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1 Introduction

The existence of ultraviolet divergences is a long standing problem of quantum field theory.

An important step towards solving this problem is a discovery of supersymmetry [1, 2].

It is well known that the behavior of supersymmetric theories in the ultraviolet region is

better due to non-renormalization theorems. In particular, the N = 4 supersymmetric

Yang-Mills theory is finite [3–6]. Divergences in N = 2 supersymmetric Yang-Mills theo-

ries exist only in the one-loop approximation [7]. Even in N = 1 supersymmetric theories

the superpotential is not renormalized [8]. However, the β-function in N = 1 supersym-

metric Yang-Mills theories receives quantum corrections in all orders. Nevertheless, this

β-function is related with the anomalous dimension of the matter superfields. This relation

is called the exact Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) β-function [9–11].

In the original papers this β-function was obtained using arguments based on the struc-

ture of instanton contributions (for review, see [12]) or on the supermultiplet structure

of anomalies. In particular, in the lowest orders the relation between the β-function and

anomalies was investigated in [10, 13–15] and exactly in all orders in [10, 16, 17]. This was

done using the Adler-Bardeen theorem [18] for the axial anomaly, a relation between the

anomaly of energy-momentum tensor trace and a β-function, and a supermultiplet struc-

ture of anomalies. Another derivation of the exact NSVZ β-function based on anomalies

was made in [19]. This β-function was also obtained in [20] using the non-renormalization

theorem for the topological term. In [21] the rescaling anomaly is used for explanation of

the higher order corrections to the NSVZ β-function.

In this paper we consider the N = 1 supersymmetric electrodynamics (SQED) with

Nf flavors, for which the NSVZ β-function is written as [22, 23]

β(α) =
α2Nf

π

(
1− γ(α)

)
. (1.1)

The NSVZ β-function can be compared with the results of explicit calculations in the lowest

orders of the perturbation theory. In the one- and two-loop approximations a β-function

for supersymmetric theories was first calculated in [24] and [25], respectively, using the di-

mensional regularization [26–29]. However, because the dimensional regularization breaks

supersymmetry [30], most calculations in supersymmetric theories were made with the di-

mensional reduction proposed in [31] (see [32] for a recent review). Using this regularization

and the DR-scheme, which is a modification of the MS-scheme [33], the β-function of the

N = 1 supersymmetric Yang-Mills theory with matter was calculated in the three- [34, 35]

and four-loop [36] approximations. The results coincide with the NSVZ β-function in one-

and two-loop approximations (where the β-function is scheme-independent). In the higher
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loops the NSVZ β-function can be obtained after a special redefinition of the coupling

constant [35, 37]. (Using such a redefinition the result for the four-loop β-function was

correctly predicted in [38] before the explicit calculation made in [36].)

However, the regularization by the dimensional reduction is not self-consistent [39].

The inconsistencies can be removed only if one breaks the manifest supersymmetry [40, 41].

Therefore, supersymmetry can be broken by higher orders quantum corrections [40]. This

was verified explicitly: in the N = 2 supersymmetric Yang-Mills theory without matter

superfields obtaining the three-loop β-function by different methods (using various Green

functions) gives different results [40, 42]. (The calculation made in [42] showed that this

does not take place for the N = 1 supersymmetric Yang-Mills theory at three-loop level,

as it was argued in [40].) In the N = 4 supersymmetric Yang-Mills theory the dimensional

reduction does not break supersymmetry even in the four-loop approximation [43]. Nev-

ertheless, with the dimensional reduction one can expect breaking of supersymmetry by

quantum corrections in higher loops (see table 1 in [40]).

Although the dimensional reduction is the most popular regularization for calculations

in supersymmetric theories, other methods are also used. For example, using a method

based on the operator product expansion two-loop β-functions of scalar, spinor, and N = 1

supersymmetric electrodynamics were calculated in [44]. With the differential renormal-

ization [45] a two-loop β-function of the N = 1 supersymmetric Yang-Mills theory was

found in [46]. Another regularization used for calculations in supersymmetric theories is

the higher covariant derivative regularization proposed in [47, 48]. This regularization was

subsequently generalized to the supersymmetric case in [49, 50]. It can be also applied in

N = 2 supersymmetric theories [51, 52]. The higher covariant derivative regularization

leads to loop integrals which have complicated structure. That is why this regularization is

not frequently used for explicit calculations. However, it is quite possible. For example, a

one-loop β-function of the (non-supersymmetric) Yang-Mills theory was calculated in [53].

After essential corrections introduced in the subsequent papers [54, 55] the well-known

one-loop result [56, 57] was reobtained (although the original calculation made in [53] gave

a different result). One can prove that at the one-loop level the higher covariant deriva-

tive regularization always produces the same result for a β-function as the dimensional

regularization [58].

Quantum corrections obtained with the higher covariant derivative regularization in

supersymmetric theories appear to have an interesting feature: the β-function defined in

terms of the bare coupling constant is given by integrals of total derivatives with respect to

a loop momentum [59–62] and even by integrals of double total derivatives [63–66]. Thus,

it is possible to calculate one of the loop integrals analytically and reduce a number of the

integrations over loop momentums. At least, in the Abelian case this allows to prove that

the β-function and the anomalous dimension of the matter superfields defined in terms of

the bare coupling constant satisfy the NSVZ relation [67–69]. (For a fixed regularization)

these renormalization group functions are scheme independent (see, e.g., [69]), so that

the NSVZ β-function is obtained for an arbitrary renormalization prescription. However,

if the renormalization group functions are defined by the standard way in terms of the

renormalized coupling constant, they depend on the subtraction scheme [70]. In this case
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the NSVZ β-function is obtained in a special subtraction scheme. If the theory is regularized

by higher derivatives, such a scheme can be obtained in all orders by imposing simple

boundary conditions on the renormalization constants [68, 69]. So far there is no similar

prescription in the case of using the dimensional reduction, and the NSVZ scheme should be

constructed in each order of the perturbation theory after calculating the renormalization

group functions.

Thus, using the higher covariant derivative regularization one can naturally construct

the scheme in which the β-function coincides with the exact NSVZ β-function at least in

the Abelian case. Certainly, it is desirable to generalize the results to the non-Abelian

case. However, in the non-Abelian case the calculations with the higher covariant deriva-

tive regularization were performed only in the one- and two-loop approximations, where

the β-function is scheme-independent. Nevertheless, in both cases the β-function appears

to be given by integrals of double total derivatives and coincide with the NSVZ expression.

This allows to suggest that the structure of quantum corrections in the non-Abelian case is

similar to the case of N = 1 SQED. However, the method used in [67] (which was proposed

in [71]) is not convenient for generalizing the results to the non-Abelian case. Possibly, using

this method one can prove the factorization of integrands into the double total derivatives,

but obtaining the exact β-function by this method seems to be a very complicated problem.

Even in N = 1 SQED for this purpose it is necessary to compare coefficients of different

Feynman diagrams [67]. From the other side, the NSVZ expression naturally appears in

case of using another method proposed in [72]. It is based on substituting solutions of the

Ward (or Slavnov-Taylor) identities into the Schwinger-Dyson equations. The Schwinger-

Dyson equations can be used for making calculations in a certain approximation as in [73],

where the four-loop anomalous dimension of quenched QED was obtained by this method.

However, they can also allow to find results which are exact in all orders. In particular, in

Abelian supersymmetric theories by using the Schwinger-Dyson equation it is possible to

present the two-point Green function of the gauge superfield as a sum of two effective dia-

grams. One of them is related with the two-point Green functions of the matter superfields

and gives the exact NSVZ β-function. The second effective diagram cannot be expressed in

terms of these two-point Green functions. However, calculations made in [74, 75] show that

this effective diagram (in the limit of the vanishing external momentum) is always given by

integrals of total derivatives and vanishes, as it was suggested in [72]. This feature was not

so far explained within a method based on using the Schwinger-Dyson equations that is the

main obstacle for deriving the exact NSVZ β-function by this method. Thus, it is desirable

to understand, why the second effective diagram vanishes, especially because it seems that

the considered technique can be generalized to the the non-Abelian case. (Vanishing of

this diagram can be interpreted as a special identity relating some Green functions.)

In this paper we complete derivation of the NSVZ β-function started in [72]. In par-

ticular, we directly prove that the second effective diagram vanishes, and the β-function is

given by integrals of double total derivatives. The method used in this paper seems to be

applicable in the non-Abelian case. That is why throughout the paper we try to use the

notation, which can be also used for non-Abelian supersymmetric Yang-Mills theories.
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The paper is organized as follows: in section 2 we describe N = 1 SQED with Nf

flavors, regularized by higher derivatives, and introduce the notation. In section 3 we

write the Schwinger-Dyson equations for the considered theory and present the β-function

(and its derivative with respect to a specially introduced parameter g) as a sum of effective

diagrams. In section 4 we prove that the β-function is given by integrals of total derivatives

and is equal to the exact NSVZ β-function. Also in this section we present a direct proof

of a special identity for Green functions, which was proposed in [72]. In section 5 we

prove that the β-function is given by integrals of double total derivatives and present the

derivation of the exact NSVZ β-function from this fact. A large number of technical details

are collected in appendixes.

2 N = 1 SQED with Nf flavors, regularized by higher derivatives

In this paper we derive the NSVZ β-function for N = 1 SQED with Nf flavors in all orders

using the technique based on the Schwinger-Dyson equations. It is convenient to write

the action for this theory in terms of superfields, because in this case supersymmetry is a

manifest symmetry [76, 77]. In this notation in the massless limit the action is given by

S =
1

4e20
Re

∫
d4x d2θW aWa +

1

4

Nf∑

α=1

∫
d4x d4θ

(
φ∗

αe
2V φα + φ̃∗

αe
−2V φ̃α

)
. (2.1)

In order to regularize this theory, we modify its action by adding a term with higher

derivatives [47, 48]:

Sreg =
1

4e20
Re

∫
d4x d2θW aR(∂2/Λ2)Wa+

1

4

Nf∑

α=1

∫
d4x d4θ

(
φ∗

αe
2V φα+φ̃∗

αe
−2V φ̃α

)
. (2.2)

The higher derivatives are included into the function R, which satisfies the conditions

R(0) = 1 and R(∞) = ∞. For example, it is possible to choose R = 1 + ∂2n/Λ2n. The

term with higher derivatives increases a degree of the momentum in the propagator of the

gauge superfield. As a consequence, most loop integrals become convergent in the ultravi-

olet region. An accurate analysis shows that after introducing the higher derivative term

divergences remain only in the one-loop approximation [78]. In order to cancel these re-

maining one-loop divergences, one should insert the Pauli-Villars determinants det(V,MI)

into the generating functional [79]:

Z =

∫
DV DφDφ̃

n∏

I=1

(det(V,MI))
cINf exp

(
iSreg[V, φ, φ̃] + iSgf [V ] + iSsource

)
. (2.3)

For fixing a gauge

Sgf = −
1

64e20

∫
d4x d4θ

(
V R(∂2/Λ2)D2D̄2V + V R(∂2/Λ2)D̄2D2V

)
(2.4)

is added to the classical action, while ghosts can be omitted in the Abelian case. The

masses of the Pauli-Villars fields should be proportional to the parameter Λ:

MI = aIΛ, (2.5)
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where aI are some real constants which do not depend on the bare coupling constant. The

coefficients cI should satisfy the conditions

n∑

I=1

cI = 1;
n∑

I=1

cIM
2
I = 0, (2.6)

which ensure cancelation of the remaining one-loop divergences. For simplicity, in this

paper we use the following choice of this coefficients:

cI = (−1)PI+1, (2.7)

where PI is an integer. In this case for even PI we can present the Pauli-Villars determinants

as functional integrals over the commuting (chiral) Pauli-Villars superfields. For odd PI

the Pauli-Villars superfields are anticommuting. Therefore, PI is a Grassmannian parity

of the Pauli-Villars superfields, and

n∏

I=1

(
det(V,MI)

)cINf

=

∫ Nf∏

α=1

n∏

I=1

DφαIDφ̃αI exp(iSPV), (2.8)

where the action for the Pauli-Villars superfields is

SPV =

n∑

I=1

Nf∑

α=1

{
1

4

∫
d8x

(
φ∗

αIe
2V φαI + φ̃∗

αIe
−2V φ̃αI

)

+
(1
2

∫
d4x d2θMIφαI φ̃αI +

1

2

∫
d4x d2θ̄ MIφ

∗

αI φ̃
∗

αI

)}
(2.9)

with ∫
d8x ≡

∫
d4x d4θ. (2.10)

In order to simplify subsequent equations and make the calculations similar to a non-

Abelian case, we also introduce the notation

φi ≡ (φαI , φ̃αI); φ∗i ≡ (φ∗

αI , φ̃
∗

αI), i = 1, . . . 2(n+ 1)Nf , (2.11)

where the usual fields φα and φ̃α by definition correspond to I = 0. The sum of mass terms

can be written as

Sm ≡
1

2

n∑

I=0

Nf∑

α=1

(∫
d4x d2θMIφαI φ̃αI + c.c.

)

≡
1

4

∫
d4x d2θM ijφiφj +

1

4

∫
d4x d2θ̄ M∗

ijφ
∗iφ∗j , (2.12)

where M0 = 0, because the usual fields, which corresponds to I = 0, are considered in the

massless limit. Due to the gauge invariance the mass matrix satisfies the equation

(T )m
iMmj + (T )m

jM im = (−1)Pj (MT )j i + (MT )ij = 0, (2.13)

– 6 –
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where

(T )i
j ≡

(
1 0

0 −1

)
· δαβ · δIJ ≡ (−1)Pi(T )j i (2.14)

is a generator of the U(1) group in the considered representation and Pi is a Grassmanian

parity of the superfield φi.

It is convenient to introduce sources both for the usual superfields V , φ, and φ̃ and for

the Pauli-Villars superfields:

Ssource ≡

∫
d8xV J +

(∫
d4x d2θ φij

i +

∫
d4x d2θ̄ φ∗ij∗i

)
. (2.15)

Eq. (2.3) is a standard definition of the generating functional for the considered theory,

regularized by higher derivatives. However, it is convenient to use the background field

method and introduce some auxiliary sources. In the Abelian case for this purpose we

make the substitution V → V + V , where V is the background field. Also in the kinetic

terms of the matter superfields we introduce the auxiliary real parameter g according to

the prescription

e2V → 1 + g(e2V − 1); e−2V → 1 + g(e−2V − 1). (2.16)

Then the usual kinetic terms are obtained for g = 1. It is important that this substitution

is made only for the quantum gauge field, which is an integration variable in the generating

functional. Moreover, we introduce the auxiliary sources φ0i and φ̃0i
1 for each pair of the

matter superfields (including the Pauli-Villars fields) according to the prescription

Smatter →
1

4

n∑

I=0

Nf∑

α=1

∫
d8x
[
(φ∗

αI + φ∗

0αI)e
2V
(
1 + g(e2V − 1)

)
(φαI + φ0αI)

+ (φ̃∗

αI + φ̃∗

0αI)e
−2V

(
1 + g(e−2V − 1)

)
(φ̃αI + φ̃0αI)

]
+ Sm.

(2.17)

From eq. (2.17) we see that, by definition, the parameter g is present only in vertices

containing internal lines of the gauge superfield. It is important that introducing the

parameter g we break the quantum gauge invariance. As a consequence, it is impossible

to use Ward identities for Green functions containing external lines of the quantum gauge

field. However, the background gauge invariance

V → V −
1

2
(A+A∗); V → V ; φ → eAφ; φ̃ → e−Aφ̃, (2.18)

where A is an arbitrary chiral superfield, is unbroken.

Thus, the generating functional is given by the following expression:

Z ≡ eiW =

∫
Dµ exp

(
iStotal + iSgf + iSsource

)
, (2.19)

1It is important that we do not impose the chirality condition on the fields φ0i and φ̃0i.
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where Dµ denotes the integration measure and

Stotal =
1

4e20
Re

∫
d4x d2θW aR(∂2/Λ2)Wa +

1

4e20
Re

∫
d4x d2θW aW a

+
1

4

n∑

I=0

Nf∑

α=1

∫
d8x

[
(φ∗

α + φ∗

0α)e
2V
(
1 + g(e2V − 1)

)
(φα + φ0α) + (φ̃∗

α + φ̃∗

0α)e
−2V

×
(
1 + g(e−2V − 1)

)
(φ̃α + φ̃0α)

]

I
+

n∑

I=0

Nf∑

α=1

(1
2

∫
d4x d2θMφαφ̃α + c.c.

)

I
,

(2.20)

where W a = D̄2DaV /4 is the field strength for the background gauge superfield V . (It

is easy to see that terms linear in the quantum field V can be omitted. Also, it is not

necessary to introduce the regulator in the part of the action which depends only on the

background field.) The effective action is defined by the standard way as

Γ[V,V , φi] = W − Ssource, (2.21)

where the sources should be expressed in terms of fields through solving the equations

φi = (−1)Pi
δW

δji
; φ∗i = (−1)Pi

δW

δj∗i
; V =

δW

δJ
. (2.22)

Differentiating the effective action we obtain

ji = −
δΓ

δφi
; j∗i = −

δΓ

δφ∗i
; J = −

δΓ

δV
. (2.23)

Below we will see that it is not convenient to consider (φi, V ) as independent variables. A

more convenient choice is (φi, J), where J is a source for the quantum gauge superfield V .

That is why below instead of the effective action we will mostly use the Routhian

γ[J,V , φi] = W −
(∫

d4x d2θ φij
i + c.c.

)
, (2.24)

where it is necessary to express only the sources ji in terms of J and φi.

Due to the background gauge invariance (2.18) the two-point function of the back-

ground gauge superfield is transversal:

Γ
(2)
V = −

1

16π

∫
d4p

(2π)4
d4θV (θ,−p) ∂2Π1/2V (θ, p) d−1(α0,Λ/p), (2.25)

where α0 = e20/4π is a bare coupling constant and the supersymmetric transversal projector

is given by

∂2Π1/2 = −
1

8
DaD̄2Da. (2.26)

In this paper we will calculate the β-function defined in terms of the bare coupling constant

β
(
α0(α,Λ/µ)

)
=

dα0(α,Λ/p)

d ln Λ

∣∣∣
α=const

, (2.27)
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where α = α(α0,Λ/p) is a renormalized coupling constant. It is determined by the require-

ment that the function d(α0(α,Λ/µ),Λ/p) is finite in the limit Λ → ∞. The anomalous

dimension can be defined similarly:

γ
(
α0(α,Λ/µ)

)
≡ −

d lnZ(α,Λ/µ)

d ln Λ

∣∣∣
α=const

, (2.28)

where Z is a renormalization constant for the matter superfield, which is constructed by

requiring finiteness of the function ZG in the limit Λ → ∞. It is easy to see that the

β-function (2.27) and the anomalous dimension (2.28) do not depend on a choice of the

renormalized coupling constant α and the renormalization constant Z (see, e.g., [68]). The

renormalization group functions (2.27) and (2.28) differ from the standard ones defined in

terms of the renormalized coupling constant

β̃
(
α(α0,Λ/µ)

)
≡

dα(α0,Λ/µ)

d lnµ

∣∣∣
α0=const

;

γ̃
(
α(α0,Λ/µ)

)
≡

d lnZ(α(α0,Λ/µ),Λ/µ)

d lnµ

∣∣∣
α0=const

, (2.29)

which are scheme-dependent. However [68, 69], the functions (2.27) and (2.28) can be

obtained from the renormalization group functions (2.29) by imposing the boundary con-

ditions

Z3(α, x0) = 1; Z(α, x0) = 1 (2.30)

on the renormalization constants, where x0 is an arbitrary fixed value of lnΛ/µ.2

In order to find the β-function (2.27) we calculate the expression

d

d ln Λ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

= −
dα−1

0

d ln Λ
=

β(α0)

α2
0

, (2.31)

where Λ and α are considered as independent variables. This expression is well defined if

the right hand side is expressed in terms of the bare coupling constant α0. The left hand

side of the expression (2.31) can be obtained from the two-point Green function of the

background gauge superfield after the substitution

V (x, θ) → θ̄ȧθ̄ȧθ
bθb ≡ θ4. (2.32)

Strictly speaking, the part of the effective action corresponding to the two-point function

of the gauge superfield is infinite after this substitution, because it is proportional to
∫

d4x → ∞. (2.33)

However, this procedure can be rigorously formulated by inserting a regulator I(x)

V (x, θ) → θ̄ȧθ̄ȧθ
bθb · I(x) ≡ θ4 · I(x) ≈ θ4, (2.34)

2These boundary conditions are imposed only in a single point. They should not be confused with the

condition Z3 = 1 following from the conformal symmetry (see, e.g., [80]), which is valid for arbitrary values

of lnΛ/µ.
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which is approximately equal to 1 at finite xµ and tends to 0 at the large scale R → ∞.

Then in the leading order in R the considered part of the effective action is proportional to

V4 ≡

∫
d4x I2 ∼ R4 → ∞. (2.35)

All terms containing the derivatives of the regulator I are suppressed as 1/RΛ → 0 and

can be omitted. That is why below we do not explicitly write the regulator I, but assume

that V4 is finite and tends to infinity. Actually this corresponds to taking the limit of the

vanishing external momentum p ∼ R−1 ∼ (V4)
−1/4 → 0:

1

2π
V4 ·

d

d ln Λ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

=
1

2π
V4 ·

β(α0)

α2
0

∣∣∣
p=0

=
d(∆Γ

(2)
V )

d ln Λ

∣∣∣
V (x,θ)=θ4

,

(2.36)

where

∆Γ ≡ Γ−
1

4e20
Re

∫
d4x d2θW aW a. (2.37)

The expressions for the two-point Green functions of the matter superfields can be

found using arguments based on the chirality. Taking into account that the two-point

functions of the matter superfields constructed from Γ and γ evidently coincide, they can

be written as

Axy ≡




δ2γ
δ(φi)xδ(φ∗j)y

δ2γ
δ(φi)xδ(φj)y

δ2γ
δ(φ∗i)xδ(φ∗j)y

δ2γ
δ(φ∗i)xδ(φj)y




=




Gj
i D̄

2
xD

2
x

16 δ8xy −1
4(MJ)j iD̄2

xδ
8
xy

−1
4(MJ)∗j iD

2
xδ

8
xy Gj

i
D2

xD̄
2
x

16 δ8xy




, (2.38)

where the fields are set to 0, Gi
j and (MJ)ij are functions of ∂2, and in our notation

Gi
j ≡ (−1)PiGj

i = δαβ · δIJ ·

(
1 0

0 1

)
GI(∂

2);

(MJ)ij = (MJ)∗ij = δαβ · δIJ ·

(
0 MI

(−1)PIMI 0

)
JI(∂

2). (2.39)

(2× 2 matrixes correspond to the fields φ and φ̃. The function J is real as a consequence

of the CP -invariance.) By definition the matrix A−1 constructed from the inverse Green

functions satisfies the condition

∫
d8y (A−1)xy

(
0 D̄2/8∂2

D2/8∂2 0

)

y

Ayz =

(
0 −D̄2/2

−D2/2 0

)
δ8xz. (2.40)

– 10 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

An explicit expression for the matrix A−1 can be easily found:

(A−1)xy ≡




(
δ2γ

δ(φi)xδ(φ∗j)y

)
−1 (

δ2γ
δ(φi)xδ(φj)y

)
−1

(
δ2γ

δ(φ∗i)xδ(φ∗j)y

)
−1 (

δ2γ
δ(φ∗i)xδ(φj)y

)
−1




= −
1

∂2G2 + |MJ |2




Gj
i
D̄2

xD
2
x

4 δ8xy (MJ)∗ijD̄
2
xδ

8
xy

(MJ)ijD2
xδ

8
xy Gj

i D
2
xD̄

2
x

4 δ8xy




, (2.41)

where the operator ∂2G2 + |MJ |2 is defined by the following prescription:

(∂2G2 + |MJ |2)i
k ≡ ∂2Gi

jGj
k + (MJ)∗j i(MJ)j k = δαβ · δIJ ·

(
1 0

0 1

)
(∂2G2

I +M2
I J

2
I ).

(2.42)

3 Schwinger-Dyson equations

Making the change of variables φi → φi + Ai, where Ai are arbitrary chiral superfields, in

the generating functional (2.19), we obtain the equation

−
1

2
D̄2 δΓ

δφ0i
−

δΓ

δφi
+

1

2
M ijφj = 0. (3.1)

This equation can be considered as a Schwinger-Dyson equation for the matter superfields.

