M12...p. After

integration by parts, the worldsheet dependence will be transformed into z1 independent

Xrs combinations (r, s 6= 1), so the associated V1M
i
23...pM

j
p+1...qM

k
q+1...n permutations will

receive corrections containing M12...p at p ≥ 2. Hence, the job of all the M12...p is to provide

the BRST invariant completion of V1M
i
23...pM

j
p+1...qM

k
q+1...n to form C1,23...p,p+1...q,q+1...n.

Let us consider the six-point amplitude to see these mechanisms in action. The first two

lines in (5.20) require integration by parts in the formX12X34 = X34(X23+X24+X25+X26)

and X12(X13+X23) = (X23+X24+X25+X26)(X34+X35+X36) in order to eliminate all

the X1j . The remaining two lines already involve integrands in the z1 independent basis,

and the associated kinematics receive corrections

X23X45M1M
i
23M

j
45M

k
6 7→ X23X45

(

M1M
i
23M

j
45M

k
6 + M12M

i
3M

j
45M

k
6

− M13M
i
2M

j
45M

k
6 + M14M

i
23M

j
5 M

k
6 − M15M

i
23M

j
4 M

k
6

+ M413M
i
2M

j
5 M

k
6 + M512M

i
3M

j
4 M

k
6

− M412M
i
3M

j
5 M

k
6 − M513M

i
2M

j
4 M

k
6

)

= X23X45C1,23,45,6

(5.29)

due to the X23X45 on the right hand side of integration by parts formulae. By carefully

gathering all X23X45 corrections, the superfield expressions can be seen to build up the

full-fledged C1,23,45,6. So the net effect of integrating z1-dependent Xpq by parts is the

replacement M1M
i
23M

j
45M

k
6 7→ C1,23,45,6 and M1M

i
234M

j
5M

k
6 7→ C1,234,5,6:

K6 = X23(X24 +X34)〈C1,234,5,6〉 + X24(X23 +X43)〈C1,243,5,6〉

+ X23(X25 +X35)〈C1,235,4,6〉 + X25(X23 +X53)〈C1,253,4,6〉

+ X23(X26 +X36)〈C1,236,4,5〉 + X26(X23 +X63)〈C1,263,4,6〉

+ X24(X25 +X45)〈C1,245,3,6〉 + X25(X24 +X54)〈C1,254,3,6〉

+ X24(X26 +X46)〈C1,246,3,5〉 + X26(X24 +X64)〈C1,264,3,5〉

+ X25(X26 +X56)〈C1,256,3,4〉 + X26(X25 +X65)〈C1,265,3,4〉

+ X34(X35 +X45)〈C1,345,2,6〉 + X35(X34 +X54)〈C1,354,2,6〉

+ X34(X36 +X46)〈C1,346,2,5〉 + X36(X34 +X64)〈C1,364,2,5〉 (5.30)

+ X35(X36 +X56)〈C1,356,2,4〉 + X36(X35 +X65)〈C1,365,2,4〉

+ X45(X46 +X56)〈C1,456,2,3〉 + X46(X45 +X65)〈C1,465,2,3〉

+ X23X45 〈C1,23,45,6〉 + X23X46 〈C1,23,46,5〉 + X23X56 〈C1,23,56,4〉
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+ X24X35 〈C1,24,35,6〉 + X24X36 〈C1,24,36,5〉 + X24X56 〈C1,24,56,3〉

+ X25X34 〈C1,25,34,6〉 + X25X36 〈C1,25,36,4〉 + X25X46 〈C1,25,46,3〉

+ X26X34 〈C1,26,34,5〉 + X26X35 〈C1,26,35,4〉 + X26X45 〈C1,26,45,3〉

+ X34X56 〈C1,34,56,2〉 + X35X46 〈C1,35,46,2〉 + X36X45 〈C1,36,45,2〉

The above patterns lead to a seven-point kinematic factor given by

K7 = 15 terms
[
X23 (X24 +X34) (X25 +X35 +X45) 〈C1,2345,6,7〉 + sym(345)

]

+ 60 terms
[
X23 (X24 +X34) 〈C1,234,56,7〉 + (3↔ 4)

]
X56

+ 15 terms
[
X23X45X67 〈C1,23,45,67〉

]
.

(5.31)

In order to make the permutations in (5.31) more precise and to compactly write down its

n-point generalization, we shall introduce some notation that facilitates the bookkeeping

of the Sn−1
3 terms in Kn.

5.4 The closed-form n-point kinematic factor

We have argued in subsection 4.5 that the symmetries (4.36) of the BRST invariants yield

a basis with Sn−1
3 elements under relations with constant coefficients. It became evident

from the examples (5.28), (5.30) and (5.31) that each independent C1,... occurs in Kn

where (5.21) determines the associated worldsheet function to be

〈C1,23...p,p+1...q,q+1...n〉 ↔

(
p
∏

k=3

k−1∑

m=2

Xmk

)



q
∏

k=p+2

k−1∑

m=p+1

Xmk









n∏

k=q+2

k−1∑

m=q+1

Xmk



 .

Writing down the kinematic factor Kn in a closed form for general multiplicity n is a

matter of notation. That is why we shall now introduce a set Sk3 with Sk
3 elements which

takes care of the C1,... bookkeeping. It compasses all the partitions of k elements 12 . . . k

into three indistinguishable cycles, say (a1 . . . ap), (b1 . . . bq), (c1 . . . cr), where p+ q+ r = k

and none of the cycles remains empty, i.e. p, q, r 6= 0. For given sets {a1 . . . ap}, {b1 . . . bq}

and {c1 . . . cr}, only cyclically inequivalent configurations are considered as distinct Sk3
elements. Fixing the first entry a1, b1, c1 of each cycle is one convenient way to implement

this, we are then left with permutations

(a1σ(a2 . . . ap)), (b1π(b2 . . . bq)), (c1ρ(c2 . . . cr)), σ ∈ Sp−1, π ∈ Sq−1, ρ ∈ Sr−1

for a partition characterized by p, q, r. Of course, we have to avoid overcounting due to the

indistinguishable cycles, i.e. (2, 3), (4, 5), (. . .) is identified with (4, 5), (2, 3), (. . .) in Sk3 . A

formal way to summarize these properties of Sk3 is

Sk3 =
⋃

p≥q≥r≥1
p+q+r=k

Ξp,q,r(Sk)

Zp × Zq × Zr × Sν(p,q,r)

Ξp,q,r(12 . . . k) = (12 . . . p)× (p+ 1 . . . p+ q)× (p+ q + 1 . . . k)

ν(p, q, r) = 1 + δp,q + δq,r .

(5.32)
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The map Ξp,q,r cuts a given Sk permutation of (12 . . . k) into three tuples (12 . . . p), (p +

1 . . . p + q) and (p + q + 1 . . . k) of cardinality, p, q and r, respectively. Each of them

is modded out by the corresponding cyclic group Zp, Zq, Zr, and in case of coinciding

cardinalities (p = q or q = r or both), we divide by permutations Sν(p,q,r) of these tuples

of equal size. Indeed, we can check that the number of elements in the individual (p, q, r)

contributions to (5.32),

∣
∣
∣
∣

Sk

Zp × Zq × Zr × Sν(p,q,r)

∣
∣
∣
∣
=

k!

pqr · ν(p, q, r)!

reproduce the entries of table 1.

The structure of the n-point kinematic factor is described by

Kn=
∑

p,q

{

〈C1,23...p,p+1...q,q+1...n〉

(
p
∏

k=3

k−1∑

m=2

Xmk

)



q
∏

k=p+2

k−1∑

m=p+1

Xmk









n∏

k=q+2

k−1∑

m=q+1

Xmk





+ sym(34 . . . p)+sym(p+2, . . . q)+sym(q+2, . . . n)+permutations

}

. (5.33)

The definition (5.32) of Sk3 allows to make the permutations involved very precise:

Kn =
∑

σ×π×ρ∈Sn−1
3

〈C1,σ(23...p),π(p+1...q),ρ(q+1...n)〉

σ

(
p
∏

k=3

k−1∑

m=2

Xmk

)

π





q
∏

k=p+2

k−1∑

m=p+1

Xmk



 ρ





n∏

k=q+2

k−1∑

m=q+1

Xmk



 .

(5.34)

The variables p, q are related to the cardinality of the permutations σ, π, ρ via p = |σ|+ 1

and q − p = |π| and should not be confused with the summation variables in (5.32).

We shall conclude this section with a comment on the rigid sijηij = Xij combinations

in the worldsheet integrand (5.34). The zi → zj singularities from ηij = z−1
ij + O(zij) in

connection with the Koba Nielsen factor (5.24) give rise to kinematic poles in the corre-

sponding Mandelstam variable, at least for some choices of the integration region. The

connection between worldsheet poles and massless propagators was thoroughly explored at

tree-level [7], and since the zi → zj singularities are local effects on the worldsheet regard-

less of its global properties, we expect the pole analysis to carry over to higher genus.

The fact that short distance singularities on the worldsheet always occur in the combi-

nation Xij = sijηij , any potential kinematic pole is immediately smoothed out by the Man-

delstam numerator sij . That is why the zi integrals do not introduce any poles in kinematic

invariants,9 i.e. that all massless open string propagators enter through the BRST invariants

C1,.... However, this does not rule out branch cut singularities in sij as they are expected

from the polylogarithms in field theory loop amplitudes. Systematic study of the non-

analytic momentum dependence is a rewarding challenge which we leave for future work.

9This does not exclude massless poles from the modular t integration due to closed string exchange in

non-planar cylinder diagrams [21, 22].
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6 One-loop kinematic factors built from tree-level data

In this section, we will show that the BRST invariant constituents C1,... of the one-loop

kinematic factor Kn can be expanded in terms of SYM tree amplitudes. More precisely,

these kinematic building blocks for one-loop amplitudes are local linear combinations of

the α′2 correction AF 4
to color-ordered superstring tree amplitudes, defined by

Atree(1, 2, . . . , n;α′) = AYM(1, 2, . . . , n) + ζ(2)α′2AF 4
(1, 2, . . . , n) +O(α′3) . (6.1)

The notation AF 4
is motivated by the fact that the first string correction to (6.1) at

order10 α′2 can be attributed to a supersymmetrized F 4 operator in the low energy effective

action [64], see later remarks. Comparing with the central result of [6, 7]

Atree(1, 2, . . . , n;α′) =
∑

σ∈Sn−3

AYM(1, σ(2, . . . , n− 2), n− 1, n)F σ(α′)

for the disk amplitude, one can identify the O(α′2) power of the functions F σ as the

expansion coefficients of AF 4
in terms of (n− 3)! field theory subamplitudes:

ζ(2)α′2AF 4
(1, 2, . . . , n) =

∑

σ∈Sn−3

F σ(α′)
∣
∣
α′2A

YM(1, σ(2, . . . , n− 2), n− 1, n) (6.2)

The first examples up to multiplicity n = 6 read

AF 4
(1, 2, 3, 4) = s12s23A

YM(1, 2, 3, 4)

AF 4
(1, 2, 3, 4, 5) = (s12s34 − s34s45 − s12s51)A

YM(1, 2, 3, 4, 5) + s13s24A
YM(1, 3, 2, 4, 5)

AF 4
(1, 2, 3, 4, 5, 6) = −(s45s56 + s12s61 − s45s123 − s12s345 + s123s345)A

YM(1, 2, 3, 4, 5, 6)

− s13(s23 − s61 + s345)A
YM(1, 3, 2, 4, 5, 6)− s14s25A

YM(1, 4, 3, 2, 5, 6)

+ s14s35A
YM(1, 4, 2, 3, 5, 6)− s35(s34 − s56 + s123)A

YM(1, 2, 4, 3, 5, 6)

+ s13s25A
YM(1, 3, 4, 2, 5, 6),

(6.3)

and a O(α′3) momentum expansion for the n = 7 functions F σ — i.e. the defining data for

AF 4
(1, 2, 3, 4, 5, 6, 7) — can be found in the appendix of [7].