Similarly, the Schwinger-Dyson equation for the two-point Green function of the gauge

superfield can be written as [72]

δ(∆Γ)

δV x
=

1

2

n∑

I=0

Nf∑

α=1

〈
(φ∗

α + φ∗

0α)e
2V
(
1 + g(e2V − 1)

)
(φα + φ0α)

−(φ̃∗

α + φ̃∗

0α)e
−2V

(
1 + g(e−2V − 1)

)
(φ̃α + φ̃0α)

〉

I
, (3.2)

where

〈A〉 ≡
1

Z

∫
DµA[V, φi] exp

(
iStotal + iSgf + iSSource

)
(3.3)

and the sources should be expressed in terms of the fields using eq. (2.22). Because in this

paper we use the background field method, eq. (3.2) can be simply obtained by differenti-

ation of the effective action with respect to the background field V . It is easy to see that

the Schwinger-Dyson equation (3.2) can be equivalently rewritten in terms of derivatives

with respect to the sources

δ(∆Γ)

δV x
= 2(T )j i

(1
i

δ

δ(jj)x

δΓ

δ(φ0i)x
+

δΓ

δ(φ0i)x
(φj + φ0j)x

)

= 2(T )j i

(1
i

δ

δ(j∗i )x

δΓ

δ(φ∗j
0 )x

+
δΓ

δ(φ∗j
0 )x

(φ∗i + φi∗
0 )x

)
, (3.4)

– 11 –
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∆Γ
(2)
V =

1

2

∫
d8x d8yV xV y

δ2(∆Γ)

δV xδV y
= +

�
�
��✒ ✻

❅
❅

❅❅■

❆
❆
❆❆❑

δ2Γ

δφ∗

0xδφz

δ3Γ

δV yδφ∗

wδφv

δ3Γ

δV yδφ∗

0xδφz

( δ2Γ

δφzδφ∗

w

)
−1

Figure 1. The Schwinger-Dyson equation for the two-point function of the gauge superfield. Below

we present Feynman rules (for simplicity, in the massless case). In the massive case the effective

diagrams are the same.

where the derivatives with respect to the sources are constructed according to the prescrip-

tion

δ

δ(ji)x
= −

∫
d8y

[( δ2Γ

δ(φi)xδ(φ∗j)y

)
−1 D̄2

y

8(∂2)y

δ

δ(φ∗j)y

+
( δ2Γ

δ(φi)xδ(φj)y

)
−1 D2

y

8(∂2)y

δ

δ(φj)y
+
( δ2Γ

δ(φi)xδVy

)
−1 δ

δVy

]
. (3.5)

In order to verify this equation it is necessary to apply it to (jk)z taking into account

eqs. (2.23) and (2.40). Differentiating eq. (3.4) with respect to V y and setting all fields

(including φ0) to 0, we obtain the Schwinger-Dyson equation for the two-point Green

function of the gauge superfield. Details of this calculation are presented in appendix A.

Following [72] it is convenient to formulate the result in the graphical form. It is presented

in figure 1. In this figure external lines correspond to the gauge superfield V , and, for

simplicity, expressions for vertices and propagators are written for the massless case. In

the analytical form the Schwinger-Dyson equation presented in figure 1 is written as

1

2

∫
d8x d8yV xV y

δ2(∆Γ)

δV yδV x
= −i(T )j i

∫
d8x d8y d8z V xV y

(
δ

δ(jj)x

δ2Γ

δV yδ(φ0k)z

×
[
δ8xzδ

i
k +

δ

δ(jk)z

δγ

δ(φ0i)x

]
+

δ

δ(jj)x

δ2Γ

δV yδ(φ∗k
0 )z

·
δ

δ(j∗k)z

δγ

δ(φ0i)x

)
, (3.6)

where all fields are set to 0, and we use the notation

δ

δ(jj)x
=−

∫
d8w

(( δ2γ

δ(φj)xδ(φm)w

)
−1

φ,φ0,V=0

δ

δ(φ0m)w
+
( δ2γ

δ(φj)xδ(φ∗m)w

)
−1

φ,φ0,V=0

δ

δ(φ∗m
0 )w

)
.

(3.7)

Note that all fields here are set to 0 in contrast to eq. (3.5). Due to this condition the

derivatives δ/δj (anti)commute. However, below we will not usually write explicitly the

condition φ, φ0, V = 0 as in eq. (3.7).
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+ ✲

θ4 θ4

+ terms without θ̄
1 2

Figure 2. The sum of two effective lines.

The Schwinger-Dyson equation (3.6) can be simplified after the substitution (2.32).

(As we already mentioned above, this substitution automatically gives p = 0.) For this

purpose it is convenient to use the identity

(T )ji

∫
d8x (θ4)x

{
δ

δ(jj)x

δ

δ(φ0i)x
+

∫
d8y

[( δ

δ(jk)y

δγ

δ(φ0i)x

) δ

δ(jj)x

δ

δ(φ0k)y
+
( δ

δ(j∗k)y

δγ

δ(φ0i)x

)

×
δ

δ(jj)x

δ

δ(φ∗k
0
)y

]}
=

∫
d8x

{
(T )ji

([
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

−
D2

4∂2
θaθa

] δ

δjj

) δ

δφ0i

−i(MT )ij θ̄ȧ(γµ)ȧ
bθb

(D2∂µ
16∂4

δ

δji

) δ

δjj

}
, (3.8)

which is proved in appendix B. It is convenient to define the operator which contains all

terms of the first degree in θ̄ in eq. (3.8):

GreenLine[1, 2] ≡

∫
d8x

(
(T )j i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

) δ

δ2jj
·

δ

δ1φ0i

−i(MT )ij θ̄ȧ(γµ)ȧ
bθb

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)
. (3.9)

We will graphically denote this operator by a green effective line with the ends 1 and 2. In

figure 2 the identity (3.8) is presented in the graphical form. The indexes 1 and 2 in the

right hand side of eq. (3.9) point the vertices to which the corresponding derivatives act.

(Sometimes we will omit these indexes if they coincide.) Actually this expression can be

considered as a modification of the effective propagator (multiplied by two derivatives with

respect to the φ0). Also we will also use other effective lines. Our notation is presented in

figure 3. Note that in the case of using color lines we do not sometimes explicitly draw the

external lines. Instead of them we draw a small circle, to which we attach corresponding θ-s.

Using the identity (3.8) it is possible to rewrite the Schwinger-Dyson equation (3.6)

in a different form. The result is presented in figure 4. In the analytical form it can be

written as

1

2

∫
d8x d8y (θ4)x(θ

4)y
d

d ln Λ

δ2(∆Γ)

δV xδV y
= −i

d

d lnΛ

∫
d8y (θ4)y GreenLine ·

δΓ

δV y
+ δ, (3.10)

where

δ ≡ i

∫
d8x d8y (θ4)y(T )

j
i

(D2

4∂2
θaθa

δ

δjj

)

x

δ2Γ

δ(φ0i)xδV y
. (3.11)

The green effective line can be presented as a sum of the blue and yellow lines, see

figure 5:

GreenLine[1, 2] = 2 · BlueLineḃ[θ
aθaθ̄

ḃ; 1, 2] + YellowLineµ[θ̄
ȧ(γµ)ȧ

bθb; 1, 2], (3.12)
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UsualLine[1, 2] =

∫
d8x

( δ

δ2φ0i
·

δ

δ1ji
+

δ

δ2φ∗i
0

·
δ

δ1j∗i

)

GreenLine[1, 2] =

∫
d8x

(
(T )j i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

)

×
δ

δ2jj
·

δ

δ1φ0i
− i(MT )ij θ̄ȧ(γµ)ȧ

bθb

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)

GreenWithCross[1, 2] = −

∫
d8x θ̄ȧ(γµ)ȧ

bθb

(
i(MT )ij

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)

BrownLineµ[1, 2] =

∫
d8x

(
(T )j i

(
−

2i∂µ
∂2

− (γµ)
aḃθa

D̄ḃD
2

4∂2

)

×
δ

δ2jj
·

δ

δ1φ0i
+ i(MT )ij

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)

BrownWithCrossµ[1, 2] = i(MT )ij
∫

d8x
(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

BlueLineḃ[α; 1, 2] =

∫
d8xα (T )j i

(D̄ḃD2

8∂2

δ

δ2jj

)
·

δ

δ1φ0i

RedLineḃ[1, 2] =

∫
d8x

(
(T )j i

(
θaθa

D̄ḃD2

∂2
− i(γµ)aḃθa

D̄2D2∂µ
2∂4

)

×
δ

δ2jj
·

δ

δ1φ0i
− i(MT )ij(γµ)aḃθa

(D2∂µ
4∂4

δ

δ2ji

)
·

δ

δ1jj

)

RedWithCrossḃ[1, 2] = −i(MT )ij
∫

d8x (γµ)aḃθa

(D2∂µ
4∂4

δ

δ2ji

)
·

δ

δ1jj

PinkLineḃ[1, 2] =

∫
d8x

(
(T )j i

(
θaθa

D̄ḃD2

2∂2
− i(γµ)aḃθa

D̄2D2∂µ
8∂4

)

×
δ

δ2jj
·

δ

δ1φ0i
− i(MT )ij(γµ)aḃθa

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)

PinkWithCrossḃ[1, 2] = −i(MT )ij
∫

d8x (γµ)aḃθa

(D2∂µ
8∂4

δ

δ2ji

)
·

δ

δ1jj

YellowLineµ[α; 1, 2] =

∫
d8xα

(
2i(T )j i

(∂µ
∂2

δ

δ2jj

)
·

δ

δ1φ0i

−i(MT )ij
(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)

LineWithDot[α; 1, 2] ≡
i

4

∫
d8xα

( δ

δ2j∗i

δ

δ1ji
+

δ

δ1j∗i

δ

δ2ji
+M ij

(D2

8∂2

δ

δ2ji

)

×
δ

δ1jj
+M∗

ij

( D̄2

8∂2

δ

δ2j∗i

) δ

δ1j∗j
+M ij

(D2

8∂2

δ

δ1ji

) δ

δ2jj
+M∗

ij

( D̄2

8∂2

δ

δ1j∗i

) δ

δ2j∗j

)

Figure 3. Definitions of some effective lines which are used in this paper. Expressions for the lines

with a cross are obtained after extracting terms proportional to masses of the Pauli-Villars fields.
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1

2π
V4 ·

β(α0)

α2
0

=
d

d ln Λ

(
+

)∣∣∣∣∣
V →θ4

=
d

d ln Λ
+ δ

Figure 4. Obtaining the β-function (defined in terms of the bare coupling constant) from the

Schwinger-Dyson equation. The additional term δ is given by eq. (3.11).

= +

θ̄ȧ(γµ)ȧ
bθb 2θaθaθ̄

ḃ

µ ḃ

Figure 5. The green effective line can be presented as a sum of the blue and yellow effective lines.

where

BlueLineḃ[α; 1, 2] ≡

∫
d8xα (T )j i

(D̄ḃD2

8∂2

δ

δ2jj

)
·

δ

δ1φ0i
; (3.13)

YellowLineµ[α; 1, 2] ≡

∫
d8xα

(
2i(T )j i

(∂µ
∂2

δ

δ2jj

)
·

δ

δ1φ0i
− i(MT )ij

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

)
.

Using eq. (3.12) and the identity

D2

4∂2
θaθa = θaθa

D2

4∂2
+
(
θa

Da

∂2
−

1

∂2

)
(3.14)

it is possible to split the effective diagram presented in figure 4 into two parts. This is

shown in figure 6. In this figure we use the notation

δ1 ≡ i

∫
d8x d8y (θ4)y(T )

j
i

(θaDa − 1

∂2

δ

δjj

)

x

δ2Γ

δ(φ0i)xδV y
;

δ2 ≡ i

∫
d8x d8y (θ4)y(T )

j
i

(
θaθa

D2

4∂2

δ

δjj

)

x

δ2Γ

δ(φ0i)xδV y
= δ − δ1. (3.15)

The result for the effective diagram with the yellow effective line (including δ1) can be

expressed in terms of the anomalous dimension of the matter superfield [72].3 For this

purpose it is necessary to substitute the solution of the Ward identity for the effective

vertex. The result is also presented in figure 6. It is given by an integral of a total

derivative with respect to a loop momentum. Such a structure allows to reduce a number

3In [72] only the case Nf = 1 is considered.
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d

d ln Λ
+ δ =

( d

d ln Λ
+δ1

)
+
( d

d ln Λ
+δ2

)

θ4 θ4 θ4θ̄ȧ(γµ)ȧ
bθb 2θaθaθ̄

ḃ

❄

[72] ❄
0

(this paper)

NfV4
d

d ln Λ

∫
d4q

(2π)4
4

q2
d

dq2

(
2 lnG−

n∑

I=1

cI

(
ln(q2G2 +M2J2) +

M2J

q2G2 +M2J2

)

I

)

Figure 6. The result of substituting the solution of Ward identities into the Schwinger-Dyson

equation (for the diagram with the yellow effective line).

of momentum integrations and relate the β-function with the anomalous dimension of

the matter superfield. Really, calculating the integral in the four-dimensional spherical

coordinates we obtain

NfV4
d

d ln Λ

∫
d4q

(2π)4
4

q2
d

dq2

(
2 lnG−

n∑

I=1

cI

(
ln(q2G2 +M2J2) +

M2J

q2G2 +M2J2

)

I

)

=
1

2π
V4 ·

Nf

π

(
1− γ(α0)

)
, (3.16)

where we take into account that for a function f(q2) which rapidly decreases at the infinity

∫
d4q

(2π)4
1

q2
df

dq2
=

1

16π2

∞∫

0

dq2
df

dq2
=

1

16π2

(
f(∞)− f(0)

)
= −

1

16π2
f(0). (3.17)

(The functions considered here rapidly decrease at the infinity due to the higher derivative

regularization.) As a consequence, the contribution of the diagram with the yellow effective

line gives the exact NSVZ β-function

β(α0) =
α2
0Nf

π

(
1− γ(α0)

)
. (3.18)

However, using this method it is impossible to calculate the diagram with the blue

effective line in figure 6. Some explicit calculations in the lowest (three- and four-) loops [75]

show that this diagram plus δ2 is also given by an integral of a total derivative and vanishes.

In the graphical form this is presented in figures 6 and 7. This equality can be considered

as a nontrivial relation between Green functions [72]. It was proved indirectly in [67]

using a method proposed in [71]. In particular, it is possible to prove that the integrand

corresponding to this diagram is a total derivative. In the analytical form the equality

presented in figure 7 can be written as

−i
d

d lnΛ

∫
d8x d8y (θ4)y(T )

j
i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
−θaθa

D2

4∂2

)

x

δ

δ(jj)x

δ

δ(φ0i)x

δΓ

δV y
= 0. (3.19)
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2 ·
d

d ln Λ

θaθaθ̄
ḃ θ4

+ δ2 = 0.

Figure 7. This identity was suggested in [72]. In this paper this equality is proved.

In this paper we prove this identity directly. Moreover, we prove that the β-function

is given by integrals of double total derivatives. In order to do this, it is necessary to use

two ideas.

1. First, it is necessary to rewrite the effective vertices in the diagrams presented in fig-

ure 4 or figure 7 using the Schwinger-Dyson equation one more time. This procedure

was first proposed in [81]. Let us, for example, start with eq. (3.10) and substitute

the expression for δΓ/δV y from the Schwinger-Dyson equation (3.4). It is convenient

to write the result in terms of the Routhian γ, because in this case the number of

effective diagrams is less. Details of this calculation are presented in appendix C.

The result can be written in the following form:

1

2

∫
d8x d8y (θ4)x(θ

4)y
d

d ln Λ

δ2∆Γ

δV xδV y
= −2

d

d ln Λ
(GreenLine)2 · γ +∆, (3.20)

where

∆ ≡ −i
d

d lnΛ

∫
d8x d8y (θ4)x

(D2

4∂4

)

y

( δ2γ

δ(φi)xδ(φj)y

)
−1

×

×
{
C(R)k

iM j kδ8xy − (MT )im(MT )lj
( D2

32∂2

)

x

( δ2γ

δ(φm)xδ(φl)y

)
−1}

(3.21)

with

C(R)i
m = (T )i

k(T )k
m =

(
1 0

0 1

)
· δαβ · δIJ . (3.22)

(∆ can be graphically interpreted as a one-loop effective diagram. However, in order

to avoid too large number of effective diagrams we write this term explicitly.) Note

that this expression does not contain infrared divergences due to the differentiation

with respect to lnΛ, which should be made before the momentum integration.

A simple (qualitative) graphical interpretation of results obtained in appendix C is

presented in figure 8. (A white line can be substituted by any other effective line.) In

particular, if this rule is applied to the diagram in the left hand side of the equation

presented in figure 6, then a β-function will be determined by the two-loop effective

diagram presented in figure 9. As earlier, it is convenient to split this effective diagram

into two parts using eq. (3.12). The result is graphically presented in figure 9, where

(see appendix C.2)

∆2 = δ2; ∆1 = ∆−∆2. (3.23)

– 17 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

Figure 8. Applying the Schwinger-Dyson equation to the effective vertex we can see “the inner

structure” of the effective diagram. (The large circles can correspond to any effective line.)

1

2π
V4 ·

β(α0)

α2
0

= −2
d

d ln Λ
+ ∆

✑
✑

✑
✑

✑
✑

✑
✑✑✰

❇
❇
❇
❇
❇
❇◆

∆1 − 2
d

d ln Λ
− 4

d

d ln Λ
+ ∆2

❇
❇
❇❇◆

✑
✑

✑
✑✑✰

β(α0) =
α2
0Nf

π

(
1− γ(α0)

)
0

Figure 9. Applying the Schwinger-Dyson equation one more time, it is possible to obtain that a

β-function is determined by the two-loop effective diagrams.

In appendix C.2 the expression ∆2 is also written in terms of the functions G and

MJ . ∆1 can be easily found using eq. (3.21). After simple transformations we obtain

∆1 = −iC(R)k
i d

d ln Λ

∫
d8x d8y (θ4)y

(D2

4∂4

)

x

( δ2γ

δ(φi)xδ(φj)y

)
−1

×
{
M jkδ8xy−M jnMmk

( D2

32∂4

)

x

( δ2γ

δ(φm)xδ(φn)y

)
−1

−
δ2γ

δ(φk)xδ(φ0j)y

}
; (3.24)

∆2 = −2iC(R)i
j d

d ln Λ

∫
d8x d8y (θ4)y

1

∂2

( δ2γ

δ(φj)x(φk)y

)
−1 δ2γ

δ(φ0i)xδ(φ0k)y
. (3.25)

2. Now let us proceed to the second idea. An attempt to present all two-loop effective

diagrams in figure 9 as integrals of total derivatives encounters considerable problems.

The reason can be understood from the results of [67]. The matter is that the total

derivative in this case nontrivially depends on the number of vertices in a diagram.
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∂

∂ ln g

(1
2

∫
d8x d8y (θ4)x(θ

4)y
d

d ln Λ

δ2∆Γ

δV xδV y

)
=

d

d ln Λ

{
−2

(1)

(2) (3) (4)

(5) (6) (7) (8)

− 2 − 2 − 2

− − 2 − 2 − 2

(9)

+ 4

}
+

∂∆

∂ ln g

Figure 10. These diagrams are obtained after differentiating the effective diagram presented in

figure 9 with respect to the parameter g. Below we will see that this trick allows to write the result

as an integral of a double total derivative. The term ∂∆/∂ ln g is given by eq. (D.20).

Therefore, it seems impossible to write the total derivatives in the form of effective

diagrams. However, the solution can be found. For this purpose we introduce the

parameter g according to the prescription (2.16).

Let us differentiate the upper diagram in figure 9 with respect to the parameter g

using the identity

∂γ

∂ ln g
=

1

2

∫
d8x

{
−
1

2
(φ∗i+φ∗i

0 )(φi+φ0i)+(φi+φ0i)x
δγ

δ(φ0i)x
+(φ∗i+φ∗i

0 )x
δγ

δ(φ∗i
0 )x

−
i

2

( δ2γ

δφiδφ∗i

)
−1

− iM j i
( D2

16∂2

)

x

( δ2γ

δ(φi)xδ(φj)y

)
−1

y=x

−iM∗

j i

( D̄2

16∂2

)

x

( δ2γ

δ(φ∗i)xδ(φ∗j)y

)
−1

y=x

}
,

(3.26)

which is proved in appendix D.1. The technique constructed in this appendix allows

to calculate the derivative of eq. (3.20) with respect to the parameter g. The result is

presented in figure 10. The term ∂∆/∂ ln g is calculated in appendix D.4 and is given

by eq. (D.20). The diagrams presented in figure 10 are obtained by differentiating

the upper diagram in figure 9. Technical details of this calculation are presented

in appendixes D.2 and D.3. Here we briefly discuss the result. Diagrams (1)–(4)

and (9) in this figure come from the derivative of the green effective line. Actually,

it is necessary to differentiate the inverse Green functions inside δ/δj. All terms

corresponding to the two-loop effective diagrams are included into diagrams (1), (2),
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and (9). Similarly, terms corresponding to three-loop effective diagrams are included

into diagrams (3) and (4).

A green effective line with a cross (in diagrams (4) and (9)) corresponds to the

operator

GreenWithCross[1, 2] = −i(MT )ij
∫

d8x θ̄ȧ(γµ)ȧ
bθb

(D2∂µ
16∂4

δ

δ2ji

) δ

δ1jj
, (3.27)

which is obtained from the operator GreenLine by keeping only terms proportional

to the Pauli-Villars masses. Integrating by parts and using eq. (2.13) it is easy to

see that this operator is symmetric with respect to the permutation of the points 1

and 2:

GreenWithCross[1, 2] = GreenWithCross[2, 1]. (3.28)

Due to this symmetry of arguments we do not mark out one of the ends by a circle.

The lines with crosses appear, because terms with the masses are quadratic in δ/δj,

while the other terms are linear in δ/δj.

A line with a dot corresponds to the operator

LineWithDot[α; 1, 2] ≡
i

4

∫
d8x (α)x

(
δ

δ2j∗i

δ

δ1ji
+

δ

δ1j∗i

δ

δ2ji
+M ij

(D2

8∂2

δ

δ1ji

) δ

δ2jj

+M∗

ij

(D2

8∂2

δ

δ1j∗i

) δ

δ2j∗j
+M ij

(D2

8∂2

δ

δ2ji

) δ

δ1jj
+M∗

ij

(D2

8∂2

δ

δ2j∗i

) δ

δ1j∗j

)
(3.29)

with α = 1. Diagram (1) contains the operator

GreenWhiteLine[1, 2] ≡ −
1

2
·GreenLine[1, 3] ·UsualLine[2, 3]

×

∫
d8x
(
φ∗i
0 φ0i+M ijφ0i

D2

8∂2
φ0j+M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
, (3.30)

where

UsualLine[2, 3] =

∫
d8x

( δ

δ3φ0i
·

δ

δ2ji
+

δ

δ3φ∗i
0

·
δ

δ2j∗i

)
. (3.31)

In eq. (3.30) the subscript [3] means that only the derivatives δ/δ3φ0 nontrivially

act to the argument of the bracket. Similarly, diagram (2) in figure 10 contains the

operator

GreenWithCrossWhite[1, 2] ≡ −
1

2
·GreenWithCross[1, 3] ·UsualLine[2, 3]

×

∫
d8x

(
φ∗i
0 φ0i +M ijφ0i

D2

8∂2
φ0j +M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
.

(3.32)

Diagrams (5)–(8) correspond to differentiation of the four-point function (the large

black circle in figure 9). Technical details of the corresponding calculation can be

found in appendix D.2.
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Below we try to avoid writing large analytical expressions corresponding to effective

Feynman diagrams. Instead of this, we write numerical coefficients for all diagrams, so

that the analytical expression can be unambiguously constructed using the definitions

of the effective lines. As an example, here we present an analytical expression for the

sum of diagrams presented in figure 10:

∂

∂ ln g

(1
2

∫
d8x d8y (θ4)x(θ

4)y
d

d ln Λ

δ2∆Γ

δV xδV y

)

=
d

d ln Λ

(
− 2 ·GreenWhiteLine ·GreenLine · γ

−2 ·GreenWithCrossWhite ·GreenLine · γ

−2 ·GreenLine[2, 1]UsualLine[1, 2] LineWithDot[1; 1, 1]GreenLine[2, 2]
(
γ[1] γ[2]

)

−2 ·GreenWithCross[2, 1]UsualLine[1, 2] LineWithDot[1; 1, 1]GreenLine[2, 2]
(
γ[1] γ[2]

)

−LineWithDot[1] · (GreenLine)2 · γ

−2 · LineWithDot[1; 1, 2]UsualLine[1, 2]GreenLine[1, 2]GreenLine[2, 1]
(
γ[1] γ[2]

)

−2 · LineWithDot[1; 1, 2]UsualLine[1, 2] (GreenLine[2, 1])2
(
γ[1] γ[2]

)

−2 · LineWithDot[1; 1, 2]UsualLine[1, 2]GreenLine[1, 1]GreenLine[2, 2]
(
γ[1] γ[2]

)

+4 ·GreenLine ·GreenWithCross · γ
)
+

∂∆

∂ ln g
. (3.33)

Expressions for all differential operators corresponding to the various lines can be

found in figure 3. Let us remind that if ends of an effective line coincide, we sometimes

omit numbers which numerate them. In section 5 we prove that the sum of diagrams

presented in figure 10 in the momentum representation is given by integrals of double

total derivatives.

The method considered in this paper also allows to prove the identity presented in fig-

ure 7 directly. This is made in section 4.2. In particular, we prove that the contribution of

this effective diagram to the β-function is given by a vanishing integral of a total derivative.

In order to do this, it is convenient to differentiate the diagram with the blue effective line

presented in figure 9 (or, equivalently, in figure 7) with respect to the parameter g. In the

graphical form the result is given by a sum of diagrams presented in figure 11. The cor-

responding analytical expression can be unambiguously constructed using the expressions

for the effective lines presented in figure 3.

4 Total derivatives and the NSVZ boldmath β-function

4.1 The effective diagram with the yellow line

In order to prove that the β-function (defined in terms of the bare coupling constant) is

determined by integrals of total derivatives, it is convenient to use the coordinate represen-

tation. In the coordinate representation an integral of a total derivative can be written as

Tr[xµ, something] = 0, (4.1)
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d

d ln Λ

{ (1)

− 2

(2)

− 2

(3)

− 2

(4)

− 2

(5)

− 2

(6)

− 2

(7)

−2

(8)

− 4

(9)

− 4

(10)

− 4

(11)

+ 4

}
+

∂∆2

∂ ln g

Figure 11. Diagrams obtained after differentiating the effective diagram with a blue effective line

presented in figure 9 with respect to the parameter g. Here the blue effective line corresponds to

the operator Bluelineḃ[θ
aθaθ̄

ḃ] and the line with a dot corresponds to the operator LineWithDot[1].

where

TrM ≡ tr

∫
d8xMxx; [α,Axy] ≡ (α)xAxy −Axy(α)y, (4.2)

and tr denotes the usual matrix trace. We will try to present (the sum of) expressions

for the effective diagrams as such traces of commutators. First, as a simple example, we

consider a diagram with the yellow effective line presented in figure 9 and verify that the

sum of the this diagram and ∆1 is given by an integral of a total derivative. This sum (for

Nf = 1) has been already calculated in [72] by substituting solutions of the Ward identities

for the effective vertices. In this paper we reobtain the result by a different method, which

is also used for calculation of the other diagram (which has not been calculated in [72].)

The expression for the considered diagram is written as

− 2 ·YellowLineµ[ θ̄
ȧ(γµ)ȧ

bθb] · GreenLine · γ = YellowLineµ[θ
4] · BrownLineµ · γ, (4.3)

where we used the identity proved in appendix F.1 and the notation

BrownLineµ[1, 2] ≡

∫
d8x

{
(T )j i

(
−

2i∂µ
∂2

− (γµ)aḃθa
D̄ḃD

2

4∂2

) δ

δ2jj
δ

δ1φ0i

+i(MT )ij
(D2∂µ
16∂4

δ

δ2ji

) δ

δ1jj

}
. (4.4)

This operator is very useful, because by the help of this notation commutators of various

Green functions with

(yµ)
∗ ≡ xµ − iθ̄ȧ(γµ)ȧ

bθb (4.5)
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−2
d

d lnΛ
+ ∆1 =

d

d ln Λ

θ4θ̄ȧ(γµ)ȧ
bθb

+ ∆1 =

µ µ µ

= integral of total derivative

Figure 12. Using two-loop effective diagrams it is possible to present the effective diagram with

the yellow line (including δ1) in figure 6 (or a corresponding diagram in figure 9) as an integral of

a total derivative.

can be written in a very compact form. The details of the corresponding calculations are

given in appendix E.1. Here we present only the results. First, we introduce the following

notation:

[
(T )y∗µ,

δ2γ

δ(φ0i)yδ(φ
∗j
0 )z

]
≡ −(T )k

i(y∗µ)y
δ2γ

δ(φ0k)yδ(φ
∗j
0 )z

+ (T )j
k(y∗µ)z

δ2γ

δ(φ0i)yδ(φ∗k
0 )z

;

[
(T )y∗µ,

δ2γ

δ(φ0i)yδ(φ0j)z

]
≡ −(T )k

i(y∗µ)y
δ2γ

δ(φ0k)yδ(φ0j)z
− (T )k

j(y∗µ)z
δ2γ

δ(φ0i)yδ(φ0k)z
, (4.6)

etc. Commutators with other Green functions (with an arbitrary number of indexes) can

be constructed similarly. (Each index gives a term in the sum; for upper indexes the sign

is “−”, and for lower indexes the sign is “+”.) Then the result of appendix E.1 can be

written as

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

]
= BrownLineµ ·

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

;

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ0l)z

]
= BrownLineµ ·

δ2γ

δ(φ0k)yδ(φ0l)z
(4.7)

etc., where all fields should be set to 0. These identities allow to rewrite the considered

contribution as an integral of a total derivative in the momentum representation. A simple

graphical version of the result is presented in figure 12. Below we prove the last equality

in this figure. For this purpose we substitute the explicit expression for the operator

YellowLineµ[θ
4] into eq. (4.3). Then the diagram with the brown effective line is written

in the form

d

d ln Λ
BrownLineµ ·

∫
d8x θ4

{
2i(T )j i

(∂µ
∂2

δ

δjj

) δγ

δφ0i
− i(MT )ij

(D2∂µ
16∂4

δ

δji

) δγ

δjj

}
. (4.8)
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Using the identities (4.7) we can present the expression (4.8) in the form

d

d ln Λ

∫
d8x d8y (θ4)x

{
− 2i(T )ki

(∂µ
∂2

)

x

( δ2γ

δ(φk)xδ(φ∗j)y

)
−1[

(T )y∗µ,
δ2γ

δ(φ∗j
0 )yδ(φ0i)x

]

−2i(T )ki

(∂µ
∂2

)

x

( δ2γ

δ(φk)xδ(φj)y

)
−1[

(T )y∗µ,
δ2γ

δ(φ0j)yδ(φ0i)x

]
− i

∫
d8z (MT )ij

×

((∂µD2

16∂4

)

x

( δ2γ

δ(φi)xδ(φ∗m)y

)
−1[

(T )y∗µ,
δ2γ

δ(φ∗m
0 )yδ(φ0n)z

]( δ2γ

δ(φj)xδ(φn)z

)
−1

+
(∂µD2

16∂4

)

x

( δ2γ

δ(φi)xδ(φm)y

)
−1[

(T )y∗µ,
δ2γ

δ(φ0m)yδ(φ0n)z

]( δ2γ

δ(φj)xδ(φn)z

)
−1

+
(∂µD2

16∂4

)

x

( δ2γ

δ(φi)xδ(φ∗m)y

)
−1[

(T )y∗µ,
δ2γ

δ(φ∗m
0 )yδ(φ∗n

0 )z

]( δ2γ

δ(φj)xδ(φ∗n)z

)
−1

+
(∂µD2

16∂4

)

x

( δ2γ

δ(φi)xδ(φm)y

)
−1[

(T )y∗µ,
δ2γ

δ(φ0m)yδ(φ∗n
0 )z

]( δ2γ

δ(φj)xδ(φ∗n)z

)
−1
)}

. (4.9)

In order to write eq. (4.9) as an integral of a total derivative in the momentum space we

(anti)commute the generators with the Green functions. Using the results of appendix E.3

we obtain

d

d ln Λ

∫
d8x (θ4)xC(R)i

k

{∫
d8y

(
− 2i

(∂µ
∂2

)

x

( δ2γ

δ(φ∗j)yδ(φk)x

)
−1[

y∗µ,
δ2γ

δ(φ∗j
0 )yδ(φ0i)x

]

−2i
(∂µ
∂2

)

x

( δ2γ

δ(φj)yδ(φk)x

)
−1[

y∗µ,
δ2γ

δ(φ0j)yδ(φ0i)x

]
+ iM jnMmi

( δ2γ

δ(φk)xδ(φj)y

)
−1

×
(∂µD2

16∂4

)

x

(∂µD2

8∂4

)

y

( δ2γ

δ(φm)xδ(φn)y

)
−1
)

+ iM ij
(∂µD2

16∂4

)

x

[
y∗µ,
( δ2γ

δ(φj)xδ(φk)y

)
−1]

y=x

−iM ij
(∂µ

∂2

)

x

(∂µD2

8∂4

)

y

( δ2γ

δ(φj)xδ(φk)y

)
−1

y=x

}
. (4.10)

Then we add ∆1 to eq. (4.10) and write the result in the momentum representation sub-

stituting explicit expressions for the (inverse) Green functions. Details of this calculation

are presented in appendix G. Taking into account eqs. (2.39) and (2.42) the result for the

considered contribution (written in the momentum representation after the Wick rotation

in the Euclidian space) can be written as

V4Nf
d

d ln Λ

∫
d4q

(2π)4
2qµ

q4
∂

∂qµ

{
2 lnG

+
n∑

I=1

(−1)PI

(
ln(q2G2 +M2J2) +

M2J

q2G2 +M2J2

)

I

}
, (4.11)

where we separate the main contribution of the fields φα and φ̃α (corresponding to I = 0)

and contributions of the Pauli-Villars fields (corresponding to I ≥ 1). This expression
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agrees with the result obtained in [72] by a different method for Nf = 1. (In [72] the

considered contribution was calculated by substituting expressions for vertices obtained by

solving the Ward identities.)

Thus, the sum of the considered effective diagram and ∆1 is given by the integral of a

total derivative, which can be easily calculated using the identity
∫

d4q

(2π)4
qµ

q4
∂

∂qµ
f(q) =

1

(2π)4

∮

S3
ε

dSµ
qµ

q4
f(q) = −

1

8π2
f(0) = −2π2

∫
d4q

(2π)4
δ4(q)f(q),

(4.12)

where f(q2) is a function which rapidly decreases at the infinity, and S3
ε is a 3-sphere in

the momentum space surrounding the point q = 0 with the radius ε → 0.

Assuming that the other contributions vanish (we prove this statement in the next

section) we obtain the NSVZ relation for the renormalization group functions defined in

terms of the bare coupling constant. Really, terms containing the Pauli-Villars masses

are convergent and finite beyond the one-loop approximation, because these masses are

proportional to the parameter Λ. Therefore,

1

2π
V4 ·

β(α0)

α2
0

=
1

2π2
V4Nf

( n∑

I=1

cI −
d lnG

d ln Λ

∣∣∣
q=0

)
=

1

2π2
V4Nf

(
1− γ(α0)

)
. (4.13)

Thus, for N = 1 SQED with Nf flavors we obtain the NSVZ β-function

β(α0) =
α2
0Nf

π

(
1− γ(α0)

)
. (4.14)

4.2 The effective diagram with the blue line

In order to prove that the β-function defined in terms of the bare coupling constant is

given by integrals of total derivatives it is also necessary to present the expression for the

last diagram (with the blue effective line) in figure 6 plus δ2 as a trace of a commutator.

Calculations in the lowest orders allow to suggest that this contribution is always given by

integral of a total derivative and vanishes [72]. An indirect proof of this fact is actually

given in [67] by a different method. In this section we present a direct proof. In order to do

this, it is necessary to differentiate the generating functional with respect to the auxiliary

parameter g, introduced in eq. (2.16). Next, we prove the identity presented in figure 13

in a graphical form. In this figure an arc with an arrow denotes a trace of a commutator

with y∗µ. Certainly, the corresponding analytical expression can be easily constructed:

2
d

d ln Λ

∂

∂ ln g

∫
d8x (θ4)xBlueLineḃ[θ

aθaθ̄
ḃ] ·

δΓ

δV x
+ δ2 =

(γµ)aḃ
d

d ln Λ
Tr
[
(T )y∗µ, LineWithDot[θ4] · BlueLineḃ[θa] · γ

]
= 0. (4.15)

For the simplest cases the operation [(T )α, . . .] was defined in the previous section. The

natural generalization of this definition can be formulated as follows: if a tensor B has a

lower index i corresponding to a superfield in the point x, then [(T )α,B]4 includes

(T )i
jαx(Bj)x. (4.16)

4For the case Pα = PB = 1 we use the notation {(T )α,B}.
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2 ·
d

d ln Λ

∂

∂ ln g

ḃ

θaθaθ̄
ḃ

ḃ
θ4

+ δ2 = (γµ)aḃ
d

d ln Λ

y∗µ

θ4

θa

= 0.

Figure 13. This identity is needed for proving that the β-function (defined in terms of the bare

coupling constant) is given by integrals of total derivatives and satisfies the NSVZ relation.

Similarly, for an upper index i this expression includes

− (T )j
iαx(B

j)x. (4.17)

For example, applying this rule we can easily obtain eq. (4.6). However, it is necessary to

define the operation [(T )y∗µ, . . .] (and other similar operations) more accurately for diagrams

containing closed loops of the matter superfields. First, let us explain, how to construct

the expression in the right hand side of eq. (4.15). It can be schematically written as

Diagramµ ≡

∫
dµLineµ ·Vertex · Line, (4.18)

where dµ denotes the integration measure, and we omitted indexes for simplicity. The

whole expression in the right hand side (for simplicity, without the derivative d/d ln Λ) can

be written as

Tr
[
(T )y∗µ,Diagramµ

]
≡

∫
dµ
[
(T )y∗µ,Line

µ
]
·Vertex · Line +

∫
dµLineµ

·
[
(T )y∗µ,Vertex

]
· Line +

∫
dµLineµ ·Vertex ·

[
(T )y∗µ,Line

]
= 0. (4.19)

(It is easy to see that all terms in this sum cancel each other.) The operation [(T )y∗µ, . . .] in

eq. (4.15) is constructed formally according to eq. (4.19). In the momentum representation

the expression (4.19) is given by an integral of a total derivative, because

∫
d8x

[
(T )y∗µ, X(i,x)

(i,x)
]
=

∫
d8x d8y δ8xy

(
(y∗µ)xTi

jX(j,x)
(i,y) − (y∗µ)yTj

iX(i,x)
(j,y)

)

= Tr
[
y∗µ, Tj

iXi
j
]
= −

∫
d4q

(2π)4
∂

∂qµ

∫
d4θ Tj

iXj
i(q, θ). (4.20)

(The last equation is written in the Euclidian space after the Wick rotation.) Therefore,

the equation presented in figure 13 implies that the derivative of the effective diagram in

the left hand side with respect to ln g is given by an integral of a total derivative. Moreover,

the result is 0, because the integrand does not contain singularities. Then we integrate the
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0 = i ·
d

d ln Λ

{

θ̄ȧ

θ4 +

θ̄ȧ

ȧ ȧ

θ4

}

Figure 14. We add these terms to the diagram in the right hand side of figure 13.

considered equality over ln g from g = 0 to g = 1. The theory corresponding to g = 0 does

not contain quantum gauge field, and quantum corrections to the Green function of the

gauge superfield are given only by one-loop diagrams. It is easy to see that in the one-loop

approximation the effective diagram in the left hand side of figure 13 vanishes. Therefore,

(because the original theory corresponds to g = 1) this effective diagram is also given by

an integral of a total derivative and is equal to 0 for g = 1.

Thus, taking into account the results of the previous section, the identity presented in

figure 13 allows to prove that the β-function defined in terms of the bare coupling constant

is given by integrals of total derivatives and satisfies the NSVZ relation. Let us proceed to

proving this identity. The expressions
[
(T )y∗µ,Vertex

]
;

[
(T )y∗µ,Line

]
;

[
(T )y∗µ,Line

µ
]

(4.21)

(and other similar expressions) can be calculated using the Schwinger-Dyson equations.

The details of the corresponding calculations are presented in appendix E. It is convenient

to add the (vanishing) diagrams presented in figure 14, where

PinkLineḃ[1, 2] =

∫
d8x

{
(T )j i

(
θaθa

D̄ḃD2

2∂2
− i(γµ)aḃθa

D̄2D2∂µ
8∂4

) δ

δ2jj
·

δ

δ1φ0i

−i(MT )ij(γµ)ḃaθa

(D2∂µ
16∂4

δ

δ2ji

)
·

δ

δ1jj

}
, (4.22)

to the diagram presented in the right hand side of figure 13. It is easy to see that the

diagrams presented in figure 14 encode the commutator

−
1

2
·

d

d ln Λ
Tr (θ4)x

{
(T )θ̄ȧ, PinkLineȧ ·

( δ2γ

δj∗i δj
i
+ iφ∗i

0 φ0i +M ik
(D2

8∂2

δ

δji

) δγ

δjk

+iM ik
(D2

8∂2
φ0i

)
φ0k +M∗

ik

( D̄2

8∂2

δ

δj∗i

) δγ

δj∗k
+ iM∗

ik

( D̄2

8∂2
φ∗i
0

)
φ∗k
0

)

x

}
. (4.23)

In the graphical form the result for the sum of all commutators is presented in figure 15.

The expressions for the effective lines are collected in figure 3. Let us briefly explain, how

the diagrams presented in figure 15 are constructed.
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(1)

d

d ln Λ

{
(γµ)aḃ · θ4

µ

ḃ

θa

(2)

+ 2 + 2

(3)

(4)

+

(5)

+

(6)

+ 2

(7)

+

(8)

+

(9)

+

(10)

− θ4

ḃ

ḃ

1

(11)

− 2

(12)

− 2

(13)

−

(14)

−

(15)

− 2

(16)

−

(17)

−

(18)

−

(19)

−

(20)

−

(21)

−

(22)

−

(23)

+ +

∫
d8x

{
i

2
MmkC(R)k

n

×

(
LineWithDot[θ4] ·

(D2

8∂4

)

x

δ2γ

δ(jm)xδ(jn)y

∣∣∣
y=x

+

∫
d8y

(∂µ
∂2

)

x

( δ2γ

δ(φi)xδ(φm)y

)
−1

×LineWithDot[θ4] ·
(D2∂µ

4∂4

)

y

δ

δ(jn)y

δγ

δ(φ0i)x

)
−

i

2
(θ4)x(γ

µ)ȧbBlueLineȧ[θb]

(
(MT )ik

×
(D2∂µ

4∂4

)

x

δ2γ

δ(ji)xδ(jk)y
+ (TM∗)ik

(D̄2∂µ
4∂4

)

x

δ2γ

δ(j∗i )xδ(j
∗

k)y

)

y=x

− (γµ)ȧb(θ̄ċθ̄ċθb)x(TM
∗)ik

×
( iD̄2∂µ

16∂4

)

x
PinkLineȧ

δ2γ

δ(j∗i )xδ(j
∗

k)y

∣∣∣
y=x

}}
.

Figure 15. These diagrams are obtained after calculating the commutators in the right hand

side of figures 13 and 14. In all these diagrams the line with a dot corresponds to the operator

LineWithDot[θ4].
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1. A commutator [(T )y∗µ,Vertex] (where Vertex denotes the four-point Green function

in figure 13) is calculated according to the rules derived in appendix E.1. From

this commutator we obtain diagrams (1)–(5) in figure 15. A similar commutator

[(T )θ̄ḃ,Vertex] (which appears in the first diagram in figure 14) gives diagrams (10)–

(14).

2. It is also necessary to calculate commutators with the inverse Green functions which

are contained inside the derivatives δ/δj. The calculation of these commutators is

described in appendix E.3. Commuting (T )y∗µ with the operator LineWithDot gives

diagrams (6), (8), and (9). In diagrams (8) and (9) the left effective line is given by

the operators

BrownWhiteLineµ[1, 2] ≡ −
1

2
· BrownLineµ[1, 3] ·UsualLine[2, 3]

×

∫
d8x θ4

(
φ∗i
0 φ0i +M ijφ0i

D2

8∂2
φ0j +M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
.

(4.24)

WhiteBrownLineµ[1, 2] ≡ −
1

2
· BrownLineµ[3, 1] ·UsualLine[2, 3]

×

∫
d8x θ4

(
φ∗i
0 φ0i +M ijφ0i

D2

8∂2
φ0j +M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
,

(4.25)

respectively. As earlier, the subscript [3] means that only the derivatives δ/δ3φ0

nontrivially act on the expression in the brackets.

Similarly, commuting (T )θ̄ḃ with the operator LineWithDot in the first diagram in

figure 14 gives diagrams (15), (18), and (19). In diagrams (18) and (19) we use the

operators (with α = θ4 and β = 1)

BlueWhiteLineḃ[α, β; 1, 2] ≡ −
1

2
· BlueLineḃ[β; 1, 3] ·UsualLine[2, 3]

×

∫
d8xα

(
φ∗i
0 φ0i +M ijφ0i

D2

8∂2
φ0j +M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
;

(4.26)

WhiteBlueLineḃ[α, β; 1, 2] ≡ −
1

2
· BlueLineḃ[β; 3, 1] ·UsualLine[2, 3]

×

∫
d8xα

(
φ∗i
0 φ0i +M ijφ0i

D2

8∂2
φ0j +M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
,

(4.27)

respectively. For example, the operator WhiteBlueLine can be explicitly written as

WhiteBlueLineḃ[α, β; 1, 2] = −
1

2
(−1)Pα(1+Pβ)

∫
d8xα

(
β T j

i

(D̄ḃD2

8∂2

δ

δ1jj

) δ

δ2j∗i

−β (MT )ij
D2

8∂2

δ

δ1ji
D̄ḃD2

8∂2

δ

δ2jj
− (MT )ij

D2

8∂2
β
D̄ḃD2

8∂2

δ

δ1ji
δ

δ2jj

)
. (4.28)

(The other similar operators have much more complicated form.)
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3. Commuting (T )y∗µ with the inverse Green functions inside the operator BlueLine in

a diagram presented in figure 13 we obtain diagrams (7) and (23). The effective line

with two color disks in diagram (23) encodes the operator

−i(T )j i(T )
l
k

∫
d8x d8y

(
θa

D̄ḃD
2

8∂2

)

x

(
−

2i∂µ
∂2

− (γµ)
cḋθc

D̄ḋD2

4∂2

)

y

( δ2γ

δ(φl)yδ(φj)x

)
−1 δ

δ(φ0k)y

δ

δ(φ0i)x
. (4.29)

Moreover, we also obtain the commutator

[
y∗µ, (γ

µ)aḃθa
D̄ḃD

2

8∂2

]
(T )j

k(T )j i
δ

δ2jk
·

δ

δ1φ0i
= (T )j

k(T )j i

{
θ̄ȧ, iθ

cθc
D̄ȧD2

2∂2
+(γµ)ȧbθb

×
D̄2D2∂µ

8∂4

}
δ

δ2jk
·

δ

δ1φ0i
+ (T )j

k(MT )ij
{
θ̄ȧ, (γ

µ)ȧbθb
D2∂µ
16∂4

}
δ

δ2ji
·

δ

δ1jk
. (4.30)

Note that the last term evidently vanishes. It is included for the convenience, be-

cause due to its presence this commutator cancels the corresponding contribution

from {(T )θ̄ȧ, PinkLineȧ}. Moreover, commuting (T )θ̄ȧ with the inverse Green func-

tions inside the operator PinkLineȧ in the first diagram in figure 14, we obtain di-

agrams (16), (17) and (22). The effective line with two color disks in diagram (22)

corresponds to

−i(T )j i(T )
l
k

∫
d8x d8y

(
θcθc

D̄ḃD
2

2∂2
− i(γµ)ḃ

cθc
D̄2D2∂µ

8∂4

)

x

(D̄ḃD2

8∂2

)

y

( δ2γ

δ(φl)yδ(φj)x

)
−1 δ

δ(φ0k)y

δ

δ(φ0i)x
. (4.31)

Similar commutators in the second diagram in figure 14 give diagrams (20) and (21).

4. Some terms (for example, the effective one-loop diagrams) do not have simple graph-

ical interpretation. We write their sum explicitly in figure 15.

In order to prove identity (4.15), it is necessary to verify that the sum of the diagrams

presented in figure 15 coincides with the sum of the diagrams presented in figure 11.