As we will show, our BRST invariants governing the one-loop kinematics

〈C1,...〉 =
∑

ρ

AF 4
(1, ρ(2, 3, . . . , n)) =

∑

π

pπ(sij)A
YM(1, π(2, 3, . . . , n)) (6.4)

are linear combinations of SYM trees, accompanied by fine-tuned quadratic polynomials

pπ(sij) in Mandelstam variables. The summation ranges for the Sn−1 permutations ρ, π

will be made precise soon.

Since the three-point tree does not receive any α′ corrections, higher-point disk ampli-

tudes do not factorize on exclusively cubic vertices. Hence, the role of the Mandelstam bilin-

ears pπ(sij) lies in avoiding n−3 simultaneous poles in any AF 4
. One can attribute these α′2

10Higher dimensional operators such as D2nF 4 and F 4+n with n ≥ 1 contribute to (6.1) at orders α′2+n

and are not reflected in 〈C1,...〉 which carries the same mass dimension as AF4

.
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corrections to a quartic contact interaction ∼ Tr{F 4} (formed by the non-linearized gluon

field strength F ) in the low energy effective action [64] (which explains the terminology

AF 4
). The diagrams of AF 4

having one quartic vertex and cubic SYM vertices otherwise

require n− 4 propagators (instead of the n− 3 propagators in cubic AYM diagrams).

In fact, the appearance of the tree-level kinematics AF 4
due to the (supersymmetric

completion of the) operator ∼ Tr{F 4} in one-loop amplitudes can be explained by super-

symmetry: naive power counting shows that BRST invariants C1,... are generated by a term

of mass dimension eight in the effective action. The vertex ∼ Tr{F 4} is the unique mass

dimension eight operator compatible with 16 supercharges, i.e. N = 1 supersymmetry in

ten spacetime dimensions or N = 4 supersymmetry in four dimensions. Cubic operators

of type ∼ Tr{D2kF 3} can be ruled out since none of them is supersymmetrizable. That is

why one-loop kinematics in maximally supersymmetric theories have no other choice than

reproducing the AF 4
which have firstly been observed at tree-level.

The organization of this section proceeds as follows: we will first develop a pure

spinor superspace representation for AF 4
in terms of quadruple Berends-Giele currents

Md1...dsM
i
a1...apM

j
b1...bq

Mk
c1...cr using their diagrammatic interpretation from figure figure 5.

The central box in these diagrams is then identified with the aforementioned quartic contact

interaction vertex ∼ Tr{F 4}. We exploit the Berends-Giele representation to identify the

AF 4
as linear combinations of the one-loop BRST invariants C1,.... Finally, the Sn−1

3 basis

for C1,... can be used to explain amplitude relations between AF 4
permutations and (closely

related) finite one-loop amplitudes in pure (non-supersymmetric) Yang-Mills theory.

6.1 Diagrammatic expansion of tree-level α′2 corrections

Following the ideas of [27], a method which associates pure spinor building blocks to cubic

tree diagrams of SYM amplitudes in D = 10 was reviewed in section 2 on the basis

of [8, 17, 18]. The pure spinor superfield method of [8] rests on two basic assumptions:

1. the kinematic numerator of a cubic graph can only contain BRST building blocks

whose Q variation cancels one of the kinematic poles

2. the sum of the expressions associated to all cubic graphs must be in the pure spinor

BRST cohomology.

Now we are interested in an analogous diagrammatic method for constructing the tree-level

α′2 corrections and relating them to one-loop kinematic structures.

At n-points, AF 4
(1, 2, . . . , n) has n− 4 simultaneous poles corresponding to diagrams

with n− 4 cubic vertices and one quartic vertex. Since we are using the same superspace

ingredients Md1...dsM
i
a1...apM

j
b1...bq

Mk
c1...cr present in one-loop BRST invariants, the box

notation introduced in subsections 4.2 and 4.4 will be kept and can be identified with the

tree-level quartic vertex11 ∼ Tr{F 4}. The unified diagrammatic language for both α′2

11Even though the diagrammatic rules in this subsection might suggest an association of the kinematic

factors AF4

with box integrals in the field theory limit, they will also find appearance along with pentagons

and higher n-gons. The α′ → 0 limit of the worldsheet integrals (to be analyzed in later work) will determine

the kinematic coefficient of higher n-gons in terms of AF4

— at least up to anomalous terms.
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Figure 6. The building block prescription for the four- and five-point AF 4

diagrams. The rule is

that the Berends-Giele current with leg one is always to the left, carries no i, j, k labels and the

combination of superfields must contain the same kinematic poles of the graph.

corrected trees and loop-level kinematic factors emphasizes that they can be represented

by the same class of subamplitudes AF 4
. As mentioned before, this can be traced back to

the uniqueness of N = 1 supersymmetric dimension eight operators in D = 10.

The four- and five-point diagrams associated with the tree-level α′2 correction are

depicted in figure 6, together with their pure spinor superfield mapping. The expression

AF 4
(1, 2, 3, 4) = 〈M1M

i
2M

j
3M

k
4 〉 (6.5)

correctly reflects the absence of poles in AF 4
(1, 2, 3, 4) and is BRST closed.

The five-point AF 4
(1, 2, 3, 4, 5) has two kinds of Berends-Giele-constituents. They are

characterized by the position of the leg with label one — it can either enter through

the cubic vertex (→ M1j) or as a standalone corner (→ M1) of the box. The superfield

mapping is slightly different for each possibility, and the rule is that leg number one is never

associated with loop-specific Berends-Giele currents M i,j,k
... . The dictionary of figure 6 leads

to the following Q closed expression

AF 4
(1, 2, 3, 4, 5) = 〈M12M

i
3M

j
4M

k
5 〉+ 〈M1M

i
23M

j
4M

k
5 〉

+ 〈M1M
i
2M

j
34M

k
5 〉+ 〈M1M

i
2M

j
3M

k
45〉+ 〈M51M

i
2M

j
3M

k
4 〉 .

(6.6)

In the four-point case, it was shown in [57] on superfield level that 〈M1M
i
2M

j
3M

k
4 〉 agrees

with the SYM tree representation AF 4
(1, 2, 3, 4) = s12s23A

YM(1, 2, 3, 4). This requires the

pure spinor superspace expression (2.20) for the latter,

〈M1M
i
2M

j
3M

k
4 〉 = s23〈T12V3V4〉+ s12〈V1T23V4〉 = s12s23A

YM(1, 2, 3, 4). (6.7)

However, we could not find a superspace proof for (6.6) to agree with the AYM combination

(s12s34 − s34s45 − s12s51)A
YM(1, 2, 3, 4, 5) + s13s24A

YM(1, 3, 2, 4, 5) required by (6.3). In-

stead, we have checked that this combination of five gluon trees matches the bosonic terms

of the component expansion of (6.6). The agreement of the gluonic components extends

to the full supermultiplet because the 〈λ3θ5〉 = 1 prescription respects supersymmetry.
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Figure 7. Pure spinor diagrammatic rules for the six-point α′2 correction AF 4

. The leg number one

is never associated with a loop-specific Berends-Giele current M i,j,k and the labels in the superfields

are arranged according the order in which they appear in the diagrams.

For six-points the story is the same, and the mappings between diagrams and super-

fields depend on the position of leg number one.

Following the mapping rules depicted in figure 7 the 21 graphs which compose the

six-point AF 4
are represented by the following 15 terms in pure spinor superspace,

AF 4
(1, 2, . . . , 6) = 〈M123M

i
4M

j
5M

k
6 〉+ 〈M612M

i
3M

j
4M

k
5 〉+ 〈M561M

i
2M

j
3M

k
4 〉

+ 〈M1M
i
234M

j
5M

k
6 〉+ 〈M1M

i
2M

j
345M

k
6 〉+ 〈M1M

i
2M

j
3M

k
456〉

+ 〈M12M
i
34M

j
5M

k
6 〉+ 〈M61M

i
23M

j
4M

k
5 〉+ 〈M12M

i
3M

j
4M

k
56〉

+ 〈M61M
i
2M

j
3M

k
45〉+ 〈M1M

i
2M

j
34M

k
56〉+ 〈M1M

i
23M

j
45M

k
6 〉

+ 〈M12M
i
3M

j
45M

k
6 〉+ 〈M61M

i
2M

j
34M

k
5 〉+ 〈M1M

i
23M

j
4M

k
56〉,

(6.8)

which one can check to be BRST-closed using the formulæ given in the previous section.

The first six terms in (6.8) altogether describe twelve graphs whereas each of the last nine

terms describe a single graph.