(Certainly, the explicitly written terms should be also taken into account). This is made

in appendix H, using the identity

2 · BlueLineḃ[θ
aθaθ̄

ḃ; 1, 2] ·GreenLine[3, 4]+2 ·GreenLine[1, 2] · BlueLineḃ[θ
aθaθ̄

ḃ; 3, 4]+O(θ3)

= (θ4)z

(
BlueLineḃ[1; 1, 2] · PinkLine

ḃ[3, 4] + PinkLineḃ[1, 2] · BlueLine
ḃ[1; 3, 4] (4.32)

−(γµ)aḃBlueLineḃ[θa; 1, 2] · BrownLineµ[3, 4]− (γµ)aḃBrownLineµ[1, 2] · BlueLineḃ[θa; 3, 4]
)
.

This identity is proved in appendix F.3. Its graphical version is presented in figure 16.

According to this figure the sum of four diagrams with the same topology containing

the lines given in the left hand side of this figure is equal to the sum of two diagrams

containing the lines in the right hand side of this figure. An example of applying this

identity is presented in figure 17.
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⊗ θ4 ⊗

⊗ θ4 ⊗

⊗ θ4 ⊗

⊗ θ4 ⊗





→





1

1

θa

θa

θaθaθ̄
ḃ

θaθaθ̄
ḃ

⊗ 2 ⊗

⊗ 2 ⊗

Figure 16. A graphical interpretation of the identity (4.32). (For simplicity we do not write

indexes corresponding to various lines.)

+ =θ4 2

1θa

θaθaθ̄
ḃ

−(γµ)aḃ · θ4

µ

ḃ

ḃḃ

ḃ

Figure 17. An example of applying the identity (4.32). This example illustrates how to prove

an identity presented in figure 13. (The diagrams in this figure are symmetric with respect to

permutations of the effective lines.)

Thus, we have obtained that the β-function (2.27) is determined by the integrals

of total derivatives and coincides with the NSVZ β-function. Also we have proved the

identity (3.19) directly.

5 Double total derivatives

5.1 Factorization of integrands into double total derivatives

In the previous section we have proved that a β-function of N = 1 SQED, regularized by

higher derivatives, is given by integrals of total derivatives. This allows to calculate one

of the loop integrals and obtain the exact NSVZ relation for the renormalization group

functions defined in terms of the bare coupling constant. However, according to [63–67]

the β-function is given by integrals of double total derivatives. In this section we prove

this statement for N = 1 SQED with Nf flavors, regularized by higher derivatives, in all

orders. For this purpose we differentiate the two-point Green function of the background

gauge superfield with respect to ln g. The required statement follows from the identity

d

d ln Λ

∂

∂ ln g

(1
2

∫
d8x d8y (θ4)x(θ

4)y
δ2∆Γ

δV xδV y

)

=
i

4
C(R)i

j d

d ln Λ
Tr (θ4)x

[
y∗µ,
[
y∗µ,
( δ2γ

δ(φj)xδ(φ∗i)y

)
−1

+M ik
(D2

8∂2

)

x

( δ2γ

δ(φk)xδ(φj)y

)
−1

+M∗

jk

( D̄2

8∂2

)

x

( δ2γ

δ(φ∗k)xδ(φ∗i)y

)
−1]]

y=x
− singularities = −singularities, (5.1)
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d

d ln Λ

∂

∂ ln g
=

d

d ln Λ

y∗µ

y∗µ

θ4 − singularities

Figure 18. A graphical presentation of the double total derivatives in eq. (5.1).

where

[y∗µ, Axy] ≡ (y∗µ)xAxy −Axy(y
∗

µ)y (5.2)

and “− singularites” means that singular contributions containing δ-functions (see below)

should be subtracted from this expression. (The expression in the right hand side should

be accurately defined for diagrams which include closed loops of the matter superfields.

We will discuss this definition below.) Note that the last equality in eq. (5.1) evidently

follows from eq. (4.1). In the graphical form the identity (5.1) is presented in figure 18.

According to eq. (5.1) the β-function of N = 1 SQED with Nf flavors, regularized by

higher derivatives, in the momentum representation is given by not only by integrals of

total derivatives, but by integrals of double total derivatives. (It is necessary to take into

account that θ4 and y∗µ commute.)

Using the operation [(T )y∗µ, . . .], defined by eq. (4.6), the equality (5.1) can be rewritten

in the form

d

d ln Λ

∂

∂ ln g

(1
2

∫
d8x d8y (θ4)x(θ

4)y
δ2∆Γ

δV xδV y

)

=
i

4
·

d

d ln Λ
Tr (θ4)x

[
(T )y∗µ,

[
(T )y∗µ,

( δ2γ

δ(φi)xδ(φ∗i)y

)
−1

+M ik
(D2

8∂2

)

x

( δ2γ

δ(φk)xδ(φi)y

)
−1

+M∗

ik

( D̄2

8∂2

)

x

( δ2γ

δ(φ∗k)xδ(φ∗i)y

)
−1]]

y=x
− singularities. (5.3)

Then the commutators in the right hand side of this equation can be calculated using

identities obtained in appendix E. First, it is necessary to calculate the inner commutator.

The right hand side of eq. (5.3) can be equivalently rewritten in the form

−
i

4
·

d

d ln Λ
Tr (θ4)x

[
(T )y∗µ, BrownLine

µ ·
( δ2γ

δj∗i δj
i
+ iφ∗i

0 φ0i +M ik
(D2

8∂2

δ

δji

) δγ

δjk

+iM ik
(D2

8∂2
φ0i

)
φ0k +M∗

ik

( D̄2

8∂2

δ

δj∗i

) δγ

δj∗k
+ iM∗

ik

( D̄2

8∂2
φ∗i
0

)
φ∗k
0

)
− (MT )ik

(D2∂µ

4∂4

)

x

×
( δ2γ

δ(φk)xδ(φi)y

)
−1

y=x
− (TM∗)ik

(D̄2∂µ

4∂4

)

x

( δ2γ

δ(φ∗k)xδ(φ∗i)y

)
−1

y=x

]
− singularities. (5.4)

(This equation and eq. (4.19) accurately define the expression in the right hand side for

diagrams with closed loops of the matter superfields.) The terms containing the operator
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d

d ln Λ

∂

∂ ln g
+δ = −

1

2
·

d

d ln Λ

{ µ µ

y∗µ

θ4 +

y∗µ

}
θ4

+
i

4
·

d

d ln Λ
Tr (θ4)x

[
(T )y∗µ, (MT )ik

(D2∂µ

4∂4

)

x

( δ2γ

δ(φk)xδ(φi)y

)
−1

y=x

+(TM∗)ik

(D̄2∂µ

4∂4

)

x

( δ2γ

δ(φ∗k)xδ(φ∗i)y

)
−1

y=x

]
− singularities.

Figure 19. A graphical presentation of total derivatives which are obtained after calculating the

inner commutator in eq. (5.1). This is a graphical form of eq. (5.4).

BrownLineµ in this equality can be easily presented in a graphical form. The result is

shown in figure 19. In order to avoid too large number of effective lines some terms are

written explicitly.

Then it is necessary to calculate the second commutator. This can be done similarly

to the calculation made in the previous section. As earlier, it is convenient to add some

terms to the expression in the right hand side of figure 19. They are presented in figure 20.

These effective diagrams correspond to the analytical expression

−
1

4
·

d

d ln Λ
Tr (θ4)x

[
(T )θȧ, RedLineȧ ·

( δ2γ

δj∗i δj
i
+ i φ∗i

0 φ0i +M ik
(D2

8∂2

δ

δji

) δγ

δjk

+iM ik
(D2

8∂2
φ0i

)
φ0k +M∗

ik

( D̄2

8∂2

δ

δj∗i

) δγ

δj∗k
+ iM∗

ik

( D̄2

8∂2
φ∗i
0

)
φ∗k
0

)]
= 0, (5.5)

where the operator

RedLineȧ[1, 2] =

∫
d8x

(
(T )j i

(
θbθb

D̄ȧD2

∂2
− i(γµ)ȧbθb

D̄2D2∂µ
2∂4

) δ

δ2jj
·

δ

δ1φ0i

−i(MT )ij(γµ)ȧbθb

(D2∂µ
4∂4

δ

δ2ji

)
·

δ

δ1jj

)

x
(5.6)

is denoted by the red line.

The commutators are calculated using equations derived in appendix E. In a graphical

form the result is presented in figure 21. (The singular contributions will be calculated in

the next section.) Let us describe this calculation in details.

1. Commuting (T )y∗µ with the four point function according to the prescription pre-

sented in appendix E.1 gives diagrams (1)–(4) and 1/2 of diagram (5) in figure 21.

2. Commuting (T )θ̄ȧ with the four-point vertices in the first effective diagram in figure 20

we obtain diagrams (13)–(17) in figure 21. The details of this calculation are presented

in appendix E.2.
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0 =
i

2
·

d

d ln Λ

{

θ̄ȧ

θ4 +

θ̄ȧ

ȧ ȧ

θ4

}

Figure 20. It is convenient to add these terms to the diagrams in the right hand side of figure 19.

3. The other 1/2 of diagram (5) and diagrams (6) and (11) in figure 21 are obtained

if (T )y∗µ is commuted with the inverse Green functions coming from the derivatives

δ/δj which are contained in the brown effective line (in the first effective diagram

in figure 19). In diagram (11) the effective line with two brown disks denotes the

operator

−i(T )j i(T )
l
k

∫
d8x d8y

(
−

2i∂µ

∂2
+ (γµ)aḃθa

D̄ḃD2

4∂2

)

x

(
−

2i∂µ
∂2

+ (γµ)
cḋθc

D̄ḋD2

4∂2

)

y

×
( δ2γ

δ(φl)yδ(φj)x

)
−1 δ

δ(φ0k)y

δ

δ(φ0i)x
. (5.7)

Similarly, diagrams (12), (18), and (19) in figure 21 are obtained from the first ef-

fective diagram in figure 20, if (T )θ̄ȧ is commuted with the inverse Green functions

contained in the red effective line. In diagram (12) the effective line with two color

disks denotes the operator

−i(T )j i(T )
l
k

∫
d8x d8y

(D̄ḃD
2

8∂2

)

x

(
θaθa

D̄ḃD2

2∂2
− i(γµ)aḃθa

D̄2D2∂µ
4∂2

)

y

×
( δ2γ

δ(φl)yδ(φj)x

)
−1 δ

δ(φ0k)y

δ

δ(φ0i)x
. (5.8)

In addition to these diagrams the considered commutators give terms containing the

operator LineWithDot[θ4] which are explicitly written in figure 21.

4. It is also necessary to commute (T )y∗µ with the operators

i
D̄2D2∂µ

8∂4
− (γµ)aḃθa

D̄ḃD
2

4∂2
and

D2∂µ
16∂4

, (5.9)

which are contained in the brown effective line. Taking into account that

[xµ,
∂µ
∂4

] = [−i
∂

∂pµ
,−

ipµ
p4

] = −2π2δ4(pE) = −2π2iδ4(p) = −2π2iδ4(∂), (5.10)

we obtain
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d

d ln Λ

{
−
1

2
× θ4

µ

µ

(1)

−

(2)

−

(3)

−
1

2

(4)

−

(5)

−
1

2

(6)

−

(7)

−
1

2

(8)

−

(9)

−
1

2

(10)

−
1

2

(11)

−
1

2

(12)

−
1

2
×

(13)

θ4

ḃ

ḃ
1

−

(14)

−

(15)

−
1

2

(16)

−
1

2

(17)

−
1

2

(18)

−
1

2

(19)

−

(20)

−
1

2

(21)

−
1

2

(22)

−
1

2

(23)

−
1

2

(24)

+One-Loop +
i

2

∫
d8x d8y

(
C(R)k

nM jkδ8xy

(D2

4∂4

)

x
+ (MT )mn(MT )ij

(D2∂µ

8∂4

)

y

×
( δ2γ

δ(φi)xδ(φm)y

)
−1(D2∂µ

8∂4

)

x

)
· LineWithDot[θ4] ·

δ2γ

δ(jj)xδ(jn)y
+

i

2

∫
d8x (θ4)xBrownLine

µ

×
(
(MT )ik

(D2∂µ
4∂4

)

x

δ2γ

δ(ji)xδ(jk)y

∣∣∣
y=x

+ (TM∗)ik

(D̄2∂µ
4∂4

)

x

δ2γ

δ(j∗i )xδ(j
∗

k)y

∣∣∣
y=x

)
−

∫
d8x (γµ)ȧb

×(θ̄ċθ̄ċθb)x(TM
∗)ik

( iD̄2∂µ
32∂4

)

x
RedLineȧ ·

δ2γ

δ(j∗i )xδ(j
∗

k)y

∣∣∣∣∣
y=x

}
.

Figure 21. These diagrams are obtained by calculating two commutators in eq. (5.1). Constructing

expressions corresponding to these diagrams we assume that the first spinor index is lower and the

second one is upper. The expression One-Loop is given by eq. (5.14).
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[
y∗µ, i

D̄2D2∂µ

8∂4
− (γµ)aḃθa

D̄ḃD
2

4∂2

]
=
{
θ̄ȧ,−iθcθc

D̄ȧD2

∂2
− (γµ)ȧbθb

D̄2D2∂µ
2∂4

}
+

π2

4
δ4(∂)D̄2D2;

[
y∗µ,

iD2∂µ
16∂4

]
= −

{
θ̄ȧ, (γ

µ)ȧbθb
D2∂µ
4∂4

}
+

π2

8
δ4(∂)D2. (5.11)

As a consequence, the terms which do not contain δ-functions cancel the correspond-

ing terms coming from the diagrams presented in figure 20.

5. Commuting (T )y∗µ with the operator LineWithDot[θ4] we obtain diagrams (7), (8),

and the other 1/2 of diagram (9) in figure 21. These diagrams are constructed using

the effective lines defined by eqs. (4.24) and (4.25). Also the considered commutators

and the commutators written in figure 19 explicitly give the terms containing the

operator BrownLineµ in figure 21.

6. Diagrams (20), (21), and (22) are obtained if (T )θ̄ȧ is commuted with the effective

line containing a dot. Expressions for diagrams (21) and (22) are constructed using

the notation (4.26) and (4.27), respectively. Also we obtain a term containing the

operator RedLineȧ explicitly written in figure 21.

7. The second effective diagram in figure 19 gives 1/2 of diagram (9) and diagram (10).

Similarly, diagrams (23) and (24) are obtained from the second effective diagram in

figure 20. In these diagrams we use the notation

RedWhiteLineȧ[θ
4; 1, 2] ≡ −

1

2
· RedLineȧ[1, 3] ·UsualLine[2, 3]

×

∫
d8x (θ4)x

(
φ∗i
0 φ0i+M ijφ0i

D2

8∂2
φ0j+M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
;

(5.12)

WhiteRedLineȧ[θ
4; 1, 2] ≡ −

1

2
· RedLineȧ[3, 1] ·UsualLine[2, 3]

×

∫
d8x (θ4)x

(
φ∗i
0 φ0i+M ijφ0i

D2

8∂2
φ0j+M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
.

(5.13)

8. Also the considered diagrams and terms written explicitly in figure 19 give some

contributions which can be graphically presented as one-loop effective diagrams. In

figure 21 they are denoted by One-Loop. This expression has the following form:

One-Loop = −i
d

d ln Λ

∫
d8x d8y (θ4)x

{(
C(R)j

iMmjδ8xy

(D2

4∂4

)

x
− (MT )nm(MT )ij

(D2∂µ

8∂4

)

y

×
( δ2γ

δ(φj)xδ(φn)y

)
−1(D2∂µ

8∂4

)

x

)(
−
( δ2γ

δ(φi)xδ(φm)y

)
−1

+

∫
d8z

[
1

4

( δ2γ

δ(φi)yδ(φk)z

)
−1

×
( δ2γ

δ(φ∗k)zδ(φm)x

)
−1

+
1

4

( δ2γ

δ(φi)yδ(φ∗k)z

)
−1( δ2γ

δ(φm)xδ(φk)z

)
−1

+Mkl
( δ2γ

δ(φm)yδ(φk)z

)
−1

×
( D2

16∂2

)

z

( δ2γ

δ(φl)zδ(φi)x

)
−1

+M∗

kl

( δ2γ

δ(φm)yδ(φ∗k)z

)
−1( D̄2

16∂2

)

z

( δ2γ

δ(φ∗l)zδ(φi)x

)
−1

])}
.

(5.14)
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⊗ θ4 ⊗

⊗ 2θ4 ⊗

⊗ θ4 ⊗





→ ⊗ 4 ⊗

Figure 22. A graphical interpretation of the identity (5.15).

The sum of diagrams presented in figure 21 should be compared with the sum of

diagrams presented in figure 10. (Certainly, the explicitly written terms should be also

taken into account.) For this purpose it is necessary to use the identity

(θ4)z

(
BlueLineḃ[1; 1, 2] · RedLine

ḃ[3, 4] + RedLineḃ[1, 2] · BlueLine
ḃ[1; 3, 4] (5.15)

+2 · BrownLineµ[1, 2] · BrownLineµ[3, 4]
)
= 4 ·GreenLine[1, 2] ·GreenLine[3, 4] +O(θ3),

derived in appendix F.4. This identity is graphically presented in figure 22. As earlier,

this figure should be understood as follows: we find a sum of three diagrams with the same

topology which contain effective lines presented in the left hand side of figure 22 and θ4 in

an auxiliary (but fixed) position. Then this sum can be replaced by a single diagram with

the same topology containing two green effective lines. Using this identity we see that

1. The sum of diagrams (1) and (13) in figure 21 gives diagram (5) in figure 10.

2. The sum of diagrams (2) and (14) in figure 21 gives diagram (6) in figure 10.

3. The sum of diagrams (3) and (15) in figure 21 gives diagram (7) in figure 10.

4. The sum of diagrams (7) and (20) in figure 21 gives diagram (8) in figure 10.

5. The sum of the expression One-Loop and the terms containing the operator

LineWithDot explicitly written in figure 21 is equal to ∂∆/∂ ln g, which is calculated

in appendix D.4. (It is evident that θ4 in the terms with the operator LineWithDot

can be shifted to an arbitrary point of the diagram.)

6. The sum of diagrams (5), (17), and (18) in figure 21 is equal to diagram (a) in

figure 23. Although this diagram is absent in figure 10, it is equal to diagram (4) in

this figure (see the first string in figure 23). In order to see this, we note that the left

part of this diagram is proportional to

( ∂

∂ ln g
− 1
) δ2γ

δ(φ0i)xδ(φ∗j)y
−

D2
y

8
δ8xy ∼ D2

xδ
8
xy

or
( ∂

∂ ln g
− 1
) δ2γ

δ(φ0i)xδ(φj)y
∼ D2

xD̄
2
xδ

8
xy.

(5.16)

In both cases there is the projector D2
x acting on the remaining part of the green
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(a)

=−2 −2

(b)

= 0;−1

(c)

=−2 −2

(d)

=

µ

θ4
µ

µ

θ4
µ

(e)

θ4

ḃ

ḃ
1

=θ4

ḃ

ḃ
1

(f)

θ4 θ4=

(g)

θ4 θ4

1 1

=

Figure 23. Some useful identities for the effective diagrams.

effective line:

D2
(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
− iθ̄ȧ(γµ)ȧ

bθb
D̄2D2∂µ

8∂4

)
= 0. (5.17)

Therefore, the part of the green line containing δ/δφ0 vanishes. The remaining part

of the green line is denoted by the green line with a cross. Thus, we prove the identity

presented in the first string of figure 23. Using this identity we see that the sum of

the considered diagrams gives diagram (4) in figure 10.

7. The sum of diagrams (11) and (12) is equal to diagram (b) in figure 23, where the

line with two green disks corresponds to the operator

−i(T )j i(T )
l
k

∫
d8x d8y

(
− 2iθ̄ȧ(γµ)ȧ

bθb
∂µ

∂2
+ θaθaθ̄

ḃ D̄ḃD
2

4∂2

)

x

×
(
− 2iθ̄ċ(γν)ċ

dθd
∂ν
∂2

+ θcθcθ̄
ḋ D̄ḋD

2

4∂2

)

y

( δ2γ

δ(φl)yδ(φj)x

)
−1 δ

δ(φ0k)y

δ

δ(φ0i)x
.

(5.18)

Using the above arguments it is easy to prove that this diagram vanishes. Really, its

left side is proportional to

( ∂

∂ ln g
− 1
) δ2γ

δ(φ0k)yδ(φ0i)x
. (5.19)
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This Green function can contain parts proportional to δ8xy,D
2δ8xy, D̄

2δ8xy, (D
2D̄2)xδ

8
xy,

and (D̄2D2)xδ
8
xy. However, it is easy to see that all these structures give 0 if they act

on the product

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
− iθ̄ȧ(γµ)ȧ

bθb
D̄2D2∂µ

8∂4

)

x

(
θcθcθ̄

ḋ D̄ḋD
2

4∂2
− iθ̄ċ(γν)ċ

dθd
D̄2D2∂ν

8∂4

)

y
.

(5.20)

(It is necessary to take into account the integral over d8x d8y and note that terms

which do not contain θ4 vanish.) Therefore, the sum of diagrams (11) and (12)

vanishes.

8. The sum of diagrams (9), (22), and (23) gives diagram (c) in figure 23. Using the

identity (5.17) we obtain that the considered sum of diagrams is equal to diagram

(2) in figure 10. This equality is presented in figure 23.

9. Let us consider a sum of diagrams (4), (6), (16), and (19) in figure 21. First, it

is necessary to note that diagrams (4) and (6) are equal (see the third string in

figure 23). In order to see this, we consider terms which do not contain the masses

in the left brown line. In these terms the right vertex with the right brown line has

the following structure

(D2)y

[
(T )y∗µ,

δ2γ

δ(φ0i)xδ(φ
∗j
0 )y

]
∼ D2

xδ
8
xy

or (D̄2)y

[
(T )y∗µ,

δ2γ

δ(φ0i)xδ(φ0j)y

]
∼ D2

xD̄
2
xδ

8
xy.

(5.21)

In order to verify the last equality we note that from dimensional arguments and the

Feynman rules
δ2γ

δ(φ0i)xδ(φ0j)y
= f1(∂

2)D2δ8xy + f2(∂
2)D̄2δ8xy. (5.22)

Therefore, this part of the diagram contains the projector D2
x acting on the left brown

line. Taking into account that

D2
(
i
D̄2D2∂µ

8∂4
− (γµ)

aḃθa
D̄ḃD

2

4∂2

)
= 0, (5.23)

we see that the part of the left brown line containing δ/δφ0 vanishes. The remaining

part of the brown line is equal to the brown line with a cross.

Moreover, diagram (19) is equal to diagram (e) in figure 23 multiplied by −1/2. In

order to prove this identity we again consider terms which do not contain masses in

the red effective line of diagram (e). Then the right vertex with the blue effective

line is proportional to

(D2)y

[
(T )θ̄ḃ,

δ2γ

δ(φ0i)xδ(φ
∗j
0 )y

]
∼
[
θ̄ḃ, D2

xδ
8
xy

]
= 0

or (D̄2)y

[
(T )θ̄ḃ,

δ2γ

δ(φ0i)xδ(φ0j)y

]
= 0.

(5.24)

– 39 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

(The last equality can be also verified using eq. (5.22).) Therefore, the part of the

red line containing δ/δφ0 vanishes. The remaining part of the red line is equal to the

red line with a cross.

Taking into account identities presented in the third and forth lines of figure 23, we

obtain the sum of effective diagrams to which we can apply the identity (F.26). The

result is given by diagram (3) in figure 10.

10. The sum of diagrams (8), (10), (21), and (24) is investigated similarly to the previous

group of diagrams. For this purpose it is necessary to take into account identities

presented in the last two strings of figure 23, which can be proved exactly as in the

previous case. As usually, the red effective line in diagram (g) corresponds to the

operator RedWhiteLineȧ[θ
4], and the red line with a cross in diagram (24) corresponds

to the operator

RedWhiteWithCrossȧ[θ
4; 1, 2] ≡ −

1

2
· RedWithCrossȧ[1, 3] ·UsualLine[2, 3]

×

∫
d8x (θ4)x

(
φ∗i
0 φ0i +M ijφ0i

D2

8∂2
φ0j +M∗

ijφ
∗i
0

D̄2

8∂2
φ∗j
0

)

[3]
.

(5.25)

Using these identities we see that the sum of the considered diagrams is equal to

diagram (1) in figure 10.