Let us state the general rule for proceeding beyond six-points: our superspace proposal

for AF 4
(. . .) encompasses all distinct planar diagrams (with unit relative weight) which are

1. made of one totally symmetric quartic vertex and otherwise antisymmetric cubic

vertices from SYM

2. compatible with the cyclic ordering of the external legs in AF 4
(. . .).
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The sum of their M...M
i
...M

j
...M

k
... superspace representatives can be checked to enjoy BRST

invariance. Up to multiplicity nine, we have

AF 4
(1, 2, . . . , 7) = 〈M1234M

i
5M

j
6M

k
7 〉+ 〈M123M

i
45M

j
6M

k
7 〉+ 〈M123M

i
4M

j
56M

k
7 〉

+ 〈M123M
i
4M

j
5M

k
67〉+ 〈M12M

i
34M

j
56M

k
7 〉+ cyc(1234567)

= 35 terms and 84 diagrams (6.9)

AF 4
(1, 2, . . . , 8) = 〈M12345M

i
6M

j
7M

k
8 〉+ 〈M123M

i
456M

j
7M

k
8 〉

+ 〈M1234

(
M i

56M
j
7M

k
8 +M i

5M
j
67M

k
8 +M i

5M
j
6M

k
78

)
〉

+ 〈M123

(
M i

45M
j
67M

k
8 +M i

45M
j
6M

k
78 +M i

4M
j
56M

k
78

)
〉+ cyc(12345678)

+ 〈M123M
i
4M

j
567M

k
8 〉+ cyc(1234)

+ 〈M12M
i
34M

j
56M

k
78〉+ 〈M81M

i
23M

j
45M

k
67〉

= 70 terms and 330 diagrams (6.10)

AF 4
(1, 2, . . . , 9) = 〈M123456M

i
7M

j
8M

k
9 〉+ 〈M123M

i
45M

j
67M

k
89〉

+ 〈M12345

(
M i

67M
j
8M

k
9 +M i

6M
j
78M

k
9 +M i

6M
j
7M

k
89

)
〉

+ 〈M1234

(
M i

56M
j
78M

k
9 +M i

56M
j
7M

k
89 +M i

5M
j
67M

k
89

)
〉

+ 〈M1234

(
M i

567M
j
8M

k
9 +M i

5M
j
678M

k
9 +M i

5M
j
6M

k
789

)
〉

+ 〈M123

(
M i

456M
j
78M

k
9 +M i

45M
j
678M

k
9 +M i

456M
j
7M

k
89

)
〉

+ cyc(123456789)

= 126 terms and 1287 diagrams (6.11)

Summing over cyclic permutations in the specified labels slightly abuses notation in view

of the rule that leg number one is always attached to the tree-level current M... rather than

to M i,j,k
... . For example, the cyclic orbit of M123M

i
4M

j
5M

k
6 shall be understood as

M123M
i
4M

j
5M

k
6 + cyc(123456) = M123M

i
4M

j
5M

k
6 +M1M

i
234M

j
5M

k
6 +M1M

i
2M

j
345M

k
6

+M1M
i
2M

j
3M

k
456 +M612M

i
3M

j
4M

k
5 +M561M

i
2M

j
3M

k
4 .

Using this refined cyclic summation, one can verify BRST closure of the above expressions

as well as the correct diagrammatic content to represent the α′2 corrections AF 4
to tree

amplitudes. Moreover, as a sufficient condition, we have explicitly checked their agreement

up to n = 6 by computing the bosonic component expansions [14] and comparing with (6.3).

It is highly plausible that the (well-tested) experimental rule

BRST-closed objects with the same kinematic pole structure are proportional

persists for n ≥ 7 legs.

The above expressions for AF 4
(1, 2, . . . , n) are not manifestly cyclic invariant in

(1, 2, . . . , n) because the leg number one is treated differently. This is an artifact of the

one-loop prescription from section 3 which associates only leg number one with the unin-

tegrated vertex operator V 1. But it can be shown that the difference to another choice of

V i 6=1 is BRST-exact and therefore zero,

AF 4
(1, 2, . . . , n)−AF 4

(2, 3, . . . , n, 1) = 〈QXn〉 = 0, (6.12)
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for example,12

X4 = M i
12M

j
3M

k
4

X5 = M i
123M

j
4M

k
5 +M i

512M
j
3M

k
4 +M i

12(M
j
3M

k
45 +M j

34M
k
5 ) (6.15)

X6 = M i
1234M

j
5M

k
6 +M i

6123M
j
4M

k
5 +M i

5612M
j
3M

k
4 +M i

123(M
j
4M

k
56 +M j

45M
k
6 )

+M i
612(M

j
3M

k
45 +M j

34M
k
5 ) +M i

12(M
j
3M

k
456 +M j

34M
k
56 +M j

345M
k
6 ). (6.16)

6.2 Tree-level α′2 corrections versus one-loop kinematics

This subsection builds a bridge between tree-level α′2 corrections AF 4
and the one-

loop kinematics C1,.... Both of them have a superspace representation in terms of

Md1...dsM
i
a1...apM

j
b1...bq

Mk
c1...cr — see the previous subsection for AF 4

and (4.28)–(4.34) for

C1,.... Using the symmetry properties (4.35) of Berends-Giele currents, we find

AF 4
(1, 2, . . . , n) =

∑

2≤p<q≤n−1

〈C1,23...p,p+1...q,q+1...n〉, (6.17)

where legs 23 . . . n are distributed in all possible ways among the three slots of the BRST

invariants C1,... which preserve their order. This leads to (n−2)(n−3)/2 terms in the C1,...

expansion of the color-ordered AF 4
(1, 2, . . . , n), let us display examples up to multiplicity

n = 8:

AF 4
(1, 2, . . . , 4) = 〈C1,2,3,4〉 (6.18)

AF 4
(1, 2, . . . , 5) = 〈C1,23,4,5〉+ 〈C1,34,2,5〉+ 〈C1,45,2,3〉 (6.19)

AF 4
(1, 2, . . . , 6) = 〈C1,234,5,6〉+ 〈C1,345,2,6〉+ 〈C1,456,2,3〉+ 〈C1,23,45,6〉

+ 〈C1,23,56,4〉+ 〈C1,34,56,2〉 (6.20)

AF 4
(1, 2, . . . , 7) = 〈C1,2345,6,7〉+ 〈C1,3456,2,7〉+ 〈C1,4567,2,3〉+ 〈C1,234,56,7〉

+ 〈C1,234,67,5〉+ 〈C1,23,456,7〉+ 〈C1,23,567,4〉+ 〈C1,345,67,2〉

+ 〈C1,34,567,2〉+ 〈C1,23,45,67〉 (6.21)

AF 4
(1, 2, . . . , 8) = 〈C1,23456,7,8〉+ 〈C1,34567,2,8〉+ 〈C1,45678,2,3〉+ 〈C1,2345,67,8〉

+ 〈C1,2345,78,6〉+ 〈C1,234,567,8〉+ 〈C1,234,678,5〉+ 〈C1,23,4567,8〉

+ 〈C1,23,5678,4〉+ 〈C1,3456,78,2〉+ 〈C1,345,678,2〉+ 〈C1,34,5678,2〉

+ 〈C1,23,45,678〉+ 〈C1,23,456,78〉+ 〈C1,234,56,78〉 (6.22)

12The general formula for Xn can be conveniently written using the definition

Eij
12...p =

p−1
∑

k=1

M i
12...kM

j

k+1...p (6.13)

as

Xn =

n−2
∑

p=2

M i
12...pE

jk
p+1...n + tcyc(12 . . . n)−

n−1
∑

p=3

Eij
23...pM

k
p+1,...n,1 (6.14)

and tcyc(12 . . . n) means the truncated cyclic permutations of the enclosed indices. It is defined such that

the permutations which lead to the leg number one not being in the “first” M i are dropped. For example,

M i
123M

j
4M

k
5 + tcyc(12345) = M i

123M
j
4M

k
5 +M i

512M
j
3M

k
4 +M i

451M
j
2M

k
3 .
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We will argue in the next subsection that the representation (6.17) of AF 4
in terms of

C1,... is invertible, i.e. that one can express any individual BRST invariant C1,... in terms

of AF 4
permutations with rational coefficients. As promised in (6.4), this implies that all

kinematic ingredients C1,... of one-loop amplitudes can be written in terms of tree-level

kinematics AF 4
, and the latter can in principle be expressed through AYM permutations

(with bilinear Mandelstam coefficients). The reduction of five-point C1,ij,k,l to SYM trees

proceeds as follows,

〈C1,24,3,5〉=A
F 4

(1, 3, 2, 4, 5)−AF 4
(1, 4, 3, 2, 5)−AF 4

(1, 3, 4, 5, 2).

=AYM(1, 2, 3, 4, 5)s34

[

s12 − s45 −
s12s23
s14

]

+AYM(1, 3, 2, 4, 5)

[

(s23+s34)(s12−s45)+
s23
s14

(s12s24−s51(s34+s45))

]

,

(6.23)

and we shall finally give a six-point example:

3〈C1,345,2,6〉 = A
F 4

(1, 2, 3, 6, 4, 5) +AF 4
(1, 2, 5, 4, 3, 6) +AF 4

(1, 2, 5, 4, 6, 3)

+AF 4
(1, 2, 6, 3, 4, 5) +AF 4

(1, 3, 2, 4, 5, 6) +AF 4
(1, 3, 2, 4, 6, 5)

−AF 4
(1, 3, 2, 5, 4, 6) +AF 4

(1, 3, 4, 2, 5, 6) +AF 4
(1, 3, 4, 2, 6, 5)

+AF 4
(1, 3, 4, 6, 2, 5) +AF 4

(1, 6, 2, 3, 4, 5) +AF 4
(1, 6, 4, 3, 2, 5) (6.24)

3〈C1,23,45,6〉 = −A
F 4

(1, 2, 3, 4, 5, 6) +AF 4
(1, 2, 3, 5, 4, 6) +AF 4

(1, 2, 3, 6, 4, 5)

−AF 4
(1, 2, 3, 6, 5, 4) +AF 4

(1, 2, 5, 3, 4, 6)−AF 4
(1, 2, 5, 6, 4, 3)

+AF 4
(1, 2, 6, 3, 4, 5)−AF 4

(1, 2, 6, 3, 5, 4) +AF 4
(1, 2, 6, 4, 3, 5)

+AF 4
(1, 2, 6, 4, 5, 3)−AF 4

(1, 2, 6, 5, 3, 4)−AF 4
(1, 3, 2, 5, 4, 6)

+AF 4
(1, 3, 2, 5, 6, 4)− 2AF 4

(1, 3, 2, 6, 4, 5) + 2AF 4
(1, 3, 2, 6, 5, 4)

+AF 4
(1, 3, 4, 5, 2, 6) +AF 4

(1, 6, 5, 2, 3, 4) . (6.25)

It is not difficult to verify the above relations using the explicit expressions (6.19) and (6.20)

together with the symmetries obeyed by the invariants C1,....

6.3 KK-like identities for AF
4

and finite QCD amplitudes

We have argued in subsection 4.5 that the symmetries (4.36) of the C1,... align them into a

Sn−1
3 -dimensional basis under relations with rational coefficients. This subsection focuses

on amplitude relations between AF 4
following from their expansion (6.17) in terms of C1,....

Cyclic symmetry and (−1)n parity leave (n−1)!/2 potentially independent AF 4
(1, 2, . . . , n)

permutations, but since they are all linear combinations of Sn−1
3 independent C1,..., there

must be lots of identities with rational coefficients among them. Following the terminology

of [31], we will refer to these relations as “Kleiss Kuijf-like” (KK-like). The first example

is AF 4
(1, 2, 3, 4) = AF 4

(1, 3, 2, 4) being totally symmetric. Examples at five-points are

0 = AF 4
(1, 2, 3, 4, 5)−AF 4

(1, 4, 2, 3, 5)−AF 4
(1, 2, 4, 5, 3)
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+AF 4
(1, 2, 4, 3, 5)−AF 4

(1, 3, 2, 4, 5)−AF 4
(1, 2, 3, 5, 4), (6.26)

0 = AF 4
(1, 2, 3, 4, 5) + sym(2, 4, 5), (6.27)

they can be easily checked using AF 4
(1, 2, 3, 4, 5) = 〈C1,23,4,5 + C1,2,34,5 + C1,2,3,45〉.