11. It is easy to see that terms proportional to (TM∗) explicitly written in figure 21

cancel each other. For this purpose it is necessary to use the algebraic identity

θcθcAθa = −(−1)P (A)θaAθ
cθc +O(θ) (5.26)

and its consequence, eq. (F.3), which is proved in appendix F.1.

12. The term proportional to (MT ) and containing the operator BrownLineµ explicitly

written in figure 21 can be presented in the form

4 ·GreenLine ·GreenWithCross · γ (5.27)

using the identity (5.26). This expression coincides with diagram (9) in figure 10.

Collecting the results we see that the sum of diagrams presented in figure 21 is equal to

the sum of diagrams presented in figure 10. This completes the proof of the identity (5.1).

5.2 Derivation of the NSVZ β-function

Diagrams presented in figure 21 (the sum of which is equal to the sum of diagrams presented

in figure 10) are obtained after calculating commutators with y∗µ. However,

Tr[y∗µ, A] = 0. (5.28)
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As a consequence, the sum of diagrams presented in figure 10 is equal to the sum of terms

containing the δ-singularities in eq. (5.1) with an opposite sign. Now, let us calculate these

singular contributions starting from eq. (5.4), which can be written in the form

−
i

4

d

d ln Λ
Tr (θ4)x

[
(T )y∗µ, BrownLine

µ ·
( δ2γ

δj∗i δj
i
+M ik

(D2

8∂2

δ

δji

) δγ

δjk
+M∗

ik

( D̄2

8∂2

δ

δj∗i

) δγ

δj∗k

+i φ∗i
0
φ0i

)
+ (MT )ki

{(D̄2D2∂µ

8∂4

)

y

(D2

8∂2

)

x

( δ2γ

δ(φi)yδ(φk)x

)
−1

y=x
+

∫
d8y

{
Mmn

(D2∂µ

8∂4

)

y

×
( δ2γ

δ(φi)yδ(φm)x

)
−1(D2

8∂2

)

x

( δ2γ

δ(φk)yδ(φn)x

)
−1

+M∗

mn

(D2∂µ

8∂4

)

y

( δ2γ

δ(φi)yδ(φ∗m)x

)
−1( D̄2

8∂2

)

x

( δ2γ

δ(φk)yδ(φ∗n)x

)
−1

}}
− (MT )ik

(D2∂µ

4∂4

)

x

( δ2γ

δ(φk)xδ(φi)y

)
−1

y=x
− (TM)∗ik

(D̄2∂µ

4∂4

)

x

×
( δ2γ

δ(φ∗k)xδ(φ∗i)y

)
−1

y=x

]
− singularities. (5.29)

The singular part of this expression is calculated using eq. (5.10). The result with the

opposite sign (which is equal to the sum of the considered diagrams) is given by

π2

8
C(R)i

j d

d ln Λ

∫
d8x δ4(∂α)x

{(
δ

δ(φ0i)z

(
D̄2D2

δ

δ(jj)x

)
−

1

2
Mki

(
D2

δ

δ(jk)x

) δ

δ(jj)z

)

×

(
LineWithDot[θ4] · γ −

1

2

∫
d8y (θ4φ∗k

0
φ0k)y

)
− (θ4)xM

∗

kj(D̄
2)x

( δ2γ

δ(φ∗i)xδ(φ∗k)z

)
−1

−2(θ4)xM
ki(D2)x

( δ2γ

δ(φj)xδ(φk)z

)
−1

+Mki(D2)x

∫
d8y (θ4)y

(
Mmn

( δ2γ

δ(φj)xδ(φm)y

)
−1

×
( D2

16∂2

)

y

( δ2γ

δ(φk)zδ(φn)y

)
−1

+M∗

mn

( δ2γ

δ(φj)xδ(φ∗m)y

)
−1( D̄2

16∂2

)

y

( δ2γ

δ(φk)zδ(φ∗n)y

)
−1

)}

z=x

.

(5.30)

This expression contains explicit dependence only on θ4. Commutation of θ4 produces

terms of the third and lower degrees of θ. All these terms vanish after integrating over the

anticommuting variables. Therefore, it is possible to shift θ4 to an arbitrary point of the

diagram. Let us shift θ4 to the point x:

LineWithDot[θ4] → (θ4)x · LineWithDot[1]. (5.31)

Next, we use the equalities

δ2

δ(φ0i)xδ(φ0j)y

(
LineWithDot[1] · γ −

1

2

∫
d8xφ∗k

0 φ0k

)
= 2
( ∂

∂ ln g
− 1
) δ2γ

δ(φ0i)xδ(φ0j)y
;

δ2

δ(φ0i)xδ(φ
∗j
0 )y

(
LineWithDot[1] · γ −

1

2

∫
d8xφ∗k

0 φ0k

)
= 2
( ∂

∂ ln g
− 1
) δ2γ

δ(φ0i)xδ(φ
∗j
0 )y

,

(5.32)

which are proved in appendix D. It is easy to see that all terms which do not contain the

derivatives with respect to ln g vanish. Really, according to eq. (B.2)

(−2)
(
D̄2D2 δ

δ(jj)x

) δγ

δ(φ0i)y
= 2(D̄2D2)xδ

8
xyδ

i
j + 2M ik(D2)y

( δ2γ

δ(φj)xδ(φk)y

)
−1

. (5.33)
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(The first term in this expression vanishes after differentiation with respect to lnΛ.)

Similarly,

Mki
(
D2 δ

δ(jk)x

) δγ

δ(jj)x
= Mki

{
(D2)x

( δ2γ

δ(φj)yδ(φk)x

)
−1

y=x
−

∫
d8y

(
Mnm(D2)x

×
( δ2γ

δ(φk)xδ(φm)y

)
−1( D2

16∂2

)

y

( δ2γ

δ(φj)xδ(φn)y

)
−1

+M∗

nm(D2)x

( δ2γ

δ(φk)xδ(φ∗m)y

)
−1

×
( D̄2

16∂2

)

y

( δ2γ

δ(φj)xδ(φ∗n)y

)
−1
)}

. (5.34)

Collecting all terms, the considered singular contribution can be presented as

π2

4
C(R)i

j d

d ln Λ

∫
d8x θ4δ4(∂α)x

(
δ

δ(φ0i)y
D̄2D2 δ

δ(jj)x
−

1

2
Mki(D2)x

δ

δ(jk)x

δ

δ(jj)y

)
∂γ

∂ ln g
.

(5.35)

Using the equation for the derivative of the inverse matrix it is possible to rewrite this

expression in a simpler form

π2

4
C(R)i

j d

d ln Λ

∫
d8x θ4δ4(∂α)x

(
δ

δ(φ0i)y
D̄2D2 δ

δ(jj)x

∂γ

∂ ln g

+
1

2
Mki(D2)x

∂

∂ ln g

( δ2γ

δ(φj)yδ(φk)x

)
−1
)

y=x

.(5.36)

Then we express the derivatives with respect to sources in terms of the derivatives with

respect to fields and substitute explicit expressions for the Green functions, for example,

δ2γ

δ(φi)yδ(φ
∗j
0 )x

= −
1

8
Gj

iD̄2
xδ

8
xy;

δ2γ

δ(φi)yδ(φ0j)x
= −

1

32∂2

(
(MJ)ji −M ji

)
D2

xD̄
2
xδ

8
xy.

(5.37)

After calculating the integrals over d4θ in the Euclidean space the result can be presented

in the following form:

∂

∂ ln g

d

d ln Λ

(1
2

∫
d8x d8y (θ4)x(θ

4)y
δ2∆Γ

δV xδV y

)
= −

1

4π2
V4Nf

∂

∂ ln g

×
d

d lnΛ

(
2 lnG+

n∑

I=1

(−1)PI

(
ln(q2G2 +M2J2) +

M2J

(q2G2 +M2J2)

)

I

)

q=0

. (5.38)

This result is very similar to eq. (4.11), which was found earlier by a different method. The

only difference is the presence of the derivative with respect to ln g. As earlier, we obtain

∂

∂ ln g

d

d ln Λ

(1
2

∫
d8x d8y (θ4)x(θ

4)y
δ2∆Γ

δV xδV y

)
= −

1

2π2
V4Nf

∂

∂ ln g

d

d ln Λ
lnG. (5.39)
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Let us integrate this equation over ln g from g = 0 to g = 1. The considered theory

coincides with N = 1 SQED with Nf flavors for g = 1. Therefore, at the upper limit

d

d ln Λ

(1
2

∫
d8x d8y (θ4)x(θ

4)y
δ2∆Γ

δV xδV y

)

g=1
=

1

2π
V4 ·

β(α0)

α2
0

;

d

d ln Λ
lnG

∣∣∣
g=1

= γ(α0). (5.40)

For g = 0 the considered theory does not contain the quantum gauge field. Therefore,

for g = 0 only one-loop diagrams contribute to the two-point Green function of the gauge

superfield, and

d

d ln Λ

(1
2

∫
d8x d8y (θ4)x(θ

4)y
δ2∆Γ

δV xδV y

)

g=0
=

1

2π
V4 ·

β1−loop(α0)

α2
0

;

d

d ln Λ
lnG

∣∣∣
g=0

= 0, (5.41)

where

β1−loop =
α2
0

π
Nf . (5.42)

Thus, after the integration we obtain the NSVZ relation

β(α0) =
α2
0Nf

π
(1− γ(α0)) (5.43)

for the renormalization group functions defined in terms of the bare coupling constant.

6 Conclusion

In this paper we present a derivation of the NSVZ relation for N = 1 SQED with Nf

flavors, regularized by higher derivatives, using a method based on the effective diagram

technique and the Schwinger-Dyson equations. We prove that with this regularization the

exact NSVZ β-function relates the renormalization group functions defined in terms of

the bare coupling constant. (If the renormalization group functions are defined in terms

of the renormalized coupling constant, the NSVZ scheme can be easily constructed by

imposing the simple boundary conditions (2.30) on the renormalization constants [68, 69].)

The technique based on the Schwinger-Dyson equations seems to be more convenient for

generalization of the results to the non-Abelian case than another method discussed in [67].

The method considered in this paper allows to easily calculate a contribution to the

β-function proportional to the anomalous dimension of the matter superfields. For this

purpose expressions for the effective vertices are found by solving the Ward (or Slavnov-

Taylor) identities [72]. However, in order to prove that the other contributions vanish for

the considered theory, it is necessary to essentially modify the method. First, a β-function

should be written in terms of two-loop effective diagrams. Moreover, it is necessary to

introduce an auxiliary parameter g and perform a differentiation with respect to ln g. The

derivative of the two-point function of the gauge superfield with respect to ln g can be

presented as a sum of three-loop effective diagrams. After these modifications it is possible
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to find the remaining contribution to the β-function defined in terms of the bare coupling

constant. In this paper we obtain that this contribution vanishes. Moreover, we prove

that the β-function is given by integrals of double total derivatives in agreement with the

results of [63, 67]. Such a structure allows to calculate one of the loop integrals and obtain

the NSVZ β-function in all orders. The origin of the exact NSVZ β-function can be easily

explained, because taking one of loop integrals we relate the β-function in a certain order

with the anomalous dimension in the previous order.

The results obtained in this paper can be verified by explicit calculations in the lowest

loops. The three-loop calculation will be described in the forthcoming paper.
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A The Schwinger-Dyson equation for the two-point Green function of

the gauge superfield

We are interested in the expression

1

2

∫
d8x d8yV xV y

δ2∆Γ

δV xδV y
, (A.1)

where the effective action Γ is given by eq. (2.21) and all fields are set to 0. In order to

calculate this expression we differentiate the Schwinger-Dyson equation (3.4) with respect

to V y and set all fields to 0. Then the result is multiplied by V xV y/2. After integrating

over d8x d8y we rewrite eq. (A.1) as

1

i
(T )j i

∫
d8x d8yV xV y

δ

δV y

( δ

δ(jj)x

δΓ

δ(φ0i)x

)
. (A.2)

In order to present this expression as a sum of effective diagrams, it is convenient to

commute δ/δV and δ/δj. Differentiating inverse Green functions inside the derivatives

δ/δjj and simplifying the result using eq. (3.1), it is easy to see that

[ δ

δV y
,

δ

δ(jj)x

]
=

∫
d8z

(
δ

δ(jj)x

δ2Γ

δV yδ(φ0k)z
·

δ

δ(jk)z

+
δ

δ(jj)x

δ2Γ

δV yδ(φ∗k
0 )z

·
δ

δ(j∗k)z
+

δ

δ(jj)x

δ2Γ

δV yδVz
·

δ

δJz

)
, (A.3)

where the derivatives with respect to sources should be expressed in terms of the derivatives

with respect to fields. Really, for example,
∫

d8z
δ2Γ

δV yδ(φ0k)z
·

δ

δ(jk)z
=

∫
d8z

δ

δV y

(
−

1

2
D̄2

z

) δΓ

δ(φ0k)z
·
D2

8∂2

δ

δ(jk)z

=

∫
d8z

δ2Γ

δV yδ(φk)z
·
D2

8∂2

δ

δ(jk)z
(A.4)
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due to the chirality of the derivative with respect to the source j. All vertices containing

odd degrees of the matter superfields vanish after setting the fields to 0. Two-point Green

functions of the matter superfields constructed from the functionals Γ and γ evidently

coincide (again, after setting the fields to 0). Using these facts eq. (A.2) can be written in

the form

1

2

∫
d8x d8yV xV y

δ2∆Γ

δV yδV x
= −i(T )j i

∫
d8x d8y d8z V xV y

(
δ

δ(jj)x

δ2Γ

δV yδ(φ0k)z

×
[
δ8xzδ

i
k +

δ

δ(jk)z

δγ

δ(φ0i)x

]
+

δ

δ(jj)x

δ2Γ

δV yδ(φ∗k
0 )z

·
δ

δ(j∗k)z

δγ

δ(φ0i)x

)
, (A.5)

where the derivative δ/δji is defined by eq. (3.7). It differs from the derivative δ/δji,

because all fields in the inverse two-point Green functions are set to 0. The graphical

interpretation of this result is presented in figure 1.

B The identity for the effective lines

In order to simplify the calculations we use the substitution V → θ4. Then we find a sum

of effective lines presented in the left hand side of figure 2. In the analytical form this sum

corresponds to the expression

(T )j i

∫
d8x (θ4)x

{
δ

δ(jj)x

δ

δ(φ0i)x
+

∫
d8y

[( δ

δ(jk)y

δγ

δ(φ0i)x

)
·

δ

δ(jj)x

δ

δ(φ0k)y

+
( δ

δ(j∗k)y

δγ

δ(φ0i)x

)
·

δ

δ(jj)x

δ

δ(φ∗k
0 )y

]}
, (B.1)

where the fields in the two-point functions are set to 0. Note that in our notation effective

lines include derivatives which act on the vertices attached to the line. This allows to

considerably simplify expressions for the multiloop effective diagrams.

Using eq. (3.1) and arguments based on chirality it is easy to verify that

δ

δ(jk)y

δγ

δ(φ0i)x
=
(D̄2D2

16∂2

)

y
δ8xyδ

i
k +M im

( D2

16∂2

)

x

( δ2γ

δ(φk)yδ(φm)x

)
−1

;

δ

δ(j∗k)y

δγ

δ(φ0i)x
= M im

( D2

16∂2

)

x

( δ2γ

δ(φ∗k)yδ(φm)x

)
−1

. (B.2)

(The fields are set to 0.) In order to prove these equations, it is necessary to apply to them

the operator −D̄2
x/2. Substituting the Green functions (B.2) into eq. (B.1) after some

simple transformations we rewrite the considered expression as

∫
d8x

{
(T )j i

[(
1 +

D̄2D2

16∂2

)
θ4

δ

δjj

]
δ

δφ0i
+ θ4(MT )ij

δ

δji

(
D2

16∂2

δ

δjj

)}
. (B.3)

The first term in this expression can be transformed using the identity
(
1 +

D̄2D2

16∂2

)
θ4

δ

δjj
=

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

−
D2

4∂2
θaθa

)
δ

δjj
. (B.4)
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The degree of θ in the last term of eq. (B.3) can be also decreased by the help of eq. (2.13):

∫
d8x θ4(MT )ij

δ

δji

(
D2

16∂2

δ

δjj

)
= −

∫
d8x θ4(MT )ij

(
D̄2D2

16∂2

δ

δji

)(
D2

16∂2

δ

δjj

)

=

∫
d8x θaθaθ̄

ḃ(MT )ij
(
D̄ḃD

2

8∂2

δ

δji

)(
D2

16∂2

δ

δjj

)
.

(B.5)

Then integrating by parts gives

(MT )ij
∫

d8x
((

θaθ̄
ḃD

aD̄ḃD
2

32∂4
− θ̄ḃ

D̄ḃD
2

32∂4

) δ

δji

) δ

δjj
= (MT )ij

∫
d8x

((
− iθ̄ȧ(γµ)ȧ

bθb

×
D2∂µ
16∂4

−
D2

16∂4

) δ

δji

) δ

δjj
= −i(MT )ij

∫
d8x θ̄ȧ(γµ)ȧ

bθb

(D2∂µ
16∂4

δ

δji

) δ

δjj
. (B.6)

Therefore, the expression (B.1) can be rewritten in the following form:

∫
d8x

{
(T )j i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

−
D2

4∂2
θaθa

) δ

δjj
δ

δφ0i

−i(MT )ij θ̄ȧ(γµ)ȧ
bθb

(D2∂µ
16∂4

δ

δji

) δ

δjj

}
. (B.7)

C The Schwinger-Dyson equation in terms of two-loop effective diagrams

C.1 β-function in terms of two-loop effective diagrams

In order to rewrite the Schwinger-Dyson equation as a sum of two-loop effective diagrams,

let us start with eq. (3.10) and substitute δΓ/δV y from eq. (3.4) [81]:

1

2π
V4 ·

β(α0)

α2
0

= −i
d

d lnΛ

∫
d8x d8y

[
(T )j i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

−
D2

4∂2
θaθa

) δ

δjj

×
δ

δφ0i
− i(MT )ij θ̄ȧ(γµ)ȧ

bθb

(D2∂µ
16∂4

δ

δji

) δ

δjj

]

x
(θ4)y(T )

l
k

[2
i

δ

δjl
δΓ

δφ0k
+ 2

δΓ

δφ0k
(φl + φ0l)

]

y
.

(C.1)

(Certainly, all fields in this expression should be set to 0 after calculation of the deriva-

tives.) First, let us find a contribution of the second term in the last square brackets (or,

equivalently, terms containing φl + φ0l). We will denote this contribution by ∆. After

calculating the derivatives nontrivial terms can be written as

∆ = 2i
d

d ln Λ

∫
d8x d8y (θ4)y(T )k

l

{
(T )j l

(D2

4∂2

)

x
(θaθa)x

( δ

δ(jj)x

δγ

δ(φ0k)y

)
δ8xy

+(T )j i
δ2γ

δ(φ0i)xδ(φ0k)y

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

−
D2

4∂2
θaθa

)

x

( δ2γ

δ(φl)yδ(φj)x

)
−1

−i(MT )ij
( δ

δ(jj)x

δγ

δ(φ0k)y

)(
θ̄ȧ(γµ)ȧ

bθb
D2∂µ
16∂4

)

x

( δ2γ

δ(φl)yδ(φi)x

)
−1
}
. (C.2)
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Here instead of the effective action Γ we use the Routhian γ, because this considerably

simplifies the calculations. In order to rewrite all equations in terms of γ, it is necessary

to take into account that
δΓ

δφ0i
[V, φ, φ0] =

δγ

δφ0i
[J, φ, φ0]. (C.3)

Note that some terms in eq. (C.2) vanish, because they are proportional to θ in a more

than the forth degree. For example, all terms in the second string of this equation vanish

due to this reason. Really, taking into account that

( δ2γ

δ(φl)yδ(φj)x

)
−1

∼ D̄2δxy, (C.4)

we can commute θb with this Green function. Then the result will be proportional to

(θ4)y(θb)y = 0. In order to simplify the remaining terms we use eq. (B.2). Taking into

account that some terms vanish after differentiation with respect to lnΛ we obtain

∆ =
d

d ln Λ

∫
d8x d8y (θ4)y

{
iC(R)k

jMkm
(D2

2∂2

)

x
(θaθa)x

( D2

16∂2

)

y

( δ2γ

δ(φm)yδ(φj)x

)
−1

δ8xy

+
[D̄2D2

8∂2
δ8xy(T )j

l + (MT )ml
(D2

8∂2

)

y

( δ2γ

δ(φm)yδ(φj)x

)
−1]

(MT )ij(θ̄ȧ(γµ)ȧ
bθb)x

(D2∂µ
16∂4

)

x

×
( δ2γ

δ(φl)yδ(φi)x

)
−1
}
. (C.5)

Shifting (θaθa)x and (θ̄ȧ(γµ)ȧ
bθb)x to the point y this expression can be rewritten as

∆ ≡ −i
d

d lnΛ

∫
d8x d8y (θ4)y

(D2

4∂4

)

x

( δ2γ

δ(φi)xδ(φj)y

)
−1

×
{
C(R)k

iM jkδ8xy − (MT )im(MT )lj
( D2

32∂2

)

x

( δ2γ

δ(φm)xδ(φl)y

)
−1}

. (C.6)

It is important that this expression does not contain infrared singularities due to the

differentiation with respect to lnΛ, which should be made before calculating the momentum

integral.

Let us now consider the remaining terms in eq. (C.1) (which are obtained from the

first term in the last square brackets). In order to rewrite them in a more convenient form,

we commute the derivatives δ/δj and δ/δφ0 (including δ/δφ0 which is contained in δ/δji)

taking into account that

[ δ

δ(φ0k)z
,

δ

δ(jn)y

}
≡

δ

δ(φ0k)z

δ

δ(jn)y
− (−1)PkPn

δ

δ(jn)y

δ

δ(φ0k)z

= (−1)PkPn

∫
d8w

( δ

δ(jn)y

δ2γ

δ(φ0k)zδ(φ0l)w
·

δ

δ(jl)w
+

δ

δ(jn)y

δ2γ

δ(φ0k)zδ(φ
∗l
0 )w

·
δ

δ(j∗l )w

)
.

(C.7)

Note that so far we did not set the fields to 0. Because the Routhian γ is used instead of

the effective action Γ, the expression in the right hand side does not contain derivatives
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with respect to the gauge superfield V . (This is the main reason, why in the subsequent

equations we use the functional γ.) As a consequence, setting all fields equal to 0 we obtain

(
Â

δ

δjj

)

y

δ

δ(φ0i)y
(T )lk

∫
d8x (θ4)x

δ

δ(jl)x

δΓ

δ(φ0k)x

= (T )lk

∫
d8x d8z (θ4)x

([
δ8xzδ

k
m +

δ

δ(jm)z

δγ

δ(φ0k)x

](
Â

δ

δjj

)

y

δ

δ(jl)x

δ2γ

δ(φ0m)zδ(φ0i)y

+
δ

δ(j∗m)z

δγ

δ(φ0k)x
·
(
Â

δ

δjj

)

y

δ

δ(jl)x

δ2γ

δ(φ∗m
0 )zδ(φ0i)y

)
, (C.8)

where Â is an operator acting on the coordinates y which does not contain θ̄ȧθ̄ȧ. Its explicit

form in the considered case can be found from eq. (C.1). Then it is possible to substitute

explicit expressions for the two-point Green functions and repeat all transformations made

in appendix B. It is easy to see that the result can be written as

(
Â

δ

δjj

)

y

δ

δ(φ0i)y
(T )lk

∫
d8x (θ4)x

δ

δ(jl)x

δΓ

δ(φ0k)x
= GreenLine ·

(
Â

δ

δjj

)

y

δγ

δ(φ0i)y
, (C.9)

where we take into account that only terms proportional to θ̄2 nontrivially contribute to

the result. (In particular, a term without θ̄ in eq. (B.7) gives a vanishing contribution.)

Therefore, finally we obtain

1

2π
V4 ·

β(α0)

α2
0

= −2
d

d ln Λ
(GreenLine)2γ +∆, (C.10)

where ∆ is given by eq. (C.6). The first term in this expression can be graphically presented

as a two-loop effective diagram, while the second one corresponds to a one-loop effective

diagram.

C.2 The identity (3.19) in terms of two-loop effective diagrams

In order to prove the identity (3.19), it is necessary to present its left hand side as a sum of

two-loop effective diagrams. For this purpose we use the Schwinger-Dyson equation (3.4).

The first term in eq. (3.19) can be presented as a two-loop effective diagram

− 4 · BlueLineḃ[θ
aθaθ̄

ḃ] ·GreenLine · γ (C.11)

similarly to the calculation made in the previous section. In the graphical form this diagram

(containing one blue effective line and one green effective line) is shown in figure 9. All

terms which could be interpreted as one-loop effective diagrams in this case vanish.