The basis dimension Sn−1
3 for C1,... furnishes an upper bound on the number of indepen-

dent AF 4
under KK-like relations (e.g. one has at most six independent AF 4

(1, σ(2, 3, 4, 5))

under (6.26) and (6.27)). If this bound is saturated, then the equation system

AF 4
(1, σ(2, . . . , n)) =

∑

2≤σ(p)<σ(q)≤n−1

〈C1,σ(23...p),σ(p+1...q),σ(q+1...n)〉, (6.28)

is invertible and we can solve it for C1,... in terms of AF 4
permutations. We will now give

an indirect argument that this is indeed the case.

Relations of type (6.26) and (6.27) have already been observed in [31] for finite one-

loop amplitudes in four-dimensional pure Yang Mills theory involving gluons of positive

helicity only. Using the all multiplicity formula from [55]13

A
(1)
n;1(1

+, 2+, . . . , n+) = −
i

48π2

∑

i<j<k<l〈ij〉[jk]〈kl〉[li]

〈12〉〈23〉 . . . 〈n1〉
(6.29)

(with 〈ij〉 and [ij] denoting products of the momentum spinors of gluons i and j)

the authors of [31] derive amplitude relations between different A
(1)
n;1 permutations and

also find the basis dimension Sn−1
3 under KK-like relations. Moreover, they develop a

diagrammatic method to handle the symmetries using graphs with one quartic vertex

and otherwise cubic vertices. This strongly resembles our diagrammatic interpretation

of one-loop building blocks 〈Td1...dsT
i
a1...apT

j
b1...bq

T k
c1...cr〉. Reference [73] puts the idea

to derive relations between box coefficients from quartic expressions in Berends-Giele

currents into a more general context.

The coincidence between α′2 corrections to superstring tree amplitudes and four-

dimensional pure Yang Mills amplitudes was firstly noticed in [53, 54]. The authors point

out that the four-dimensional reduction of gluonic AF 4
amplitudes14 in MHV helicity con-

figurations are proportional to (6.29),

AF 4
(1−, 2−, 3+, 4+ . . . , n+) ∼ 〈12〉4 A

(1)
n;1(1

+, 2+, . . . , n+) (6.30)

up to the permutation-insensitive “MHV-dressing” 〈12〉4. This explains why four-

dimensional MHV representatives of AF 4
fall into the same Sn−1

3 -dimensional basis found

in [31] under KK-like relations. In other words, the MHV components of the AF 4
saturate

the upper bound of Sn−1
3 basis amplitudes found through our reasoning above based on

C1,... expansions. Generalizations of four-dimensional MHV AF 4
to other helicities, to other

13The expression (6.29) for pure Yang Mills amplitudes A
(1)
n;1 was observed in [79] to agree with dimension-

shifted one-loop amplitudes of N = 4 SYM in D 7→ D + 4 dimensions.
14The AYM representation (6.2) of AF4

is dimension-agnostic — the functional dependence of SYM trees

on gluon polarization vectors is the same in any number of dimensions, and one can use spinor helicity

variables and the Parke Taylor formula [56] in the four-dimensional MHV situation.
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supermultiplet members and to higher dimensions can only require a larger basis than the

MHV specialization, but exceeding the Sn−1
3 is incompatible with the upper bound found

for ten-dimensional superamplitudes.15 This completes our argument why (6.28) admits

to express any BRST invariant C1,... as a linear combination of AF 4
.

To conclude this section, let us display higher order examples for KK-like identities

between AF 4
. At six-points, for instance, one can check

0 = AF 4
(1, 5, 4, 3, 6, 2)−AF 4

(1, 5, 4, 2, 6, 3)−AF 4
(1, 5, 4, 6, 2, 3) +AF 4

(1, 5, 4, 6, 3, 2)

+AF 4
(1, 5, 6, 4, 2, 3)−AF 4

(1, 5, 6, 4, 3, 2) +AF 4
(1, 6, 2, 3, 4, 5)−AF 4

(1, 6, 3, 2, 4, 5)

−AF 4
(1, 6, 4, 2, 3, 5)−AF 4

(1, 6, 4, 2, 5, 3) +AF 4
(1, 6, 4, 3, 2, 5) +AF 4

(1, 6, 4, 3, 5, 2)

−AF 4
(1, 6, 4, 5, 2, 3) +AF 4

(1, 6, 4, 5, 3, 2) +AF 4
(1, 6, 5, 4, 2, 3)−AF 4

(1, 6, 5, 4, 3, 2).

using (6.20), and a neat form for all-multiplicity relations is given in [31]:

0 = 2AF 4
(1, 2, . . . , n)− (−1)n

∑

σ∈OP({4}∪{β})

AF 4
(3, {σ}, 5) + sym(45 . . . n).

Similar to KK relations, the notation OP({4} ∪ {β}) includes all ways to shuffle leg four

into the set {β} = {2, 1, n, n− 1, . . . , 6} while preserving the order of the latter.

6.4 BCJ-like identities for AF
4

We always pointed out that the basis dimensions Sn−1
3 for both C1,... andA

F 4
only take rela-

tions with constant, rational coefficients into account which we call KK-like. So far, we com-

pletely neglected the fact that AF 4
decompose into AYM permutations (weighted by bilin-

ears in sij) which are well-known to have a (n−3)! basis under KK- and BCJ relations [27].

Starting from (n = 5)-points, the AYM basis contains strictly less elements than the “KK-

like” basis of AF 4
since (n − 3)! < Sn−1

3 for n ≥ 5. Hence, there must be extra relations

with Mandelstam coefficients between AF 4
that are independent under KK-like relations.

At five-points, extra identities with bilinear coefficients in Mandelstam variables reduce

the AF 4
or pure Yang-Mills amplitudes A

(1)
n;1 to two independent ones (in agreement with

the (n−3)! basis of AYM). Examples on the A
(1)
n;1 side are shown in equation (5.2) of [31], we

have checked that they are also satisfied by AF 4
. However, the most compact relations we

could find between five-point BRST invariants involve the C1,... rather than A
F 4

. Let Pi =
∑5

j=1 xijsj denote linear polynomials in Mandelstam variables si = si,i+1 with constants

xij , then the ansatz

s23P1C1,23,4,5 + s24P2C1,24,3,5 + s25P3C1,25,3,4

+s34P4C1,34,2,5 + s35P5C1,35,2,4 + s45P6C1,45,2,3 = 0
(6.31)

is sufficient to find a two-dimensional basis of BRST invariants. The ansatz (6.31) is

motivated by the fact that the 1
s23

pole in C1,23,4,5 does not appear in any other C1,..., so

15This is not a strict proof that the non-MHV AF4

obey the same (n− 1)!/2−Sn−1
3 KK-like relations as

their MHV cousins and the pure Yang Mills amplitudes (6.29), but we take strong confidence from the fact

that our AF4

in their helicity-agnostic C1,... representation obey all the A
(1)
n;1 amplitude relations explicitly

written in [31].
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it must be cancelled by a s23 prefactor for C1,23,4,5. Plugging in the polynomials Pi =
∑5

j=1 xijsj and solving the system of equations which follow from a component evaluation

of (6.31) using [14] lead to four independent quadratic relations between C1,.... As a result,

we can express {C1,24,3,5, C1,25,3,4, C1,34,2,5, C1,35,2,4} in terms of a {C1,23,4,5, C1,45,2,3} basis

C1,ij,k,l = ±
s1k
sij

(s1is1l − sjlsij)
C1,23,4,5

(s23 − s45)s45
±

s1l
sij

(s1js1k − siksij)
C1,45,2,3

(s45 − s23)s23
(6.32)

where the signs are given by {(+−), (++), (−−), (−+)}, respectively.

7 Harmony between color, kinematics and worldsheet integrands

In this section, we will explore the common combinatorial structures that govern on the

one hand the kinematic building blocks C1,... of one-loop amplitudes and the corresponding

worldsheet integrands Xij = sijηij , on the other hand also the color factors from the α′2

corrections to tree amplitudes. In all the three cases, the basis dimensions are given by

the unsigned Stirling number Sn−1
3 . It can be viewed as the one-loop analogue of the

magic number (n − 3)! omnipresent in tree-level bases of worldsheet integrals as well as

color-ordered string- and SYM amplitudes. This coincidence has led us to a harmonious

duality between color-dressed tree amplitudes at order α′2 and the integrand of one-loop

amplitudes in open superstring theory.

In the open string sector, the color-dressed tree amplitude is given by

Mtree
n (α′) =

∑

σ∈Sn−1/Z2

↔
Tr
[
T aσ(1) T aσ(2) · · ·T aσ(n−1) T an

]
Atree(σ(1, 2, . . . , n− 1), n;α′) (7.1)

where the summation includes all cyclically inequivalent permutations of the labels modded

out by the (−1)n parity of color-stripped n-point amplitudes. The T ai denote the Chan-

Paton factors16 in the fundamental representation of the gauge group, and parity weighting

is represented as

↔
Tr
[
T a1 T a2 · · ·T an

]
:= Tr

[
T a1 T a2 . . . T an + (−1)n T an T an−1 · · ·T a1

]
. (7.2)

A convenient basis for these parity weighted traces involves structure constants fabc and

symmetrized traces da1a2a3...a2n of even rank only, the latter being defined as [32],

da1a2...a2n :=
1

(2n− 1)!

∑

σ∈S2n−1

Tr
[
T aσ(1) · · ·T aσ(2n−1) T a2n

]
. (7.3)

We will use shorthands f123 ≡ fa1a2a3 and d12...k ≡ da1a2...ak for the (adjoint) color degrees

of freedom.

As mentioned in [32], the explicit computation of symmetrized traces is tedious to

perform by hand but it is also well-suited for a computer implementation. The first non-

trivial relations are relatively compact [33, 35]

↔
Tr (T 1 T 2 T 3) =

i

2
f123 (7.4)

16Our normalization conventions are fixed by Tr[T aT b] = δab/2 and [T a, T b] = ifabcT c.
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↔
Tr (T 1 T 2 T 3 T 4) = 2d1234 +

1

6

(
f23n f14n − f12n f34n

)
, (7.5)

↔
Tr (T 1T 2T 3T 4T 5) =

i

12

[
f12afa4bf b35 − 3f12afa3bf b45 + f13afa2bf b45

+ f13afa4bf b25 + f14afa2bf b35 − f14afa3bf b25
]

+ i
[
f23ada145 + f24ada135 + f25ada134

+ f34ada125 + f35ada124 + f45ada123
]
, (7.6)

but the lenghty relations for n = 6 and 7 were computed using the color package of

FORM [15, 16] and the n = 6 case can be found in the appendix B. Note that (7.5) and (7.6)

have been cast into a minimal form in the sense that all the generalized Jacobi relations

fa[ijfk]ab = 0 (7.7)

da(ijkf l)ab = 0 (7.8)

are taken into account. For the color structures involving a symmetrized trace, this amounts

to placing leg number one to the d1....