However, the second term in eq. (3.19) can be written as a one-loop effective diagram.

Let us remind that a contribution of this term is denoted by δ2. In order to write all

two-loop contributions in the same form we also use the notation ∆2 = δ2. Using the

Schwinger-Dyson equation (3.4) δ2 can be written as

i(T )j i(T )
l
k

d

d ln Λ

∫
d8x d8y (θ4)y

(
θaθa

D2

2∂2

δ

δjj

)

x

δ

δ(φ0i)x

[1
i

δ

δjl
δΓ

δφ0k
+

δΓ

δφ0k
(φl + φ0l)

]

y
.

(C.12)

– 48 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

The first term in the square brackets vanishes, because it is proportional to the first degree

of θ̄. This follows from eq. (C.9). Calculating the derivatives with respect to φ0 it is easy

to see that the only nontrivial term is

− i(T )i
j(T )k

l d

d ln Λ

∫
d8x d8y (θ4)y(θ

aθa)x

(D2

2∂2

)

x

( δ2γ

δ(φj)x(φl)y

)
−1 δ2γ

δ(φ0k)yδ(φ0i)x
.

(C.13)

Commuting θ-s with the covariant derivatives and using the identity

(T )k
l
( δ2γ

δ(φj)x(φl)y

)
−1

= −(T )j
l
( δ2γ

δ(φl)x(φk)y

)
−1

(C.14)

we obtain

∆2 = −2iC(R)i
j d

d ln Λ

∫
d8x d8y (θ4)y

1

∂2

( δ2γ

δ(φj)x(φk)y

)
−1 δ2γ

δ(φ0i)xδ(φ0k)y
. (C.15)

This expression can be written in terms of the functions G and J . For this purpose we

substitute the explicit expression for the inverse Green function from eq. (2.41). Then, it is

necessary to use eq. (3.1), which allows to express the remaining Green function in terms

of J :

(D2)y
δ2γ

δ(φ∗j
0 )yδ(φ0i)x

=
1

4
Gi

jD
2δ8xy;

(D̄2)x
δ2γ

δ(φ0j)yδ(φ0i)x
=
(
(MJ)ij −M ij

)(D̄2D2

16∂2

)

x
δ8xy. (C.16)

Calculating the integrals over θ after the Wick rotation we obtain

∆2 = −V4 ·C(R)i
j d

d ln Λ

∫
d4q

(2π)4

( 2

q4(q2G2 + |MJ |2)
(MJ)∗

)

j k

(
(MJ)ki −Mki

)
. (C.17)

D Derivatives with respect to the parameter g

D.1 The derivative of the Routhian

Let us set the background gauge superfield to 0, V = 0, and differentiate the Routhian γ

with respect to the parameter g using the identity

∂γ

∂ ln g
=

∂W

∂ ln g
. (D.1)

The result can be written as

∂γ

∂ ln g
=
〈g
4

n∑

I=0

Nf∑

α=1

∫
d8x

{
(φ∗ + φ∗

0)(e
2V − 1)(φ+ φ0) + (φ̃∗ + φ̃∗

0)(e
−2V − 1)(φ̃+ φ̃0)

}

αI

〉
.

(D.2)
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In terms of the Routhian γ the right hand side of this equation can be presented in the

form

∂γ

∂ ln g
=

1

2

∫
d8x

{1
i
(−1)i

j δ

δ(jj)x

δγ

δ(φ0i)x
+ (φi + φ0i)x

δγ

δ(φ0i)x
+

1

i
(−1)i

j δ

δ(j∗i )x

δγ

δ(φ∗j
0 )x

+(φ∗i + φ∗i
0 )x

δγ

δ(φ∗i
0 )x

−
i

2

( δ2γ

δφ∗iδφi

)
−1

−
1

2
(φ∗i + φ∗i

0 )(φi + φ0i)
}
, (D.3)

where

(−1)i
j ≡ δij · (−1)Pi . (D.4)

Let us consider the first term in this expression. Integrating by parts and using eq. (3.1)

we obtain

∫
d8x (−1)i

j δ

δjj
δγ

δφ0i
= −

∫
d8x (−1)i

j
( D2

16∂2

δ

δjj

)
D̄2 δγ

δφ0i
=

∫
d8x (−1)i

j
(D2

8∂2

δ

δji

)( δγ

δφi

−
1

2
M ijφj

)
=

∫
d8x

{
(−1)i

i
(D2D̄2

16∂2

)

x
δ8xy +M j i

( D2

16∂2

)

x

( δ2γ

δ(φi)xδ(φj)y

)
−1}

x=y
, (D.5)

where we take into account that δγ/δφi = −ji. Note that the first term in this expression

vanishes, because

(−1)i
i =

Nf∑

α=1

n∑

I=0

(−1)PI = Nf

(
1−

n∑

I=1

cI

)
= 0 (D.6)

due to the first equality in eq. (2.6). The third term in eq. (D.3) can be considered similarly.

Thus, we obtain

∂γ

∂ ln g
=

1

2

∫
d8x

{
−
1

2
(φ∗i+φ∗i

0 )(φi+φ0i)+(φi+φ0i)x
δγ

δ(φ0i)x
+(φ∗i+φ∗i

0 )x
δγ

δ(φ∗i
0 )x

−
i

2

( δ2γ

δφiδφ∗i

)
−1
−iM j i

( D2

16∂2

)

x

( δ2γ

δ(φi)xδ(φj)y

)
−1

y=x
−iM∗

j i

( D̄2

16∂2

)

x

( δ2γ

δ(φ∗i)xδ(φ∗j)y

)
−1

y=x

}
.

(D.7)

D.2 Derivatives of effective vertices

Using the derivative of the Routhian γ with respect to ln g given by eq. (D.7) we can easily

calculate the derivatives of various Green functions. For example,

∂

∂ ln g

δ2γ

δ(φ0i)yδ(φ0j)z
=

δ2

δ(φ0i)yδ(φ0j)z

∂γ

∂ ln g
. (D.8)

Substituting δγ/δ ln g from eq. (D.7), differentiating, and then setting all fields to 0, we

obtain

∂

∂ ln g

δ2γ

δ(φ0i)yδ(φ0j)z
=

δ2γ

δ(φ0i)yδ(φ0j)z
+

i

4

∫
d8x

( δ

δjk
δ

δj∗k
+M lk

(D2

8∂2

δ

δjk

) δ

δjl

+M∗

lk

( D̄2

8∂2

δ

δj∗k

) δ

δj∗l

)

x
·

δ2γ

δ(φ0i)yδ(φ0j)z
. (D.9)
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Similar expressions can be written for the derivatives of the other two-point functions. In

order to rewrite the result in a more compact form, we use the notation (3.29). Then the

derivatives of the two-point functions can be written as

∂

∂ ln g

(
g−1 δ2γ

δ(φ0i)yδ(φ0j)z

)
=

1

2g
LineWithDot[1] ·

δ2γ

δ(φ0i)yδ(φ0j)z
;

∂

∂ ln g

(
g−1 δ2γ

δ(φ0i)yδ(φ
∗j
0 )z

)
= −

1

4g
δ8yzδ

i
j +

1

2g
LineWithDot[1] ·

δ2γ

δ(φ0i)yδ(φ
∗j
0 )z

. (D.10)

(The second equality is derived using the same method.) Derivatives of the other two-point

functions can be written in a similar form.

In order to calculate the derivatives of the four-point functions we again use this

method. It is convenient to introduce the notation

UsualLine[1, 2] ≡

∫
d8x

( δ

δ2φ0i
·

δ

δ1ji
+

δ

δ2φ∗i
0

·
δ

δ1j∗i

)

x
= UsualLine[2, 1]. (D.11)

Then it is possible to write the derivatives of the four-point functions in a rather simple

form. For example, taking into account that any Green function with an odd number of

legs corresponding to the matter superfields vanishes, we obtain

∂

∂ ln g

(
g−2 δ4γ

δ(φ0i)xδ(φ0j)yδ(φ0k)zδ(φ0l)w

)
=

1

2g2

(
LineWithDot[1] · (D.12)

×
δ4γ

δ(φ0i)xδ(φ0j)yδ(φ0k)zδ(φ0l)w
+ 2 · LineWithDot[1; 1, 2] ·UsualLine[1, 2]

×
( δ2γ[1]

δ(φ0i)xδ(φ0j)y

δ2γ[2]

δ(φ0k)zδ(φ0l)w
+

δ2γ[1]

δ(φ0i)xδ(φ0k)z
·

δ2γ[2]

δ(φ0j)yδ(φ0l)w
· (−1)PjPk

+
δ2γ[1]

δ(φ0j)yδ(φ0k)z
·

δ2γ[2]

δ(φ0i)xδ(φ0l)w
· (−1)PiPj+PiPk

))
.

In this expression the derivatives δ/δ1j act on γ[1], and the derivatives δ/δ2j act on γ[2].

The derivatives of the other four-point functions with respect to ln g can be written in a

similar form.

D.3 Derivatives of effective lines

Expressions for the derivatives of effective vertices obtained in the previous section allow

to find derivatives of effective diagrams. The effective diagrams include effective lines.

Therefore, it is desirable to find derivatives of these effective lines, which, in particular,

contain inverse Green functions inside the derivatives δ/δj. The derivatives of the inverse

Green functions can be easily calculated using eq. (D.10):

∂

∂ ln g

(
g
( δ2γ

δ(φi)xδ(φj)y

)
−1

)
= g

∫
d8z

[
M lk

( δ2γ

δ(φi)xδ(φk)z

)
−1( D2

16∂2

)

z

( δ2γ

δ(φl)zδ(φj)y

)
−1

+M∗

lk

( δ2γ

δ(φi)xδ(φ∗k)z

)
−1( D̄2

16∂2

)

z

( δ2γ

δ(φ∗l)zδ(φj)y

)
−1

+
1

4

( δ2γ

δ(φi)xδ(φk)z

)
−1( δ2γ

δ(φ∗k)zδ(φj)y

)
−1

+
1

4

( δ2γ

δ(φ∗k)zδ(φi)x

)
−1( δ2γ

δ(φk)zδ(φj)y

)
−1

]
−

g

2
LineWithDot[1] ·

δ2γ

δ(jj)yδ(ji)x
. (D.13)
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Similarly,

∂

∂ ln g

(
g
( δ2γ

δ(φi)xδ(φ∗j)y

)
−1

)
= g

∫
d8z

[
M lk

( δ2γ

δ(φi)xδ(φk)z

)
−1( D2

16∂2

)

z

( δ2γ

δ(φl)zδ(φ∗j)y

)
−1

+M∗

lk

( δ2γ

δ(φi)xδ(φ∗k)z

)
−1( D̄2

16∂2

)

z

( δ2γ

δ(φ∗l)zδ(φ∗j)y

)
−1

+
1

4

( δ2γ

δ(φi)xδ(φk)z

)
−1( δ2γ

δ(φ∗k)zδ(φ∗j)y

)
−1

+
1

4

( δ2γ

δ(φ∗k)zδ(φi)x

)
−1( δ2γ

δ(φk)zδ(φ∗j)y

)
−1

]
−

g

2
LineWithDot[1] ·

δ2γ

δ(j∗j )yδ(j
i)x

. (D.14)

From these equations we obtain

[ ∂

∂ ln g
, g

δ

δ(ji)x

]
= −

∫
d8y

(
∂

∂ ln g

[
g
( δ2γ

δ(φi)xδ(φj)y

)
−1] δ

δ(φ0j)y

+
∂

∂ ln g

[
g
( δ2γ

δ(φi)xδ(φ∗j)y

)
−1] δ

δ(φ∗j
0 )y

)
=

g

4

∫
d8z

{(
2 · LineWithDot[1] ·

δ

δ(ji)x

δγ

δ(φ0k)z

+
( δ2γ

δ(φ∗k)zδ(φi)x

)
−1

+Mkl
( δ2γ

δ(φi)xδ(φl)z

)
−1 D2

4∂2

)
·

δ

δ(jk)z
+
(
2 · LineWithDot[1] ·

δ

δ(ji)x

×
δγ

δ(φ∗k
0 )z

+
( δ2γ

δ(φi)xδ(φk)z

)
−1

+M∗

kl

( δ2γ

δ(φi)xδ(φ∗l)z

)
−1 D̄2

4∂2

)
·

δ

δ(j∗k)z

}
. (D.15)

We can use this equation for differentiating the operator GreenLine (or other similar oper-

ators) with respect to ln g. Let us consider, for the definiteness, the derivative of the green

effective line. More exactly, let us differentiate

g ·GreenLine[1, 2] =

∫
d8x

{
g(T )j i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

) δ

δ2jj
·

δ

δ1φ0i

−i g−1g(MT )ij θ̄ȧ(γµ)ȧ
bθb

(D2∂µ
16∂4

δ

δ2ji

)
· g

δ

δ1jj

}

x

. (D.16)

It is convenient to write the result in the following form:

[ ∂

∂ ln g
, g ·GreenLine[1, 2]

]
=

g

2

{
GreenWhiteLine[1, 2] + GreenWithCrossWhite[2, 1]

−2 ·GreenWithCross[1, 2] + LineWithDot[1; 3, 3] ·
(
GreenLine[1, 3] ·UsualLine[2, 3]

+GreenWithCross[2, 3] ·UsualLine[1, 3]
)
· γ[3]

}
. (D.17)

Let us briefly explain the derivation of this identity. In this expression all terms without

the operator LineWithDot[1] are included into the effective lines

GreenWhiteLine[1, 2] ≡
1

2

∫
d8x d8z

{
(T )j i

(
θaθaθ̄

ḃ D̄ḃD
2

4∂2
+ 2iθ̄ȧ(γµ)ȧ

bθb
∂µ
∂2

)

x

×

(( δ2γ

δ(φ∗k)zδ(φj)x

)
−1 δ

δ2(jk)z
+
( δ2γ

δ(φj)xδ(φk)z

)
−1 δ

δ2(j∗k)z
+M lk

( δ2γ

δ(φj)xδ(φk)z

)
−1
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×
D2

4∂2

δ

δ2(jl)z
+M∗

lk

( δ2γ

δ(φj)xδ(φ∗k)z

)
−1 D̄2

4∂2

δ

δ2(j∗l )z

)
δ

δ1(φ0i)x
− i(MT )ij θ̄ȧ(γµ)ȧ

bθb

×
(D2∂µ
16∂4

)

x

(( δ2γ

δ(φ∗k)zδ(φi)x

)
−1 δ

δ2(jk)z
+
( δ2γ

δ(φi)xδ(φk)z

)
−1 δ

δ2(j∗k)z

+M lk
( δ2γ

δ(φi)xδ(φk)z

)
−1 D2

4∂2

δ

δ2(jl)z
+M∗

lk

( δ2γ

δ(φi)xδ(φ∗k)z

)
−1 D̄2

4∂2

δ

δ2(j∗l )z

)
δ

δ1(jj)x

}

(D.18)

and

GreenWithCrossWhite[1, 2] ≡ −
i

2

∫
d8x d8z

{
(MT )ij θ̄ȧ(γµ)ȧ

bθb

(D2∂µ
16∂4

)

x

×

(( δ2γ

δ(φi)xδ(φ∗k)z

)
−1 δ

δ2(jk)z
+
( δ2γ

δ(φk)zδ(φi)x

)
−1 δ

δ2(j∗k)z
+Mkl

( δ2γ

δ(φi)xδ(φk)z

)
−1

×
D2

4∂2

δ

δ2(jl)z
+M∗

kl

( δ2γ

δ(φi)xδ(φ∗k)z

)
−1 D̄2

4∂2

δ

δ2(j∗l )z

)
δ

δ1(jj)x

}
. (D.19)

These expressions can be written in a more compact form, eqs. (3.30) and (3.32), respec-

tively. The term with the operator GreenWithCross appears when we differentiate the

factor g−1 in the mass term. The other terms containing the operator LineWithDot are

obtained from the derivatives of g δ/δj. However, it is necessary to take into account

that the terms without masses are linear in this derivative, while the terms containing the

masses are quadratic. That is why the result contains the sum of the operators GreenLine

and GreenWithCross.

Derivatives of the other effective lines can be constructed similarly.

D.4 Derivative of ∆

The derivative of the additional contribution ∆, given by eq. (3.21), with respect to ln g

can be calculated using eq. (D.13). The result is

∂∆

∂ ln g
= −i

d

d lnΛ

∫
d8x d8y (θ4)x

{(
C(R)k

iM jkδ8xy

(D2

4∂4

)

x
− (MT )im(MT )nj

(D2∂µ

4∂4

)

y

×
( δ2γ

δ(φm)xδ(φn)y

)
−1(D2∂µ

16∂4

)

x

)(
−

1

2
LineWithDot[1] ·

δ2γ

δ(jj)yδ(ji)x
+

∫
d8z

×

[
1

4

( δ2γ

δ(φi)xδ(φk)z

)
−1( δ2γ

δ(φ∗k)zδ(φj)y

)
−1

+
1

4

( δ2γ

δ(φi)xδ(φ∗k)z

)
−1( δ2γ

δ(φj)yδ(φk)z

)
−1

+M lk
( δ2γ

δ(φi)xδ(φk)z

)
−1( D2

16∂2

)

z

( δ2γ

δ(φl)zδ(φj)y

)
−1

+M∗

lk

( δ2γ

δ(φi)xδ(φ∗k)z

)
−1( D̄2

16∂2

)

z

×
( δ2γ

δ(φ∗l)zδ(φj)y

)
−1
]
−
( δ2γ

δ(φi)xδ(φj)y

)
−1
)}

. (D.20)
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The terms containing the operator LineWithDot[1] can be graphically presented as two-

loop effective diagrams. The other terms correspond to one-loop effective diagrams.

E Calculation of commutators

E.1 Commutators with (T )y∗µ

In this section we calculate commutators of (T )y∗µ with various Green functions. For this

purpose we can use the Schwinger-Dyson equation (3.4), which is valid for any values of g.

Let us multiply this equation by y∗µ and integrate the result over d8x:

∫
d8x (y∗µ)x

δ(∆Γ)

δV x
=

∫
d8x (y∗µ)x(T )

j
i

(2
i

δ

δ(j∗i )x

δγ

δ(φ∗j
0 )x

+ 2
δγ

δ(φ∗j
0 )x

(φ∗i + φi∗
0 )x

)
. (E.1)

The first term in this expression vanishes. Really, using antichirality of the derivative with

respect to j∗ and integrating by parts this term can be rewritten as

2

i

∫
d8x (y∗µ)x(T )

j
i

(
−
D2D̄2

16∂2

δ

δj∗i

)

x

δγ

δ(φ∗j
0 )x

=
2

i

∫
d8x (y∗µ)x(T )

j
i

(
−

D̄2

16∂2

δ

δj∗i

)

x
D2

x

δγ

δ(φ∗j
0 )x

.

(E.2)

Taking into account eq. (3.1) we obtain

2

i

∫
d8x (y∗µ)x(T )

j
i

( D̄2

8∂2

δ

δj∗i

)

x

(
− j∗j −

1

2
M∗

jkφ
∗k
)

x
=

i(TM∗)ik

∫
d8x (y∗µ)x

( D̄2

8∂2

)

x

(D2D̄2

16∂2

)

y

( δ2γ

δ(φ∗k)yδ(φ∗i)x

)
−1

x=y
= 0. (E.3)

(The term with the derivative of j∗ vanishes due to the evident identity T i
i = 0. The last

equality can be obtained by integrating D2 by parts and taking into account eq. (2.13).)

Note that the fields here are not yet set to 0. From the other side,

∫
d8x (y∗µ)x

δ(∆Γ)

δV x
=

∫
d8x (y∗µ)x(T )

j
i

(2
i

δ

δ(jj)x

δγ

δ(φ0i)x
+ 2

δγ

δ(φ0i)x
(φj + φ0j)x

)
. (E.4)

Comparing eq. (E.1) and eq. (E.4) we obtain

∫
d8x (y∗µ)x(T )i

j
(
(φi∗ + φi∗

0 )x
δγ

δ(φ∗j
0 )x

− (φj + φ0j)x
δγ

δ(φ0i)x

)

= −i

∫
d8x (y∗µ)x(T )

j
i

( δ

δ(jj)x

δγ

δ(φ0i)x

)
. (E.5)

Differentiating eq. (E.5) with respect to various fields, it is possible to find

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

]
≡ −(y∗µ)y(T )i

k δ2γ

δ(φ0i)yδ(φ∗l
0 )z

+ (y∗µ)z(T )l
i δ2γ

δ(φ0k)yδ(φ
∗i
0 )z

;

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ0l)z

]
≡ −(y∗µ)y(T )i

k δ2γ

δ(φ0i)yδ(φ0l)z
− (y∗µ)z(T )i

l δ2γ

δ(φ0k)yδ(φ0i)z
(E.6)

– 54 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

and other similar expressions. (All fields in this commutators are set to 0.) For example,

differentiating eq. (E.5) with respect to (φ0k)y and (φ0l)z and setting all fields to 0 we

obtain

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ0l)z

]
= −i

∫
d8x (y∗µ)x(T )

j
i

δ2

δ(φ0k)yδ(φ0l)z
·

δ

δ(jj)x

δγ

δ(φ0i)x
. (E.7)

Commuting the derivative with respect to the source jj with the derivatives with respect

to the fields φ0 and taking into account that all Green functions with an odd number of

φ-lines vanish, this expression can be presented in the form

−i

∫
d8x d8w (y∗µ)x(T )

j
i

[
δ

δ(jj)x

δ3γ

δ(φ0k)yδ(φ0l)zδ(φ0m)w
·
(
δ8xwδ

i
m +

δ

δ(jm)w

δγ

δ(φ0i)x

)

+
δ

δ(jj)x

δ3γ

δ(φ0k)yδ(φ0l)zδ(φ
∗m
0 )w

·
( δ

δ(j∗m)w

δγ

(φ0i)x

)]
. (E.8)

After substituting the two-point Green functions from eq. (B.2) the result is written as

−i

∫
d8x

[
(T )j i

((
1 +

D̄2D2

16∂2

)
y∗µ

δ

δjj

)

x

δ3γ

δ(φ0l)zδ(φ0k)yδ(φ0i)x

−(MT )ij(y∗µ)x

( D2

16∂2

δ

δji

)

x

δ

δ(jj)x

δ2γ

δ(φ0k)yδ(φ0l)z

]
. (E.9)

In order to simplify this expression we note that

(
1 +

D̄2D2

16∂2

)
y∗µ

δ

δjj
=
(2∂µ
∂2

− i(γµ)ȧbθb
D̄ȧD

2

4∂2

) δ

δjj
(E.10)

and
∫

d8x (MT )ijy∗µ
D2

16∂2

δ

δji
·

δ

δjj
= −

∫
d8x (MT )ijy∗µ

D2

16∂2

δ

δji
·
D̄2D2

16∂2

δ

δjj
= −

∫
d8x

×(MT )ijD̄ȧy∗µ
D̄ȧD

2

16∂2

δ

δji
·
D2

16∂2

δ

δjj
= 8

∫
d8x (MT )ijθa (γµγ

ν)a
bDb∂ν
16∂2

δ

δji
·
D2

16∂2

δ

δjj

=

∫
d8x (MT )ij

D2∂µ
16∂4

δ

δji
·

δ

δjj
. (E.11)

Using these identities we finally obtain

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ0l)z

]
= BrownLineµ ·

δ2γ

δ(φ0k)yδ(φ0l)z
, (E.12)

where we have defined the operator

BrownLineµ[1, 2] ≡

∫
d8x

[
(T )i

j
((

−
2i∂µ
∂2

− (γµ)ȧbθb
D̄ȧD

2

4∂2

) δ

δ2jj

)

x

δ

δ1(φ0i)x

+i(MT )ij
(D2∂µ
16∂4

δ

δ2ji

)

x

δ

δ1(jj)x

]
. (E.13)
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Similarly, we can differentiate eq. (E.5) with respect to (φ0k)y and (φ∗l
0 )z and set all

fields equal to 0. Then, repeating the same operations as above, we find

[
(T )y∗µ,

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

]
= BrownLineµ ·

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

. (E.14)

The commutators of (T )y∗µ with four-point Green functions can be calculated by the

same method. Differentiating eq. (E.5) with respect to (φ0i)x, (φ0j)y, (φ0k)z, and (φ0l)w
and setting all fields equal to 0, we obtain

[
(T )y∗µ,

δ4γ

δ(φ0i)xδ(φ0j)yδ(φ0k)zδ(φ0l)w

]
= BrownLineµ ·

δ4γ

δ(φ0i)xδ(φj0)yδ(φk0)zδ(φl0)w

+BrownLineµ[1, 2] ·UsualLine[1, 2] ·

(
δ2γ[1]

δ(φ0i)xδ(φ0j)y
·

δ2γ[2]

δ(φ0k)zδ(φ0l)w
+

δ2γ[1]

δ(φ0i)xδ(φ0k)z

×
δ2γ[2]

δ(φ0j)yδ(φ0l)w
(−1)PjPk +

δ2γ[1]

δ(φ0i)xδ(φ0l)w
·

δ2γ[2]

δ(φ0j)yδ(φ0k)z
(−1)PjPl+PkPl +

(
[1] ↔ [2]

))
.

(E.15)

Similar identities can be written for the derivatives with respect to φ∗

0. In this case in the

left hand side for each φ∗

0 it is necessary to replace Ti
j by −(T )j

i.

E.2 Commutators with (T )θ̄

Commutators with (T )θ̄ can be calculated by the same method as the commutators with

(T )y∗µ. Exactly as in the previous section we obtain

∫
d8x (θ̄ȧ)x(T )i

j
(
(φi∗ + φi∗

0 )x
δγ

δ(φ∗j
0 )x

− (φj + φ0j)x
δγ

δ(φ0i)x

)

= −i

∫
d8x (θ̄ȧ)x(T )

j
i

( δ

δ(jj)x

δγ

δ(φ0i)x

)
. (E.16)

Differentiating this equation we obtain commutators with various Green functions. For

example, the commutator with the two-point Green function can be written as

[
(T )θ̄ȧ,

δ2γ

δ(φ0k)yδ(φ0l)z

]
= −i

∫
d8x

[
(T )i

j
((

1 +
D̄2D2

16∂2

)
θ̄ȧ

δ

δjj

)

x

δ3γ

δ(φ0k)yδ(φ0l)zδ(φ0i)x

−(MT )ij(θ̄ȧ)x

( D2

16∂2

δ

δji

)

x

δ

δ(jj)x

δ2γ

δ(φ0k)yδ(φ0l)z

]
. (E.17)

This equation can be simplified using the relations

(
1 +

D̄2D2

16∂2

)
θ̄ȧ

δ

δjj
=

D̄ȧD2

8∂2

δ

δjj
;

∫
d8x (MT )ij θ̄ȧ

D2

16∂2

δ

δji
·

δ

δjj
=

∫
d8x (MT )ij θ̄ȧ

δ

δji
·
D2

16∂2

δ

δjj
= 0. (E.18)
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(The last equality follows from eq. (2.13).) Then we obtain

[
(T )θ̄ȧ,

δ2γ

δ(φ0k)yδ(φ0l)z

]
= −i · BlueLineȧ[1] ·

δ2γ

δ(φ0k)yδ(φ0l)z
, (E.19)

where we use the notation

BlueLineȧ[α; 1, 2] =

∫
d8x (α)x(T )

j
i

(D̄ȧD2

8∂2

δ

δ2jj
·

δ

δ1φ0i

)

x
. (E.20)

As always, the subscripts 1 and 2 denote end points of the line. If these points coincide, we

sometimes for simplicity omit these indexes. Other commutators can be found similarly.

For example,

[
(T )θ̄ȧ,

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

]
= −i · BlueLineȧ[1] ·

δ2γ

δ(φ0k)yδ(φ
∗l
0 )z

(E.21)

for the two-point function, or

[
(T )θ̄ȧ,

δ4γ

δ(φ0i)xδ(φ0j)yδφ0k)zδ(φ0l)w

]
= −i · BlueLineȧ[1] ·

δ4γ

δ(φ0i)xδ(φj0)yδ(φk0)zδ(φl0)w

−i · BlueLineȧ[1; 1, 2] ·UsualLine[1, 2] ·

(
δ2γ[1]

δ(φ0i)xδ(φ0j)y
·

δ2γ[2]

δ(φ0k)zδ(φ0l)w
+

δ2γ[1]

δ(φ0i)xδ(φ0k)z

×
δ2γ[2]

δ(φ0j)yδ(φ0l)w
(−1)PjPk +

δ2γ[1]

δ(φ0i)xδ(φ0l)w
·

δ2γ[2]

δ(φ0j)yδ(φ0k)z
(−1)PjPl+PkPl +

(
[1] ↔ [2]

))

(E.22)

for the four-point function.

E.3 Commutators with propagators

In order to calculate commutators of (T )y∗µ or (T )θ̄ with various Feynman diagrams ac-

cording to the prescription (4.19), it is necessary to commute (T )y∗µ or (T )θ̄ with inverse

Green functions. Here we demonstrate, how this can be made. As a starting point we

consider the identities (B.2), which can be presented in the following matrix form:

∫
d8z




δ2γ
δ(φ∗i

0
)xδ(φ0k)z

δ2γ
δ(φ∗i

0
)xδ(φ∗k

0
)z

+M∗

ki
D̄2

16∂2 δ
8
xz

δ2γ
δ(φ0i)xδ(φ0k)z

+Mki D2

16∂2 δ
8
xz

δ2γ
δ(φ0i)xδ(φ∗k

0
)z




(E.23)

×




(
δ2γ

δ(φk)zδ(φ∗j)y

)
−1 (

δ2γ
δ(φk)zδ(φj)y

)
−1

(
δ2γ

δ(φ∗k)zδ(φ∗j)y

)
−1 (

δ2γ
δ(φ∗k)zδ(φj)y

)
−1




=




−δji

(
D̄2D2

16∂2

)

x
0

0 −δij

(
D2D̄2

16∂2

)

x




δ8xy.

– 57 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

Let us commute this equation with (T )y∗µ or (T )θ̄a, taking into account that the commu-

tators in the right hand side do not vanish. We use the identities
[
y∗µ,

D̄2D2

16∂2

]
=

D̄2D2∂µ
8∂4

+ i(γµ)
aḃθa

D̄ḃD
2

4∂2
;

[
θ̄ȧ,

D̄2D2

16∂2

]
= −

D̄ȧD2

8∂2
;

D2

[
y∗µ,

D̄2

16∂2

]
D2 = −[y∗µ, D

2] = 0; D2

[
θ̄ȧ,

D̄2

16∂2

]
D2 = 0. (E.24)

For example, let us consider the commutator
[
(T )y∗µ,

( δ2γ

δ(φi)xδ(φ∗j)y

)
−1
]

≡ (y∗µ)x(T )i
m
( δ2γ

δ(φm)xδ(φ∗j)y

)
−1

−
( δ2γ

δ(φi)xδ(φ∗m)y

)
−1

(T )m
j(y∗µ)y. (E.25)

Commuting (T )y∗µ with eq. (E.23) after some simple transformations we obtain

[
(T )y∗µ,

( δ2γ

δ(φi)xδ(φ∗j)y

)
−1
]
= −

∫
d8z d8w

×

{( δ2γ

δ(φi)xδ(φk)z

)
−1[

(T )y∗µ,
δ2γ

δ(φ0k)zδ(φ
∗l
0 )w

]( δ2γ

δ(φ∗l)wδ(φ∗j)y

)
−1

+
( δ2γ

δ(φi)xδ(φk)z

)
−1[

(T )y∗µ,
δ2γ

δ(φ0k)zδ(φ0l)w

]( δ2γ

δ(φl)wδ(φ∗j)y

)
−1

+
( δ2γ

δ(φi)xδ(φ∗k)z

)
−1[

(T )y∗µ,
δ2γ

δ(φ∗k
0 )zδ(φ∗l

0 )w

]( δ2γ

δ(φ∗l)wδ(φ∗j)y

)
−1

+
( δ2γ

δ(φi)xδ(φ∗k)z

)
−1[

(T )y∗µ,
δ2γ

δ(φ∗k
0 )zδ(φ0l)w

]( δ2γ

δ(φl)wδ(φ∗j)y

)
−1
}

+(T )i
m
(2∂µ
∂2

− i(γµ)
aḃθa

D̄ḃD
2

4∂2

)

x

( δ2γ

δ(φm)xδ(φ∗j)y

)
−1

+

∫
d8z

( δ2γ

δ(φi)xδ(φk)z

)
−1

(MT )lk
(D2∂µ

8∂4

)

z

( δ2γ

δ(φl)zδ(φ∗j)y

)
−1

. (E.26)

All commutators here can be calculated according to the prescription obtained in the

previous section:
[
(T )y∗µ,

( δ2γ

δ(φi)xδ(φ∗j)y

)
−1
]
= −

∫
d8z d8w

×

{( δ2γ

δ(φi)xδ(φk)z

)
−1

BrownLineµ ·
δ2γ

δ(φ0k)zδ(φ
∗l
0 )w

( δ2γ

δ(φ∗l)wδ(φ∗j)y

)
−1

+
( δ2γ

δ(φi)xδ(φk)z

)
−1

BrownLineµ ·
δ2γ

δ(φ0k)zδ(φ0l)w

( δ2γ

δ(φl)wδ(φ∗j)y

)
−1

+
( δ2γ

δ(φi)xδ(φ∗k)z

)
−1

BrownLineµ ·
δ2γ

δ(φ∗k
0 )zδ(φ∗l

0 )w

( δ2γ

δ(φ∗l)wδ(φ∗j)y

)
−1

+
( δ2γ

δ(φi)xδ(φ∗k)z

)
−1

BrownLineµ ·
δ2γ

δ(φ∗k
0 )zδ(φ0l)w

( δ2γ

δ(φl)wδ(φ∗j)y

)
−1
}
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+(T )i
m
(2∂µ
∂2

− i(γµ)
aḃθa

D̄ḃD
2

4∂2

)

x

( δ2γ

δ(φm)xδ(φ∗j)y

)
−1

+

∫
d8z

( δ2γ

δ(φi)xδ(φk)z

)
−1

(MT )lk
(D2∂µ

8∂4

)

z

( δ2γ

δ(φl)zδ(φ∗j)y

)
−1

. (E.27)

* This expression can be written in a very compact form
[
(T )y∗µ,

( δ2γ

δ(φi)xδ(φ∗j)y

)
−1
]
= −BrownLineµ ·

( δ2γ

δ(j∗j )yδ(j
i)x

+ i(φ∗j
0 )y(φ0i)x

)
. (E.28)

(The fields here should be set to 0.) The other commutators can be considered similarly.

Commutators with (T )θ̄ȧ are calculated by the exactly the same method. The result can

be obtained by the substitution

BrownLineµ → −i · BlueLineȧ[1]. (E.29)

In particular, there are no terms containing the masses in the commutators with (T )θ̄ȧ.

F Identities for effective lines

F.1 Proof of the identity (4.3)

In order to present the two-loop effective diagram with the yellow line presented in figure 9

(plus ∆1) as an integral of a total derivative, we use the identity

2 ·YellowLineµ[ θ̄
ȧ(γµ)ȧ

bθb] · GreenLine · γ = −YellowLineµ[θ
4] · BrownLineµ · γ. (F.1)

In this section we prove this equality. Using the same method in the subsequent sections

we prove more complicated identities relating the effective lines. First, we note that both

sides of the considered equation are quadratic in θ̄. As a consequence, it is possible to

shift θ̄ to an arbitrary point of a diagram, because the integral over d8x does not vanish

only if the integrand contains θ4. Comparing definitions of the operators GreenLine and

RedLineȧ and taking into account the possibility of shifting θ̄ȧ we easily obtain (omitting

unessential terms which do not contain θ̄)

4 ·GreenLine[1, 2] = (θ̄ċ)z · RedLineċ[1, 2], (F.2)

where z is an arbitrary point of the considered supergraph. Therefore, taking into account

that θ̄ċθ̄ȧ = δċȧ θ̄
ḃθ̄ḃ/2, we see that the equality (F.1) is equivalent to the identity

(γµ)ȧb(θb)z · RedLineȧ[1, 2] = 4(θaθa)z · BrownLine
µ[1, 2] +O(θ). (F.3)

Let us compare terms quadratic in θ. In these terms we can make arbitrary shifts of θ, be-

cause terms proportional to the first degree of θ (denoted by O(θ)) vanish after integrating

over d4θ. Then the considered terms in the left hand side of eq. (F.3) can be written as

(γµ)
ȧb(θb)z ·

∫
d8x(γν)ȧ

c(θc)x

(
8i(T )j i

∂ν
∂2

δ

δjj
δ

δφ0i
− i(MT )ij

D2∂ν
4∂4

δ

δji
δ

δjj

)

= −4(θbθb)z ·

∫
d8x
(
2i(T )j i

∂µ
∂2

δ

δjj
δ

δφ0i
− i(MT )ij

D2∂µ
16∂4

δ

δji
δ

δjj

)
+O(θ) (F.4)
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and coincide with the terms quadratic in θ in the right hand side of eq. (F.3). Terms

proportional to the third degree of θ can be investigated similarly. In the left hand side

such terms are given by

(γµ)ȧb(θb)z ·

∫
d8x (T )j i (θ

cθc)x
D̄ȧD

2

∂2

δ

δjj
δ

δφ0i
. (F.5)

In a Feynman graph the points z and x are connected by a sequence of vertices and

propagators. This allows to write the left part of the above expression in the form (PA = 0)

(γµ)ȧbθbAθcθc = (γµ)ȧb[θb, A] θ
cθc = (γµ)ȧbθcθc [θb, A] +O(θ) = −(γµ)ȧbθcθcAθb +O(θ),

(F.6)

where A is a differential operator, which does not explicitly depend on θ. (This opera-

tor encodes the sequence of vertices and propagators which connect the points z and x.)

Similarly, for an arbitrary PA

θbAθcθc = −(−1)PAθcθcAθb +O(θ). (F.7)

Terms O(θ) vanish after integration over d4θ. Omitting these terms we see that the last

expression in eq. (F.6) corresponds to

− (θcθc)z ·

∫
d8x (T )j i (γ

µ)ȧb(θb)x
D̄ȧD

2

∂2

δ

δjj
δ

δφ0i
(F.8)

and coincides with the terms cubic in θ in the right hand side of eq. (F.3). Thus, we have

proved eq. (F.3) and eq. (F.1).

F.2 Auxiliary identities

In order to compare different groups of effective diagrams it is necessary to use some

identities which relate various effective lines. All these identities follow from some simple

commutators of θa with differential operators containing supersymmetric covariant deriva-

tives and usual derivatives. In this subsection we prove some simple algebraic equalities

which allow to relate various effective lines:

θaABθbθb + (−1)PA+PBAθbθbBθa − θaAθ
bθbB = O(θ); (F.9)

θbθbABθa + (−1)PA+PBθaAθ
bθbB −AθbθbBθa = O(θ); (F.10)

θaθaABθbθb + 2(−1)PA+PBθaAθbθbBθa − θaθaAθ
bθbB −AθaθaBθbθb = O(θ), (F.11)

where A and B are differential operators which do not explicitly depend on θ. Actually,

these operators correspond to sequences of vertices and propagators in a Feynman graph

connecting two fixed points.

In order to prove the first identity we rewrite its left hand side as

[θa, A}Bθbθb + (−1)PAA[θa, B}θbθb + (−1)PA+PBAθbθb[B, θa} − [θa, A}θ
bθbB. (F.12)
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Evidently, [A, θa} and [B, θa} do not explicitly depend on θ. Therefore, the whole expres-

sion is quadratic in θ, and shifts of θaθa can change only the terms O(θ). As a consequence,

the considered expression can be rewritten as

θbθb

(
[θa, A}B+(−1)PAA[θa, B}+(−1)PA+PBA[B, θa}−[θa, A}B

)
+O(θ) = O(θ). (F.13)

The second and third identities can be proved similarly. For example, the left hand side of

the third identity can be presented in the form

[θa, [θa, AB}}θbθb+2(−1)PA+PB [θa, A}θbθb[B, θa}−[θa, [θa, A}}θ
bθbB−A[θa, [θa, B}}θbθb.

(F.14)

Again, shifts of θbθb change only the terms O(θ) and this expression can be presented as

θbθb

(
[θa, [θa, A}}B + 2(−1)PA [θa, A}[θa, B}+A[θa, [θa, B}} − 2(−1)PA [θa, A}[θa, B}

−[θa, [θa, A}}B −A[θa, [θa, B}}
)
+O(θ) = O(θ). (F.15)

F.3 Proof of identity presented in figure 16

Using the identities (F.9)–(F.11) it is possible to prove the identity presented in figure 16,

which can be written as

(θ4)z

(
BlueLineḃ[1; 1, 2] · PinkLine

ḃ[3, 4] + PinkLineḃ[1, 2] · BlueLine
ḃ[1; 3, 4]

− (γµ)aḃBlueLineḃ[θa; 1, 2] · BrownLineµ[3, 4]− (γµ)aḃBrownLineµ[1, 2] · BlueLineḃ[θa; 3, 4]
)

= 2 · BlueLineḃ[θ
aθaθ̄

ḃ; 1, 2] ·GreenLine[3, 4] + 2 ·GreenLine[1, 2] · BlueLineḃ[θ
aθaθ̄

ḃ; 3, 4]

+O(θ3), (F.16)

where z is an arbitrary point of the considered supergraph. (Certainly, we assume that all

effective lines are included into a connected Feynman graph.)

Both sides of the considered identity are quadratic in θ̄. Therefore, it is possible to

shift θ̄ to an arbitrary point of the supergraph, because the terms O(θ̄) vanish after the

integration over d4θ. Using eq. (F.2) one can equivalently rewrite the identity (F.16) in

the form

(θaθa)z

(
BlueLineḃ[1; 1, 2] · PinkLine

ḃ[3, 4] + PinkLineḃ[1, 2] · BlueLine
ḃ[1; 3, 4]

− (γµ)aḃBlueLineḃ[θa; 1, 2] · BrownLineµ[3, 4]−(γµ)aḃBrownLineµ[1, 2] · BlueLineḃ[θa; 3, 4]
)

=
1

4
· BlueLineḃ[θ

aθa; 1, 2] · RedLine
ḃ[3, 4]+

1

4
· RedLineḃ[1, 2] · BlueLine

ḃ[θaθa; 3, 4]+O(θ).

(F.17)

This identity contains terms cubic in θ and terms quartic in θ, which will be considered

separately. We start with the cubic terms. Let Aḃ denotes a sequence of lines and vertices

connecting the points z and x which also includes terms coming from the operator

∫
d8x

(
(T )j i

(D̄ḃD
2

8∂2

δ

δ2jj

) δ

δ1φ0i

)

x
. (F.18)
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Similarly, let B denotes a sequence of line and vertices connecting the points z and y. Note

that in this operator we do not include terms coming from the operator

∫
d8y

(
(T )j i

2i∂µ
∂2

δ

δ4jj
δ

δ3φ0i
− i(MT )ij

D2∂µ
16∂4

δ

δ4ji
δ

δ3jj

)

y
(F.19)

(Evidently, PA = 1 and PB = 0.) Then the contributions of the first and third terms in

the left hand side of eq. (F.17) can be formally written in the form

Aḃθ
aθaB(γµ)ḃcθc + (γµ)ḃcθcAḃθ

aθaB. (F.20)

Using the identity (F.10) this expression can be rewritten as

(γµ)ḃcθaθaAḃBθc +O(θ) (F.21)

and coincides with the contribution of the first term in the right hand side of eq. (F.17).

(So far we discuss only terms cubic in θ.) Using the same method we prove that the second

and fourth terms in the left hand side of eq. (F.17) give the second term in the right hand

side. Therefore, the terms cubic in θ coincide. Let us now verify that terms quartic in θ are

also the same in both sides of eq. (F.17). In this case the operators Aḃ and B are defined

exactly as earlier. In particular, B denotes a sequence of line and vertices connecting the

points z and y and does not include terms coming from the operator

∫
d8y

(
(T )j i

(D̄ḃD
2

8∂2

δ

δ4jj

) δ

δ3φ0i

)

y
. (F.22)

(As earlier, in this case PA = 1, PB = 0.) Then terms quartic in θ can be formally presented

in the form

4Aḃ θ
cθcB θdθd + 4θcθcAḃ θ

dθdB + 4(γµ)ḋ
aθaA

ḋ θcθcB(γµ)ḃ
eθe. (F.23)

It is easy to see that the last term in this equation can be equivalently rewritten as

8 θaAḃθ
cθcBθa. (F.24)

This allows to apply eq. (F.11). As a result, we obtain that terms of the forth order in θ

are given by the expression

4 θcθcAḃBθdθd +O(θ), (F.25)

which coincides with the corresponding terms in the right hand side of eq. (F.17). Taking

into account that the cubic terms also coincide, we conclude that the identity (4.32) is

proved.

F.4 Proof of identity presented in figure 22

In order to verify that a β-function is given by integrals of double total derivative we use

the identity

(θ4)z

(
BlueLineḃ[1; 1, 2] · RedLine

ḃ[3, 4] + RedLineḃ[1, 2] · BlueLine
ḃ[1; 3, 4] (F.26)

+2 · BrownLineµ[1, 2] · BrownLineµ[3, 4]
)
= 4 ·GreenLine[1, 2] ·GreenLine[3, 4] +O(θ3),
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which is proved in this section. Exactly as in the previous section we note that both sides

of this identity are quadratic in θ̄ and, therefore, it is possible to shift θ̄ to an arbitrary

point of the supergraph. Using eq. (F.2) it is easy to see that eq. (F.26) can be equivalently

written in the form

(θaθa)z

(
BlueLineḃ[1; 1, 2] · RedLine

ḃ[3, 4] + RedLineḃ[1, 2] · BlueLine
ḃ[1; 3, 4] (F.27)

+2 · BrownLineµ[1, 2] · BrownLineµ[3, 4]
)
= −

1

8
· RedLineb[1, 2] · RedLineb[3, 4] +O(θ).

This equation contains terms quadratic, cubic, and quartic in θ. The quartic terms in both

sides are equal to the corresponding quartic terms in eq. (F.17), which are considered in the

previous section, multiplied by 2. Similarly, terms cubic in θ are obtained by multiplying

cubic terms in eq. (F.17) by 4. Therefore, it is necessary to consider only terms quadratic in

θ. It is evident that in such terms θ-s can be shifted to an arbitrary point of the supergraph.

Then the required equality of the quadratic terms follows from the algebraic identity

2 · θaθaη
µν = −

1

8
· 4(γµ)ḃcθc · 4(γ

ν)ḃ
dθd. (F.28)

(In the right hand side we shift both θ-s to the same point z.)

G Derivation of the expression (4.11)

The sum of ∆1, which is given by eq. (3.24), and the expression (4.10) is

i
d

d ln Λ

∫
d8x (θ4)xC(R)i

k

{∫
d8y

(
−
(2∂µ
∂2

)

x

( δ2γ

δ(φ∗j)yδ(φk)x

)
−1[

y∗µ,
δ2γ

δ(φ∗j
0 )yδ(φ0i)x

]

−
(2∂µ
∂2

)

x

( δ2γ

δ(φj)yδ(φk)x

)
−1[

y∗µ,
δ2γ

δ(φ0j)yδ(φ0i)x

]
+
(D2

4∂4

)

x

( δ2γ

δ(φk)xδ(φj)y

)
−1 δ2γ

δ(φi)xδ(φ0j)y

)

+M ij
[
y∗µ,
(∂µD2

16∂4

)

y

( δ2γ

δ(φj)xδ(φk)y

)
−1]

y=x
−M ij

(D2

8∂4

)

x

( δ2γ

δ(φj)xδ(φk)y

)
−1

y=x

}
. (G.1)

Substituting the inverse Green functions from eq. (2.41) we obtain

iC(R)i
k d

d ln Λ

∫
d8x (θ4)x

{∫
d8y

(( ∂µD̄
2D2

2∂2(∂2G2 + |MJ |2)
G
)

k

j δ8xy

[
y∗µ,

δ2γ

δ(φ∗j
0 )yδ(φ0i)x

]

+
( 2∂µD̄

2

∂2(∂2G2 + |MJ |2)
(MJ)∗

)

jk
δ8xy

[
y∗µ,

δ2γ

δ(φ0j)yδ(φ0i)x

]
−
( D2D̄2

4∂4(∂2G2 + |MJ |2)
(MJ)∗

)

kj

×δ8xy
δ2γ

δ(φi)xδ(φ0j)y

)
+M ij

[
y∗µ,
( ∂µD

2D̄2

16∂4(∂2G2 + |MJ |2)
(MJ)∗

)

jk

]

x
δ8xy

∣∣∣
y=x

+M ij
( 1

∂2G2 + |MJ |2
(MJ)∗

)

jk

(D2D̄2

8∂4

)

x
δ8xy

∣∣∣
y=x

}
, (G.2)

where all derivatives act on the point x. Taking into account that [y∗µ, D
2] = 0 and

(θ4)x[y
∗

µ, D̄
2δ8xy] = 0, it is possible to use eq. (C.16), which allows to express the remaining
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Green functions in terms of G and J :

iC(R)i
k d

d ln Λ

∫
d8x (θ4)x

{
2

∫
d8y

(( D̄2D2∂µ
8∂2(∂2G2 + |MJ |2)

G
)

k

j δ8xy

[
y∗µ, G

i
j

]

y
δ8xy

+
( D̄2D2∂µ
8∂2(∂2G2 + |MJ |2)

(MJ)∗
)

jk
δ8xy

[
y∗µ,

(MJ)ij

∂2
−

M ij

∂2

]

y
δ8xy

)

−
( D2D̄2

8∂4(∂2G2 + |MJ |2)
(MJ)∗

)

jk

(
(MJ)ij − 2M ij

)
δ8xy

∣∣∣
y=x

+M ij
[
y∗µ,
( ∂µD

2D̄2

16∂4(∂2G2 + |MJ |2)
(MJ)∗

)

kj

]

x
δ8xy

∣∣∣
y=x

}
. (G.3)

Calculating the integrals over the anticommuting variables and using the identities

D̄2D2δ4(θx − θy)
∣∣∣
θx=θy

= 4;

∫
d4θ θ4 = 4, (G.4)

we obtain (in the Euclidian space after the Wick rotation)

V4 · C(R)i
k d

d ln Λ

∫
d4q

(2π)4

{
∂Gi

j

∂qµ

( 2qµ
q2(q2G2 + |MJ |2)

G
)

k

j +

(
∂

∂qµ

((MJ)ij

q2

)

+
qµ(MJ)ij

q4

)( 2qµ
q2(q2G2 + |MJ |2)

(MJ)∗
)

jk
+

qµ
q4

∂

∂qµ

( 1

(q2G2 + |MJ |2)
(MJ)∗

)

jk
M ij

}
.