Once the color-dressed disk amplitude (7.1) is rewritten in this color basis, the sub-

amplitude relations at various orders in α′ impose selection rules on what kinds of tensor

contribute to Mtree
n (α′) at the order in question. Keeping the first two terms in (6.1)

∼ α′0, α′2, the KK identities [42] between AYM select those color tensors with n− 2 pow-

ers of structure constants and project out any symmetrized trace (7.3). The subampli-

tudes AF 4
associated with the first string corrections, on the other hand, satisfy another

set of relations which we called KK-like in the discussion of subsection 6.3. They select

those color tensors made of n− 4 structure constants fabc and one symmetrized four-trace

d1234 := 1
6

∑

σ∈S3
Tr
[
T σ(1)T σ(2)T σ(3)T 4

]
. This ties in with the symbolic vertices Dabcd

and F abc used in [31] to gain intuition for the amplitude relation between finite one-loop

pure Yang Mills amplitudes A
(1)
n;1. The color tensors da1a2a3a4(f bcd)n−4 selected by AF 4

are

another manifestation of their intimate connection to the A
(1)
n;1.

As a first example, let us consider the four-point color-dressed amplitude up to O(α′2),

Mtree
4 (α′) = −

1

2

(
f12a fa34AYM(1, 2, 3, 4) + f13a f b24AYM(1, 3, 2, 4)

)

+ 6ζ(2)α′2 d1234AF 4
(1, 2, 3, 4) + O(α′3),

(7.9)

see [33] for the color structure at higher order in α′. The notation for higher multiplicity

versions of (7.1) shall be lightened using

Mtree
n (α′) ≡ MYM

n + ζ(2)α′2MF 4

n + O(α′3), (7.10)

and the α′2 correction MF 4

n will be the object of main interest in this section where we

show its tight connection to the one-loop integrand (5.34).

Before looking at the color tensor structure at order α′2 and their interplay with AF 4

symmetries, let us review the color organization at the SYM level α′0. At five-points, the

KK relations for the field theory subamplitudes yield

MYM
5 = −

i

2
AYM(1, 2, 3, 4, 5)f12afa3bf b45 + sym(234)
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in agreement with the color-decomposition proposed by [29]. More generally, this reference

suggests the following (n− 2)! element Kleiss-Kuijf bases

{
f1σ(2)a faσ(3)b · · · fzσ(n−1)n, σ ∈ Sn−2

}
,
{
AYM

(
1, σ(2, 3, . . . , n− 1), n

)
, σ ∈ Sn−2

}

(7.11)

for the color factors (f bcd)n−2 and the SYM subamplitudes (using Jacobi identities for the

former and KK relations for the latter). In this setting, one can reproduce the (n − 2)!

color-decomposition proven in [29]

MYM
n =

in−2

2

∑

σ∈Sn−2

f1σ(2)a faσ(3)b · · · fzσ(n−1)nAYM
(
1, σ(2, 3, . . . , n− 1), n

)
, (7.12)

starting from (7.1), and the cancellation of d12...2k contributions at order α′0 becomes

manifest due to KK relations. In the remainder of this section, we will find remnants

of (7.12) in MF 4

n , in particular the basis choice (7.11) for (f bcd)n−2 color factors is path-

breaking for the organization of the color tensors da1a2a3a4(f bcd)n−4 relevant at α′2 order.

7.1 The color-dressed (n ≤ 7)-point disk amplitude at order α′2

Keeping the dual bases (7.11) forMYM
n in mind, we shall next give n = 5, 6, 7-point results

forMF 4

n . According to (7.6), the five-point color tensors daijkf lab are brought into a (six

element) basis of daij1f lab (with leg one attached to the d tensor) via generalized Jacobi

identity da(ijkf l)ab = 0. This leads to a compact result forMF 4

5 :

MF 4

5 =
∑

σ∈S4/Z2

↔
Tr
[
T aσ(1) T aσ(2)T aσ(3)T aσ(4) T a5

]
AF 4

(σ(1, 2, 3, 4), 5)

= 6i〈C1,23,4,5 f
23ada145 + C1,24,3,5 f

24ada135 + C1,25,3,4 f
25ada134

+ C1,34,2,5 f
34ada125 + C1,35,2,4 f

35ada124 + C1,45,2,3 f
45ada123〉

(7.13)

First of all, the symmetries of AF 4
imply that color factors of type f1σ(2)afaσ(3)bf bσ(4)5

drop out, see the first two lines of (7.6). Secondly, the expansion AF 4
(1, 2, 3, 4, 5) =

〈C1,23,4,5+C1,2,34,5+C1,2,3,45〉makes all contributions to a fixed (basis) color tensor f ijada1kl

collapse to one single term C1,ij,k,l.
17 The precise correspondence C1,ij,k,l ↔ f ijada1kl

between kinematic and color basis elements is a non-trivial reorganization when looked

from the perspective of the composing AF 4
terms, especially at higher orders.

Even more striking cancellations occur when the symmetrized trace decompositions of

the appendix B are used to evaluate the six- and seven-point color-dressed amplitudes at

17Going through the calculation reveals that the terms proportional to f23ada145 are

AF4

(1, 2, 3, 4, 5) +AF4

(1, 2, 3, 5, 4) +AF4

(1, 2, 4, 3, 5) +AF4

(1, 2, 4, 5, 3)

+AF4

(1, 2, 5, 3, 4) +AF4

(1, 2, 5, 4, 3)−AF4

(1, 3, 2, 4, 5)−AF4

(1, 3, 2, 5, 4)

−AF4

(1, 3, 4, 2, 5)−AF4

(1, 3, 5, 2, 4) +AF4

(1, 4, 2, 3, 5)−AF4

(1, 4, 3, 2, 5)

and yet they collapse to a single term 6C1,23,4,5 once the relation (6.19) and the symmetries of the one-loop

BRST invariants are used.
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order α′2: the 35 = S5
3 term sum in the six-point case

−
1

6
MF 4

6 = 〈C1,23,45,6f
23ada16bf b45 + C1,23,46,5f

23ada15bf b46 + C1,23,56,4f
23ada14bf b56

+ C1,24,35,6f
24ada16bf b35 + C1,24,36,5f

24ada15bf b36 + C1,24,56,3f
24ada13bf b56

+ C1,25,34,6f
25ada16bf b34 + C1,25,36,4f

25ada14bf b36 + C1,25,46,3f
25ada13bf b46

+ C1,26,34,5f
26ada15bf b34 + C1,26,35,4f

26ada14bf b35 + C1,26,45,3f
26ada13bf b45

+ C1,34,56,2f
34ada12bf b56 + C1,35,46,2f

35ada12bf b46 + C1,36,45,2f
36ada12bf b45

+
[
C1,234,5,6f

23afa4b + C1,243,5,6f
24afa3b

]
db156

+
[
C1,235,4,6f

23afa5b + C1,253,4,6f
25afa3b

]
db146

+
[
C1,245,3,6f

24afa5b + C1,254,3,6f
25afa4b

]
db136

+
[
C1,236,4,5f

23afa6b + C1,263,4,5f
26afa3b

]
db145

+
[
C1,246,3,5f

24afa6b + C1,264,3,5f
26afa4b

]
db135

+
[
C1,256,3,4f

25afa6b + C1,265,3,4f
26afa5b

]
db134

+
[
C1,345,2,6f

34afa5b + C1,354,2,6f
35afa4b

]
db126

+
[
C1,346,2,5f

34afa6b + C1,364,2,5f
36afa4b

]
db125

+
[
C1,356,2,4f

35afa6b + C1,365,2,4f
36afa5b

]
db124

+
[
C1,456,2,3f

45afa6b + C1,465,2,3f
46afa5b

]
db123〉 (7.14)

exhibits color-kinematic-correspondence

C1,23,45,6 ↔ f23ada16bf b45, C1,234,5,6 ↔ f23afa4bdb156.

Likewise, the 225 = S6
3 terms in

i

6
MF 4

7 = 〈15 terms
[
〈C1,2345,6,7f

23afa4bf b5c + sym(345)
]
dc167

+ 60 terms
[
C1,234,56,7f

23afa4b + (3↔ 4)
]
f56cdbc17

+ 15 terms C1,23,45,67f
23af45bf67cd1abc〉 (7.15)

allow to read off the dictionary

C1,23,45,67 ↔ f23af45bf67cd1abc

C1,234,56,7 ↔ f23afa4bf56cdbc17

C1,2345,6,7 ↔ f23afa4bf b5cdc167.

(7.16)

In the next subsection, we shall put these observations into a more general con-

text. Note that d123456 and d12345afa67 tensors (or more generally da1...a6(f bcd)n−6 and

da1...a2k(f bcd)n−2k at k ≥ 3) from the rank ≥ 6 traces do not contribute at O(α′2) because

of the KK-like amplitude relations between AF 4
.

7.2 Dual bases in color and kinematic space

We conclude from the calculations above that the BRST invariants C1,... are natural objects

to appear not only in the one-loop integrand but also in color-dressed tree-level amplitudes.
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According to (6.17), they are related to subamplitudes AF 4
at order α′2 by a change of

(Sn−1
3 element) basis with coefficients ±1 and automatically solve their KK-like relations.

Moreover, the C1,a1...ap,b1...,bq ,c1...cr inherit all symmetry properties of the Berends-Giele

current triplet M i
a1...apM

j
b1...,bq

Mk
c1...cr , see subsection 4.5. This makes their Sn−1

3 basis

under relations with constant coefficients manifest and leads to the observed harmony with

the symmetries of color tensors da1a2a3a4(f bcd)n−4.

In fact, arriving at the simple results (7.13), (7.14) and (7.15) for the α′2 correction

to the color-dressed amplitude crucially relies on the fact that the dimension of the basis

for color factors and the kinematics matches. This fact has been exploited to choose

“compatible” bases of color structures and corresponding kinematics, generalizing the tree-

level correspondence (7.11) between color factors (f bcd)n−2 and AYM in their (n− 2)! KK

bases. In the SYM case, the reduction to (n− 2)! bases makes use of Jacobi identities on

the color side and the KK relations for the subamplitudes.