(G.5)

Taking into account eqs. (2.39), (2.42), and (3.22) this expression can be presented as an

integral of a total derivative:

V4 ·Nf

n∑

I=0

(−1)PI
d

d ln Λ

∫
d4q

(2π)4
2qµ

q4
∂

∂qµ

(
ln(q2G2 +M2J2) +

M2J

q2G2 +M2J2

)

I
, (G.6)

where PI is a Grassmanian parity of the superfields φI and φ̃I . This expression coincides

with eq. (4.11).

H Relation between diagrams presented in figures 11 and 15

Now, let us compare sums of the diagrams presented in figures 11 and 15 (including the

terms written explicitly) using the identity (4.32).

1. The sum of diagrams (1) and (10) in figure 15 is equal to diagram (7) in figure 11.

This equality is illustrated in figure 17.

2. The sum of diagrams (2) and (11) in figure 15 gives diagram (8) in figure 11.

3. The sum of diagrams (3) and (12) in figure 15 gives diagram (9) in figure 11.

4. The sum of diagrams (6) and (15) in figure 15 gives diagram (10) in figure 11.

– 64 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

5. Let us consider the sum of diagrams (4), (7), (13), and (16) in figure 15. Using the

identity (4.32) we see that this sum is equal to the sum of diagrams (a) and (g) in

figure 24.

Let us consider terms containing the derivative δ/δφ0 inside the operator GreenLine

in diagram (a). Then according to eq. (D.10) the left part of the diagram is propor-

tional to

( ∂

∂ ln g
− 1
) δ2γ

δ(φ0i)xδ(φ∗j)y
−

D2
y

8
δ8xy ∼ D2

xδ
8
xy

or
( ∂

∂ ln g
− 1
) δ2γ

δ(φ0i)xδ(φj)y
∼ D2

xD̄
2
xδ

8
xy.

(H.1)

In both cases the projector D2
x acts on the green effective line. Taking into account

the identity (5.17) we see that the part of the green line containing δ/δφ0 vanishes.

The remaining part of the green line is denoted by the green line with a cross. Thus,

we prove the identity presented in the first string of figure 24 and obtain diagram (4)

in figure 11.

6. Let us consider a sum of diagrams (5), (14), and (17) in figure 15. First, it is necessary

to prove that diagram (17) is equal to diagram (c) in figure 24. For this purpose we

consider terms which do not contain the masses in the operator PinkLine. Then it is

easy to see that the right vertex with effective blue line is proportional to

[
(T )θ̄ḃ,

δ2γ

δ(φ0i)xδ(φ∗j)y

]
= 0 or (D̄2)y

[
(T )θ̄ḃ,

δ2γ

δ(φ0i)xδ(φ0j)y

]
= 0. (H.2)

Therefore, all such terms vanish. The remaining part of the operator PinkLine is

denoted by the pink line with a cross. Thus, we verify the identity presented in the

third string of figure 24. Using this result we can apply the identity (4.32) to the

considered sum of diagrams. Then we obtain diagrams (5) and (6) in figure 11 and

diagram (e) in figure 24.

7. Diagrams (8), (18), and (21) are considered similarly. Exactly as in the previous

item we prove that diagram (21) is equal to diagram (d) in figure 24. Then applying

the identity (4.32) we obtain diagrams (1) and (2) in figure 11 and diagram (f) in

figure 24.

8. Applying the identity (4.32) to the sum of diagrams (9), (19), and (20) we obtain

diagrams (b), (i), and (k) in figure 24. Using the equality (5.17) we obtain that

diagram (b) is equal to diagram (3) in figure 11.

9. The sum of diagrams (22) and (23) gives diagram (h), which corresponds to

2i(T )j i(T )
l
k

d

d ln Λ

∫
d8x d8y

(
θcθcθ̄

ḋ D̄ḋD
2

4∂2
+ 2iθ̄ċ(γµ)ċ

dθd
∂µ
∂2

)

y

(
θaθaθ̄

ḃ D̄ḃD
2

8∂2

)

x

×
( δ2γ

δ(φl)yδ(φj)x

)
−1

· LineWithDot[1] ·
δ2γ

δ(φ0k)yδ(φ0i)x
. (H.3)

– 65 –



J
H
E
P
0
8
(
2
0
1
4
)
0
9
6

(a)

= −2−2

θaθaθ̄
ḃ

ḃ

θaθaθ̄
ḃ

ḃ

−2

(b)

θaθaθ̄
ḃ

ḃ

= −2

θaθaθ̄
ḃ

ḃ

(c)

ḃ

ḃ
1

= −θ4−θ4

ḃ

ḃ
1

(d)

= −θ4

1

ḃḃ

−θ4

1

ḃḃ

(e)

ḃ θa

−(γµ)aḃ · θ4
µ

ḃ(f)

−(γµ)aḃ · θ4
µ

θa

= eq. (H.14)

(g)

− 2

θaθaθ̄
ḃ ḃ

(h)

− 2 + eq. (H.10) = eq. (H.18)

(i)

−(γµ)aḃ · (θ4, θa)
µ

ḃ (k)

− 2 · (1; θaθaθ̄
b)

ḃ

+ eq. (H.8) + eq. (H.9) = eq. (H.26)





=
∂∆2

∂ ln g

Figure 24. Some relations between effective diagrams needed for proving identity presented in

figure 13. (For simplicity we omit the derivatives d/d ln Λ acting on these diagrams.)

Using eqs. (D.10) and commuting (θaθa)x with (D2)x this expression can be presented

in the form

−4g C(R)i
j d

d ln Λ

∫
d8x d8y

(
θcθcθ̄

ḋ D̄ḋD
2

4∂2
+ 2iθ̄ċ(γµ)ċ

dθd
∂µ
∂2

)

y

(
θ̄ȧ(γµ)ȧ

bθb
∂ν
∂2

)

x

×
( δ2γ

δ(φk)yδ(φj)x

)
−1 ∂

∂ ln g

(
g−1 δ2γ

δ(φ0k)yδ(φ0i)x

)
. (H.4)

Taking into account the identity (F.7) after some simple transformations we write
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the result in the form

− 2ig C(R)i
j d

d ln Λ

∫
d8x d8y (θ4)x

(2∂µ
∂2

− i(γµ)
aḃθa

D̄ḃD
2

4∂2

)

y

(∂µ
∂2

)

x

( δ2γ

δ(φk)yδ(φj)x

)
−1

×
∂

∂ ln g

(
g−1 δ2γ

δ(φ0k)yδ(φ0i)x

)
. (H.5)

10. Let us now consider the term

−i
d

d lnΛ

∫
d8x (θ4)x(γ

µ)ȧb(MT )ik
(D2∂µ

8∂4

δ

δji

) δ

δjk
· BlueLineȧ[θb] · γ, (H.6)

which is written explicitly in figure 15. This expression is quadratic in θ̄. Therefore,

it is possible to shift any θ̄ to an arbitrary point of the graph. Then using the

identity (F.7) it is easy to see that the considered expression can be rewritten in the

form

−i
d

d ln Λ

∫
d8x (θ̄ċ(γµ)ċ

dθd)x(MT )ik
(D2∂µ

4∂4

δ

δji

) δ

δjk
· BlueLineḃ[θ

aθaθ̄
ḃ] · γ

=
d

d ln Λ

(
4 ·GreenWithCross · BlueLineb[θ

aθaθ̄
b] · γ

)
. (H.7)

This result coincides with diagram (11) in figure 11.

11. The terms containing M∗, which are presented in figure 15 in the explicit form, are

given by

− i(γµ)ȧb(TM∗)ik
d

d ln Λ

∫
d8x

(
2(θ4)xBlueLineȧ[θb]+(θ̄ċθ̄ċθb)xPinkLineȧ

)(D2∂µ
16∂4

δ

δj∗i

) δ

δj∗k
· γ

= −i(TM∗)ik
d

d ln Λ

∫
d8x (θ4)xBrownLine

µ ·
(D2∂µ
16∂4

δ

δj∗i

) δ

δj∗k
· γ

= i
d

d ln Λ

∫
d8x (θ4)x(TM

∗)ik

(D̄2∂µ

16∂4

)

x

([
(T )y∗µ,

( δ2γ

δ(φ∗k)yδ(φ∗i)x

)
−1
]

−

∫
d8z (MT )mn

(D2∂µ

8∂4

)

z

( δ2γ

δ(φm)zδ(φ∗k)y

)
−1( δ2γ

δ(φn)zδ(φ∗i)x

)
−1

)

y=x

, (H.8)

where we use the results for (T )y∗µ commutators with inverse Green functions obtained

in appendix E.3 for deriving the last equality.

12. The first two terms explicitly written in figure 15 can be presented in the following

form:

∫
d8xMmkC(R)k

n
(D2

8∂4

)

x
LineWithDot[θ4] ·

δ2γ

δ(jm)xδ(jn)y

∣∣∣∣∣
y=x

= −iC(R)k
iM jk

∫
d8x (θ4)x

{
g−1

(D2

8∂4

)

x

∂

∂ ln g

(
g
( δ2γ

δ(φi)xδ(φj)y

)
−1

)

y=x

−

∫
d8z

(( D2

16∂4

)

x

δ(φm)zδ(φi)x

)
−1( δ2γ

δ(φ∗m)zδ(φj)x

)
−1

+Mmn
( D2

16∂4

)

x

( δ2γ

δ(φi)xδ(φm)z

)
−1(D2

8∂2

)

z
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δ(φn)zδ(φj)x

)
−1

+M∗

mn

( D2

16∂4

)

x

( δ2γ

δ(φi)xδ(φ∗m)z

)
−1( D̄2

8∂2

)

z

( δ2γ

δ(φ∗n)zδ(φj)x

)
−1

)}
;

(H.9)
∫

d8x d8y

{
MmkC(R)k

n
(∂µ
∂2

)

x

( δ2γ

δ(φi)xδ(φm)y

)
−1

LineWithDot[θ4] ·
(D2∂µ

4∂4

)

y

×
δ

δ(jn)y

δγ

δ(φ0i)x

}
= −ig

d

d ln Λ

∫
d8x d8y d8z (θ4)x

{
MmkC(R)k

n
(∂µ
∂2

)

x

( δ2γ

δ(φi)xδ(φm)y

)
−1

×
(D2∂µ

4∂4

)

y

[( δ2γ

δ(φ∗p)zδ(φn)y

)
−1

(
∂

∂ ln g

(
g−1

δ2γ

δ(φ0i)xδ(φ
∗p
0
)z

)
+

1

4g
δ8xzδ

i
p

)

+
( δ2γ

δ(φp)zδ(φn)y

)
−1(

g−1
δ2γ

δ(φ0i)xδ(φ0p)z

)]}
. (H.10)

13. We have already obtained all diagrams presented in figure 11. However, there are also

some additional contributions. Let us verify that the sum of them gives ∂∆2/∂ ln g.

We will start with calculating the sum of diagrams (e) and (f) in figure 24. It is easy

to see that the right part of these diagrams contains the operator D2 acting on the

right part of the blue effective line. Using the identity

D2
(
(γµ)aḃθa

D̄ḃD
2

8∂2
+

i∂µ

∂2

)
= 0 (H.11)

similar to item 6 it is possible to present the considered sum in the form:

1

2
·

d

d ln Λ

(
LineWithDot[θ4; 1, 1] ·YellowLineµ[1,M = 0; 2, 1] ·UsualLine[1, 2] ·

×BrownLineµ[2, 2] · γ[1] · γ[2] + YellowWhiteLineµ[θ4,M = 0] · BrownLineµ · γ
)
,

(H.12)

where M = 0 means that in the expression for the effective line it is necessary to set

masses to 0. The operator BrownLineµ acting on derivatives of the Routhian γ gives

commutators with (T )y∗µ, see eqs. (E.12) and (E.14). Taking into account eqs. (D.13)

and (D.14) we see that the other operators give the derivative with respect to ln g

and the considered sum of diagrams (e) and (f) can be rewritten as

2i (T )li
d

d ln Λ

∫
d8x d8y (θ4)x

1

g

{
∂

∂ ln g

(
g
( δ2γ

δ(φl)xδ(φj)y

)
−1

)(
∂µ
∂2

)

x

[
(T )y∗µ,

δ2γ

δ(φ0j)yδ(φ0i)x

]

+
∂

∂ ln g

(
g
( δ2γ

δ(φl)xδ(φ∗j)y

)
−1

)(
∂µ
∂2

)

x

[
y∗µ,

δ2γ

δ(φ∗j
0
)yδ(φ0i)x

]}
. (H.13)

In order to calculate this expression we substitute the inverse Green functions from

eq. (2.41) and use eqs. (3.1) and (2.38). The result in the momentum representation is

V4 · 2C(R)k
i d

d ln Λ

∫
d4q

(2π)4
qµ

gq2

{
∂

∂ ln g

( g

q2G2 + |MJ |2
G
)

i

j ∂G
k
j

∂qµ

+
∂

∂ ln g

( g

q2G2 + |MJ |2
(MJ)∗

)

ij

∂

∂qµ

(
(MJ)jk −M jk

q2

)}
. (H.14)
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14. In order to simplify diagram (g) in figure 24 we use eq. (5.17). Then repeating the

same arguments as for diagram (a) the derivative of this diagram with respect to lnΛ

can be written as

d

d ln Λ
LineWithDot[1; 1, 1] ·UsualLine[1, 2]

×YellowLineµ[θ̄
ȧ(γµ)ȧ

bθb,M = 0; 1, 2] ·GreenLine[2, 2] · γ[1] · γ[2]

= −
1

8
·

d

d ln Λ
LineWithDot[1; 1, 1] ·UsualLine[1, 2]

×YellowLineµ[θ̄
ċθ̄ċ(γ

µ)ȧbθb,M = 0; 1, 2] · RedLineȧ[2, 2] · γ[1] · γ[2]

= −
1

2
·

d

d ln Λ
LineWithDot[1; 1, 1] ·UsualLine[1, 2]

×YellowLineµ[θ
4,M = 0; 1, 2] · BrownLineµ[2, 2] · γ[1] · γ[2]. (H.15)

This expression contains the operator BrownLineµ acting on the two-point Green

functions, which is related with (T )y∗µ commutators according to the results obtained

in appendix E.1. Similarly, the operator LineWithDot[1] acting on two-point func-

tions is related with the derivatives of these functions with respect to ln g according

to the results obtained in appendix D.2. Using these relations it is possible to rewrite

diagram (g) as

2ig(T )nm

d

d ln Λ

∫
d8x d8y (θ4)y

{
∂

∂ ln g

[(
g−1

δ2γ

δ(φ0m)yδ(φ∗i
0
)x

)
+

1

4g
δ8xyδ

m
i

](∂µ

∂2

)

y

([
(T )y∗µ,

( δ2γ

δ(φ∗i)xδ(φn)y

)
−1
]
− (T )n

j
(2∂µ
∂2

)

y

( δ2γ

δ(φ∗i)xδ(φj)y

)
−1

− (MT )kl
∫

d8z
(D2∂µ

8∂4

)

z

×
( δ2γ

δ(φk)zδ(φ∗i)x

)
−1( δ2γ

δ(φl)zδ(φn)y

)
−1

)
+

∂

∂ ln g

(
g−1

δ2γ

δ(φ0m)yδ(φ0i)x

)(∂µ
∂2

)

y

([
(T )y∗µ,

( δ2γ

δ(φi)xδ(φn)y

)
−1
]
− (T )n

j
(2∂µ
∂2

)

y

( δ2γ

δ(φi)xδ(φj)y

)
−1

− (T )i
j
(2∂µ
∂2

− i(γµ)
aḃθa

D̄ḃD
2

4∂2

)

x

×
( δ2γ

δ(φj)xδ(φn)y

)
−1

− (MT )kl
∫

d8z
(D2∂µ

8∂4

)

z

( δ2γ

δ(φk)zδ(φi)x

)
−1( δ2γ

δ(φl)zδ(φn)y

)
−1

)}
.

(H.16)

Adding to this expression the contributions (H.5) and (H.10) we obtain a simpler

expression

2ig(T )nm

d

d ln Λ

∫
d8x d8y (θ4)y

{
∂

∂ ln g

[(
g−1

δ2γ

δ(φ0m)yδ(φ∗i
0
)x

)
+

1

4g
δ8xyδ

m
i

](∂µ

∂4

)

y

[
(T )y∗µ, (∂

2)x

×
( δ2γ

δ(φ∗i)xδ(φn)y

)
−1]

+
∂

∂ ln g

(
g−1

δ2γ

δ(φ0m)yδ(φ0i)x

)(∂µ
∂4

)

y

[
(T )y∗µ, (∂

2)x

( δ2γ

δ(φi)xδ(φn)y

)
−1]
}
.

(H.17)

Substituting the inverse Green functions and using eq. (3.1) after the Wick rotation
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in the Euclidian space it can be rewritten in the form

V4 · 2C(R)k
i d

d ln Λ

∫
d4q

(2π)4
qµ

q2

{
−

1

q2
∂

∂qµ

( gq2

q2G2+|MJ |2
G
)j

i
∂

∂ ln g

(
g−1Gj

k−g−1δkj

)

−
∂

∂qµ

( gq2

q2G2+|MJ |2
(MJ)∗

)

ij

∂

∂ ln g

((MJ)jk−M jk

gq4

)}
. (H.18)

15. The sum of the expressions (H.14) and (H.18) is

V4 · 2Nf

n∑

I=0

(−1)PI
d

d ln Λ

∫
d4q

(2π)4

{
∂

∂ ln g

( M2J(−2J + 4)

q4(q2G2 +M2J2)

)

−
qµ

q4
∂

∂qµ

(2q2G+ 2M2J

q2G2 +M2J2

)}

I

. (H.19)

16. Diagram (k) contains

−2 ·WhiteBlueLineḃ[1, θ
aθaθ̄

ḃ]

=

∫
d8x θaθaθ̄

ḃ
{
(T )ki

D̄ḃD
2

8∂2

δ

δjk
·

δ

δj∗i
− (MT )ij

D̄ḃD
2

8∂2

δ

δji
D2

4∂2

δ

δjj

}

= −i

∫
d8x θ̄ȧ(γµ)ȧ

bθb

{
(T )ki

∂µ
∂2

δ

δjk
·

δ

δj∗i
− (MT )ij

D2∂µ
4∂4

δ

δji
·

δ

δjj

}
. (H.20)

Taking into account that the considered graph is quadratic in θ̄ and using eq. (F.7)

we obtain

(θ̄ȧ(γµ)ȧ
bθb)x ×GreenLine = −

1

8
(γµ)aḃ(θ̄ċθ̄ċθa)x × RedLineḃ + . . .

= −
1

2
(θ4)x × BrownLineµ + . . . , (H.21)

where dots denote terms vanishing after integration over d4θ. Using this equation

the derivative of the considered diagram with respect to lnΛ can be written in the

form

i

2
·

d

d ln Λ

∫
d8x (θ4)x

(
(T )ki

∂µ
∂2

δ

δjk
·

δ

δj∗i
− (MT )ij

D2∂µ
4∂4

δ

δji
·

δ

δjj

)
· BrownLineµ · γ.

(H.22)

In this expression the operator BrownLineµ acts on two-point Green functions. This

allows to present the result in the form

i

2
·

d

d ln Λ

∫
d8x (θ4)x

{
− (T )nm

(∂µ

∂2

)

x

([
(T )y∗µ,

( δ2γ

δ(φ∗m)yδ(φn)x

)
−1]

− (T )n
p
(2∂µ
∂2

)

x

×
( δ2γ

δ(φ∗m)yδ(φp)x

)
−1

− (MT )pq
∫

d8z
(D2∂µ

8∂4

)

z

( δ2γ

δ(φp)zδ(φ∗m)y

)
−1( δ2γ

δ(φq)zδ(φn)x

)
−1

)

+(MT )nm
(∂µ
∂2

)

x

(D2

4∂2

)

y

([
(T )y∗µ,

( δ2γ

δ(φm)yδ(φn)x

)
−1]

− (T )n
p
(2∂µ
∂2

)

x

( δ2γ

δ(φm)yδ(φp)x

)
−1

−(MT )pq
∫

d8z
(D2∂µ

8∂4

)

z

( δ2γ

δ(φp)zδ(φm)y

)
−1( δ2γ

δ(φq)zδ(φn)x

)
−1

)}

y=x

. (H.23)
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17. Diagram (i) contains

−(γµ)aḃWhiteBlueLineḃ[θ
4, θa] = −

1

2
(γµ)aḃ

∫
d8x θ4(MT )ij

(D2

8∂2
θa

D̄ḃD
2

8∂2

δ

δji

) δ

δjj

= i

∫
d8x θ4(MT )ij

(D2∂µ
16∂4

δ

δji

) δ

δjj
. (H.24)

Therefore, the derivative of this diagram with respect to lnΛ can be written as

d

d ln Λ

∫
d8x (θ4)x(MT )nm

iD2∂µ
16∂4

δ

δjn
·

δ

δjm
· BrownLineµ · γ =

d

d ln Λ

∫
d8x (θ4)x

×(MT )nm
( iD2∂µ

16∂4

)

x

(
−
[
(T )y∗µ,

( δ2γ

δ(φm)yδ(φn)x

)
−1]

+ (T )n
p
(2∂µ
∂2

)

x

( δ2γ

δ(φm)yδ(φp)x

)
−1

+(MT )pq
∫

d8z
(D2∂µ

8∂4

)

z

( δ2γ

δ(φp)zδ(φm)y

)
−1( δ2γ

δ(φq)zδ(φn)x

)
−1

)

y=x

. (H.25)

18. It is easy to see that the sum of eq. (H.8), (H.9), (H.23), and (H.25) is given by

V4 · 2Nf
d

d ln Λ

n∑

I=0

(−1)PI

∫
d4q

(2π)4

{
−

∂

∂ ln g

(
2M2J

q4(q2G2 +M2J2)

)

+
qµ

q4
∂

∂qµ

(
2q2G+ 2M2J

q2G2 + |MJ |2

)}

I

. (H.26)

19. The sum of eqs. (H.19) and (H.26) is equal to ∂∆2/∂ ln g (∆2 is given by eq. (3.25)

or eq. (C.17)):

−V4 · 2Nf
d

d ln Λ

n∑

I=0

(−1)PI
∂

∂ ln g

∫
d4q

(2π)4

( 2M2J(J − 1)

q4(q2G2 +M2J2)

)

I
. (H.27)

This completes the prove that the sum of diagrams presented in figure 11 is equal to

the sum of diagrams presented in figure 15.
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