We shall now explain why also the da1a2a3a4(f bcd)n−4 color factors align into a basis of

Sn−1
3 elements. The reduction algorithm consists of two steps:

1. Move label number one to the symmetrized four-trace, i.e. dijk...(f bcd)n−4 7→
∑

d1pq...(f bcd)n−4, by repeated use of generalized Jacobi identities (7.8). At five-

points, one applications is enough,

d234af1ab = −d123af4ab − d412af3ab − d341af2ab. (7.17)

For six-points there are two possibilities for the color factors which do not contain

the label number one inside the symmetrized trace dijkl. The number of color space

propagators δab between leg number one and dijkl is either one (as in f34af1abdb246)

or two (as in f12afa3bdb456). For the one-propagator-link one uses the generalized

Jacobi identity (7.17), whereas in the two-propagator-case the identity

f12afa3bdb456 = −f12ada45bf b63 − f12ada64bf b53 − f12ada56bf b43 (7.18)

reduces it to terms of one-propagator form where (7.17) can be applied. The analysis

for higher-points is analogous, with more successive applications of (7.8) needed. The

possibility to reduce dijkl(f bcd)n−4 7→
∑

d1pqr(f bcd)n−4 is the color dual of the finding

in subsection 4.5 that any Ci,... with i 6= 1 can be expressed as a sum of C1,... in the

BRST cohomology.

2. Mod out the d1pqr(f bcd)n−4 by Jacobi identities (7.7) among the fn−4 factors: consider

a generic color structure d1... passing the first selection rule,

d1xpyqzr fa1a2x2 fx2a3x3 · · · fxp−2ap−1xp−1 fxp−1apxp

× f b1b2y2 fy2b3y3 · · · fyq−2bq−1yq−1 fyq−1bqyq

× f c1c2z2 fz2c3z3 · · · fzr−2cr−1zr−1 fzr−1crzr .

(7.19)

Each of the remaining three slots of d1xpyqzr can adjoin a tree subdiagram with

p, q and r external legs, respectively, such that p + q + r = n − 1. Within the
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Figure 8. The diagram associated with the leading term of C1,a1...ap,b1...bq,c1...cr =

V1 M
i
a1...ap

M j
b1...bq

Mk
c1...cr

+BRST invariant completion. The Kleiss-Kuijf relations for the tree sub-

diagrams represented by M i
a1...ap

, M j
b1...bq

and Mk
c1...cr

yield all identities between the permutations

σ, ρ, π in C1,σ(a1...ap),ρ(b1...bq),π(c1...cr).

color tensors of each subdiagram like fa1a2x2fx2a3x3 . . . fxp−2ap−1xp−1fxp−1apxp , we

can eliminate the Jacobi redundancy in analogy to the tree-level KK basis (7.11).

This amounts to the convention that a1 is kept fixed at the “outmost” struc-

ture constant fa1σ(a2)x2 whereas the remaining free indices {a2, a3, . . . , ap} can

appear in any of the (p − 1)! possible permutations. Then, the collection of

fa1σ(a2)x2fx2σ(a3)x3 . . . fxp−2σ(ap−1)xp−1fxp−1σ(ap)xp with σ ∈ Sp−1 exhaust all Jacobi-

independent half-ladder diagrams with fixed endpoints a1 and xp. The kinematical

dual is the reduction of C1,σ(a1...ap),... to the smaller set of C1,a1σ(a2...ap),....

After this two-step reduction, the basis dimension for the color factors dijkl(f bcd)n−4

is manifestly equal to the unsigned Stirling number Sn−1
3 , the same number which governs

the number of independent BRST invariants C1,....

A more intuitive understanding of the interplay between kinematic- and color basis

can be found by inspecting the unique term V1M
i
a1...apM

j
b1...bq

Mk
c1...cr in C1,a1...ap,b1...bq ,c1...cr

with the standalone unintegrated vertex operator V1, see the explicit expression in

subsection 4.4. The ellipsis in C1,a1...ap,b1...bq ,c1...cr = V1M
i
a1...apM

j
b1...bq

Mk
c1...cr + . . . obeys

the same symmetry properties, so the first term is a valid representative for the symmetry

analysis. Recall that the Berends-Giele currents M i
a1...ap are color-ordered (p + 1)-point

amplitudes with leg number p + 1 off-shell (corresponding to the color index xp which

is contracted into the box d1xpyqzr), see figure 8. Within each of these three off-shell

subamplitudes M i
a1...ap , we pick a Kleiss-Kuijf basis where, again, a1 is kept fixed as the

first subscript of M i
a1... and a≥2 can appear in any permutation.
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Each of the KK basis elementsM i
a1σ(a2...ap)

is accompanied by a fp−1 color factor which

is adapted to the permutation σ ∈ Sp−1 according to the tree-level rule (7.12):

M i
a1σ(a2...ap)

↔ fa1σ(a2)x2 fx2σ(a3)x3 · · · fxp−1σ(ap)xp .

The three chains of f corresponding to the M i
...,M

j
... and Mk

... are then contracted with

the xp, yq, zr indices of d1xpyqzr , i.e. glued to the three corners of the box where leg one is

not attached to. This amounts to the following rule how the dual Sn−1
3 element bases for

color- and kinematic factors enterMF 4

n : permutations of C1,a1...ap,b1...bq ,c1...cr for fixed sets

{a1, a2, . . . , ap}, {b1, b2, . . . , bq} and {c1, c2, . . . , cr} always appear in the combination
∑

σ∈Sp−1

∑

ρ∈Sq−1

∑

π∈Sr−1

C1,a1σ(a2...ap),b1ρ(b2...bq),c1π(c2...cr) × fa1σ(a2)x2 fx2σ(a3)x3 · · · fxp−1σ(ap)xp

× f b1ρ(b2)y2 fy2ρ(b3)y3 · · · fyq−1ρ(bq)yq × f c1π(c2)z2 fz2π(c3)z3 · · · fzr−1π(cr)zr d1xpyqzr ,

(7.20)

in agreement with our results (7.13), (7.14) and (7.15) forMF 4

n≤7. This can be recognized

as sum over the Sn−1
3 partitions of legs 23 . . . n into three cycles, see subsection 5.4 for the

associated set Sn−1
3 . Using the latter notation defined in (5.32), we can compactly write

the n-point color-dressed amplitude as

MF 4

n = 6in
∑

σ×π×ρ∈Sn−1
3

〈C1,σ(23...p),π(p+1...q),ρ(q+1...n)〉 d
1xpyqzn σ

(
f23x3 fx34x4 · · · fxp−1pxp

)

π
(
fp+1,p+2,yp+2 fyp+2,p+3,yp+3 · · · fyq−1,q,yq

)
ρ
(
f q+1,q+2,zq+2 fzq+2,q+3,zq+3 · · · fzn−1,n,zn

)
.

(7.21)

As in (5.34), the numbers p and q are defined through the cardinality of the permutations

to be p = |σ|+ 1 and q − p = |π|.

7.3 Duality between one-loop integrands and MF
4

n

This subsection is devoted to the close relationship between MF 4

n and the one-loop kine-

matic factor Kn. Our final expressions (5.28), (5.30), (5.31) and (5.34) for K5,K6,K7

and Kn can be obtained from the correspondingMF 4

n using a well-defined one-to-one map

between d1pqr(f bcd)n−4 colors factors and the (Xrs)
n−4 polynomials in the worldsheet inte-

grand. The color basis choice of having leg one attached to d1... corresponds to integrating

by parts on the worldsheet such that only Xrs with r, s 6= 1 enter the minimal form of Kn.

Let us start with lower order examples for the d1pqr(f bcd)n−4 ↔ (Xrs)
n−4 dictionary.

First of all, K4 = A
F 4

(1, 2, 3, 4) is related toMF 4

4 via

6d1234 ←→ 1. (7.22)

Comparing the representation (5.28) for K5 with (7.13) yields the five-points dictionary,

6if23ada145 ←→ X23. (7.23)

The two six-point topologies C1,234,5,6, C1,23,45,6 inK6 andM
F 4

6 (given by (5.30) and (7.14),

respectively) are accompanied by

− 6 f23afa4bdb156 ←→ X23 (X24 +X34)

− 6 f23af45bdab16 ←→ X23X45 ,
(7.24)
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and the C1,2345,6,7, C1,234,56,7 and C1,23,45,67 at seven-points are dressed by

− 6i f23afa4bf b5cdc167 ←→ X23 (X24 +X34) (X25 +X35 +X45)

− 6i f23afa4bf56cdbc17 ←→ X23 (X24 +X34)X56

− 6i f23af45bf67cdabc1 ←→ X23X45X67,

(7.25)

see (5.31) for K7 and (7.15) forMF 4

7 , respectively.

Both sides of the mappings (7.22) to (7.25) have the same symmetries in the labels

23 . . . n— the left hand side because of Jacobi identities, the right hand side due to algebraic

identities such as X23(X24 +X34) + cyc(234) = 0 ↔ f [23|afa|4]b = 0 or

0 = X23 (X24 +X34) (X25 +X35 +X45) − (4↔ 5)

+ X45 (X42 +X52) (X43 +X53 +X23) − (2↔ 3)

corresponding to f23afa[4|bf b|5]c + f45afa[2|bf b|3]c = 0 (which in turn reflects the “third”

BRST symmetry T23[45] + T45[23] = 0 under the map (2.15)).

More generally, the three independent cubic subdiagrams contracted with the xp, yq, zr
indices of d1xpyqzr each correspond to a separate nested product of worldsheet functions

like
∏p

k=3

∑k−1
m=2Xmk:

f23x3 fx34x4 . . . fxp−1pxp ←→ X23 (X24 +X34) . . . (X2p +X3p + . . .+Xp−1,p) .

Combining the three subdiagrams with the central quartic vertex, we arrive at the following

dictionary between d1pqr(f bcd)n−4 color tensors and (Xrs)
n−4 worldsheet integrands:

6in d1xpyqzn f23x3 fx34x4 . . . fxp−2,p−1,xp−1fxp−1pxp

× fp+1,p+2,yp+2 fyp+2,p+3,yp+3 . . . fyq−2,q−1,yq−1 fyq−1,q,yq

× f q+1,q+2,zq+2 fzq+2,q+3,zq+3 . . . fzn−2,n−1,zn−1 fzn−1,n,zn

←→

(
p
∏

k=3

k−1∑

m=2

Xmk

) 



q
∏

k=p+2

k−1∑

m=p+1

Xmk









n∏

k=q+2

k−1∑

m=q+1

Xmk



 .

(7.26)

Given the most general definition (7.26) of the double-arrow notation, the final forms (5.34)

and (7.21) for Kn andMF 4

n , respectively, are related by

MF 4

n ←→ Kn. (7.27)

This map allows to construct the one-loop kinematic factor by knowledge of the corre-

sponding color-dressed tree amplitude at order α′2.

7.4 Proving total symmetry of Kn

In this subsection, we use theMF 4

n ↔ Kn duality (7.26) to carry out the outstanding proof

that Kn as given by (5.34) is completely symmetric in all labels (12 . . . n).

Representing Kn and MF 4

n in their minimal Sn−1
3 basis hides the total permutation

symmetry in 12 . . . n. Leg number one is singled out in (5.34) and (7.21) on the level of both
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BRST invariants C1,... and color factors d1pqr(f bcd)n−4 and worldsheet functions (Xrs)
n−4

since r, s 6= 1. Since the remaining legs 23 . . . n enter on equal footing, it is sufficient to

prove 1↔ 2 symmetry of Kn andMF 4

n . The explicit check would require several changes of

basis — firstly in kinematic space from C1,... to C2,... using the identities in subsection 4.5,

secondly in color space d1pqr 7→ d2pqr and thirdly in the worldsheet integrand (Xrs)
n−4

from r, s 6= 1 to r, s 6= 2. We will instead apply an indirect argument.

The mapping (7.26) between color factors and (Xrs)
n−4 integrands respects not only

the standard Jacobi identities (7.7) but also those relations which are required for the afore-

mentioned change of basis: the generalized Jacobi relations (7.8) are dual to integration

by parts. The simplest non-trivial example can be found at five-points,

f12ada345 + f13ada245 + f14ada235 + f15ada234 = 0 ←→ X12 +X13 +X14 +X15 = 0

where the validity of the X1j relation rests on integration against the Koba Nielsen factor,

see subsection 5.3. At higher multiplicity, the form
∏p

k=3

∑k−1
m=2Xmk of the worldsheet

functions is sufficiently integration-by-parts-friendly such that they still obey four term

identities of type (7.8), e.g.

f12afa3bdb456 = f12a(da45bf b36+cyc(456)) ←→ X12(X13+X23) = X12(X34+X35+X36)

as well as

f23afa1bdb456 + sym(1456) = 0 ←→ X23(X21 +X24 +X25 +X26 + 2↔ 3) = 0

at six-points. Generalizations to higher multiplicity are straightforward.

Since the mapping (7.26) preserves the generalized Jacobi relations (7.8), the hidden

total symmetry of MF 4

n implies that of Kn. Our computation of MF 4

n started with the

manifestly 1↔ 2 symmetric expression (7.1) summing over all cyclically inequivalent per-

mutations, so we can be sure that the representation (7.21) is totally symmetric. Our

derivation of the final result (5.34) for Kn, on the other hand, started with the V 1 ↔ U2

asymmetric prescription (3.1) and involved incomplete arguments about the absence of

additional b-ghost contributions. It is quite assuring to see that (5.34) must be totally

symmetric as well — if the b-ghost contributed to Kn via OPE contractions, then this

would probably modify its symmetry properties due to the asymmetric response of V 1 and

U j≥2, suggesting their absence.

7.5 Correspondence between color and kinematics in MF
4

n

It was argued in [27] that the symmetric role of kinematic numerators and color factors in

SYM amplitudes suggests to impose dual Jacobi identities in the kinematic sector. They

have been successfully applied to simplify the calculation of multiloop amplitudes in both

SYM and gravity [69, 70]. The BRST building blocks technique can be used to obtain

local BCJ numerators at tree-level for any number of external legs [28] through the low

energy limit of string amplitudes. Therefore, it seems worthwhile to search for possible

BCJ generalizations at the next order in the momentum expansion of the superstring.
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multiplicity 4 5 6 7 8 n

diagrams per color-stripped AYM 2 5 14 42 132 C(n− 2)

diagrams per color-dressedMYM
n 3 15 105 945 10395 (2n− 5)!!

diagrams per color-stripped AF 4
1 5 21 84 330 n−3

2 C(n− 2)

diagrams per color-dressedMF 4

n 1 10 105 1260 17325 n−3
3 (2n− 5)!!

Table 2. Number of diagrams which compose the different types of amplitudes according to their

kinematic pole structure. Here, C(k) denotes the kth Catalan number C(k) = (2k)!
k!(k+1)! .

So in this final subsection we show that the final form (7.21) for the color-dressedO(α′2)

amplitude MF 4

n is symmetric under exchange of color and kinematics. This observation

has no direct relevance for one-loop amplitudes but it is an interesting generalization of

the color-kinematic-symmetric representation [27]

MYM
n =

(2n−5)!!
∑

i

ci ni
∏n−3

αi
sαi

(7.28)

for color-dressed SYM tree amplitudes. The sum over i encompasses all cubic diagrams

with n − 3 propagators
∏

αi
s−1
αi

, and ci, ni denote the associated color- and kinematic

structures. One rewarding property of (7.28) is the fact that gravity tree amplitudes can be

immediately obtained by replacing color factors ci 7→ ñi by another copy ñi of the kinematic

numerators ni, provided that the latter satisfy Jacobi identities dual to the color factors ci.

This encouraged us to build the MF 4

n analogue (7.32) of (7.28), we regard it as the

first step towards a double copy construction that could ultimately yield a gravity analogue

of AF 4
amplitudes. Instead of the cubic diagrams in (7.28), the diagrams inMF 4

n are built

from one totally symmetry quartic vertex and n− 4 cubic vertices.

The expansion ofMF 4

n in terms of BRST invariants C1,... takes a very compact form,

but since each C1,... encompasses several kinematic poles (i.e. diagrams of the form figure 4),

it is not immediately obvious from (7.21) how the kinematic numerators associated to these

poles combine with color factors. In section 4, we have constructed these numerators in pure

spinor superspace, they are quartic expressions 〈Td1...dsT
i
a1...apT

j
b1...bq

T k
c1...cr〉 in tree subdia-

grams T... and T i,j,k
... attached to a totally symmetric quartic vertex. As an artifact of insert-

ing leg one via unintegrated vertex operator V 1, each numerator obeys 1 ∈ {d1, d2 . . . ds}.

The number of diagrams per color-dressed MF 4

n is displayed in the last line of ta-

ble 2.18 In order to resolve all of them, we start from the 〈Md1...dsM
i
a1...apM

j
b1...bq

Mk
c1...cr〉

constituents of C1,... and expand the Berends-Giele currents in terms of BRST building

18In order to arrive at the diagrams per topology, note that there are (2p − 3)!! subdiagrams within all

the Ti1i2...ip permutations (at fixed set {i1i2 . . . ip}), corresponding to the (2n − 5)!! cubic diagrams in an

n-point color-dressed SYM tree amplitude. For instance, there are three different diagrams

T123

s12s123
,

T231

s23s123
,

T312

s13s123

corresponding to the s-, t- and u channel in MYM
4 and 15 different Tpqrs/s

3 subdiagrams.
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blocks 〈Td1...dsT
i
a1...apT

j
b1...bq

T k
c1...cr〉. Each individual kinematic diagram is associated with

a separate color factor dijkl(f bcd)n−4 which precisely matches its propagator structure. Of

course, the color algebra makes use of the generalized Jacobi identities (7.7) and (7.8), e.g.

the five-point result (7.13) yields

1

6i
MF 4

5 =
1

s23
〈V1T

i
23T

j
4T

k
5 〉f

23ada145 +
1

s24
〈V1T

i
24T

j
3T

k
5 〉f

24ada135

+
1

s25
〈V1T

i
25T

j
3T

k
4 〉f

25ada134 +
1

s34
〈V1T

i
34T

j
2T

k
5 〉f

34ada125

+
1

s35
〈V1T

i
35T

j
2T

k
4 〉f

35ada124 +
1

s45
〈V1T

i
45T

j
2T

k
3 〉f

45ada123

+
1

s12
〈T12T

i
3T

j
4T

k
5 〉f

12ada345 +
1

s13
〈T13T

i
2T

j
4T

k
5 〉f

13ada245

+
1

s14
〈T14T

i
2T

j
3T

k
5 〉f

14ada235 +
1

s15
〈T15T

i
2T

j
3T

k
4 〉f

15ada234.

(7.29)

Similarly at six- and seven-points, (7.14) and (7.15) become

−
1

6
MF 4

6 = 45 terms
[
f12a f34b dab56

1

s12 s34
〈T12 T

i
34 T

j
5 T

k
6 〉
]

+ 60 terms
[
f12a fa3b db456

1

s12 s123
〈T123 T

i
4 T

j
5 T

k
6 〉
]

(7.30)

1

6i
MF 4

7 = 105 terms
[
f12a f34b f56c dabc7

1

s12 s34 s56
〈T12 T

i
34 T

j
56 T

k
7 〉
]

+ 630 terms
[
f12a fa3b f45c dbc67

1

s12 s123 s45
〈T123 T

i
45 T

j
6 T

k
7 〉
]

+ 420 terms
[
f12a fa3b f b4c dc567

1

s12 s123 s1234
〈T1234 T

i
5 T

j
6 T

k
7 〉
]

+ 105 terms
[
f12a f34b fabc dc567

1

s12 s34 s1234
2〈T12[34] T

i
5 T

j
6 T

k
7 〉
]
. (7.31)

For each topology, we sum over all permutations that are inequivalent under the

symmetries of 〈Td1...dsT
i
a1...apT

j
b1...bq

T k
c1...cr〉, up to the aforementioned rule that 1 ∈

{d1, d2 . . . ds} holds in each term. For instance, one of the suppressed terms in (7.30)

reads f23af45bdab61〈V1T
i
23T

j
45T

k
6 〉/(s23s45).

For higher multiplicity, this generalizes to

MF 4

n =

1
3
(n−3)(2n−5)!!
∑

I

CI NI
∏n−4

αI
sαI

, (7.32)

where the sum over I encompasses all box diagrams with four tree subdiagrams at the

corners,
∏

αI
s−1
αI

denotes the associated n− 4 propagators, and the numerator contains a

color- CI ↔ dijkl(f bcd)n−4 and a kinematic factor NI ↔ 〈T...T
i
...T

j
...T

k
...〉.

Unfortunately, our superspace representation of these numerators NI does not yet lead

to kinematic Jacobi identities dual to the color relation da(ijkf l)ab = 0, e.g.

〈T12T
i
3T

j
4T

k
5 〉+ 〈T13T

i
2T

j
4T

k
5 〉+ 〈T14T

i
2T

j
3T

k
5 〉+ 〈T15T

i
2T

j
3T

k
4 〉 6= 0. (7.33)
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One could suspect that this is an artifact of the asymmetric role of label one in 〈T12T
i
3T

j
4T

k
5 〉

and 〈T1T
i
23T

j
4T

k
5 〉. It would be desirable to find an improved representation of the NI such

that a strict duality holds

CI + CJ + CK + CL = 0 ↔ NI +NJ +NK +NL = 0. (7.34)

This is for instance achieved by the five-point box-numerators γij in [81]. Finding such

a duality-satisfying representation for n-point kinematics and studying the significance of

the gravity amplitude obtained by replacing CI 7→ ÑI in (7.32) is left for future work.

8 Conclusions

In this article, we have derived BRST invariant worldsheet integrands Kn for one-loop open

superstring amplitudes involving any number n of massless gauge multiplets. Our main

result (5.34) is expressed in terms of kinematic building blocks C1,... which are implicitly

given in terms ofO(α′2) tree subamplitudes via (6.17). Since we have used BRST invariance

in determining the associated worldsheet functions, our setup is by construction blind to

the hexagon anomaly [21, 22]. A superspace treatment of anomalous amplitude ingredients

along the lines of [74] is left for future work.

Both the superspace kinematics C1,... and the associated worldsheet functions fall into

a basis of dimension Sn−1
3 , an unsigned Stirling number of first kind. The same kind of sym-

metries also govern the color-dressed tree amplitudeMF 4

n at order α′2, so we point out a

duality between its minimal form (7.21) in a color basis and the one-loop integrandKn given

by (5.34). The link is a one-to-one dictionary (7.26) between color factors dijkl(f bcd)n−4

(encompassing one symmetrized four-trace and structure constants otherwise) and world-

sheet functions Xn−4
ij ≡ (sijηij)

n−4 (built from ηij = ∂i〈x(zi, zi)x(zj , zj)〉) present in Kn.

A detailed analysis of the Sn−1
3 worldsheet integrals is left for future work. The only

comment we want to make at this point is that the integrand structure closely parallels

the tree-level result from [6, 7]: each zi → zj singularity in both the tree-level and the

one-loop integrand is always accompanied by a corresponding Mandelstam numerator sij ,

i.e. we have sijηij = sij/zij +O(zij). This guarantees that the integration does not intro-

duce any poles in kinematic invariants, i.e. that the full propagator structure due to open

string exchange is captured by the C1,.... On the other hand, loop amplitudes additionally

involve non-analytic momentum dependencies, so the main challenge in further studying

the worldsheet integrals is to identify the polylogarithms that arise in both leading and

subleading orders in α′.
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A On the uniqueness of the b-ghost zero mode contribution

The computation of higher-point amplitudes at one-loop might involve different dα zero-

mode distributions among the picture changing operators, the b-ghost and the external

vertices. In addition, the b-ghost might have OPE singularities with the other operators,

resulting in yet other types of contributions.

However, the following argument supports that the zero-mode b-ghost contribu-

tion at one-loop is unique and given by d4δ′(N). In order to see this note that

the zero-mode contribution of the picture changing operators is fixed and given by

(d)10(λ)10δ10(N)δ(J)(θ)11δ11(λ), which is responsible among other things for absorb-

ing all 11 bosonic zero-modes of wα [5]. Now assume that the b-ghost zero-mode

contribution contains (d)nδm(N) and note that performing the zero-mode integral
∫
[DN ] d16d(d)10+n(λ)10δ11(λ)δm(N)

[
vertices

]
has the net effect of replacing (d)6−n(N)m

zero-modes from the external vertices by a function quadratic in λ,

(d)6−n(N)m −→ (λ)2 (A.1)

since [DN ] has ghost number −8. From the expression (3.3) for the b-ghost it follows that

the possible values are n = 0, 1, 2, 4 and m = 1, 2, 3. However (d)4(N)m and (d)5(N)m

have no (00002) component for any value of m [34] and the zero-mode integral vanishes

for n = 1, 2. Therefore group theory alone does not exclude the possibility of the b-ghost

contributing either 0 or 4 zero modes of dα with varying number of derivatives of delta

functions. So let us analyze these possibilities in separate.

The possible zero-mode contribution from the b-ghost containing no dα zero modes

are given by

NΠ2δ(N), N2Π2δ′(N), (A.2)

but they both vanish due to oversaturated Nmn zero modes using that Nδ(N) = 0. For

the same reason, any contribution ∼ J and ∼ J2 from the b-ghost (e.g. (d)4JNδ′′′(N)

or (d)4(J)2δ′′′(N) at four dα zero modes) is suppressed by the δ(J) = 0 from the picture

changing operator ZJ . That leaves the three contributions

(d)4δ′(N), (d)4Nδ′′(N), (d)4(N)2δ′′′(N) (A.3)

of uniform type under integration by parts. Therefore the zero-mode contribution from

the b-ghost is unique and given by (d)4δ′(N). In this paper we studied the cohomology

properties of precisely this class of terms in order to anticipate its appearance in the final

expression for the superspace kinematic factors.
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When the b-ghost is allowed to contribute non-zero modes the number of possibilities

increases, but only those which also contain either 0 or 4 zero modes of dα can have

a nonzero impact on the amplitude. As argued in [9], terms involving only one OPE

contraction of the b-ghost vanish because they are proportional to a derivative with respect

to the position z0 of the b-ghost insertion. Since z0 appears nowhere else in the correlation

function, those terms are total derivatives which integrate to zero due to the doubling trick.

Having excluded single OPEs with the b ghost, it follows that the five-point amplitude gets

no contribution at all from b ghost OPEs [9], but from six-points onwards these terms

are not excluded. For example, the b-ghost term (d)4JNδ′′′(N) can in principle have

simultaneous OPEs involving J and N with different external vertices leading to factors

which are not manifestly total derivatives. This term requires two d’s and three N ’s from

the integrated vertices which can be provided in case of six and more external states.

B Symmetrized traces for six- and seven-point amplitudes

The six- and seven-point symmetrized traces can be computed using the color package

of FORM. After rewriting the generated terms in the Kleiss-Kuijf basis of fn−2 and in the

“Stirling” basis of dijkl(f bcd)n−4 one gets for six-points

Tr(T 1T 2T 3T 4T 5T 6) + Tr(T 6T 5T 4T 3T 2T 1) = 2d123456

+
1

5
f12afa3bf b4cf c56 −

1

20
f12afa3bf b5cf c46 −

1

20
f12afa4bf b3cf c56 −

1

20
f12afa4bf b5cf c36

−
1

20
f12afa5bf b3cf c46 +

1

30
f12afa5bf b4cf c36 −

1

20
f13afa2bf b4cf c56 +

1

30
f13afa2bf b5cf c46

−
1

20
f13afa4bf b2cf c56 −

1

20
f13afa4bf b5cf c26 −

1

20
f13afa5bf b2cf c46 +

1

30
f13afa5bf b4cf c26

−
1

20
f14afa2bf b3cf c56 +

1

30
f14afa2bf b5cf c36 +

1

30
f14afa3bf b2cf c56 +

1

30
f14afa3bf b5cf c26

−
1

20
f14afa5bf b2cf c36 +

1

30
f14afa5bf b3cf c26 −

1

20
f15afa2bf b3cf c46 +

1

30
f15afa2bf b4cf c36

+
1

30
f15afa3bf b2cf c46 +

1

30
f15afa3bf b4cf c26 +

1

30
f15afa4bf b2cf c36 −

1

20
f15afa4bf b3cf c26

−
1

2
f23ada14bf b56 −

1

2
f23ada15bf b46 −

1

2
f23ada16bf b45 −

1

2
f24ada13bf b56 −

1

2
f24ada15bf b36

−
1

2
f24ada16bf b35 −

1

2
f25ada13bf b46 −

1

2
f25ada14bf b36 −

1

2
f25ada16bf b34 −

1

2
f26ada13bf b45

−
1

2
f26ada14bf b35 −

1

2
f26ada15bf b34 −

1

2
f34ada12bf b56 −

1

2
f35ada12bf b46 −

1

2
f36ada12bf b45

−
1

3
f23afa5bdb146 −

1

3
f23afa6bdb145 −

1

3
f24afa3bdb156 −

1

3
f24afa5bdb136

−
1

3
f24afa6bdb135 −

1

3
f26afa5bdb134 +

2

3
f34afa2bdb156 −

1

3
f34afa5bdb126

−
1

3
f34afa6bdb125 +

1

3
f35afa2bdb146 +

1

3
f36afa2bdb145 −

1

3
f36afa5bdb124

+
1

3
f45afa2bdb136 +

1

3
f45afa3bdb126 +

1

3
f46afa2bdb135 +

1

3
f46afa3bdb125
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−
1

3
f46afa5bdb123 +

2

3
f56afa2bdb134 +

2

3
f56afa3bdb124 +

2

3
f56afa4bdb123.

The seven-point expression is too big to be illuminating and was therefore omitted.19

C The higher-multiplicity BRST invariants

In this appendix we list the explicit form of the BRST invariants which appear in the

eight-point amplitude.

C1,23456,7,8 =
(

M1M
i
23456 +M612M

i
345 +M56123M

i
4 +

[
M12345M

i
6 +M1234M

i
56

+M123M
i
456 +M12M

i
3456 +M6123M

i
45 +M61234M

i
5 + (2, 3↔ 6, 5)

])

M j
7M

k
8

C1,2345,67,8 =
(

M1M
i
2345M

j
67 +M215M

i
34M

j
67 +

[
M71M

i
2345M

j
6 − (6↔ 7)

]

+
[
M12M

i
345 +M123M

i
45 +M1234M

i
5 + M4512M

i
3 − (2, 3↔ 5, 4)

]
M j

67

+
{ [

M712M
i
345M

j
6 +M7123M

i
45M

j
6 + M71234M

i
5M

j
6 −M7125M

i
34M

j
6

+M75123M
i
4M

j
6 +M57123M

i
4M

j
6 − (2, 3↔ 5, 4)

]
− (6↔ 7)

})

Mk
8

C1,234,567,8 =
(

M1M
i
234M

j
567 +

[
M12M

i
34M

j
567 +M14M

i
32M

j
567 +M123M

i
4M

j
567

+M143M
i
2M

j
567 +M214M

i
3M

j
567 + (2, 3, 4↔ 5, 6, 7)

]
+
[
M712M

i
34M

j
56

+M7123M
i
4M

j
56 +M6712M

i
34M

j
5 +M6512M

i
34M

j
7 +M5124M

i
3M

j
67

+M2157M
i
34M

j
6 +M67123M

i
4M

j
5 −M65124M

i
3M

j
7 −M32157M

i
4M

j
6

+M24157M
i
3M

j
6 + (2↔ 4) + (5↔ 7)

])

Mk
8

C1,234,56,78 =
(

M1M
i
234 +M214M

i
3 +

[
M12M

i
34 +M123M4 + (2↔ 4)

] )

M j
56M

k
78

+
([

M15M
i
234M

j
6 −M16M

i
234M

j
5

]
Mk

78 +
[
M216M

i
34M

j
5 +M6123M

i
4M

j
5

+M5124M
i
3M

j
6 + (2↔ 4)− (5↔ 6)

]
Mk

78 + (5, 6↔ 7, 8)
)

+
[
M617M

i
234M

j
5 M

k
8 − (5↔ 6)− (7↔ 8)

]
+
[
(M7126 +M7162)M

i
34M

j
5 M

k
8

+ (M75123 +M57123)M
i
4M

j
6 M

k
8 − (M75124 +M57124)M

i
3M

j
6 M

k
8

+ (2↔ 4)− (5↔ 6)− (7↔ 8)
]
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